WO2020149019A1 - 二次電池 - Google Patents

二次電池 Download PDF

Info

Publication number
WO2020149019A1
WO2020149019A1 PCT/JP2019/046296 JP2019046296W WO2020149019A1 WO 2020149019 A1 WO2020149019 A1 WO 2020149019A1 JP 2019046296 W JP2019046296 W JP 2019046296W WO 2020149019 A1 WO2020149019 A1 WO 2020149019A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
electrode
negative electrode
laminated
secondary battery
Prior art date
Application number
PCT/JP2019/046296
Other languages
English (en)
French (fr)
Inventor
遊馬 神山
松田 茂樹
義朗 荒木
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US17/420,165 priority Critical patent/US20220094023A1/en
Priority to CN201980085859.8A priority patent/CN113261138A/zh
Priority to JP2020566132A priority patent/JPWO2020149019A1/ja
Publication of WO2020149019A1 publication Critical patent/WO2020149019A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/116Primary casings, jackets or wrappings of a single cell or a single battery characterised by the material
    • H01M50/117Inorganic material
    • H01M50/119Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/157Inorganic material
    • H01M50/159Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present disclosure relates to a secondary battery.
  • the electrode body housed in the exterior body of the secondary battery may move inside the exterior body due to external vibration or shock.
  • Patent Document 1 a method of inserting a spacer on a side surface of an electrode body to fix the electrode body to an outer package in order to suppress stacking displacement in which the positive electrode plate and the negative electrode plate of the stacked secondary battery are displaced from each other. Is disclosed.
  • An object of the present disclosure is to provide a secondary battery in which damage to the electrode tab is suppressed.
  • a secondary battery which is one embodiment of the present disclosure, includes a laminated electrode body in which a plurality of electrode plates are laminated via a separator, a plurality of electrode tabs protruding from one end of each of the plurality of electrode plates, and a laminated electrode body.
  • An exterior body having an opening for accommodating, a sealing plate for sealing the opening, a current collector provided on the sealing plate and connected to a plurality of electrode tabs at a connecting portion, and a plurality of connecting bodies between the connecting portion and the laminated electrode body. And a binding portion for binding the electrode tabs.
  • damage to the electrode tab can be suppressed.
  • FIG. 2 is a sectional view taken along the line AA of FIG. 1. It is a perspective view which shows the laminated electrode body which is an example of embodiment.
  • FIG. 3 is an enlarged cross-sectional view around the positive electrode tab of FIG. 2.
  • FIG. 3 is an enlarged cross-sectional view around a positive electrode tab in a cross section taken along the line BB of FIG. 2.
  • the inventor of the present application studied a method of suppressing damage to the electrode tab due to external vibration or shock, and invented a secondary battery which is one embodiment of the present disclosure.
  • a secondary battery which is one embodiment of the present disclosure, includes a laminated electrode body in which a plurality of electrode plates are laminated via a separator, a plurality of electrode tabs protruding from one end of each of the plurality of electrode plates, and a laminated electrode body.
  • An exterior body having an opening for accommodating, a sealing plate for sealing the opening, a current collector provided on the sealing plate and connected to a plurality of electrode tabs at a connecting portion, and a plurality of connecting bodies between the connecting portion and the laminated electrode body. And a binding portion for binding the electrode tabs.
  • FIG. 1 is a perspective view showing an external appearance of a secondary battery 100 that is an example of an embodiment
  • FIG. 2 is a vertical cross-sectional view including line AA in FIG.
  • the secondary battery 100 includes a battery case 20 having an outer casing 1 having an opening and a sealing plate 2 for sealing the opening.
  • the outer package 1 and the sealing plate 2 are preferably made of metal, for example, aluminum or aluminum alloy.
  • the exterior body 1 is a rectangular bottomed tubular exterior body having a bottom portion 1a, a pair of large area side walls 1b, and a pair of small area side walls 1c, and having an opening at a position facing the bottom portion 1a.
  • the secondary battery 100 shown in FIG. 1 is an example of a prismatic secondary battery having the prismatic outer casing 1 (the prismatic battery case 20), but the secondary battery of the present embodiment is not limited to this, and is a cylinder.
  • the sealing plate 2 is connected to the opening edge portion of the rectangular outer casing 1 by laser welding or the like.
  • the sealing plate 2 has an electrolyte injection hole 17.
  • the electrolytic solution injection hole 17 is sealed with a sealing plug 18 after injecting an electrolytic solution described later.
  • the sealing plate 2 has a gas discharge valve 19.
  • the gas discharge valve 19 operates when the pressure inside the battery exceeds a predetermined value, and discharges the gas inside the battery to the outside of the battery.
  • the positive electrode terminal 10 is attached to the sealing plate 2 so as to project outside the battery case 20. Specifically, the positive electrode terminal 10 is inserted into a positive electrode terminal mounting hole formed in the sealing plate 2, and an external insulating member 13 disposed outside the battery in the positive electrode terminal mounting hole and disposed inside the battery. It is attached to the sealing plate 2 in a state of being electrically insulated from the sealing plate 2 by the inner insulating member 12. The positive electrode terminal 10 is electrically connected to the positive electrode current collector 8 in the battery case 20.
  • the positive electrode current collector 8 is provided on the sealing plate 2 with the inner insulating member 12 interposed therebetween.
  • the inner insulating member 12 and the outer insulating member 13 are preferably made of resin.
  • the negative electrode terminal 11 is attached to the sealing plate 2 so as to project to the outside of the battery case 20. Specifically, the negative electrode terminal 11 is inserted into the negative electrode terminal mounting hole formed in the sealing plate 2, and the external insulating member 15 disposed outside the battery of the negative electrode terminal mounting hole and the inner side of the battery are disposed.
  • the inner side insulating member 14 is attached to the sealing plate 2 in a state of being electrically insulated from the sealing plate 2.
  • the negative electrode terminal 11 is electrically connected to the negative electrode current collector 9 inside the battery case 20.
  • the negative electrode current collector 9 is provided on the sealing plate 2 with the inner insulating member 14 interposed therebetween.
  • the inner insulating member 14 and the outer insulating member 15 are preferably made of resin.
  • the secondary battery 100 includes the laminated electrode body 3 and the electrolytic solution, and the exterior body 1 contains the laminated electrode body 3 and the electrolytic solution.
  • the laminated electrode body 3 has a laminated structure in which the positive electrode plate 31 and the negative electrode plate 32 are laminated with the separator 33 interposed therebetween.
  • a positive electrode tab 5 and a negative electrode tab 6 project from the positive electrode plate 31 and the negative electrode plate 32, respectively, on the laminated electrode body 3, and the positive electrode tab 5 and the negative electrode tab 6 are respectively the positive electrode current collector 8 and the negative electrode current collector 9. Is connected by welding or the like at a connecting portion 40.
  • the positive electrode tab 5 and the negative electrode tab 6 are bound by the binding portion 41 between the connection portion 40 and the laminated electrode body 3.
  • the secondary battery 100 may include an insulating sheet 16 arranged between the laminated electrode body 3 and the outer casing 1.
  • the insulating sheet 16 has, for example, a box-like bottomed shape or a bag-like shape having an opening in the upper portion, like the exterior body 1. Since the insulating sheet 16 has a bottomed box shape or a bag shape having an opening at the top, the laminated electrode body 3 can be inserted from the opening of the insulating sheet 16 and the laminated sheet electrode body 3 can be covered with the insulating sheet 16. ..
  • the material of the insulating sheet 16 is not particularly limited as long as it is a material having electrical insulation properties, chemical stability that is not attacked by an electrolytic solution, and electrical stability that is not electrolyzed by the voltage of the secondary battery 100. ..
  • a resin material such as polyethylene, polypropylene, or polyfluoroethylene can be used from the viewpoint of industrial versatility, manufacturing cost, and quality stability.
  • the insulating sheet 16 is not limited to the case shape such as the box shape or the bag shape described above.
  • the planar insulating sheet 16 extending in the two directions of the horizontal direction and the vertical direction may be wound around the laminated electrode body 3 in the two directions of the horizontal direction and the vertical direction. As a result, the laminated electrode body 3 can be covered with the planar insulating sheet 16.
  • the electrolytic solution contains a solvent and an electrolyte salt dissolved in the solvent.
  • the solvent both a non-aqueous solvent and an aqueous solvent can be used.
  • the electrolytic solution is a non-aqueous electrolytic solution.
  • the non-aqueous solvent for example, carbonates, esters, ethers, nitriles, amides, and a mixed solvent of two or more of these may be used.
  • the carbonates include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate and vinylene carbonate; dimethyl carbonate (DMC), ethylmethyl carbonate (EMC), diethyl carbonate (DEC), methylpropyl carbonate. , Chain propyl carbonates such as ethyl propyl carbonate and methyl isopropyl carbonate.
  • the non-aqueous solvent may contain a halogen-substituted product obtained by substituting at least a part of hydrogen in the above solvent with a halogen atom such as fluorine.
  • the electrolytic solution is not limited to the liquid electrolyte and may be a solid electrolyte using a gel polymer or the like.
  • the electrolyte salt includes a lithium salt.
  • As the lithium salt LiPF 6 or the like which is generally used as a supporting salt in the conventional secondary battery 100 can be used. Further, an additive such as vinylene carbonate (VC) can be added as appropriate.
  • VC vinylene carbonate
  • the laminated electrode body 3 has a laminated structure in which a plurality of electrode plates 30 are laminated via a separator 33, in other words, a positive electrode plate 31 and a negative electrode plate 32 are alternately laminated via a separator 33.
  • the positive electrode plate 31 has a positive electrode core body made of metal and a positive electrode active material layer 31a containing a positive electrode active material formed on the positive electrode core body.
  • a metal foil such as aluminum which is stable in the potential range of the positive electrode plate 31, a film in which the metal is disposed on the surface layer, and the like are used.
  • the thickness of the positive electrode core is, for example, 10 to 20 ⁇ m.
  • the negative electrode plate 32 has a negative electrode core body made of metal and a negative electrode active material layer 32a containing a negative electrode active material formed on the negative electrode core body.
  • a metal foil such as copper that is stable in the potential range of the negative electrode plate, a film in which the metal is disposed on the surface layer, and the like can be used.
  • the thickness of the negative electrode core is, for example, 5 to 15 ⁇ m.
  • the size of the positive electrode plate 31 is preferably slightly smaller than the size of the negative electrode plate 32.
  • An electrode tab 4 projects from one end of each of the plurality of electrode plates 30 forming the laminated electrode body 3.
  • the positive electrode tab 5 projects from one end of the positive electrode plate 31, and the negative electrode tab 6 projects from one end of the negative electrode plate 32. Since each of the positive electrode plates 31 has the positive electrode tabs 5 at substantially the same position, the positive electrode tabs 5 are arranged in a line in the stacking direction in the stacked electrode body 3. Similarly, since the negative electrode plates 32 have the negative electrode tabs 6 at substantially the same positions, the negative electrode tabs 6 in the laminated electrode body 3 are arranged in a line in the stacking direction.
  • a metal foil such as aluminum that is stable in the potential range of the positive electrode plate 31, a film in which the metal is arranged on the surface layer, and the like are used.
  • the thickness of the positive electrode tab 5 is, for example, 10 to 20 ⁇ m.
  • a metal foil such as copper that is stable in the potential range of the negative electrode plate, a film in which the metal is disposed on the surface layer, or the like can be used.
  • the thickness of the negative electrode core is, for example, 5 to 15 ⁇ m.
  • another conductive member is connected to the positive electrode core body or the negative electrode core body to form the positive electrode tab 5 or the negative electrode tab 6.
  • the positive electrode core may extend to form the positive electrode tab 5, and the negative electrode core may extend to form the negative electrode tab 6. It is preferable to provide an insulating layer or a protective layer having a higher electric resistance than the positive electrode core body at the base of the positive electrode tab 5.
  • the positive electrode active material layer 31a preferably contains a positive electrode active material, a conductive additive such as carbon, and a binder such as polyvinylidene fluoride (PVdF) and is provided on both surfaces of the positive electrode core.
  • the positive electrode plate 31 is formed by applying a positive electrode active material slurry containing a positive electrode active material, a conductive auxiliary agent, a binder, and the like on a positive electrode core, drying the coating film, and then compressing the positive electrode active material by a roller or the like. It can be produced by forming the layer 31a on both surfaces of the positive electrode core body.
  • the positive electrode active material layer 31a can be provided only on one surface of the positive electrode core body.
  • a lithium metal composite oxide for example, is used as the positive electrode active material.
  • metal elements contained in the lithium metal composite oxide include Ni, Co, Mn, Al, B, Mg, Ti, V, Cr, Fe, Cu, Zn, Ga, Sr, Zr, Nb, In, Sn, Ta, W, etc. are mentioned.
  • a suitable lithium metal composite oxide is a lithium metal composite oxide containing at least one of Ni, Co and Mn.
  • Specific examples include a lithium metal composite oxide containing Ni, Co and Mn, and a lithium metal composite oxide containing Ni, Co and Al.
  • Inorganic compound particles such as tungsten oxide, aluminum oxide, and lanthanoid-containing compound may be fixed to the surface of the lithium metal composite oxide particles.
  • the negative electrode active material layer 32a preferably contains a negative electrode active material, a binder such as styrene-butadiene rubber (SBR), and a thickener such as carboxymethyl cellulose (CMC), and is provided on both surfaces of the negative electrode core.
  • the negative electrode plate 32 is formed by applying a negative electrode active material slurry containing a negative electrode active material, a binder and the like on a negative electrode core, drying the coating film, and then compressing it with a roller or the like to form the negative electrode active material layer 32a. It can be produced by forming on both surfaces of the core.
  • the negative electrode active material layer 32a can be provided only on one surface of the negative electrode core body.
  • the negative electrode active material for example, graphite such as natural graphite such as flake graphite, lump graphite, and earth graphite, lump artificial graphite, artificial graphite such as graphitized mesophase carbon microbeads, and the like are used.
  • a metal alloying with lithium such as Si or Sn, an alloy containing the metal, a compound containing the metal, or the like may be used, and these may be used in combination with graphite.
  • Specific examples of the compound include silicon compounds represented by SiO x (0.5 ⁇ x ⁇ 1.6).
  • a porous sheet having ion permeability and insulation is used for the separator 33.
  • the separator 33 is, for example, a porous substrate whose main component is at least one selected from polyolefin, polyvinylidene fluoride, polytetrafluoroethylene, polyimide, polyamide, polyamideimide, polyethersulfone, polyetherimide, and aramid. Polyolefins are preferable, and polyethylene and polypropylene are particularly preferable.
  • the separator 33 may be composed only of a resin-made porous base material, or may have a multi-layer structure in which a heat-resistant layer containing inorganic particles or the like is formed on at least one surface of the porous base material. ..
  • the resin-made porous base material may have a multilayer structure of polypropylene/polyethylene/polypropylene or the like.
  • the separator 33 has, for example, an average pore diameter of 0.02 to 5 ⁇ m and a porosity of 30 to 70%.
  • FIG. 4 is an enlarged sectional view around the positive electrode tab 5. 4 and 5, the binding portion 41 will be described below, but the binding portion 41 is provided on the positive electrode tab 5 as an example. Even when the same structure is applied to the negative electrode tab 6, the same effect can be naturally obtained. It is preferable to provide the binding portions 41 on both the positive electrode tab 5 and the negative electrode tab 6.
  • the plurality of positive electrode tabs 5 projecting from one end of each positive electrode plate 31 are connected to the positive electrode current collector 8 at the connection portion 40. By bundling a plurality of positive electrode tabs 5 between the connection part 40 and the laminated electrode body 3 by the bundling part 41, the positive electrode tabs 5 are relatively moved and rubbed and worn by vibration or shock from the outside. Can be suppressed.
  • burrs may occur on both ends of the positive electrode tab 5 in the width direction (left and right sides of the positive electrode tab 5 in FIG. 4), and when the positive electrode tabs 5 rub against each other.
  • the effect of the binding portion 41 is remarkable because the wear is severe.
  • FIG. 5 is an enlarged sectional view of the periphery of the positive electrode tab 5 in the section taken along the line BB of FIG.
  • the plurality of positive electrode tabs 5 projecting from the upper part of the laminated electrode body 3 are arranged in a row at regular intervals and are divided into two at approximately half in the laminating direction. They are collected on the side (left and right in FIG. 5) and connected to the positive electrode current collector 8 by a connecting portion 40 by welding or the like.
  • the plurality of positive electrode tabs 5 are fixed to each other by welding or the like at the connecting portion 40 and thus do not rub, but between the connecting portion 40 and the laminated electrode body 3, vibration or impact from the outside causes a laminated electrode.
  • the laminated electrode body 3 occupies most of the volume in the battery case 20 in order to increase the capacity of the secondary battery 100, the laminated electrode body 3 and the positive electrode current collector 8 are close to each other, and the positive electrode tab 5 is bent.
  • the portion 42 is largely bent. In the bent portion 42, since the positive electrode tabs 5 are bent in the stacking direction so that the distance between the positive electrode tabs 5 is narrowed, so that the positive electrode tabs 5 are easily rubbed with each other particularly in the bent portion 42. Stress tends to concentrate on the tab.
  • the plurality of positive electrode tabs 5 have bent bent portions 42, and the binding portion 41 can bind the plurality of positive electrode tabs 5 at the bent portions 42.
  • the positive electrode tabs 5 are close to each other, the positive electrode tabs 5 are easily rubbed with each other due to external vibration or impact, and stress is likely to be concentrated on some tabs.
  • the binding portion 41 on the bent portion 42 to bind the positive electrode tab 5, it is possible to suppress wear of the positive electrode tab 5 at the bent portion 42 and stress concentration on some tabs.
  • the binding portion 41 may have a structure in which a plurality of positive electrode tabs 5 are sandwiched between resin members.
  • the resin member (bundling portion 41) in the example of the embodiment shown in FIGS. 4 and 5 has a rectangular shape longer than the width of the positive electrode tab 5, and both ends thereof should be bonded to each other by heat fusion or the like.
  • the positive electrode tab 5 is sandwiched by. Note that a shape other than a rectangular shape such as a curved shape may be selected as long as the shape allows the positive electrode tab 5 to be sandwiched. Even if the resin member is damaged by some reason and comes off from the positive electrode tab 5, unintended energization does not occur with the resin member, so the reliability of the battery is improved. You can
  • the resin member is not particularly limited as long as it is an insulating member, but, for example, polyethylene, polypropylene, polyfluoroethylene, or the like can be used.
  • the binding portion 41 can have a structure in which a plurality of positive electrode tabs 5 are bonded with an adhesive.
  • the plurality of positive electrode tabs 5 can be bonded to each other at the bent portion 42 with an adhesive.
  • the adhesive is not particularly limited as long as it can bond a plurality of positive electrode tabs 5, but an acrylic or epoxy thermosetting resin adhesive can be used. It should be noted that it is also possible to use it in combination with the above-described structure of sandwiching the resin member.
  • One end of the binding portion 41 can be fixed to the sealing plate 2.
  • the positive electrode tab 5 does not move even if it receives an external vibration or shock, so that the friction between the positive electrode tabs 5 can be more reliably suppressed. ..
  • one end of the binding portion 41 may be fixed to the sealing plate 2 via the inner insulating member 12 or the inner insulating member 14.
  • the fixing method the binding portion 41 is fixed to the inner insulating member 12 or the inner insulating member 14 by adhesion, fitting, caulking, or the resin member of the binding portion 41 is fixed to the inner insulating member 12 or the inner side. There is a method of integrally molding with the insulating member 14.
  • the binding portion 41 can be easily adhered to the inner insulating member 12 or the inner insulating member 14, and the binding portion 41 It is easy to integrally mold with the side insulating member 12 or the inner insulating member 14.
  • PVdF polyvinylidene fluoride
  • N-methyl-2-pyrrolidone N-methyl-2-pyrrolidone.
  • a positive electrode mixture slurry was prepared. This slurry is coated on a 15 ⁇ m-thick aluminum foil as a positive electrode core, dried, compressed with a roller, and then cut into a predetermined electrode size to form a positive electrode mixture layer on both surfaces of a rectangular positive electrode core.
  • the produced positive electrode was produced.
  • the positive electrode tab was provided by exposing the positive electrode core body at the end of the positive electrode.
  • Natural graphite as a negative electrode active material, styrene-butadiene rubber (SBR) as a binder, and carboxymethyl cellulose were mixed at a weight ratio of 96:2:2, and then dispersed in water to prepare a negative electrode mixture slurry.
  • This slurry was coated on a copper foil having a thickness of 10 ⁇ m as a negative electrode core, dried, compressed with a roller, and then cut into a predetermined electrode size to form a negative electrode mixture layer on both sides of a rectangular negative electrode core.
  • the prepared negative electrode was produced.
  • a negative electrode tab was provided by exposing the negative electrode core body at the end of the negative electrode.
  • a multi-layered electrode assembly was prepared in which a negative electrode plate, polyethylene as a separator, and a positive electrode plate were laminated in this order. Then, the produced laminated electrode body was inserted into a box-shaped insulating sheet having an opening at the top. Connect the positive electrode tab and the negative electrode tab of the laminated electrode body to the positive electrode terminal and the negative electrode terminal attached to the sealing plate, respectively, and once insert them into the rectangular exterior body, and adjust the position of the bent portion where the positive electrode tab and the negative electrode tab bend confirmed. Then, a pair of resin members were pressed against each other so as to sandwich the positive electrode tab and the negative electrode tab at the bent portions and fixed by heat fusion. After that, the opening of the outer package was sealed with a sealing plate to fabricate a secondary battery.
  • the vibration test described below was conducted without injecting the electrolytic solution.
  • the laminated electrode body is more likely to move due to external vibration or shock than when the electrolytic solution is injected. Therefore, a more severe test is performed when the electrolytic solution is not injected.
  • the vibration test was performed by vibrating the secondary batteries of Examples and Comparative Examples in the stacking direction of the stacked electrode bodies.
  • the secondary battery was vibrated while changing the wave number by sweeping 25 Hz at a peak acceleration of 10 G for a predetermined time with a sine wave logarithm.
  • the positive electrode tab and the negative electrode tab were checked for damage every 50,000 cycles by an X-ray transmission image, and evaluated by the number of cycles in which damage was confirmed.
  • a plurality of electrode plates are laminated via a separator, a laminated electrode body having a plurality of electrode tabs protruding from each of the plurality of electrode plates, an exterior body having an opening for accommodating the laminated electrode body, and an opening being sealed.
  • a secondary battery having a sealing plate for closing, a current collector provided on the sealing plate and connected to a plurality of electrode tabs, and a binding portion for bundling the plurality of electrode tabs can suppress damage to the electrode tabs. ..

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

本開示の一態様である二次電池は、複数の電極板がセパレータを介して積層された積層電極体と、複数の電極板の各々の一端から突出した複数の電極タブと、積層電極体を収容する開口を有する外装体と、開口を封口する封口板と、封口板に設けられ、複数の電極タブと接続部で接続される集電体と、接続部と積層電極体の間で複数の電極タブを束ねる結束部と、を備えることを特徴とする。このような構成により、電極タブ同士の擦れによる電極タブの破損を抑制した二次電池を提供することができる。

Description

二次電池
 本開示は、二次電池に関する。
 二次電池の外装体に収容された電極体は、外部からの振動や衝撃によって、外装体内で動くことがある。特許文献1には、積層型二次電池の正極板と負極板との位置がずれる積層ズレを抑制するために、電極体側面にスペーサーを挿入して電極体を外装体に対して固定する方法が開示されている。
国際公開第2010/113271号
 ところで、積層型二次電池には電極体から突出した複数の電極タブで電極体を吊り下げて保持する構造を備えるものがあり、そのような構造を備える積層型二次電池は、外部からの振動や衝撃により破損してしまうという問題があることが判明した。本開示の目的は、電極タブの破損を抑制した二次電池を提供することである。
 本開示の一態様である二次電池は、複数の電極板がセパレータを介して積層された積層電極体と、複数の電極板の各々の一端から突出した複数の電極タブと、積層電極体を収容する開口を有する外装体と、開口を封口する封口板と、封口板に設けられ、複数の電極タブと接続部で接続される集電体と、接続部と積層電極体の間で複数の電極タブを束ねる結束部と、を備えることを特徴とする。
 本開示の一態様によれば、電極タブの破損を抑制することができる。
実施形態の一例である角形二次電池を示す斜視図である。 図1のA-A線に沿った断面図である。 実施形態の一例である積層電極体を示す斜視図である。 図2の正極タブ周辺を拡大した断面図である。 図2のB-B線に沿った断面において、正極タブ周辺を拡大した断面図である。
 本願発明者の検討により、電極タブで電極体を吊り下げて保持する構造を有する積層型二次電池においては、外部からの振動や衝撃により電極タブが破損してしまうという問題があることが判明した。特許文献1に開示されたように、電極体側面にスペーサーを挿入して電極体を外装体に対して固定すると、電極体を外装体に挿入しづらいという新たな課題が生じてしまい問題である。また、近年、電池の高容量化が進んでおり、充電時と放電時で電極体の大きさが大きく変わるため、電極体を外装体に対して固定してしまうと、充放電時に電極体に圧縮応力や引張応力が加わって電極体が変形して内部短絡を引き起こす可能性があるという問題もある。そこで、本願発明者は、外部からの振動や衝撃による電極タブの破損を抑制する方法を検討し、本開示の一形態である二次電池を発明するに至った。
 本開示の一態様である二次電池は、複数の電極板がセパレータを介して積層された積層電極体と、複数の電極板の各々の一端から突出した複数の電極タブと、積層電極体を収容する開口を有する外装体と、開口を封口する封口板と、封口板に設けられ、複数の電極タブと接続部で接続される集電体と、接続部と積層電極体の間で複数の電極タブを束ねる結束部と、を備えることを特徴とする。
 以下、実施形態の一例について詳細に説明する。なお、本明細書及び図1~図5の紙面縦方向を「上下方向」とする。
 図1及び図2を用いて、実施形態の一例である二次電池100の構成を説明する。図1は、実施形態の一例である二次電池100の外観を示す斜視図であり、図2は、図1におけるA-A線を含む上下方向の断面図である。図1~2に示すように、二次電池100は、開口を有する外装体1と、当該開口を封口する封口板2とを有する電池ケース20を備える。外装体1及び封口板2は、それぞれ金属製であることが好ましく、例えば、アルミニウム又はアルミニウム合金製とすることができる。外装体1は、底部1a、一対の大面積側壁1b及び一対の小面積側壁1cを有し、底部1aと対向する位置に開口を有する角形の有底筒状の外装体である。図1に示す二次電池100は、角形の外装体1(角形の電池ケース20)を有する角形二次電池の例であるが、本実施形態の二次電池は、これに限定されず、円筒形の外装体(円筒形の電池ケース)を有する円筒形二次電池、樹脂シートをラミネートして形成されたラミネート形の外装体(ラミネート形の電池ケース)を有するラミネート形二次電池等でもよい。封口板2は、角形の外装体1の開口縁部にレーザー溶接等により接続される。
 封口板2は電解液注入孔17を有する。電解液注入孔17は、後述する電解液を注入した後、封止栓18により封止される。また、封口板2は、ガス排出弁19を有する。このガス排出弁19は電池内部の圧力が所定値以上となった場合に作動し、電池内部のガスを電池外部に排出する。
 封口板2には、電池ケース20外に突出するように正極端子10が取り付けられている。具体的には、正極端子10は、封口板2に形成された正極端子取り付け孔に挿入されており、正極端子取り付け孔の電池外側に配置された外部側絶縁部材13、電池内側に配置された内部側絶縁部材12により封口板2と電気的に絶縁された状態で封口板2に取り付けられている。正極端子10は、電池ケース20内で正極集電体8と電気的に接続している。正極集電体8は、内部側絶縁部材12を挟んで封口板2に設けられている。内部側絶縁部材12及び外部側絶縁部材13はそれぞれ樹脂製であることが好ましい。
 また、封口板2には、電池ケース20外に突出するように負極端子11が取り付けられている。具体的には、負極端子11は、封口板2に形成された負極端子取り付け孔に挿入されており、負極端子取り付け孔の電池外側に配置された外部側絶縁部材15、電池内側に配置された内部側絶縁部材14により封口板2と電気的に絶縁された状態で封口板2に取り付けられている。負極端子11は、電池ケース20内で負極集電体9と電気的に接続している。負極集電体9は、内部側絶縁部材14を挟んで封口板2に設けられている。内部側絶縁部材14及び外部側絶縁部材15はそれぞれ樹脂製であることが好ましい。
 二次電池100は積層電極体3と電解液を備え、外装体1は積層電極体3と電解液を収容する。後述するように、積層電極体3は、正極板31と負極板32とがセパレータ33を介して積層された積層構造を有している。積層電極体3の上部において、正極板31及び負極板32から各々正極タブ5及び負極タブ6が突出しており、正極タブ5及び負極タブ6は、それぞれ正極集電体8及び負極集電体9に接続部40で溶接等により接続されている。接続部40と積層電極体3との間で、正極タブ5及び負極タブ6はそれぞれ結束部41によって束ねられている。
 二次電池100は、積層電極体3と外装体1との間に配置される絶縁シート16を備えることができる。絶縁シート16は、例えば、外装体1と同様に、上部に開口を有する有底箱状又は袋状の形状を有している。絶縁シート16が上部に開口を有する有底箱状又は袋状の形状を有することで、積層電極体3を絶縁シート16の開口から挿入し、絶縁シート16によって積層電極体3を覆うことができる。
 絶縁シート16の素材は、電気的な絶縁性、電解液に侵されない化学的安定性、及び二次電池100の電圧に対して電気分解しない電気的安定性を有する素材であれば、特に限定されない。絶縁シート16の素材としては、例えば、工業的な汎用性、製造コスト及び品質安定性の観点から、ポリエチレン、ポリプロピレン、ポリフッ化エチレン等の樹脂材料を用いることができる。なお、絶縁シート16は、上述の箱状又は袋状等のようなケース状の形状に限定されない。例えば、横方向と縦方向の二方向に延在する平面形状の絶縁シート16を、積層電極体3の周りに、横方向と縦方向の二方向に巻き付けてもよい。これにより、平面形状の絶縁シート16によって、積層電極体3を覆うことができる。
 電解液は、溶媒と、溶媒に溶解した電解質塩とを含む。溶媒は、非水溶媒及び水溶媒のいずれも使用できる。非水溶媒を使用した場合には、電解液は非水電解液となる。非水溶媒には、例えばカーボネート類、エステル類、エーテル類、ニトリル類、アミド類、およびこれらの2種以上の混合溶媒等を用いてもよい。カーボネート類としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、ビニレンカーボネート等の環状カーボネート類;ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、メチルプロピルカーボネート、エチルプロピルカーボネート、メチルイソプロピルカーボネート等の鎖状カーボネート類が挙げられる。非水溶媒は、上記の溶媒の水素の少なくとも一部をフッ素等のハロゲン原子で置換したハロゲン置換体を含有していてもよい。なお、電解液は液体電解質に限定されず、ゲル状ポリマー等を用いた固体電解質であってもよい。電解質塩は、リチウム塩を含む。リチウム塩には、従来の二次電池100において支持塩として一般に使用されているLiPF6等を用いることができる。また、適宜ビニレンカーボネート(VC)等の添加剤を添加することもできる。
 次に、図3を用いて積層電極体3及び電極タブ4(正極タブ5及び負極タブ6)について詳説する。積層電極体3は、複数の電極板30がセパレータ33を介して積層された、換言すれば正極板31と負極板32がセパレータ33を介して交互に積層された、積層構造を有する。正極板31は、金属製の正極芯体と、正極芯体上に形成された正極活物質を含む正極活物質層31aを有する。正極芯体には、アルミニウムなどの正極板31の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等が用いられる。正極芯体の厚みは、例えば10~20μmである。負極板32は、金属製の負極芯体と、負極芯体上に形成された負極活物質を含む負極活物質層32aを有する。負極芯体には、銅などの負極板の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体の厚みは、例えば5~15μmである。二次電池100では、正極板31の大きさは負極板32の大きさよりも僅かに小さくするのが好ましい。
 積層電極体3を形成する複数の電極板30の各々の一端からは電極タブ4が突出している。換言すれば、正極板31の一端からは正極タブ5が突出し、負極板32の一端からは負極タブ6が突出している。各正極板31は略同じ位置に正極タブ5を有するので、積層電極体3において正極タブ5は積層方向に一列に並んでいる。同様に、各負極板32は略同じ位置に負極タブ6を有するので、積層電極体3において負極タブ6は積層方向に一列に並んでいる。
 正極タブ5には、アルミニウムなどの正極板31の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いられる。正極タブ5の厚みは、例えば10~20μmである。負極タブ6には、銅などの負極板の電位範囲で安定な金属の箔、当該金属を表層に配置したフィルム等を用いることができる。負極芯体の厚みは、例えば5~15μmである。本実施形態では、正極芯体又は負極芯体にそれぞれ他の導電部材を接続し、正極タブ5又は負極タブ6としている。なお、正極芯体が延出して正極タブ5を構成し、負極芯体が延出して負極タブ6を構成することも可能である。正極タブ5の根元部分には絶縁層ないし、正極芯体よりも電気抵抗が高い保護層を設けることが好ましい。
 正極活物質層31aは、正極活物質、カーボン等の導電助剤、及びポリフッ化ビニリデン(PVdF)等の結着剤を含み、正極芯体の両面に設けられることが好ましい。正極板31は、正極芯体上に正極活物質、導電助剤、及び結着剤等を含む正極活物質スラリーを塗布し、塗膜を乾燥させた後、ローラー等により圧縮して正極活物質層31aを正極芯体の両面に形成することにより作製できる。なお、正極活物質層31aは、正極芯体の片面にのみ設けることもできる。
 正極活物質には、例えばリチウム金属複合酸化物が用いられる。リチウム金属複合酸化物に含有される金属元素としては、Ni、Co、Mn、Al、B、Mg、Ti、V、Cr、Fe、Cu、Zn、Ga、Sr、Zr、Nb、In、Sn、Ta、W等が挙げられる。好適なリチウム金属複合酸化物の一例は、Ni、Co、Mnの少なくとも1種を含有するリチウム金属複合酸化物である。具体例としては、Ni、Co、Mnを含有するリチウム金属複合酸化物、Ni、Co、Alを含有するリチウム金属複合酸化物が挙げられる。なお、リチウム金属複合酸化物の粒子表面には、酸化タングステン、酸化アルミニウム、ランタノイド含有化合物等の無機化合物粒子などが固着していてもよい。
 負極活物質層32aは、負極活物質、及びスチレンブタジエンゴム(SBR)等の結着材、カルボキシメチルセルロース(CMC)等の増粘剤を含み、負極芯体の両面に設けられることが好ましい。負極板32は、負極芯体上に負極活物質、及び結着剤等を含む負極活物質スラリーを塗布し、塗膜を乾燥させた後、ローラー等により圧縮して負極活物質層32aを負極芯体の両面に形成することにより作製できる。なお、負極活物質層32aは、負極芯体の片面にのみ設けることもできる。
 負極活物質には、例えば鱗片状黒鉛、塊状黒鉛、土状黒鉛等の天然黒鉛、塊状人造黒鉛、黒鉛化メソフェーズカーボンマイクロビーズ等の人造黒鉛などの黒鉛が用いられる。負極活物質には、Si、Sn等のリチウムと合金化する金属、当該金属を含有する合金、当該金属を含有する化合物等が用いられてもよく、これらが黒鉛と併用されてもよい。当該化合物の具体例としては、SiOx(0.5≦x≦1.6)で表されるケイ素化合物が挙げられる。
 セパレータ33には、イオン透過性及び絶縁性を有する多孔性シートが用いられる。セパレータ33は、例えばポリオレフィン、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリイミド、ポリアミド、ポリアミドイミド、ポリエーテルサルフォン、ポリエーテルイミド、及びアラミドから選択される少なくとも1種を主成分とする多孔質基材を含み、ポリオレフィンが好ましく、特にポリエチレン、及びポリプロピレンが好ましい。セパレータ33は、樹脂製の多孔質基材のみで構成されていてもよく、多孔質基材の少なくとも一方の面に無機物粒子等を含む耐熱層などが形成された複層構造であってもよい。また、樹脂製の多孔質基材が、ポリプロピレン/ポリエチレン/ポリプロピレン等の複層構造を有していてもよい。セパレータ33は、例えば、平均孔径が0.02~5μm、空孔率が30~70%である。
 図4は、正極タブ5周辺を拡大した断面図である。以下、図4及び図5では結束部41について説明するが、正極タブ5に結束部41を設けた場合を例示する。負極タブ6について同様の構造を適用した場合にも、当然、同じ効果を得ることができる。正極タブ5及び負極タブ6の両方に結束部41を設けることが好ましい。各正極板31の一端から突出した複数の正極タブ5は、正極集電体8と接続部40で接続されている。接続部40と積層電極体3の間において複数の正極タブ5を結束部41で束ねることで、外部からの振動や衝撃によって正極タブ5同士が相対的に移動して擦れて摩耗してしまうことを抑制することができる。特に、正極タブ5が金属の箔であると、正極タブ5の幅方向の両端部(図4の正極タブ5の左右辺)にバリが発生する場合があり、正極タブ5同士が擦れた際の摩耗が激しいので、結束部41の効果が顕著である。
 図5を用いて、結束部41の好ましい形態について説明する。図5は、図2のB-B線に沿った断面において、正極タブ5周辺を拡大した断面図である。積層電極体3の上部から突出した複数の正極タブ5は、一定の間隔で一列に並んでおり、積層方向の略半分で二つに分けられ、それぞれ積層方向に沿って正面手前側と正面奥側(図5の左右)に集められて溶接等によって正極集電体8に接続部40で接続されている。複数の正極タブ5は、接続部40においては相互に溶接等によって固定されているので擦れることはないが、接続部40と積層電極体3との間においては外部からの振動や衝撃によって積層電極体3が積層方向に動くことで正極タブ5の間の距離が狭い部分で擦れを生じる。二次電池100の高容量化を図るために電池ケース20内の容積に対して積層電極体3は大部分を占めるので、積層電極体3と正極集電体8が近く、正極タブ5は屈曲部42で大きく屈曲している。屈曲部42においては、正極タブ5が積層方向に屈曲することで正極タブ5同士の間隔が狭くなっているので、特に屈曲部42において正極タブ5同士による擦れが生じやすく、また、一部のタブに応力が集中しやすい。
 複数の正極タブ5は屈曲した屈曲部42を有し、結束部41は、屈曲部42で複数の正極タブ5を結束することができる。屈曲部42においては、正極タブ5同士が接近するので外部からの振動や衝撃によって正極タブ5同士が擦れやすく、また、一部のタブに応力が集中しやすい。屈曲部42に結束部41を設けて正極タブ5を結束することで、屈曲部42における正極タブ5の摩耗や一部タブへの応力集中を抑制することができる。
 結束部41は、樹脂部材で複数の正極タブ5を挟持する構造を有することができる。図4及び図5に示す実施形態の一例における樹脂部材(結束部41)は、正極タブ5の幅よりも長い矩形形状を有しており、その両端を熱融着等でお互いに接着することで正極タブ5を挟持する。なお、正極タブ5を挟持することができる形状であれば、湾曲形など矩形以外の形状を選択しても良い。万一何らからの影響で樹脂部材が破損して正極タブ5から外れてしまった場合であっても、樹脂部材であれば意図しない通電を生じさせることはないので、電池の信頼性を高めることができる。樹脂部材としては、絶縁性のものであれば特に限定されないが、例えば、ポリエチレン、ポリプロピレン、ポリフッ化エチレン等が使用できる。
 結束部41は、接着剤で複数の正極タブ5を接着する構造を有することができる。実施形態の一例としては、屈曲部42において複数の正極タブ5同士を接着剤で接着することができる。接着剤で接着することで屈曲部42での正極タブ5同士の擦れを抑制できる。接着剤としては、複数の正極タブ5を接着できるものであれば特に限定されないが、アクリル系、あるいはエポキシ系等の熱硬化性樹脂接着剤を用いることができる。なお、上述の樹脂部材を用いて挟持する構造と併用することもできる。
 結束部41の一端が封口板2に固定されていることができる。この場合、結束部41が封口板2に固定されることで、正極タブ5は外部からの振動や衝撃を受けても動かなくなるので、正極タブ5同士の擦れをより確実に抑制することができる。また、結束部41の一端が内部側絶縁部材12又は内部側絶縁部材14を介して封口板2に固定されていてもよい。固定する方法としては、結束部41を内部側絶縁部材12又は内部側絶縁部材14に接着、嵌合、カシメなどで固定する方法や、結束部41の樹脂部材を内部側絶縁部材12又は内部側絶縁部材14と一体成形する方法がある。内部側絶縁部材12又は内部側絶縁部材14、及び結束部41がどちらも樹脂製であれば、結束部41は内部側絶縁部材12又は内部側絶縁部材14に接着しやすく、結束部41は内部側絶縁部材12又は内部側絶縁部材14と一体成形しやすい。
 以下、実施例により本開示をさらに説明するが、本開示はこれらの実施例に限定されるものではない。
<実施例>
 正極活物質としてLiNi0.5Co0.2Mn0.32、バインダーとしてポリフッ化ビニリデン(PVdF)及び導電材としてカーボンを92:4:4の重量比で混合した後、N-メチル-2-ピロリドンに分散させて、正極合材スラリーを調製した。このスラリーを正極芯体としての厚み15μmのアルミニウム箔にコーティングした後、乾燥させ、ローラーで圧縮した後、所定の電極サイズに切断し、方形状の正極芯体の両面に正極合材層が形成された正極を作製した。なお、正極の端部に正極芯体を露出させることで正極タブを設けた。
 負極活物質として天然黒鉛、バインダーとしてスチレンブタジエンゴム(SBR)及びカルボキシメチルセルロースを96:2:2の重量比で混合した後、水に分散させて、負極合材スラリーを調製した。このスラリーを負極芯体としての厚み10μmの銅箔にコーティングした後、乾燥させ、ローラーで圧縮した後、所定の電極サイズに切断し、方形状の負極芯体の両面に負極合材層が形成された負極を作製した。なお、負極の端部に負極芯体を露出させることで負極タブを設けた。
 負極板、セパレータとしてのポリエチレン、正極板の順で複数積層した積層電極体を作製した。そして、作製した積層電極体を、上部に開口を有する箱状の絶縁シートに挿入した。積層電極体の正極タブ及び負極タブを、封口板に取り付けた正極端子および負極端子にそれぞれ接続し、これを一度角形の外装体に挿入して正極タブ及び負極タブが屈曲する屈曲部の位置を確認した。そして、屈曲部で正極タブ及び負極タブをそれぞれ挟持するように一対の樹脂部材を押し当てて熱融着にて固定した。その後、外装体の開口を封口板で封口して、二次電池を作製した。
 本願においては、電解液を注入せずに後述する振動試験を行った。電解液を注入しない場合には、電解液を注入した場合に比べて外部からの振動や衝撃に対して積層電極体が動きやすいので、電解液を注入しない場合の方がより厳しい試験となる。
<比較例>
 結束部を設けなかったこと以外は、実施例と同様に二次電池を作製した。
<振動試験>
 振動試験は、実施例及び比較例の二次電池を積層電極体の積層方向に振動させて行った。振動試験は、1回の振動試験サイクルで、ピーク加速度10Gで25Hzを所定時間、正弦波対数で掃引することにより波数を変化させながら二次電池を振動させた。加振を与えた後、5万回サイクル毎に正極タブ及び負極タブに破損がないかをX線透過像により確認し、破損が確認されたサイクル回数で評価した。
 実施例及び比較例の二次電池の結果を表1にまとめた。表1に示す値は、比較例の破損が確認されたサイクル回数を1としたときの相対値である。
Figure JPOXMLDOC01-appb-T000001
 表1から分かるように、電極タブを結束部で結束した実施例は、結束部を設けなかった比較例と比べて、4.9倍の耐久性があった。したがって、複数の電極板がセパレータを介して積層され、複数の電極板の各々から突出した複数の電極タブを有する積層電極体と、積層電極体を収容する開口を有する外装体と、開口を封口する封口板と、封口板に設けられ、複数の電極タブと接続する集電体と、複数の電極タブを束ねる結束部と、を有する二次電池は、電極タブの破損を抑制することができる。
 1 外装体、2 封口板、3 積層電極体、4 電極タブ、5 正極タブ、6 負極タブ、7 集電体、8 正極集電体、9 負極集電体、10 正極端子、11 負極端子、12,14 内部側絶縁部材、13,15 外部側絶縁部材、16 絶縁シート、17 電解液注入孔、18 封止栓、19 ガス排出弁、20 電池ケース、30 電極板、31 正極板、31a 正極活物質層、32 負極板、32a 負極活物質層、33 セパレータ、40 接続部、41 結束部、42 屈曲部、100 二次電池。

Claims (5)

  1.  複数の電極板がセパレータを介して積層された積層電極体と、
     前記複数の電極板の各々の一端から突出した複数の電極タブと、
     前記積層電極体を収容する開口を有する外装体と、
     前記開口を封口する封口板と、
     前記封口板に設けられ、前記複数の電極タブと接続部で接続される集電体と、
     前記接続部と前記積層電極体の間で前記複数の電極タブを束ねる結束部と、を備える二次電池。
  2.  前記複数の電極タブは屈曲した屈曲部を有し、
     前記結束部は、前記屈曲部で前記複数の電極タブを結束する、請求項1に記載の二次電池。
  3.  前記結束部は、樹脂部材で前記複数の電極タブを挟持する構造を有する、請求項1又は2に記載の二次電池。
  4.  前記結束部は、接着剤で前記複数の電極タブを接着する構造を有する、請求項1又は2に記載の二次電池。
  5.  前記結束部の一端が前記封口板に固定されている、請求項1~4のいずれかに記載の二次電池。
PCT/JP2019/046296 2019-01-15 2019-11-27 二次電池 WO2020149019A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/420,165 US20220094023A1 (en) 2019-01-15 2019-11-27 Secondary battery
CN201980085859.8A CN113261138A (zh) 2019-01-15 2019-11-27 二次电池
JP2020566132A JPWO2020149019A1 (ja) 2019-01-15 2019-11-27 二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-004568 2019-01-15
JP2019004568 2019-01-15

Publications (1)

Publication Number Publication Date
WO2020149019A1 true WO2020149019A1 (ja) 2020-07-23

Family

ID=71613618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046296 WO2020149019A1 (ja) 2019-01-15 2019-11-27 二次電池

Country Status (4)

Country Link
US (1) US20220094023A1 (ja)
JP (1) JPWO2020149019A1 (ja)
CN (1) CN113261138A (ja)
WO (1) WO2020149019A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170814A1 (en) * 2021-10-19 2023-04-26 Prime Planet Energy & Solutions, Inc. Secondary battery

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7322731B2 (ja) * 2020-01-31 2023-08-08 トヨタ自動車株式会社 全固体電池
CN114665233A (zh) * 2022-03-26 2022-06-24 珠海冠宇电池股份有限公司 电池

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167407A (ja) * 1994-12-15 1996-06-25 Sony Corp 密閉型角形電池の電極体及びその製造方法
WO2004084244A1 (ja) * 2003-03-19 2004-09-30 Nippon Chemi-Con Corporation 積層コンデンサおよび積層コンデンサの製造方法
JP2012004096A (ja) * 2010-06-17 2012-01-05 Samsung Sdi Co Ltd 二次電池の電極タップ連結構造、及びこれを利用した二次電池
WO2012029944A1 (ja) * 2010-09-03 2012-03-08 三菱重工業株式会社 電池
JP2014072145A (ja) * 2012-10-01 2014-04-21 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2016110892A (ja) * 2014-12-09 2016-06-20 トヨタ自動車株式会社 二次電池の製造方法および二次電池
JP2018006113A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5701688B2 (ja) * 2011-01-31 2015-04-15 三洋電機株式会社 積層式電池およびその製造方法
JP6641842B2 (ja) * 2015-09-29 2020-02-05 三洋電機株式会社 角形二次電池
US10916760B2 (en) * 2016-06-30 2021-02-09 Sanyo Electric Co., Ltd. Secondary battery and method of manufacturing same
JP6672208B2 (ja) * 2017-03-17 2020-03-25 株式会社東芝 二次電池、電池パック及び車両
JP6344510B2 (ja) * 2017-06-19 2018-06-20 トヨタ自動車株式会社 二次電池

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08167407A (ja) * 1994-12-15 1996-06-25 Sony Corp 密閉型角形電池の電極体及びその製造方法
WO2004084244A1 (ja) * 2003-03-19 2004-09-30 Nippon Chemi-Con Corporation 積層コンデンサおよび積層コンデンサの製造方法
JP2012004096A (ja) * 2010-06-17 2012-01-05 Samsung Sdi Co Ltd 二次電池の電極タップ連結構造、及びこれを利用した二次電池
WO2012029944A1 (ja) * 2010-09-03 2012-03-08 三菱重工業株式会社 電池
JP2014072145A (ja) * 2012-10-01 2014-04-21 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2016110892A (ja) * 2014-12-09 2016-06-20 トヨタ自動車株式会社 二次電池の製造方法および二次電池
JP2018006113A (ja) * 2016-06-30 2018-01-11 株式会社豊田自動織機 蓄電装置及び蓄電装置の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4170814A1 (en) * 2021-10-19 2023-04-26 Prime Planet Energy & Solutions, Inc. Secondary battery
JP7463327B2 (ja) 2021-10-19 2024-04-08 プライムプラネットエナジー&ソリューションズ株式会社 二次電池

Also Published As

Publication number Publication date
US20220094023A1 (en) 2022-03-24
JPWO2020149019A1 (ja) 2021-12-02
CN113261138A (zh) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2020149019A1 (ja) 二次電池
JP6834139B2 (ja) 蓄電素子
US9583783B2 (en) Prismatic secondary battery
JP6726908B2 (ja) 積層型電池
KR101496547B1 (ko) 이차 전지용 파우치 및 이를 포함하는 이차 전지
JP5334894B2 (ja) リチウムイオン二次電池
JP6410833B2 (ja) 角形二次電池
WO2018092640A1 (ja) 高出力電池および電池ケース
JP2014032936A (ja) 電池
CN110970669A (zh) 非水电解质二次电池
US11271208B2 (en) Secondary battery and method for manufacturing secondary battery
JP2022188177A (ja) フィルム外装電池、組電池および前記フィルム外装電池の製造方法
JP7086807B2 (ja) 非水電解質二次電池
JP6507642B2 (ja) ナトリウム溶融塩電池用電極およびナトリウム溶融塩電池
WO2017149991A1 (ja) 積層型非水電解質二次電池
JP7108052B2 (ja) 蓄電素子及び蓄電素子の製造方法
WO2016088505A1 (ja) 角形二次電池
JP7165880B2 (ja) 積層型二次電池
JP6182061B2 (ja) 二次電池
JP6307813B2 (ja) 蓄電素子
CN108701867B (zh) 层叠型非水电解质二次电池
JP2016143618A (ja) 角形二次電池
JP2019129145A (ja) 非水電解質電池
JP6504994B2 (ja) 角形蓄電素子
WO2017098715A1 (ja) 蓄電素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910124

Country of ref document: EP

Kind code of ref document: A1