WO2020146962A1 - 一种还原氧化石墨烯基复合膜的制备方法 - Google Patents
一种还原氧化石墨烯基复合膜的制备方法 Download PDFInfo
- Publication number
- WO2020146962A1 WO2020146962A1 PCT/CN2019/000016 CN2019000016W WO2020146962A1 WO 2020146962 A1 WO2020146962 A1 WO 2020146962A1 CN 2019000016 W CN2019000016 W CN 2019000016W WO 2020146962 A1 WO2020146962 A1 WO 2020146962A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- graphene oxide
- based composite
- composite film
- reduced graphene
- preparing
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J3/00—Processes of treating or compounding macromolecular substances
- C08J3/02—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
- C08J3/03—Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
- C08J3/075—Macromolecular gels
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J5/00—Manufacture of articles or shaped materials containing macromolecular substances
- C08J5/18—Manufacture of films or sheets
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J2305/00—Characterised by the use of polysaccharides or of their derivatives not provided for in groups C08J2301/00 or C08J2303/00
- C08J2305/08—Chitin; Chondroitin sulfate; Hyaluronic acid; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
Definitions
- the invention relates to a method for preparing a reduced graphene oxide-based composite film.
- Graphene is a new type of two-dimensional nanocrystalline material with a thickness of one atom. Due to its excellent mechanical properties, electrical properties, thermal conductivity and stability, graphene-based materials have aroused widespread research interest in academia and industry. The insoluble property of graphene greatly limits the research of graphene-based composite materials. Therefore, people first synthesize graphene oxide, a graphene derivative with good water solubility, prepare graphene oxide composite materials by compounding with other materials, and then repair the graphene structure through chemical reduction or thermal reduction to synthesize graphene-based composite materials. Such as aerogels, fibers and membranes.
- Graphene-based composite materials have broad application prospects in the fields of energy, environment, and chemical engineering.
- graphene-based composite membranes have important research value in material separation, catalysis, lithium-ion batteries, supercapacitors, and sensors.
- the present invention uses graphene oxide as a raw material, and after the graphene oxide is uniformly mixed with other substances, a hydrothermal reaction or a solvothermal reaction is used to prepare a reduced graphene oxide-based composite film or a reduced graphene oxide-based composite film with good stability.
- Glue combined with freeze-drying or supercritical drying to convert the reduced graphene oxide-based composite gel into a reduced graphene oxide-based composite film.
- the reduced graphene oxide composite film can also be dried in a solvent to obtain a thinner composite film.
- the reduced graphene oxide-based composite film can be further reduced at a high temperature to increase the degree of reduction of graphene and improve the crystalline structure of graphene. According to application needs, the flexibility, electrical properties and thermal properties of the graphene-based composite film can also be adjusted.
- the technology of the invention has strong universality, convenient operation, and environmental protection.
- the purpose of the present invention is to provide a method for preparing a reduced graphene oxide-based composite film.
- the present invention adopts hydrothermal reaction or solvothermal reaction to directly prepare reduced graphene oxide-based composite film, or firstly prepares reduced graphene oxide-based composite gel film, and then converts the gel film into reduced oxidation by freeze drying or supercritical drying Graphene-based composite film.
- the prepared reduced graphene oxide-based composite film can also be soaked and dried in water or other solvents to obtain a thinner reduced graphene oxide-based composite film.
- the reduced graphene oxide-based composite film can also be further reduced at high temperature to improve the degree of reduction of graphene and improve the crystal structure.
- the prepared film has good stability; the compressibility and flexibility of the film depend on the added ingredients, the presence or absence of a supporting substrate and the flexibility of the supporting substrate itself.
- the process of the invention has strong universality, simple operation, and environmental protection.
- a method for preparing a reduced graphene oxide-based composite film includes the following steps:
- step (2) Add a soluble polymer such as a water-soluble polymer or other solvent-soluble polymer to the graphene oxide dispersion obtained in step (1), stir to prepare a mixed solution, or prepare an aqueous polymer solution or other polymer solutions first.
- the solvent solution, the polymer solution and the graphene oxide dispersion in step (1) are stirred to prepare a new mixture, where the polymer weight is usually 0%-50% of the graphene oxide weight, but it can be Appropriate adjustments;
- step (3) In the mixed solution prepared in step (1) or (2), add inorganic, metal, metal compound nanoparticles or precursors for preparing nanoparticles, and stir to prepare a mixed solution; or pre-prepared nanoparticles
- the suspension or the precursor mixture for preparing nanoparticles is mixed with the mixture prepared in step (1) or (2) to prepare a new mixture; the weight ratio of the added nanoparticles or their precursors to graphene oxide Usually 0%-50%, but it can be adjusted as needed;
- step (2) pours the mixed solution obtained in step (2), (3) or (4) into the reaction vessel.
- the bottom of the reaction vessel can be optionally filled with or without organic or inorganic film as a supporting substrate.
- reaction time is usually 2h-48h, but not limited to the above reaction time, to prepare reduced graphite oxide with no support or support substrate Alkene-based composite film or reduced graphene oxide-based gel film;
- the reduced graphene oxide-based composite film obtained in step (7) may be soaked in a solvent, usually water, and then dried.
- the liquid in the step (1) is usually water, but also includes methanol, ethanol, ethylene glycol, propanol, butanol, acetone, N,N-dimethylformamide, and N,N-dimethylacetamide , N-methyl-2-pyrrolidone, tetrahydrofuran, acetonitrile, hexamethylphosphoric triamide, dimethyl sulfoxide, pyridine one or more, and their mixture with water.
- the soluble polymer in the step (2) is water-soluble polymer and other polar solvent-soluble polymer.
- the nanoparticles are inorganic nanoparticles such as silicon, fullerene, graphene, carbon nanotubes, carbon black, titanium dioxide, silicon nitride, and metal or metal compound nanoparticles include but are not limited to the following substances: Gold, silver, foil, lead, nickel, copper, germanium, cadmium selenide, ferroferric oxide, tin dioxide, titanium dioxide, cobalt tetraoxide, nickel hydroxide, trimanganese tetraoxide, cadmium sulfide, zinc oxide, rubidium dioxide, Cadmium telluride, zinc sulfide, the precursors are substances for preparing these inorganic, metal or metal compound nanoparticles.
- the 0% represents that no polymer, nanoparticle, or precursor for preparing nanoparticles is added, but the polymer, nanoparticle or nanoparticle precursor cannot be added at the same time.
- the reducing agent is mainly composed of one or more of hydrazine hydrate, sodium borohydride, glucose, ascorbic acid, sodium ascorbate, ethylene glycol, diethylene glycol, hydroquinone, hydrobromic acid or acetic acid.
- the crosslinking agent includes, but is not limited to, one or more of glutaraldehyde, 1,4-butanediol diglycidyl ether, glyoxal, formaldehyde, glyoxylic acid, citric acid, and fumaric acid.
- the reaction vessel is mainly made of glass, metal, polyethylene, polypropylene, para-polyphenyl, polytetrafluoroethylene, and is equipped with glass, metal, polyethylene, polypropylene, para-poly
- the reactor is lined with benzene and polytetrafluoroethylene.
- the organic film includes but is not limited to polyolefin, polyester, polyamide, polyimide, polyacrylonitrile, polyurethane, polysulfone, polyurea, fluorinated polymer, silicon-containing polymer, cellulose acetate and their Of derivatives, copolymers or blends.
- the inorganic membrane is mainly composed of zeolite membrane, molecular sieve membrane, glass membrane, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, and their composite or hybrid membranes, but is not limited to the above inorganic membranes.
- the present invention has the following beneficial effects:
- the technology of the present invention adopts hydrothermal reaction or solvothermal reaction to directly prepare reduced graphene oxide-based composite film or reduced graphene oxide-based condensation film, and then combines freeze drying or supercritical drying to convert reduced graphene oxide gel into reduced oxidation
- Graphene-based composite film is a new invention technology for preparing reduced graphene oxide-based composite film
- the present invention has strong universality, and the preparation process is simple and convenient;
- the prepared reduced graphene oxide film can be dried to further prepare a thinner reduced graphene oxide-based composite film by immersing it in a solvent, mainly in water;
- the prepared reduced graphene oxide-based composite film can be further reduced at high temperature to obtain a reduced graphene oxide-based composite film with a higher degree of graphene reduction and a more complete crystal structure;
- the prepared composite membrane has good stability, adjustable density, thermal conductivity and electrical conductivity
- the flexibility of the prepared reduced graphene oxide-based composite film depends on the composition and content of the composition, the presence or absence of a supporting substrate, and the flexibility of the supporting substrate.
- Figures 1A and 1B show a reduced graphene oxide/silicon composite film containing 10% silicon nanoparticles prepared by a typical scheme of the present invention.
- Figure 1B shows that the reduced graphene oxide/silicon composite film is very flexible.
- Figures 2A and 2B show a 5% carbon nanotube-containing reduced graphene oxide/carbon nanotube composite membrane prepared with a cellulose membrane as a supporting substrate in a typical scheme of the present invention.
- Figure 2B illustrates a fiber membrane supporting substrate The reduced graphene oxide/carbon nanotube composite film is very flexible.
- the general preparation method of the reduced graphene oxide-based composite film of the present invention includes the following steps:
- step (2) Add a soluble polymer such as a water-soluble polymer or other solvent-soluble polymer to the graphene oxide dispersion obtained in step (1), stir to prepare a mixed solution, or first prepare an aqueous polymer solution or one containing other solvents Solution, the polymer solution and the graphene oxide dispersion in step (1) are stirred to prepare a mixed solution, where the weight of the polymer is usually 0%-50% of the weight of the graphene oxide, but can be adjusted appropriately according to the specific application;
- a soluble polymer such as a water-soluble polymer or other solvent-soluble polymer
- reaction vessel can be optionally pad or not pad with organic or inorganic film as a supporting substrate.
- the container is sealed;
- reaction vessel is subjected to hydrothermal or solvothermal reaction at 60°C-300°C for several times, usually 2h-48h, to prepare reduced graphene oxide-based composite film without support or support substrate or reduction oxidation Graphene-based gel film;
- the reduced graphene oxide-based composite gel film prepared in step (6) is freeze-dried or supercritically dried to prepare a reduced graphene oxide-based composite film;
- the reduced graphene oxide-based composite film obtained in step (7) may be soaked in a solvent, usually water, and then dried.
- the liquid in the step (1) is usually water, but also includes methanol, ethanol, ethylene glycol, propanol, butanol, acetone, N,N-dimethylformamide, and N,N-dimethylacetamide , N-methyl-2-pyrrolidone, tetrahydrofuran, acetonitrile, one or more of hexamethylphosphoric triamide, dimethyl sulfoxide, pyridine, and their mixture with water, but the selected liquid must be good Disperse graphene oxide and dissolve or swell the polymer well to ensure uniform mixing of graphene oxide and polymer.
- the soluble polymer in the step (2) is water-soluble polymer and other polar solvent-soluble polymer.
- the nanoparticles are inorganic nanoparticles such as silicon, fullerene, graphene, carbon nanotubes, carbon black, titanium dioxide, silicon nitride, and metal or metal compound nanoparticles include but are not limited to the following substances: Gold, silver, foil, lead, nickel, copper, germanium, cadmium selenide, ferroferric oxide, tin dioxide, titanium dioxide, cobalt tetraoxide, nickel hydroxide, trimanganese tetraoxide, cadmium sulfide, zinc oxide, rubidium dioxide, Cadmium telluride, zinc sulfide, precursors are the materials used to prepare these nanoparticles.
- the 0% means that no polymer, nanoparticles or precursors for preparing nanoparticles are added, but polymers, nanoparticles and precursors for preparing nanoparticles cannot be added at the same time.
- the reducing agent is mainly composed of one or more of hydrazine hydrate, sodium borohydride, glucose, ascorbic acid, sodium ascorbate, ethylene glycol, diethylene glycol, hydroquinone, hydrobromic acid or acetic acid.
- the crosslinking agent includes, but is not limited to, one or more of glutaraldehyde, 1,4-butanediol diglycidyl ether, glyoxal, formaldehyde, glyoxylic acid, citric acid, and fumaric acid.
- the reaction vessel is mainly made of glass, metal, polyethylene, polypropylene, p-polyphenyl, polytetrafluoroethylene, or is equipped with glass, metal, polyethylene, polypropylene, p-polyphenyl , Reactor lined with polytetrafluoroethylene material.
- the organic film includes but is not limited to polyolefin, polyester, polyamide, polyimide, polyacrylonitrile, polyurethane, polysulfone, polyurea, fluorinated polymer, silicon-containing polymer, cellulose acetate and their Of derivatives, copolymers or blends.
- the inorganic membrane is mainly composed of zeolite membrane, molecular sieve membrane, glass membrane, aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, and their composite or hybrid membranes, but is not limited to the above inorganic membranes.
- the composite membrane obtained by the method has a thickness of 1-50 mm, a density of 8-20 mg/cm 3 , a compressibility of less than 50%, and can be bent, and the surface pore diameter is less than 500 nm.
- the reduced graphene oxide film obtained by the method has a thickness of 1-20 mm, a density of 3-10 mg/cm 3 , a compressibility of less than 30%, elasticity, and flexibility, and the surface pore diameter is less than 500 nm.
- the reduced graphene oxide film obtained by the method has a thickness of 1-20 mm, a density of 3-10 mg/cm 3 , a compressibility of less than 40%, elasticity, and flexibility, and the surface pore diameter is less than 500 nm.
- the reduced graphene oxide film obtained by the method has a thickness of 1-20 mm, a density of 3-10 mg/cm 3 , a compressibility of less than 40%, elasticity, and flexibility, and the surface pore diameter is less than 500 nm.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Dispersion Chemistry (AREA)
- Nanotechnology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明公开了一种还原氧化石墨烯基复合膜的制备方法。该方法以氧化石墨烯为原料,在水中或其它溶剂中与其它物质进行混合,在密闭反应容器中通过水热反应或溶剂热反应制备还原氧化石墨烯基复合膜或还原氧化石墨烯基复合凝胶膜,再通过冷冻干燥或超临界干燥将还原氧化石墨烯基复合凝胶转化为复合膜。合成的复合膜可以通过在溶剂中浸润干燥得到更薄的复合膜。也可以将还原氧化石墨烯基复合膜再通过高温还原得到石墨烯还原程度更高、结晶结构更完善的还原氧化石墨烯基复合膜。
Description
本发明涉及一种还原氧化石墨烯基复合膜的制备方法。
石墨烯是一种新型的单原子厚度的二维纳米晶体材料。由于其优异的力学性能、电学性能、导热性能和稳定性能,以石墨烯为基础的材料引起学术界和工业界的广泛研究兴趣。石墨烯的难以水溶这一特性在大大限制了以石墨烯为基础的复合材料的研究。因而,人们先合成水溶性良好的石墨烯衍生物-氧化石墨烯,通过与其它材料进行复合制备氧化石墨烯复合材料,然后通过化学还原或热还原修复石墨烯结构,合成石墨烯基复合材料,如气凝胶、纤维和膜。
石墨烯基复合材料在能源、环境、化工等领域有着广泛的应用前景。比如,石墨烯基复合膜在物质分离、催化、锂离子电池、超级电容器、传感器等方面均具有重要研究价值。然而,目前,缺少一种通用制备石墨烯基复合膜的方法并使得石墨烯基复合膜的稳定性和柔韧性能得到提高。本发明以氧化石墨烯为原料,再将氧化石墨烯与其它物质进行均匀混合后,采用水热反应或溶剂热反应制备稳定性良好的还原氧化石墨烯基复合膜或还原氧化石墨烯基复合凝胶,再结合冷冻干燥或超临界干燥将还原氧化石墨烯基复合凝胶转化为还原氧化石墨烯基复合膜。还原氧化石墨烯复合膜还可以通过在溶剂中浸润干燥得到更薄的复合膜。还可以进一步对还原氧化石墨烯基复合膜进行高温还原以提高石墨烯的还原程度并完善石墨烯的结晶结构。根据应用需要,也可以对石墨烯基复合膜的柔韧性能、电学性能和热学性能进行调节。本发明技术普适性强、操作便捷,绿色环保。
发明内容
本发明的目的是提供一种还原氧化石墨烯基复合膜的制备方法。
本发明采用水热反应或者溶剂热反应直接制得还原氧化石墨烯基复合膜,或者首先制备还原氧化石墨烯基复合凝胶膜,再通过冷冻干燥或超临界干燥将凝胶膜转化成还原氧化石墨烯基复合膜。制得的还原氧化石墨烯基复合膜还可以在水或其它溶剂中浸润干燥得到更薄的还原氧化石墨烯基复合膜。还原氧化石墨烯基复合膜还可以进一步高温还原提高石墨烯的还原程度和完善结晶结构。制得的膜具有良好的稳定性;膜的压缩性能和柔韧性能取决于添加成份、有无支撑衬底和支撑衬底本身的柔韧性性。本发明工艺普适性强,操作简单,绿色环保。
一种还原氧化石墨烯基复合膜制备方法,包括以下步骤:
(1)在液体中加入尺寸为0.1μm-100μm氧化石墨烯片,搅拌1h-96h并超声0h-48h,配制成浓度为1mg/mL-50mg/mL的氧化石墨烯分散液,其中0h代表可选择不超声,只搅拌;
(2)在步骤(1)中得到的氧化石墨烯分散液中加入可溶性聚合物如水溶性聚合物或其它溶剂可溶性聚合物,搅拌配制成混合液,或者先配制聚合物的水溶液或聚合物的其它溶剂溶液,再将聚合物溶液与步骤(1)中的氧化石墨烯分散液搅拌配制成新的混合液,其中聚合物重量通常为氧化石墨烯重量的0%-50%,但根据具体应用可以适当调整;
(3)在步骤(1)或(2)中配制的混合液中加入无机、金属、金属化合物纳米颗粒或者制备纳米颗粒的前驱物,搅拌配制成混合液;也可将预先配制好的纳米颗粒悬浮液或者制备纳米颗粒的前驱物混合液与步骤(1)或(2)中配制的混合液进行混合,配制成新的混合液;添加的纳米颗粒或其前驱物与氧化石墨烯的重量比通常为0%-50%,但是可以根据需要进行适当调整;
(4)可以选择在步骤(2)或(3)中得到的混合液中不加入还原剂和交联剂或者加入还原剂和交联剂中的一种或多种。
(5)将步骤(2)、(3)或(4)中得到的混合液倒入反应容器中,反应容器底部可选择垫入或者不垫入有机或者无机膜作为支撑衬底,将反应容器进行密封;
(6)将反应容器在60℃-300℃下进行水热反应或溶剂热反应,反应时间通常为2h-48h,但不限于上述反应时间,制得无支撑或有支撑衬底的还原氧化石墨烯基复合膜或还原氧化石墨烯基凝胶膜;
(7)将步骤(6)中制得的还原氧化石墨烯基凝胶膜进行冷冻干燥或超临界干燥,制得还原氧化石墨烯基复合膜;
(8)为了得到更薄的膜,可选择将步骤(7)中得到的还原氧化石墨烯基复合膜在溶剂通常为水中浸润后干燥。
(9)还可选择再将步骤(6)、(7)或(8)中制得的还原氧化石墨烯基复合膜在200℃-3000℃下进一步高温还原,得到石墨烯还原程度更高、结晶结构更完善的还原氧化石墨烯基复合膜。
所述步骤(1)中的液体通常是水,也包含甲醇、乙醇、乙二醇、丙醇、丁醇、丙酮,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、四氢呋喃、乙腈、六甲基磷酰三胺、二甲亚砜、吡啶中的一种或多种,以及它们与水的混合物。
所述的步骤(2)中可溶性聚合物为水溶性聚合物和其它极性溶剂溶解性聚合物。
所述的步骤(3)中纳米颗粒为无机纳米颗粒如硅、富勒烯、石墨烯、碳纳米管、炭黑、二氧化钛、氮化硅,金属或金属化合物纳米颗粒包含但不限于以下物质:金、银、箔、铅、镍、铜、锗、硒化镉、四氧化三铁、二氧化锡、二氧化钛、四氧化三钴、氢氧化镍、四氧化三锰、硫化镉、氧化锌、二氧化铷、碲化镉、硫化锌,前驱物为制备这些无机、金属或者金属化合物纳米颗粒的物质。
所述步骤(2)和(3)中,所述0%代表不加入聚合物、纳米颗粒或制备纳米颗粒的前驱物,但聚合物、纳米颗粒或者纳米颗粒前驱物不能同时不添加。
所述的还原剂主要由水合肼、硼氢化钠、葡萄糖、抗坏血酸、抗坏血酸钠、乙二醇、二乙二醇、对苯二酚、氢溴酸或醋酸中的一种或多种组成。
所述的交联剂包含但不限于戊二醛、1,4-丁二醇二缩水甘油醚、乙二醛、甲醛、乙醛酸、柠檬酸、富马酸中的一种或多种。
所述的反应容器主要是由玻璃、金属、聚乙烯、聚丙烯、对位聚苯、聚四氟乙烯材质做成的容器,以及装有由玻璃、金属、聚乙烯、聚丙烯、对位聚苯、聚四氟乙烯材质做成内衬的反应釜。
所述的有机膜包含但不限于聚烯烃、聚酯、聚酰胺、聚酰亚胺、聚丙烯腈、聚氨酯、聚砜、聚脲、氟化聚合物、含硅聚合物、醋酸纤维素以及它们的衍生物、共聚物或共混物。
所述的无机膜主要由沸石膜、分子筛膜、玻璃膜、氧化铝、氧化硅、氧化钛、氧化锆以及它们的复合膜或杂化膜组成,但不限于上述无机膜。
本发明与现有技术相比具有的有益效果:
1、本发明技术采用水热反应或者溶剂热反应直接制备还原氧化石墨烯基复合膜或还原氧化石墨烯基凝膜,再结合冷冻干燥或超临界干燥把还原氧化石墨烯凝胶转化为还原氧化石墨烯基复合膜,是一种全新的制备还原氧化石墨烯基复合膜的发明技术;
2、本发明普适性强,制备过程简单方便;
3、制得的还原氧化石墨烯膜可以通过在溶剂中主要是水中浸润后干燥进一步制得更薄的还原氧化石墨烯基复合膜;
4、制得的还原氧化石墨烯基复合膜可以进一步高温还原,制得石墨烯还原程度更高、结晶结构更加完善的还原氧化石墨烯基复合膜;
5、制得的复合膜稳定性好,密度、热导、电导可调;
6、制得的还原氧化石墨烯基复合膜的柔韧性取决于成份以及成份含量、有无支撑衬底以及支撑衬底的柔韧性能。
图1A和1B是本发明的典型方案制备的含有10%硅纳米颗粒的还原氧化石墨烯/硅复合膜,图1B说明还原氧化石墨烯/硅复合膜的柔韧性很好。
图2A和2B是本发明的典型方案中制备带有纤维素膜作为支撑衬底的含有5%碳纳米管的还原氧化石墨烯/碳纳米管复合膜,图2B说明带有纤维膜支撑衬底的还原氧化石墨烯/碳纳米管复合膜的柔韧性很好。
本发明还原氧化石墨烯基复合膜的通用制备方法,包括以下步骤:
(1)搅拌1h-96h并超声0h-24h,配制成浓度为1mg/mL-50mg/mL氧化石墨烯分散液,其中0h代表可选择不超声,只搅拌;
(2)在步骤(1)中得到的氧化石墨烯分散液中加入可溶性聚合物如水溶性聚合物或其它溶剂可溶性聚合物,搅拌配制成混合液,或者先配制聚合物的水溶液或含有其它溶剂的溶液,再将聚合物溶液与步骤(1)中的氧化石墨烯分散液搅拌配制成混合液,其中聚合物重量通常为氧化石墨烯重量的0%-50%,但根据具体应用可以适当调整;
(3)在步骤(1)或(2)中配制的氧化石墨烯分散液或混合液中加入相对于氧化石墨烯重量的0%-50%纳米颗粒或者制备纳米颗粒的前驱物,搅拌配制成混合液;
(4)可选择在步骤(2)或(3)中得到的混合液中不加入还原剂和交联剂或者加入还原剂和交联剂中的一种或多种。
(5)将步骤(2)、(3)、或(4)中得到的混合液倒入反应容器中,反应容器底部可选择垫入或者不垫入有机或者无机膜作为支撑衬底,将反应容器进行密封;
(6)将反应容器在60℃-300℃下进行水热反应或溶剂热反应若干时间,通常为2h-48h,制得无支撑或有支撑衬底的还原氧化石墨烯基复合膜或还原氧化石墨烯基凝胶膜;
(7)将步骤(6)中制得的还原氧化石墨烯基复合凝胶膜进行冷冻干燥或超临界干燥,制得还原氧化石墨烯基复合膜;
(8)为了得到更薄的膜,可选择将步骤(7)中得到的还原氧化石墨烯基复合膜在溶剂通常为水中浸润后干燥。
(9)还可选择再将步骤(6)、(7)或(8)中制得的还原氧化石墨烯基复合膜在200℃-3000℃下进一步高温还原,得到石墨烯还原程度更高、结晶结构更完善的还原氧化石墨烯基复合膜。
所述步骤(1)中的液体通常是水,也包含甲醇、乙醇、乙二醇、丙醇、丁醇、丙酮,N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基-2-吡咯烷酮、四氢呋喃、乙腈、六甲基磷酰三胺、二甲亚砜、吡啶中的一种或多种,以及它们与水的混合物,但所选液体必须很好的分散氧化石墨烯并溶解或很好的溶胀聚合物,以确保氧化石墨烯与聚合物均匀混合。
所述的步骤(2)中可溶性聚合物为水溶性聚合物和其它极性溶剂溶解性聚合物。
所述的步骤(3)中纳米颗粒为无机纳米颗粒如硅、富勒烯、石墨烯、碳纳米管、炭黑、二氧化钛、氮化硅,金属或金属化合物纳米颗粒包含但不限于以下物质:金、银、箔、铅、镍、铜、锗、硒化镉、四氧化三铁、二氧化锡、二氧化钛、四氧化三钴、氢氧化镍、四氧化三锰、硫化镉、氧化锌、二氧化铷、碲化镉、硫化锌,前驱物为制备这些纳米颗粒的物质。
所述步骤(2)和(3)中,所述0%代表不加入聚合物、纳米颗粒或制备纳米颗粒的前驱物,但聚合物,纳米颗粒和制备纳米颗粒的前驱物不能同时不添加。
所述的还原剂主要由水合肼、硼氢化钠、葡萄糖、抗坏血酸、抗坏血酸钠、乙二醇、二乙二醇、对苯二酚、氢溴酸或醋酸中的一种或多种组成。
所述的交联剂包含但不限于戊二醛、1,4-丁二醇二缩水甘油醚、乙二醛、甲醛、乙醛酸、柠檬酸、富马酸中的一种或多种。
所述的反应容器主要是由玻璃、金属、聚乙烯、聚丙烯、对位聚苯、聚四氟乙烯材质做成的容器或者装有由玻璃、金属、聚乙烯、聚丙烯、对位聚苯、聚四氟乙烯材质做成内衬的反应釜。
所述的有机膜包含但不限于聚烯烃、聚酯、聚酰胺、聚酰亚胺、聚丙烯腈、聚氨酯、聚砜、聚脲、氟化聚合物、含硅聚合物、醋酸纤维素以及它们的衍生物、共聚物或共混物。
所述的无机膜主要由沸石膜、分子筛膜、玻璃膜、氧化铝、氧化硅、氧化钛、氧化锆以及它们的复合膜或杂化膜组成,但不限于上述无机膜。
下面通过实施例对本发明进行具体描述,本实施例只用于对本发明做进一步的说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据上述发明的内容作出一些非本质的改变和调整,均属于本发明的保护范围。
实施例1:
步骤(a):将1g尺寸为10μm的氧化石墨烯分散于200mL的水中,搅拌10h,超声2min,得到氧化石墨烯分散液;
步骤(b):在步骤a所得氧化石墨烯分散液加入相对于氧化石墨烯含量的25%的羧化壳聚糖,搅拌5h、超声10min后取出4mL混合液倒入50mL内径为2.96cm的聚四氟乙烯内衬中,密闭后再将其放入反应釜。
步骤(c):将步骤b中反应釜密闭后放入120℃真空烘箱水热反应12h,得到还原氧化石墨烯基复合水凝胶。
步骤(d):将步骤c中所得复合水凝胶在-100℃下冷冻成型,并冷冻干燥得到还原氧化石墨烯/壳聚糖复合膜。
本方法得到的复合膜膜,厚度为1-50mm,密度为8-20mg/cm
3,可压缩率小于50%,可以弯曲,表面孔径小于500nm。
实施例2:
步骤(a):将1g尺寸为10μm的氧化石墨烯分散于200mL的水中,搅拌10h,超声2min,得到氧化石墨烯分散液;
步骤(b):在步骤a所得氧化石墨烯分散液加入氧化石墨烯含量的10%的硅纳米颗粒,搅拌30min、超声2min后取出1mL混合液倒入20mL玻璃瓶中,密封后放入50mL聚四氟乙烯内衬中,密闭后再将其放入反应釜。
步骤(c):将步骤b中反应釜密闭后放入120℃真空烘箱水热反应12h,得到还原氧化石墨烯/硅复合水凝胶。
步骤(d):将步骤c中所得复合水凝胶在-30℃下冷冻成型,并冷冻干燥得到还原氧化石墨烯/硅复合膜。
本方法得到的还原氧化石墨烯膜,厚度为1-20mm,密度为3-10mg/cm
3,可压缩率小于30%,有弹性,可以弯曲,表面孔径小于500nm。
实施例3:
步骤(a):将1g尺寸为10μm的氧化石墨烯分散于200mL的水中,搅拌2h,得到氧化石墨烯分散液;
步骤(b):在步骤a中所得氧化石墨烯分散液加入相对于氧化石墨烯含量5%的碳纳米管,搅拌1h、超声2min后取出1mL混合液倒入20mL玻璃瓶中,密封后放入50mL聚四氟乙烯内衬中,密闭后再将其放入反应釜。
步骤(c):将步骤b中反应釜密闭后放入120℃真空烘箱水热反应12h,得到还原氧化石墨烯/碳纳米管复合水凝胶。
步骤(d):将步骤c中所得复合水凝胶在-30℃下冷冻成型,并冷冻干燥得到还原氧化石墨烯/碳纳米管复合膜。
本方法得到的还原氧化石墨烯膜,厚度为1-20mm,密度为3-10mg/cm
3,可压缩率小于40%,有弹性,可以弯曲,表面孔径小于500nm。
实施例4:
步骤(a):将1g尺寸为10μm的氧化石墨烯分散于200mL的水中,搅拌10h,超声2min,得到氧化石墨烯分散液;
步骤(b):在步骤a所得氧化石墨烯分散液加入氧化石墨烯含量的5%的碳纳米管,搅拌1h、超声2min后取出1mL混合液倒入20mL底部垫有混合纤维素膜作为支撑衬底的玻璃瓶中,密封后放入50mL聚四氟乙烯内衬中,密闭后再将其放入反应釜。
步骤(c):将步骤b中反应釜密闭后放入120℃真空烘箱水热反应12h,得到还原氧化石墨烯/碳纳米管复合水凝胶。
步骤(d):将步骤c中所得复合水凝胶在-30℃下冷冻成型,并冷冻干燥得到还原氧化石墨烯/碳纳米管复合膜。
本方法得到的还原氧化石墨烯膜,厚度为1-20mm,密度为3-10mg/cm
3,可压缩率小于40%,有弹性,可以弯曲,表面孔径小于500nm。
上述实施例用来解释本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改或改变,都将落入本发明的保护范围。
Claims (12)
- 一种还原氧化石墨烯基复合膜的制备方法,包括以下步骤:(1)配制氧化石墨烯基混合液,混合液包含氧化石墨烯,同时也包含可溶性聚合物,无机、金属、金属化合物纳米颗粒或者制备纳米颗粒的前驱物中的一种或多种;(2)将步骤(1)中得到的混合液放入反应容器进行水热反应或者溶剂热反应,制得还原氧化石墨烯基复合膜或者还原氧化石墨烯基复合凝胶膜,其中使用的混合液的量为0.05mL-2mL/cm 2;
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,所述步骤(1)中,混合液的溶剂由水和极性有机溶剂中的一种或多种组成,极性有机溶剂包括甲醇,乙醇,乙二醇,丙醇,丁醇,丙酮,N,N-二甲基甲酰胺,N,N-二甲基乙酰胺,N-甲基-2-吡咯烷酮,四氢呋喃,乙腈,六甲基磷酰三胺,二甲亚砜和吡啶。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,所述步骤(1)中,所述可溶性聚合物主要为水溶性聚合物和其它极性溶剂溶解性聚合物。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,所述步骤(1)中,所述纳米颗粒为无机纳米颗粒包括硅、富勒烯、石墨烯、碳纳米管、炭黑、二氧化钛、氮化硅,金属或金属化合物纳米颗粒如金、银、箔、铅、镍、铜、锗、硒化镉、四氧化三铁、二氧化锡、二氧化钛、四氧化三钴、氢氧化镍、四氧化三锰、硫化镉、氧化锌、二氧化铷、碲化镉、硫化锌,所述前驱物为制备这些无机、金属或者金属化合物纳米颗粒的物质。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,在步骤(1)中加入还原剂,所述还原剂主要由水合肼、硼氢化钠、葡萄糖、抗坏血酸、抗坏血酸钠、乙二醇、二乙二醇、对苯二酚、氢溴酸或醋酸中的一种或多种组成。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,在步骤中加入交联剂,所述交联剂主要由戊二醛、1,4-丁二醇二缩水甘油醚、乙二醛、甲醛、乙醛酸、柠檬酸、富马酸中的一种或多种组成。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,所述步骤(2)中,反应温度为60℃-300℃。
- 根据权利要求1所述还原氧化石墨烯基复合膜的制备方法,其特征在于,将所述步骤(2)中的还原氧化石墨烯基复合凝胶膜进行冷冻干燥或超临界干燥,制得还原氧化石墨烯基复合膜。
- 根据权力要求1和9中所述还原氧化石墨烯基复合膜的制备方法,所述制备得到的还原氧化石墨烯基复合膜包括带有支撑衬底或不带有支撑衬底的复合膜。
- 根据权利要求9所述的还原氧化石墨烯基复合膜的制备方法,还原氧化石墨烯基复合膜 在溶剂(通常为水)中浸润、干燥得到更薄的还原氧化石墨烯基复合膜。
- 根据权力要求1、8、10所述还原氧化石墨烯基复合膜的制备方法,制得的还原氧化石墨烯基复合膜在200℃-3000℃下进一步高温还原,得到石墨烯还原程度更高、结晶结构更完善的还原氧化石墨烯基复合膜。
- 权利要求1-13中任一项所述的制备方法制备得到的还原氧化石墨烯基复合膜。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810131576 | 2018-02-05 | ||
CN201910037680.7A CN110117004A (zh) | 2018-02-05 | 2019-01-15 | 一种还原氧化石墨烯基复合膜的制备方法 |
CN201910037680.7 | 2019-01-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020146962A1 true WO2020146962A1 (zh) | 2020-07-23 |
Family
ID=67520249
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/000016 WO2020146962A1 (zh) | 2018-02-05 | 2019-01-24 | 一种还原氧化石墨烯基复合膜的制备方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110117004A (zh) |
WO (1) | WO2020146962A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114751403A (zh) * | 2022-04-15 | 2022-07-15 | 常州富烯科技股份有限公司 | 高导热石墨烯膜及其制备方法 |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112537767B (zh) * | 2019-09-23 | 2023-09-08 | 中国科学院上海硅酸盐研究所苏州研究院 | 一种高弹性三维石墨烯宏观体及其制备方法 |
CN110935324A (zh) * | 2019-12-26 | 2020-03-31 | 启成(江苏)净化科技有限公司 | 一种Ni(OH)2-GO/PES共混超滤膜的制备方法 |
CN113184839B (zh) * | 2021-05-12 | 2022-11-15 | 沈阳建筑大学 | 一种能够调节细胞生长状态的细胞培养载体 |
CN113903888B (zh) * | 2021-09-02 | 2023-04-18 | 青岛科技大学 | 一种交联还原氧化石墨烯基柔性自支撑膜电极及其快速制备方法 |
CN114906841B (zh) * | 2022-06-23 | 2023-10-17 | 上海海事大学 | 非晶纳米碳颗粒/石墨烯气凝胶复合材料的制备方法 |
CN115233198B (zh) * | 2022-07-29 | 2023-08-01 | 东莞市正为精密塑胶有限公司 | 一种手机天线用表面金属化材料及其表面金属化方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123869A (zh) * | 2012-11-28 | 2013-05-29 | 华中科技大学 | 一种具备三维多孔结构的纳米二氧化钛-石墨烯复合材料制备方法及其产品 |
CN104148663A (zh) * | 2014-07-15 | 2014-11-19 | 东南大学 | 高效制备银纳米粒子-石墨烯三维复合结构的方法 |
CN106145094A (zh) * | 2015-03-13 | 2016-11-23 | 中国科学院上海应用物理研究所 | 一种石墨烯-无机纳米颗粒复合膜及其制备方法 |
CN106910640A (zh) * | 2017-04-17 | 2017-06-30 | 上海应用技术大学 | 一种形态可控的石墨烯纳米片电极材料及其制备方法和应用 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105315476B (zh) * | 2015-11-17 | 2017-12-29 | 重庆理工大学 | 一种制备改性石墨烯‑聚乙烯醇复合薄膜的方法 |
CN105315508B (zh) * | 2015-11-17 | 2018-03-27 | 重庆理工大学 | 一种改性石墨烯‑壳聚糖复合薄膜的制备方法 |
CN105218845B (zh) * | 2015-11-17 | 2017-12-29 | 重庆理工大学 | 一种改性石墨烯‑聚甲基丙烯酸甲酯复合薄膜的制备方法 |
CN105583408A (zh) * | 2015-12-22 | 2016-05-18 | 浙江理工大学 | Cu纳米线-还原氧化石墨烯三维多孔薄膜的制备方法及应用 |
CN105749896A (zh) * | 2016-02-15 | 2016-07-13 | 东南大学 | 一种氧化锌/还原氧化石墨烯气凝胶及其制备方法 |
CN105732917B (zh) * | 2016-04-28 | 2018-12-28 | 北京理工大学 | 一种还原氧化石墨烯接枝聚丙烯腈的制备方法 |
CN105860143A (zh) * | 2016-05-14 | 2016-08-17 | 上海大学 | 一种柔性纳米纤维素-石墨烯复合膜及其制备方法 |
CN107641314B (zh) * | 2017-09-16 | 2020-04-21 | 福建师范大学 | 一种石墨烯/氧化铅复合物改性水性聚氨酯材料的制备方法 |
-
2019
- 2019-01-15 CN CN201910037680.7A patent/CN110117004A/zh active Pending
- 2019-01-24 WO PCT/CN2019/000016 patent/WO2020146962A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103123869A (zh) * | 2012-11-28 | 2013-05-29 | 华中科技大学 | 一种具备三维多孔结构的纳米二氧化钛-石墨烯复合材料制备方法及其产品 |
CN104148663A (zh) * | 2014-07-15 | 2014-11-19 | 东南大学 | 高效制备银纳米粒子-石墨烯三维复合结构的方法 |
CN106145094A (zh) * | 2015-03-13 | 2016-11-23 | 中国科学院上海应用物理研究所 | 一种石墨烯-无机纳米颗粒复合膜及其制备方法 |
CN106910640A (zh) * | 2017-04-17 | 2017-06-30 | 上海应用技术大学 | 一种形态可控的石墨烯纳米片电极材料及其制备方法和应用 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114751403A (zh) * | 2022-04-15 | 2022-07-15 | 常州富烯科技股份有限公司 | 高导热石墨烯膜及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN110117004A (zh) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020146962A1 (zh) | 一种还原氧化石墨烯基复合膜的制备方法 | |
Du et al. | Designing synthesis of porous biomass carbon from wheat straw and the functionalizing application in flexible, all-solid-state supercapacitors | |
WO2019095751A1 (zh) | 一种纤维素/二维层状材料复合水凝胶及其制备方法 | |
Hu et al. | A modified natural polysaccharide as a high-performance binder for silicon anodes in lithium-ion batteries | |
CN105949512B (zh) | 插层组装氮化硼-石墨烯复合材料、应用及其制备方法 | |
Wu et al. | Carbonaceous hydrogels and aerogels for supercapacitors | |
WO2019056587A1 (zh) | 一种铂/黑磷@碳球甲醇燃料电池阳极催化剂及其制备方法 | |
WO2019149018A1 (zh) | 一种还原氧化石墨烯膜的制备方法 | |
CN110127671A (zh) | 一种还原氧化石墨烯基复合膜的通用制备方法 | |
WO2016041310A1 (zh) | 一种防水隔氧密封膜及其制备和应用 | |
CN104130538A (zh) | 一种基于超临界二氧化碳诱导溶液相转变技术制备石墨烯溶液的方法 | |
Yu et al. | Three-dimensional porous carbon aerogels from sodium carboxymethyl cellulose/poly (vinyl alcohol) composite for high-performance supercapacitors | |
CN104036971A (zh) | 一种石墨烯/碳纳米管复合纤维基超级电容器的制备方法 | |
CN112481633B (zh) | 一种碳包覆CoS2-FeS2异质结纳米片的制备方法 | |
CN107140626A (zh) | 一种三维石墨烯材料的低温热成型方法 | |
CN111554942B (zh) | 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用 | |
Gong et al. | An emerging class of carbon materials: Synthesis and applications of carbon flowers | |
CN110759336A (zh) | 一种石墨烯的制备方法及石墨烯 | |
CN110648863B (zh) | 一种碳纳米管薄膜复合金属硫化物柔性非对称超级电容器的制备方法 | |
CN113690539A (zh) | 一种高性能纤维素基锂离子电池隔膜的制备方法 | |
Dzyazko et al. | Polysaccharides: An efficient tool for fabrication of carbon nanomaterials | |
Zhu et al. | Toward improved sustainability in lithium ion batteries using bio-based materials | |
KR101419340B1 (ko) | 그라파이트 산화물 및 그래핀 나노시트 제조 방법 | |
CN112439322A (zh) | 一种还原氧化石墨烯基不对称复合膜的通用制备方法 | |
WO2024045852A1 (zh) | 一种Ag8SnSxSe6-x薄膜的制备方法及应用 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19909833 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19909833 Country of ref document: EP Kind code of ref document: A1 |