CN111554942B - 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用 - Google Patents

一种银负载纤维素/碳纳米管复合材料及其制备方法与应用 Download PDF

Info

Publication number
CN111554942B
CN111554942B CN202010376191.7A CN202010376191A CN111554942B CN 111554942 B CN111554942 B CN 111554942B CN 202010376191 A CN202010376191 A CN 202010376191A CN 111554942 B CN111554942 B CN 111554942B
Authority
CN
China
Prior art keywords
cellulose
silver
composite material
carbon nanotube
carbon nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010376191.7A
Other languages
English (en)
Other versions
CN111554942A (zh
Inventor
赵文艺
李生娟
李磊
霍云浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010376191.7A priority Critical patent/CN111554942B/zh
Publication of CN111554942A publication Critical patent/CN111554942A/zh
Application granted granted Critical
Publication of CN111554942B publication Critical patent/CN111554942B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/04Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
    • H01M12/06Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties

Abstract

本发明公开了一种银负载纤维素/碳纳米管复合材料的制备方法,先将纤维素与碳纳米管超声混合,然后加入硝酸银均匀搅拌,在冰水浴中恒流滴加硼氢化钠溶液,冰水浴中液相反应2h后,离心洗涤,之后将离心物超声分散,将均匀分散液倒入培养皿后迅速放入超低温冰箱内,在‑80℃冷冻12h。最后转移至冷冻干燥机内真空干燥24h,得到银负载纤维素/碳纳米管复合材料。本发明具有操作简便,可控性强,环境友好,高柔性,耐弯折,低成本等优点。可用于可穿戴电子设备的柔性空气电池阴极的氧还原催化剂,克服了传统电池的刚性缺陷及现有制备工艺繁琐、成本高、稳定性差、动力学迟缓等缺点。

Description

一种银负载纤维素/碳纳米管复合材料及其制备方法与应用
技术领域
本发明涉及一种银负载纤维素/碳纳米管复合材料及其制备方法与应用,具体涉及清洁能源的电催化材料技术领域。
背景技术
近年来,随着电子技术的快速进步,越来越多的电子设备正在向着轻薄化、柔性化和可穿戴的方向发展。在这样的时代背景下,以柔性基底组成柔性电子器件应运而生。柔性电子产品是指柔性电子设备可以进行某种程度的弯曲、扭转、对折或者是打卷,其结构不会损坏、性能不会削弱。它具有许多独特的性质,比如形状随使用环境可变、体积小巧、质轻便携等,其不仅在信息、医疗、能源、国防等领域有广泛且重要的应用,同时也在改变人们的生活。在不久的将来,柔性电子设备将会取代大部分传统的非柔性电子产品。因此新的技术革命将会发生在柔性电子产品领域,人类社会也即将进入柔性电子时代。
伴随着柔性可穿戴电子器件的飞速发展,如柔性显示,电子皮肤,可穿戴计算机等,人们对于高能量密度和持久稳定的柔性储能设备的需求也在飞速增长。由于超高的理论能量密度,清洁的反应活性物质和相对低廉的成本,金属空气电池(Metal-airbatteries,MAB)被认为是新一代可穿戴储能设备理想的候选者之一(Jin H,Guo C,Liu X,et al.Emerging two-dimensional nanomaterials for electrocatalysis[J].Chemicalreviews,2018,118(13):6337-6408)。尽管研究者们已经在提高空气电池的性能方面取得了很大的进步,但对于适用于可穿戴电子设备的柔性空气电池的设计和开发,仍面临着很多技术上的挑战(Kordek K,Jiang L,Fan K,et al.Two-Step Activated Carbon Clothwith Oxygen-Rich Functional Groups as a High-Performance Additive-Free AirElectrode for Flexible Zinc–Air Batteries[J].Advanced Energy Materials,2019,9(4):1802936)。另外传统电池是刚性的,在弯曲时容易造成电极材料和集流体分离,影响电化学性能,甚至发生危险(Zhang Y,Guo Y,Liu T,et al.The Synergistic EffectAccelerates the Oxygen Reduction/Evolution Reaction in a Zn-Air Battery[J].Frontiers in chemistry,2019,7:524.)。因此寻找柔性好且机械强度高的基底材料也是目前研究的热点。如何制备性能优异的ORR/OER电化学催化剂并结合到相应的柔性催化电极的设计中是实现柔性金属空气电池的基础。
纤维素作为可再生、可降解的生物质之一,是地球上含量最丰富的天然高分子材料,是自然界赋予人类取之不尽、用之不竭的可再生资源。纤维素不仅具有柔性好机械性能高的显著优势,而且还可以制备相关衍生物,易于与有机、无机材料相互作用形成功能性复合材料。因此纤维素可作为最理想的柔性衬底,但纤维素不具备导电性,严重影响了其在电子设备及储能器件中的应用。想要将纳米纤维素基材料应用到电子元器件中,则须使纤维素具有一定的导电性(Niu Q,Guo Y,Gao K,et al.Polypyrrole/cellulose nanofibersaerogel as supercapacitors electrode material[J].RSC,2015,44(1):161-192.)。制备纳米纤维素基导电材料的途径主要有两种:一是用导电材料对纳米纤维素进行改性;通过机械混合或原位复合等方式与导电介质发生反应制备复合材料,该方式已经成为当前导电材料领域的研究热点之一(Phan D N,Dorjjugder N,Khan M Q,et al.Synthesis andattachment of silver and copper nanoparticles on cellulose nanofibers andcomparative antibacterial study[J].Cellulose,2019,26(11):6629-6640.)。一般而言,能够添加到纳米纤维素基材中的导电材料主要包括导电聚合物、导电碳材料、金属材料等。二是对纳米纤维素材料进行炭化处理,赋予其导电性,但碳化处理严重破坏了纤维素的柔韧性。
为使纳米纤维素基材料具有一定的导电性,负载优良的导电金属粒子是可行的,如将纳米粒子银负载在纤维素上,可制备出柔性导电材料。另外碳纳米管(CNT)具有独特的力学、电学性能,为其在复合材料领域提供了广阔的应用前景(Bai Y,Liu R,Li E,etal.Graphene/Carbon Nanotube/Bacterial Cellulose assisted supporting forpolypyrrole towards flexible supercapacitor applications[J].Journal of Alloysand Compounds,2019,777:524-530.)。
发明内容
在纤维素银复合材料中添加CNT缠绕纳米纤维素,使得纤维素/银复合材料为连续相,碳纳米管为分散相,在基材的表面和内部形成了连续不断的空间三维导电网络,进而实现电子的快速转移,另外银和碳纳米管的协同作用可作为优异的电催化剂,使其不仅具有导电性,还具有电催化性能,从而制备出柔性自支撑的电极材料。
本发明的目的是提供一种银负载纤维素/碳纳米管复合材料及其制备方法,所述方法采用液相还原法,反应中不需要添加任何稳定剂,避免了其他化学组分对材料的影响,直接以碳纳米管作为导电分散相,以硝酸银为银源,硼氢化钠为还原剂,纤维素作为载体,通过液相还原的方法将硝酸银还原成银纳米颗粒。制得的材料具有高柔性,耐弯折以及高导电性和优异的电化学性能。
本发明的技术方案如下:
一种银负载纤维素/碳纳米管复合材料的制备方法,其特征在于,包括以下步骤:
1)将纤维素分散在去离子水中,超声分散后,再加入碳纳米管(CNT),继续超声分散均匀,得到纤维素/碳纳米管分散液;
2)再往1)中得到的纤维素/碳纳米管分散液中添加硝酸银,在冰水浴中搅拌分散均匀,得到硝酸银/纤维素/碳纳米管分散液中;
3)将硼氢化钠溶解在去离子水中,配制硼氢化钠溶液的过程中在冰水浴中进行,在烧杯内缓慢加入硼氢化钠并用玻璃棒不断搅拌;
4)用恒流注射泵将步骤3)配制的硼氢化钠溶液逐滴加入步骤2)配制的硝酸银/纤维素/碳纳米管的分散液中,恒定滴加速度为1mL/min;冰水浴中反应2h,反应过程中反应液以300rpm不断搅拌;
5)将步骤4)得到的反应物离心洗涤,离心转速8000rpm,反复离心5-6次,直到离心上清液呈中性;
6)将步骤5)得到的离心物超声分散10min,使溶液分散均匀,倒入培养皿后迅速放入超低温冰箱内,在-80℃冷冻12h,然后转移至冷冻干燥机内真空干燥24h,得到银负载纤维素/碳纳米管复合材料。
优选地,所述步骤1)中的纤维素/碳纳米管分散液中,纤维素与碳纳米管的浓度均为2.5mg/mL。
优选地,所述步骤2)中的硝酸银/纤维素/碳纳米管分散液中,硝酸银的浓度为1.25mg/mL。
优选地,所述步骤3)中硼氢化钠溶液的浓度为0.14M。
本发明还提供了上述方法制备的银负载纤维素/碳纳米管复合材料。
本发明还提供了上述银负载纤维素/碳纳米管复合材料作为柔性超级电容器电极材料的应用。
本发明还提供了上述银负载纤维素/碳纳米管复合材料作为柔性空气电池阴极的氧还原催化剂的应用。
附图说明
图1(a)为实施例1制得的纤维素的SEM图;
图1(b)为实施例2制得的纤维素/碳纳米管复合材料的SEM图;
图1(c)为实施例3制得的银负载纤维素/碳纳米管复合材料的SEM图;
图1(d)为实施例3制得的银负载纤维素/碳纳米管复合材料中银纳米颗粒的粒径分布图;
图2为实施例1制得的纤维素、实施例2制得的纤维素/碳纳米管复合材料、实施例3制得的银负载纤维素/碳纳米管复合材料的XRD图;
图3为实施例1制得的纤维素、实施例2制得的纤维素/碳纳米管复合材料、实施例3制得的银负载纤维素/碳纳米管复合材料在转速为1600rpm下氧还原测试的LSV曲线。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
【实施例1】
本实施例提供了一种纤维素样品的制备方法,具体步骤如下:
1)取50mg纤维素分散在20mL去离子水中,用超声波细胞粉碎机超声20min,然后移至冰水浴中搅拌2h,其冰水浴温度保持在0℃,搅拌速度为300rpm,得到纤维素均匀分散液;
2)将步骤1制得的纤维素均匀分散液倒入培养皿后迅速放入超低温冰箱内,在-80℃冷冻12h。然后转移至冷冻干燥机内真空干燥24h,得到银纤维素样品材料。
【实施例2】
本实施例提供了一种纤维素/碳纳米管复合材料的制备方法,具体步骤如下:
1)取50mg纤维素分散在20mL去离子水中,用超声波细胞粉碎机超声10min,再加入50mgCNT继续超声10min,然后移至冰水浴中搅拌2h,其冰水浴温度保持在0℃,搅拌速度为300rpm,得到纤维素/碳纳米管均匀分散液;
2)将步骤1制得的纤维素/碳纳米管均匀分散液倒入培养皿后迅速放入超低温冰箱内,在-80℃冷冻12h。然后转移至冷冻干燥机内真空干燥24h,得到纤维素/碳纳米管复合材料。
【实施例3】
本实施例提供了一种银负载纤维素/碳纳米管复合材料的制备方法,具体步骤如下:
1)取50mg纤维素分散在20mL去离子水中,用超声波细胞粉碎机超声10min,再加入50mgCNT继续超声10min,得到纤维素/碳纳米管均匀分散液;
2)再往1)溶液中添加25mg硝酸银,在冰水浴中搅拌30min,其冰水浴温度保持在0℃,搅拌速度300rpm,确保硝酸银充分且均匀溶解在纤维素/碳纳米管分散液中;
3)取53mg硼氢化钠溶解在10mL去离子水中,配制0.14M硼氢化钠溶液,配制硼氢化钠溶液的过程中在冰水浴中进行,在烧杯内缓慢加入硼氢化钠并用玻璃棒不断搅拌;
4)用恒流注射泵将步骤3)配制的硼氢化钠溶液逐滴加入步骤2)配制的硝酸银/纤维素/碳纳米管的均匀分散液中,滴加速度为1mL/min;冰水浴中反应2h。反应过程中反应液以300rpm不断搅拌;
5)将步骤4)得到的反应物离心洗涤,离心转速8000rpm,反复离心5-6次,直到离心上清液呈中性;
6)将步骤5)得到的离心物超声分散10min,使溶液分散均匀,倒入培养皿后迅速放入超低温冰箱内,在-80℃冷冻12h。然后转移至冷冻干燥机内真空干燥24h,得到银负载纤维素/碳纳米管复合材料。
本发明实施例1制得的纤维素样品、实施例2制得的纤维素/碳纳米管复合材料、实施例3制得的银负载纤维素/碳纳米管复合材料的形貌如图1所示,图1(a)可以看出纤维素纳米纤维呈连续的三维网状结构且表面光滑;图1(b)可以看出碳纳米管均匀缠绕在纳米纤维素纤维上,碳纳米管的均匀缠绕可使复合材料的具有一定的导电性;图1(c)可以看出银纳米颗粒在均匀分布在纤维素纤维上且颗粒尺寸均一,碳纳米管编织其中,从而形成了以纤维素/银复合材料为连续相,碳纳米管为分散相,在基材的表面和内部形成了连续不断的空间三维导电网络,可实现电子的快速转移,从而增强了复合材料的导电性;图1(d)为实施例3制得的银负载纤维素/碳纳米管复合材料中的银纳米颗粒的粒径分布百分比,可以看出银颗粒尺寸均一,银纳米颗粒的平均直径在100nm左右。
本发明实施例1制得的纤维素样品、实施例2制得的纤维素/碳纳米管复合材料、实施例3制得的银负载纤维素/碳纳米管复合材料的XRD如图2所示,可以看出纤维素/碳纳米管复合材料中存在角度为≈22°的纤维素(2 0 0)面的衍射峰以及碳纳米管在≈26°的特征峰。另外随着银纳米颗粒的负载,银负载纤维素/碳纳米管复合材料在≈38.1°,44.09°,64.36°,77.29°处也出现了银的衍射峰,由此可以证明纤维素、碳纳米管、银三者形成了复合材料,这也与SEM中所看到的微观形貌所对应。
本发明实施例1制得的纤维素样品、实施例2制得的纤维素/碳纳米管复合材料、实施例3制得的银负载纤维素/碳纳米管复合材料的线性扫描伏安(LSV)曲线测试如图3所示;在进行线性扫描伏安(LSV)测试时,圆盘电极的转速为1600rpm,扫描速率为10mV s-1,催化剂负载量为0.51mg cm-2。从LSV曲线中可以看出实施例1样品纤维素几乎没有电催化性能,从实施例2样品可以看出碳纳米管的的编织虽改善了其复合材料的电催化性能,但电化学性能仍不是很好,极限电流密度仅为-3.31mA cm-2,半波电位为-0.329V;从实施例3样品可以看出随着银纳米颗粒的负载,显著提高了其复合材料的电化学性能,与实施例2样品纤维素/碳纳米管复合材料相比,半波电位右移23mV,极限电流密度高了0.81mA cm-2,起始电位右移27mV。综上所述,实施例3样品银负载纤维素/碳纳米管复合材料比实施例1纤维素样品、实施例2样品纤维素/碳纳米管复合材料的ORR性能较好,所以本发明实施例3样品银负载纤维素/碳纳米管复合材料用于锌-空气电池阴极的氧还原催化剂具有很大的研究价值和市场应用潜力。
以上对本发明的具体实施进行了详细的说明描述,仅用于本发明的说明而不能限制本发明。对于本领域的普通技术人员而言,在不脱离本发明的保护范围的前提下,所作的多样变换和修改均属于本发明保护内容。

Claims (4)

1.一种银负载纤维素/碳纳米管复合材料的制备方法,以碳纳米管作为导电分散相,以硝酸银为银源,硼氢化钠为还原剂,纤维素作为载体,通过液相还原的方法将硝酸银还原成银纳米颗粒,其特征在于,包括以下步骤:
1)将纤维素分散在去离子水中,超声分散后,再加入碳纳米管,继续超声分散均匀,得到纤维素/碳纳米管分散液;所述纤维素/碳纳米管分散液中,纤维素与碳纳米管的浓度均为2.5mg/mL;
2)再往1)中得到的纤维素/碳纳米管分散液中添加硝酸银,在冰水浴中搅拌分散均匀,得到硝酸银/纤维素/碳纳米管分散液;所述硝酸银/纤维素/碳纳米管分散液中,硝酸银的浓度为1.25mg/mL;
3)将硼氢化钠溶解在去离子水中,配制硼氢化钠溶液的过程在冰水浴中进行,在烧杯内缓慢加入硼氢化钠并用玻璃棒不断搅拌;所述硼氢化钠溶液的浓度为0.14M;
4)用恒流注射泵将步骤3)配制的硼氢化钠溶液逐滴加入步骤2)配制的硝酸银/纤维素/碳纳米管的分散液中,恒定滴加速度为1mL/min;冰水浴中反应2h,反应过程中反应液以300rpm不断搅拌;
5)将步骤4)得到的反应物离心洗涤,离心转速8000rpm,反复离心5-6次,直到离心上清液呈中性;
6)将步骤5)得到的离心物超声分散10min,使溶液分散均匀,倒入培养皿后迅速放入超低温冰箱内,在-80℃冷冻12h,然后转移至冷冻干燥机内真空干燥24h,得到银负载纤维素/碳纳米管复合材料,其中,纤维素/银复合材料为连续相,碳纳米管为分散相,在基材的表面和内部形成了连续不断的空间三维导电网络。
2.权利要求1所述方法制备的银负载纤维素/碳纳米管复合材料。
3.权利要求2所述的银负载纤维素/碳纳米管复合材料作为柔性超级电容器电极材料的应用。
4.权利要求2所述的银负载纤维素/碳纳米管复合材料作为柔性空气电池阴极的氧还原催化剂的应用。
CN202010376191.7A 2020-05-07 2020-05-07 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用 Active CN111554942B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010376191.7A CN111554942B (zh) 2020-05-07 2020-05-07 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010376191.7A CN111554942B (zh) 2020-05-07 2020-05-07 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111554942A CN111554942A (zh) 2020-08-18
CN111554942B true CN111554942B (zh) 2021-11-19

Family

ID=72007949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010376191.7A Active CN111554942B (zh) 2020-05-07 2020-05-07 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111554942B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112708194B (zh) * 2020-12-14 2023-03-07 上海金发科技发展有限公司 一种低光泽、低气味聚丙烯复合材料及其制备方法
CN112591736B (zh) * 2020-12-16 2022-12-20 四川大学 一种纤维素辅助分散碳纳米管的方法
CN113638240A (zh) * 2021-07-19 2021-11-12 苏州昆盛堂智能科技有限公司 一种纳米银植入织物的方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624798A (zh) * 2008-07-07 2010-01-13 中国科学院理化技术研究所 负载于天然纤维素片材上的银纳米颗粒原位制备方法
CN105111507A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
KR20170019568A (ko) * 2015-08-11 2017-02-22 (주)다산 분산안정성이 우수한 탄소나노튜브-금속나노와이어 복합체 잉크의 제조방법, 이에 의하여 제조된 탄소나노튜브-금속나노와이어 복합체 잉크 및 이를 이용하여 제조한 박막
CN108962619A (zh) * 2018-07-15 2018-12-07 重庆文理学院 一种用于柔性电极的复合薄膜及其制备方法
CN110799842A (zh) * 2017-03-22 2020-02-14 阿尔托大学注册基金会 用于检测阿片样物质的电化学测定

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104992853B (zh) * 2015-07-27 2017-06-23 南京林业大学 制备超级电容器柔性可弯曲薄膜电极的方法
CN109950560A (zh) * 2019-01-29 2019-06-28 宁波工程学院 一种基于生物质的碳纤维负载氮掺杂碳纳米复合材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101624798A (zh) * 2008-07-07 2010-01-13 中国科学院理化技术研究所 负载于天然纤维素片材上的银纳米颗粒原位制备方法
KR20170019568A (ko) * 2015-08-11 2017-02-22 (주)다산 분산안정성이 우수한 탄소나노튜브-금속나노와이어 복합체 잉크의 제조방법, 이에 의하여 제조된 탄소나노튜브-금속나노와이어 복합체 잉크 및 이를 이용하여 제조한 박막
CN105111507A (zh) * 2015-09-08 2015-12-02 哈尔滨工业大学 一种细菌纤维素/聚苯胺/碳纳米管导电膜材料的制备方法及其应用
CN110799842A (zh) * 2017-03-22 2020-02-14 阿尔托大学注册基金会 用于检测阿片样物质的电化学测定
CN108962619A (zh) * 2018-07-15 2018-12-07 重庆文理学院 一种用于柔性电极的复合薄膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
碳纳米管/壳聚糖/纳米金属复合材料的制备及催化性能研究;刘红玲;《中国优秀硕士学位论文全文数据库工程科技I辑》;20130815(第08期);第30-40页 *

Also Published As

Publication number Publication date
CN111554942A (zh) 2020-08-18

Similar Documents

Publication Publication Date Title
Jiang et al. Hollow-tubular porous carbon derived from cotton with high productivity for enhanced performance supercapacitor
Zhao et al. Flexible hydrogel electrolyte with superior mechanical properties based on poly (vinyl alcohol) and bacterial cellulose for the solid-state zinc–air batteries
CN111554942B (zh) 一种银负载纤维素/碳纳米管复合材料及其制备方法与应用
Demir et al. Supercapacitance and oxygen reduction characteristics of sulfur self-doped micro/mesoporous bio-carbon derived from lignin
Miao et al. Design of carbon materials with ultramicro-, supermicro-and mesopores using solvent-and self-template strategy for supercapacitors
Zhou et al. Vertical MoS2 nanosheets arrays on carbon cloth as binder-free and flexible electrode for high-performance all-solid-state symmetric supercapacitor
Shao et al. Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors
Ning et al. Confined growth of uniformly dispersed NiCo2S4 nanoparticles on nitrogen-doped carbon nanofibers for high-performance asymmetric supercapacitors
Yang et al. Construction of flexible electrodes based on ternary polypyrrole@ cobalt oxyhydroxide/cellulose fiber composite for supercapacitor
Salarizadeh et al. MoS2–ReS2/rGO: a novel ternary hybrid nanostructure as a pseudocapacitive energy storage material
Yuan et al. Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors
CN109637829B (zh) 一种通过海藻酸钠与二胺类化合物交联制备氮掺杂多孔碳的方法
Zhan et al. In-situ synthesis of flexible nanocellulose/carbon nanotube/polypyrrole hydrogels for high-performance solid-state supercapacitors
Malik et al. Electrochemical behavior of composite electrode based on sulphonated polymeric surfactant (SPEEK/PSS) incorporated polypyrrole for supercapacitor
Zhao et al. Sheet-like NiCo-layered double hydroxide anchored on N self-doped hierarchical porous carbon aerogel from chitosan for high-performance supercapacitors
Li et al. Novel metal-lignin assembly strategy for one-pot fabrication of lignin-derived heteroatom-doped hierarchically porous carbon and its application in high-performance supercapacitor
Zhou et al. Synthesis of biomass-derived carbon aerogel/MnOx composite as electrode material for high-performance supercapacitors
Lu et al. S/N-codoped carbon nanotubes and reduced graphene oxide aerogel based supercapacitors working in a wide temperature range
Zhang et al. Hydrated vanadium pentoxide/reduced graphene oxide composite cathode material for high-rate lithium ion batteries
You et al. An environmental friendly cross-linked polysaccharide binder for silicon anode in lithium-ion batteries
Liang et al. Hierarchical nanoarchitectonics of ordered mesoporous carbon from lignin for high-performance supercapacitors
Xiang et al. Hydrothermally etching commercial carbon cloth to form a porous structure for flexible zinc-ion hybrid supercapacitors
Zhao et al. In situ construction of metal-organic frameworks on chitosan-derived nitrogen self-doped porous carbon for high-performance supercapacitors
Yuan et al. Preparation of cellulose-based carbon nanofibers/NiCo2S4 composites for high-performance all-solid-state symmetric supercapacitors
CN108878167A (zh) 一种超级电容器用CoNi2S4/石墨烯复合材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant