WO2020138414A1 - 防食端子材及び端子並びに電線端末部構造 - Google Patents

防食端子材及び端子並びに電線端末部構造 Download PDF

Info

Publication number
WO2020138414A1
WO2020138414A1 PCT/JP2019/051404 JP2019051404W WO2020138414A1 WO 2020138414 A1 WO2020138414 A1 WO 2020138414A1 JP 2019051404 W JP2019051404 W JP 2019051404W WO 2020138414 A1 WO2020138414 A1 WO 2020138414A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
tin
zinc
copper
alloy
Prior art date
Application number
PCT/JP2019/051404
Other languages
English (en)
French (fr)
Inventor
賢治 久保田
隆士 玉川
西村 透
圭栄 樽谷
中矢 清隆
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to US17/416,542 priority Critical patent/US20220085526A1/en
Priority to CN201980079051.9A priority patent/CN113166964A/zh
Priority to EP19901658.5A priority patent/EP3904564A4/en
Priority to KR1020217016238A priority patent/KR20210106991A/ko
Publication of WO2020138414A1 publication Critical patent/WO2020138414A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/615Microstructure of the layers, e.g. mixed structure
    • C25D5/617Crystalline layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • C25D5/12Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium
    • C25D5/14Electroplating with more than one layer of the same or of different metals at least one layer being of nickel or chromium two or more layers being of nickel or chromium, e.g. duplex or triplex layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/03Contact members characterised by the material, e.g. plating, or coating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/10Sockets for co-operation with pins or blades
    • H01R13/11Resilient sockets
    • H01R13/113Resilient sockets co-operating with pins or blades having a rectangular transverse section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/10Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation
    • H01R4/18Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping
    • H01R4/183Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section
    • H01R4/184Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion
    • H01R4/185Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation effected solely by twisting, wrapping, bending, crimping, or other permanent deformation by crimping for cylindrical elongated bodies, e.g. cables having circular cross-section comprising a U-shaped wire-receiving portion combined with a U-shaped insulation-receiving portion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/62Connections between conductors of different materials; Connections between or with aluminium or steel-core aluminium conductors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/12Electroplating: Baths therefor from solutions of nickel or cobalt
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/22Electroplating: Baths therefor from solutions of zinc
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/30Electroplating: Baths therefor from solutions of tin
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • C25D5/505After-treatment of electroplated surfaces by heat-treatment of electroplated tin coatings, e.g. by melting

Definitions

  • the present invention relates to an anticorrosion terminal material having a high corrosion prevention effect, a terminal, and an electric wire terminal portion structure.
  • the conductive wire and the terminal are generally made of highly conductive copper or copper alloy, but a conductive wire made of aluminum or aluminum alloy is also used for weight reduction and the like.
  • Patent Document 1 discloses an electric wire with a terminal mounted on a vehicle such as an automobile by crimping a terminal made of tin-plated copper (copper alloy) onto a conductor wire made of aluminum or an aluminum alloy. There is.
  • the conductor is formed of aluminum or an aluminum alloy and the terminal is formed of copper or a copper alloy, when water enters between the terminal and the conductor, galvanic corrosion occurs due to the potential difference between different metals, and the conductor corrodes, There is a possibility that the electric resistance value at the crimping portion may increase and the crimping force may decrease.
  • an anticorrosion layer made of a metal (zinc or zinc alloy) having a sacrificial anticorrosion action on the base material layer is provided between the base material layer and the tin layer of the terminal. Has been formed.
  • the electrical contact material for a connector shown in Patent Document 2 has a base material made of a metal material, an alloy layer formed on the base material, and a conductive film layer formed on the surface of the alloy layer.
  • the alloy layer essentially contains Sn and further contains at least one additive element selected from Cu, Zn, Co, Ni and Pd.
  • As the conductive coating layer a layer containing Sn 3 O 2 (OH) 2 (hydroxyl oxide) is disclosed.
  • Patent Document 3 discloses a Sn plated material.
  • This Sn plating material has a base Ni plating layer, an intermediate Sn—Cu plating layer, and a surface Sn plating layer on a surface of copper or a copper alloy in this order.
  • the underlying Ni plating layer is made of Ni or a Ni alloy
  • the intermediate Sn-Cu plating layer is a Sn-Cu-based material in which a Sn-Cu-Zn alloy layer is formed at least on the side in contact with the surface Sn plating layer.
  • the surface Sn plating layer is composed of an Sn alloy containing Zn in an amount of 5 to 1000 mass ppm, and a Zn high-concentration layer having a Zn concentration of more than 0.2 mass% to 10 mass% is further formed on the outermost surface.
  • Patent Document 4 in an Sn plated material in which a Sn-containing layer is formed on the surface of a base material made of copper or a copper alloy, the Sn-containing layer is formed on the Cu-Sn alloy layer and the surfaces of the Cu-Sn alloy layer.
  • the Sn plating layer is formed on the surface of the Sn-containing layer, and the Zn plating layer is formed on the surface of the Ni plating layer as the outermost layer.
  • Patent Document 2 When a conductive film layer containing Sn 3 O 2 (OH) 2 (hydroxyl oxide) is provided as in Patent Document 2, the conductive film layer is immediately damaged when exposed to a corrosive environment or a heating environment. Therefore, there was a problem of low sustainability.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide an anticorrosion terminal material, a terminal, and an electric wire terminal portion structure having a high corrosion prevention effect and excellent film adhesion.
  • the anticorrosion terminal material of the present invention is an anticorrosion terminal material comprising a base material having at least a surface made of copper or a copper alloy, and a first coating provided on at least a part of the base material, wherein the first coating is A mixed layer in which a copper tin alloy region made of a copper tin alloy and a tin region made of tin or a tin alloy other than the copper tin alloy are mixed, and a zinc layer made of zinc or a zinc alloy provided on the mixed layer.
  • the zinc layer is in contact with both the copper-tin alloy region and the tin region of the mixed layer, and the length in contact with the copper-tin alloy region in a cross section along the thickness direction is R1 ( ⁇ m).
  • the ratio R1/R2 is 0.05 or more and 2.5 or less.
  • the zinc layer provided thereon is not limited to the tin region but also to the copper-tin alloy region having good adhesion with the zinc layer. Contact is made to improve adhesion.
  • the ratio R1/R2 is less than 0.05, the length in contact with the copper-tin alloy region is too small and the adhesion is impaired. If the ratio R1/R2 exceeds 2.5, cracking occurs during bending. Then, the adhesion is rather deteriorated.
  • the zinc layer can be formed by arranging the first coating at a portion where the core wire of the electric wire comes into contact when molded into the terminal. Since the corrosion potential is close to that of aluminum, it is possible to suppress the occurrence of corrosion of dissimilar metal contact when it comes into contact with an aluminum wire.
  • this anticorrosion terminal material further includes an adhesive layer made of nickel or a nickel alloy between the mixed layer and the zinc layer in the first coating. Since the adhesive layer has good adhesiveness to the mixed layer (tin region and copper-tin alloy region) and the zinc layer, peeling between the zinc layer and the mixed layer can be prevented and the adhesiveness can be improved.
  • anticorrosion terminal material further includes an intermetallic compound made of NiSn 4 which penetrates into the tin region from the adhesive layer.
  • the intermetallic compound made of NiSn 4 enters the tin region from the adhesive layer, the adhesiveness between the adhesive layer and the mixed layer becomes better. Therefore, it is possible to prevent delamination and enhance the adhesion even when the terminal is severely processed.
  • the copper-tin alloy region contains nickel at 1 at% or more and 50 at% or less.
  • the adhesion between the copper-tin alloy region and the zinc layer becomes better. If the content is less than 1 at %, the effect of improving adhesion is poor, and if it exceeds 50 at %, the copper-tin alloy becomes brittle and the friction reducing effect decreases.
  • the copper-tin alloy region contains nickel in this range, the interface between the copper-tin alloy region and the tin region can be made into a steep uneven shape, and a hard copper-tin alloy and a soft tin on the surface can be formed. Since it is exposed, it is also advantageous in reducing the friction coefficient.
  • the zinc layer has an amount of zinc deposited per unit area of 0.07 mg/cm 2 or more and 2.0 mg/cm 2 or less.
  • the “adhesion amount per unit area” means the amount included in the thickness of the zinc layer ⁇ the unit area.
  • the zinc adhesion amount of the zinc layer is less than 0.07 mg/cm 2 , the amount of zinc tends to be insufficient and the corrosion current value tends to be high, and if it exceeds 2.0 mg/cm 2 , the amount of zinc is too large. Contact resistance tends to increase.
  • the first coating further has a tin layer made of tin or a tin alloy provided on the zinc layer.
  • the tin layer prevents corrosion of the zinc layer, so the corrosion resistance can be further enhanced. Further, since zinc of the zinc layer diffuses through the grain boundaries in the tin layer, the corrosion potential of the tin layer is close to that of aluminum, and it is possible to effectively suppress the occurrence of dissimilar metal contact corrosion when contacting with the aluminum wire. Moreover, even if all or part of the tin layer disappears due to wear or the like, the zinc layer underneath can suppress the occurrence of corrosion of dissimilar metal contacts, increasing the electrical resistance value and reducing the crimping force to the aluminum wire. Can be suppressed.
  • the zinc layer contains any one or more of nickel, iron, manganese, molybdenum, cobalt, cadmium, and lead as an additive element, and
  • the adhesion amount of the additional element is 0.01 mg/cm 2 or more and 0.3 mg/cm 2 or less.
  • the corrosion resistance of the zinc layer itself can be further improved by incorporating the above-mentioned additional elements into the zinc layer to form a zinc alloy.
  • a zinc alloy containing nickel as an additional element has a high effect of improving the corrosion resistance of the zinc layer and is particularly preferable.
  • the zinc layer is a zinc alloy, excessive diffusion of zinc into the tin layer can be prevented. Then, even when the tin layer disappears due to exposure to a corrosive environment, it is possible to keep the zinc layer for a long time and prevent an increase in corrosion current. If the amount of the additive element deposited is less than 0.01 mg/cm 2 , the effect of suppressing the diffusion of zinc into the tin layer is poor, and if it exceeds 0.3 mg/cm 2 , the tin layer lacks zinc and the corrosion current is high. There is a risk of becoming. When the amount of the added element attached is within this range, an appropriate amount of zinc diffuses from the zinc layer to the tin layer.
  • Yet another embodiment of the anticorrosion terminal material includes a second coating provided on a portion of the base material where the first coating is not formed, and the second coating is provided on the base material.
  • the copper-tin alloy region and the tin region are exposed on the surface of the mixed layer, and the exposed area ratio of the copper-tin alloy region is 5% or more and 70% or less.
  • the hard copper-tin alloy region is exposed on the surface of the second coating, but the friction coefficient can be reduced by the lubrication action of the soft tin region around it.
  • the exposed area ratio of the copper-tin alloy area is less than 5%, the effect of reducing the friction coefficient is small, and if it exceeds 70%, the exposed area of the tin area is reduced and the electrical connection characteristics may be deteriorated.
  • the anticorrosion terminal material of the present invention includes a strip plate-shaped carrier portion and a plurality of terminal members connected to the carrier portion at intervals in the length direction of the carrier portion.
  • the terminal of the present invention is a terminal formed by molding the above-mentioned anticorrosion terminal material. Further, in the electric wire terminal portion structure of the present invention, the anticorrosion terminal is crimped to the end of the electric wire made of an aluminum wire material of aluminum or aluminum alloy.
  • the zinc layer is in contact with both the tin region and the copper-tin alloy region of the mixed layer, the adhesion is good, and the corrosion of dissimilar metals when contacting with the aluminum wire as the terminal is prevented. Occurrence can be suppressed.
  • FIG. 16 It is a principal part sectional view which shows typically embodiment of the anticorrosion terminal material of this invention. It is a top view of the anticorrosion terminal material of this embodiment. It is a perspective view which shows the example of the terminal to which the anticorrosion terminal material of this embodiment is applied. It is a front view which shows the terminal part of the electric wire which crimped the terminal of FIG. 16 is a SIM (scanning ion microscope) image of Example 11; FIG. 6 is an enlarged TEM (transmission electron microscope) image of a portion surrounded by a circle in FIG. 5.
  • SIM scanning ion microscope
  • FIG. 6 is an enlarged TEM (transmission electron microscope) image of a portion surrounded by a circle in FIG. 5.
  • the anticorrosion terminal material 1 of the present embodiment is a strip-shaped strip material for molding a plurality of terminals 10 (see FIG. 3), and a pair of strips extending in parallel.
  • a plurality of terminal members 22 formed as terminals 10 are arranged between the strip-shaped carrier portions 21 at intervals in the length direction of the carrier portion 21, and both ends of each terminal member 22 have a narrow width. It is connected to both carrier parts 21 via a connecting part 23.
  • Each terminal member 22 is formed into a shape as shown in FIG. 3, for example, and is cut from the connecting portion 23 to complete the terminal 10 (see FIG. 4 ).
  • the terminal 10 female terminal in the example of FIG. 3 has a connecting portion 11 into which a male terminal 15 (see FIG. 4) is fitted, and a core to which an exposed core wire (aluminum wire material) 12a of the electric wire 12 is crimped from the tip.
  • the wire crimping portion 13 and the covering crimping portion 14 where the covering portion 12b of the electric wire 12 are crimped are arranged in this order and are integrally formed.
  • the connecting portion 11 is formed in a rectangular tube shape, and the spring piece 11a continuous to the tip thereof is inserted inside so as to be folded (see FIG. 4).
  • FIG. 4 shows a terminal structure in which the terminal 10 is caulked to the electric wire 12.
  • the vicinity of the core wire crimping portion 13 directly contacts the core wire 12a of the electric wire 12.
  • a portion that forms the connection portion 11 and is in contact with the male terminal 15 when the terminal 10 is formed to be a contact is the contact planned portion 25 and the core wire crimping portion 13 and the vicinity thereof.
  • the inner surface of the connecting portion 11 formed in a rectangular tube shape, and the spring piece 11a folded into the connecting portion 11 are formed.
  • the friction resistance be small in addition to the small electric resistance.
  • the expected core wire contact portion 26 that comes into contact with the core wire (aluminum wire material) 12a it is required that the electrical resistance be small, and that the corrosion potential of the dissimilar metal can be suppressed because it is close to the corrosion potential of the core wire 12a.
  • the anticorrosion terminal material 1 has a coating 3 formed on a base material 2 made of copper or a copper alloy, as schematically shown in FIG. 1 in a cross section (corresponding to a cross section taken along the line AA in FIG. 2). ing.
  • the coating 3 includes a base layer 4 made of nickel or a nickel alloy, and a mixed layer 5 in which copper tin alloy and tin other than the copper tin alloy or tin made of a tin alloy are mixed on the base material 2 in this order.
  • an adhesive layer 6 made of nickel or a nickel alloy and a zinc layer 7 made of zinc or a zinc alloy are formed in this order on the mixed layer 5 on the surface of the expected core wire contact portion 26, and in the present embodiment, further.
  • a tin layer 8 made of tin or a tin alloy is formed on the zinc layer 7.
  • the film formed on the surface of the expected core wire contact portion 26 is referred to as a first film 31, and is formed on the surface of the portion excluding the expected core wire contact portion 26 (including the expected contact point 25).
  • the existing film is referred to as a second film 32.
  • the “coating 3 ” here means the first coating 31 provided on the surface of the planned core wire contact portion 26 and the second coating 32 provided on the surface of the portion excluding the planned core wire contact portion 26.
  • the second coating 32 is composed of a base layer 4 formed on the base material 2 and made of nickel or a nickel alloy, and a copper tin alloy formed on the base layer 4 and tin or a tin alloy other than the copper tin alloy. And a mixed layer 5 in which tin is mixed.
  • the first coating 31 is, in addition to the second coating 32, an adhesive layer 6 made of nickel or a nickel alloy formed on the mixed layer 5, and a zinc layer made of zinc or a zinc alloy formed on the adhesive layer 6. 7 and a tin layer 8 made of tin or a tin alloy formed on the zinc layer 7.
  • the first coating 31 the above-described base layer 4, mixed layer 5, adhesive layer 6, zinc layer 7, and tin layer 8 are formed in this order on the base material 2.
  • the base layer 4 and the mixed layer 5 are formed on the base material 2 in this order.
  • the first coating film 31 is preferably present in an area ratio of 30% or more and 80% or less of the surface (the surface of the terminal member 22) after being molded as the terminal 10.
  • the base material 2 is not particularly limited in composition and the like as long as at least the surface thereof is made of copper or a copper alloy.
  • a plate material made of copper or a copper alloy is preferably used, but a plate material made of a metal other than copper (for example, stainless steel) may be provided with a copper layer such as a copper plating layer made of copper or a copper alloy on the surface.
  • the base material 2 may have a flat plate shape or a strip shape (FIG. 2) obtained by processing a flat plate.
  • the underlayer 4 is made of nickel or a nickel alloy and has a thickness of, for example, 0.1 ⁇ m or more and 5.0 ⁇ m or less and a nickel content of 80% by mass or more.
  • the underlayer 4 has a function of preventing the diffusion of copper from the base material 2 to the zinc layer 7 and the tin layer 8, and thus is preferably formed.
  • the nickel content of the underlayer 4 is more preferably 90% by mass or more.
  • the mixed layer 5 is a layer obtained by sequentially forming a copper plating layer and a tin plating layer on the underlayer 4 and performing a reflow treatment, and is a copper tin alloy such as Cu 6 Sn 5 or Cu 3 Sn. And a tin region 52 made of tin or a tin alloy other than the copper tin alloy are mixed, and both the copper tin alloy region 51 and the tin region 52 are exposed on the surface. When the underlying layer 4 is not provided, the mixed layer 5 is directly provided on the base material 2.
  • the average thickness of the mixed layer 5 is preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less.
  • the internal strain of the tin-plated layer is released by the reflow treatment, and a uniform mixed layer is formed, so that tin whiskers are less likely to occur. If the reflow process is insufficient and the average thickness of the mixed layer 5 becomes too thin, the internal strain of the tin plating layer cannot be fully released, and tin whiskers are likely to occur. On the other hand, when the average thickness of the mixed layer 5 is too thick, cracks are likely to occur during processing.
  • the copper-tin alloy region 51 forming the mixed layer 5 contains 1 at% or more and 50 at% or less of nickel.
  • nickel When nickel is contained in the copper-tin alloy, the adhesion with the zinc layer 7 becomes better.
  • the nickel content is less than 1 at %, the effect of improving the adhesion is poor, and when it exceeds 50 at %, the copper-tin alloy becomes brittle and the friction reducing effect is reduced.
  • the content of nickel is 1 at% or more and 50 at% or less, the interface between the copper tin alloy region 51 and the tin region 52 can have a steep uneven shape, that is, a hard copper-tin alloy having a steep uneven shape.
  • the surface of the region 51 is flattened by the soft tin region 52, which is advantageous for reducing the friction coefficient.
  • the adhesive layer 6 provided on the mixed layer 5 is made of nickel or nickel alloy.
  • the adhesive layer 6 is not always necessary, but the adhesive layer 6 can improve the adhesion between the mixed layer 5 and the zinc layer 7, and is particularly excellent in the peeling prevention effect in a corrosive environment. Further, the adhesive layer 6 functions as a barrier for preventing diffusion of the copper component from the base material 2 at high temperature, and contributes to improvement of heat resistance (prevention of deterioration of corrosion resistance due to high temperature).
  • the tin region 52 in the mixed layer 5 is easily oxidized, an oxide film that interferes with electrodeposition and is difficult to remove is likely to be formed.
  • the average thickness of the adhesive layer 6 is 0.01 ⁇ m or more and 1.0 ⁇ m or less. If the thickness of the adhesive layer 6 is less than 0.01 ⁇ m, the effect of improving the adhesiveness of the zinc layer 7 is poor. There is no particular problem even if the adhesive layer 6 is thick, but 1.0 ⁇ m, which has a sufficient effect of improving the adhesiveness, is sufficient.
  • the preferable thickness of the adhesive layer 6 is 0.05 ⁇ m or more and 0.3 ⁇ m or less.
  • the intermetallic compound 61 made of NiSn 4 is formed so as to enter from the adhesive layer 6 (see FIG. 6).
  • the intermetallic compound 61 is formed in a scale shape, a needle shape, or a columnar shape, penetrates the interface of the mixed layer 5 from the adhesive layer 6, and extends into the tin region 52.
  • the adhesive layer 6 is provided between the zinc layer 7 and the mixed layer 5, but since it is extremely thin, it may be considered that the zinc layer 7 and the mixed layer 5 are almost in direct contact with each other.
  • the zinc layer 7 is made of zinc or a zinc alloy, has a thickness of 0.1 ⁇ m or more and 5.0 ⁇ m or less, and a zinc adhesion amount per unit area of 0.07 mg/cm 2 or more and 2.0 mg/cm 2 or less. If the amount of deposited zinc is less than 0.07 mg/cm 2 , the amount of zinc tends to be insufficient and the corrosion current value tends to be high. If it exceeds 2.0 mg/cm 2 , the amount of zinc is too large and the contact resistance will be high. It tends to be higher.
  • the amount of zinc adhered per unit area means the thickness of the zinc layer 7 x the amount of zinc contained in the unit area.
  • the thickness of the zinc layer 7 is less than 0.1 ⁇ m, the effect of making the corrosion potential of the surface (tin layer 8) of the first film 31 base is poor, and if it exceeds 5.0 ⁇ m, the press workability deteriorates. There is a possibility that cracks may occur during press working of the.
  • the thickness of the zinc layer 7 is more preferably 0.3 ⁇ m or more and 2.0 ⁇ m or less.
  • the zinc layer 7 Since the zinc layer 7 is formed on the mixed layer 5, it contacts both the copper-tin alloy region 51 and the tin region 52 of the mixed layer 5.
  • the total length of the portions where the zinc layer 7 and the copper-tin alloy region 51 are in contact is R1 ( ⁇ m), and the total length of the portions where the zinc layer 7 and the tin region 52 are in contact is
  • R1 ⁇ m
  • R2 ⁇ m
  • the ratio R1/R2 is 0.05 or more and 2.5 or less.
  • the ratio R1/R2 is less than 0.05, the length (area) in contact with the copper tin alloy region 51 is too small and the adhesion is impaired.
  • the ratio R1/R2 exceeds 2.5, a hard copper tin alloy is obtained.
  • the region 51 is too large, and cracks occur during bending, which adversely affects the adhesion.
  • the zinc layer 7 may include one or more of any one of nickel, iron, manganese, molybdenum, cobalt, cadmium, lead, and tin as an additive element.
  • the corrosion resistance of the zinc layer 7 can be improved.
  • the nickel-zinc alloy has a high effect of improving the corrosion resistance of the zinc layer 7, and is particularly preferable.
  • the tin layer 8 is formed on the zinc layer 7, excessive diffusion of zinc into the tin layer 8 can be prevented. Then, even when the tin layer 8 disappears due to exposure to a corrosive environment, the zinc layer 7 can be maintained for a long time and an increase in corrosion current can be prevented.
  • the amount of the additional element deposited is preferably 0.01 mg/cm 2 or more and 0.3 mg/cm 2 or less. If the amount of the additive element deposited is less than 0.01 mg/cm 2 , the effect of suppressing the diffusion of zinc into the tin layer 8 is poor, and if it exceeds 0.3 mg/cm 2 , the diffusion of zinc into the tin layer 8 is insufficient. Therefore, the corrosion current may increase.
  • the adhesion amount of the additional element refers to the product of the thickness of the zinc layer and the amount of the additional element contained in the unit area.
  • the tin layer 8 is made of tin or a tin alloy and can cover the surface of the zinc layer 7 to prevent corrosion of the zinc layer 7 and enhance the anticorrosion performance. Further, since zinc is diffused from the zinc layer 7 into the tin layer 8, the corrosion potential of the tin layer 8 becomes close to that of aluminum, and it is possible to effectively suppress the occurrence of dissimilar metal contact corrosion when coming into contact with the aluminum wire. Moreover, even if all or part of the tin layer 8 disappears due to wear or the like, the zinc layer 7 underneath it can suppress the occurrence of corrosion of dissimilar metal contacts, thereby increasing the electrical resistance value and crimping force to the aluminum wire. Can be suppressed.
  • the thickness of the tin layer 8 is preferably 0.3 ⁇ m or more and 8.0 ⁇ m or less.
  • the thickness of the tin layer 8 is less than 0.3 ⁇ m, the effect of enhancing the anticorrosion performance is poor, and when the thickness of the tin layer 8 exceeds 8.0 ⁇ m, it is too thick. It becomes difficult for zinc to diffuse to the inside.
  • the total amount of zinc adhered per unit area of the zinc layer 7 and the tin layer 8 ((amount of zinc contained in the zinc layer 7 + (Amount of zinc contained) ⁇ area of zinc layer 7 (that is, area of tin layer 8)) 0.07 mg/cm 2 or more and 2.0 mg/cm 2 or less.
  • the second film 32 is formed of the underlying layer 4 and the mixed layer 5 having the same composition and film thickness as the underlying layer 4 and the mixed layer 5 of the first film 31. Further, both the copper-tin alloy region 51 and the tin region 52 of the mixed layer 5 are exposed on the outermost surface of the second coating 32.
  • the exposed area ratio of the copper-tin alloy region 51 is 5% or more and 70% or less.
  • the second coating 32 is the contact planned portion 25, and the friction coefficient is reduced by the lubricating action of the hard copper tin alloy region 51 that is sparsely exposed on the surface and the soft tin region 52 that is exposed around the copper tin alloy region 51. be able to.
  • the exposed area ratio of the copper-tin alloy region 51 is less than 5%, the effect of reducing the friction coefficient is small, and if it exceeds 70%, the electrical connection characteristics may deteriorate.
  • the first coating 31 is present on the surface of the portion excluding the contact planned portion 25, as described above. Since the corrosion current due to the contact between different metals also flows to the part away from the contact part to cause corrosion, it is desirable that the ratio of the part where the zinc layer 8 for preventing galvanic corrosion is present is high. It is desirable that the zinc layer 8 be present at an area ratio of 30% or more and 80% or less of the entire surface when formed as the terminal 10.
  • a plate material made of copper or copper alloy as the base material 2.
  • a plate material in which a copper layer made of copper or a copper alloy is formed on a metal plate other than copper (such as stainless steel) may be used.
  • the plate member (base material 2) is subjected to processing such as cutting and punching to form a strip shape in which a plurality of terminal members 22 are connected to a carrier portion 21 via a connecting portion 23. To mold.
  • This nickel plating treatment is not particularly limited as long as a dense nickel-based film can be obtained, and the nickel plating layer should be formed by electroplating using a known Watt bath, sulfamic acid bath, citric acid bath, or the like. You can Considering the press bendability to the terminal 10 and the barrier property to copper, the pure nickel plating treatment obtained from the sulfamic acid bath is preferable.
  • ⁇ Mixed layer forming step> After forming the nickel plating layer, a copper plating process and a tin plating process are sequentially performed to form a copper plating layer made of copper or a copper alloy and a tin plating layer made of tin or a tin alloy on the nickel plating layer. Then, heat treatment (reflow treatment) is performed to form the mixed layer 5 on the base layer 4 made of nickel or a nickel alloy.
  • a general copper plating bath for example, a copper sulfate bath containing copper sulfate (CuSO 4 ) and sulfuric acid (H 2 SO 4 ) as main components can be used.
  • CuSO 4 copper sulfate
  • H 2 SO 4 sulfuric acid
  • a general tin plating bath for example, a sulfuric acid bath containing sulfuric acid (H 2 SO 4 ) and stannous sulfate (SnSO 4 ) as main components can be used.
  • the mixed layer 5 in which the copper-tin alloy and tin are mixed is formed on the base layer 4.
  • the tin plating layer, the copper plating layer, and the nickel plating layer can be interdiffused to grow a copper-tin alloy containing nickel.
  • the exposure rate of the copper-tin alloy region 51 on the surface of the mixed layer 5 can be varied by adjusting the heat treatment conditions during reflow and the thickness of each plating layer.
  • the tin plating layer may be formed on the nickel plating layer and heat treated without forming the copper plating layer.
  • a nickel plating layer is thinly formed to form the copper-tin alloy region 51 so that copper is supplied from the base material 2 during the heat treatment.
  • ⁇ Adhesion nickel plating layer forming step> In the case of forming the adhesive layer 6, after the planned contact portion 25 on the surface of the base material 2 on which the mixed layer 5 is formed is masked, the nickel plating layer is formed in that state.
  • This nickel plating layer is made of nickel or nickel alloy and can be formed by electrolytic plating or electroless plating.
  • a known nickel strike bath containing nickel chloride and hydrochloric acid is preferably used for the plating treatment, but the nickel plating layer can be formed from other baths such as a citric acid bath or a sulfamic acid bath.
  • the adhesive layer 6 is formed of a nickel alloy, it can be formed from a commercially available nickel tin alloy plating bath or a nickel phosphorus alloy plating bath containing phosphorous acid and nickel sulfate.
  • the base material 2 (strip shape) on which the mixed layer 5 is formed is dipped in an alkaline aqueous solution having a pH of 10 or more, it adheres to the mixed layer 5 in which a copper tin alloy and tin are mixed.
  • a nickel plating layer having good properties can be formed.
  • the alkaline aqueous solution contains a complexing agent capable of complexing both tin and copper, such as citric acid, the adhesion of the nickel plating layer is better.
  • the intermetallic compound 61 made of NiSn 4 described above can be formed by mutually diffusing nickel in the nickel plating layer and tin in the mixed layer 5.
  • the tin oxide film may remain and inhibit the growth of NiSn 4 .
  • the sufficiently degreased base material 2 with the mixed layer 5 is immersed in 30 g/L sodium hydroxide for 5 seconds or more to remove the tin oxide film, It is desirable to immediately carry out nickel strike plating.
  • the zinc plating layer for forming the zinc layer 7 can be formed by electrodeposition of an electrolytic zinc plating bath using a known sulfuric acid bath or zincate bath.
  • a strongly acidic sulfuric acid bath can be used to obtain a film having relatively good adhesion.
  • Zinc alloy plating treatment uses a sulfate bath, a chloride bath, a nickel zinc alloy plating treatment using an alkaline bath, a zinc cobalt alloy plating treatment using a sulfate bath, and a zinc manganese alloy using a citric acid-containing sulfate bath.
  • a plating treatment or a zinc molybdenum plating treatment using a sulfate bath can be used. It is also possible to use a vapor deposition method instead of the plating method.
  • the tin layer 8 is laminated on the zinc layer 7, if the zinc plating layer is a zinc alloy, the zinc layer 7 can be prevented from being damaged by the substitution reaction.
  • Electroplating treatment can be employed to form the tin plating layer for forming the tin layer 8.
  • an organic acid bath for example, phenol sulfonic acid bath, alkane sulfonic acid bath or alkanol sulfonic acid bath
  • acidic bath borofluoric acid
  • a bath, a halogen bath, a sulfuric acid bath, a pyrophosphoric acid bath, etc., or an alkaline bath (potassium bath, sodium bath, etc.) is used.
  • an acidic organic acid bath or a sulfuric acid bath and add a nonionic surfactant as an additive to the bath.
  • the tin plating layer In order to promote the mutual diffusion of the zinc plating layer and the tin plating layer at room temperature (25°C), it is essential to clean the surface of the zinc plating layer and then stack the tin plating layer.
  • a zinc plating layer and a tin plating layer are continuously formed by a plating treatment, a sodium hydroxide aqueous solution or an ammonium chloride aqueous solution is added in order to remove hydroxides and oxides rapidly formed on the surface of the zinc plating layer. It is advisable to form the tin plating layer immediately after washing with.
  • the tin plating layer is formed by a dry method such as vapor deposition, the surface of the zinc plating layer may be etched by argon sputter treatment before forming the tin plating layer.
  • Heat treatment process A heat treatment is applied to a material in which the mixed layer 5, the zinc plating layer and the tin plating layer are sequentially formed on the base material 2.
  • heating is performed at a temperature at which the surface temperature of the material is 30° C. or higher and 190° C. or lower.
  • zinc in the zinc-plated layer diffuses in and on the tin-plated layer in the portion other than the contact planned portion 25 (the portion not masked).
  • more preferable conditions are a heating temperature of 30° C. or more and 160° C. or less and a heat retention time of 30 minutes or more and 60 minutes or less.
  • the anticorrosion terminal material 1 manufactured in this manner has a base layer 2 on the base material 2 as a whole, and a mixed layer 5 composed of a copper tin alloy region 51 and a tin region 52 thereon.
  • the copper-tin alloy region 51 and the tin region 52 of the mixed layer 5 are exposed on the surface, and the contact portion other than the planned contact portion 25 is formed.
  • the adhesive layer 6, the zinc layer 7, and the tin layer 8 are sequentially formed on the mixed layer 5.
  • the strip material is processed into a terminal shape shown in FIG. Then, the connecting portion 23 is cut to form the terminal 10.
  • FIG. 4 shows a terminal structure in which the terminal 10 is crimped to the electric wire 12, and the vicinity of the crimped portion 13 of the core wire directly contacts the core wire 12a of the electric wire 12.
  • the corrosion potential of zinc contained in the tin layer 8 is closer to that of aluminum than the corrosion potential of tin in the intended core wire contact portion 26 of the terminal 10, the tin layer 8 in the intended core wire contact portion 26 is larger than the corrosion potential of tin. Has a corrosion potential close to that of aluminum. Therefore, the effect of preventing the corrosion of the aluminum core wire (aluminum wire material) 12a is high, and even when the expected core wire contact portion 26 is pressure-bonded to the core wire 12a, the occurrence of dissimilar metal contact corrosion is effective. Can be prevented.
  • the end surface of the terminal 10 is also a base material except for a small portion (cross section cut from the connection portion 23) connected by the connection portion 23. Since 2 is not exposed, an excellent anticorrosion effect can be exhibited.
  • the zinc layer 7 is formed under the tin layer 8, even if all or part of the tin layer 8 disappears due to wear or the like, the zinc layer 7 therebelow has a corrosion potential that is different from that of aluminum. Since they are close to each other, it is possible to reliably suppress the occurrence of corrosion of dissimilar metals.
  • the zinc layer 7 provided on the mixed layer 5 is not only the tin region 52 of the mixed layer 5 but also a copper tin alloy region having high adhesion to the zinc layer 7. It can also come into contact with 51 to improve the adhesion and prevent peeling. Moreover, since the adhesive layer 6 is interposed between the mixed layer 5 and the zinc layer 7, the adhesiveness between the mixed layer 5 and the zinc layer 7 can be further enhanced. Furthermore, since the intermetallic compound 61 made of NiSn 4 is formed in the tin region 52, the adhesion between the adhesive layer 6 and the mixed layer 5 is also improved.
  • the mixed layer 5 including the copper-tin alloy region 51 and the tin region 52 is disposed on the surface of the second coating 32 of the contact planned portion 25. Since the hard copper-tin alloy region 51 is exposed and the soft tin region 52 is provided around it, the friction coefficient can be reduced by the lubricating action of tin. Further, since it has the reflowed tin region 52, it has a small contact resistance and exhibits excellent electrical performance as a contact of the connector.
  • a thin metal zinc layer (surface metal zinc layer) may be formed on the tin layer 8, and in this case, the occurrence of corrosion due to contact with the aluminum core wire 12a can be more reliably suppressed. ..
  • the surface metal zinc layer is a layer formed on the surface of the tin layer 8 by diffusing zinc in the zinc alloy plating layer to the surface through the tin plating layer by the heat treatment described above. It is different from the zinc layer 7 provided below.
  • Example 1 a C1020 copper plate was used as a base material, and this copper plate was punched into a shape shown in FIG. 2 to form a strip material, degreased and pickled, and then tin-plated thereon for reflow treatment, After that, the planned contact portion was masked and zinc plating was performed to form a first coating and a second coating.
  • Example 5 for the samples of Examples 1 to 4, an adhesive layer was formed by a nickel strike plating process before the zinc plating process, and a heat treatment was performed at 130° C. for 0.5 hour after the zinc plating process. It was
  • Example 6 After nickel-plating, copper-plating, and tin-plating were sequentially applied to a strip-shaped base material that had been degreased and pickled, a reflow treatment was performed, and then nickel strike plating and zinc plating were performed except for the contact planned portion. It was applied and produced. Of these, the nickel strike plating of Example 6 was tin nickel alloy plating. Further, after the galvanizing treatment, heat treatment was carried out at 150° C. for 0.5 hours for Example 6 and heat treatment at 30° C. for 24 hours for Examples 7 to 9.
  • Example 10 to 17 nickel-plated, copper-plated, and tin-plated were sequentially applied on a degreased and pickled strip-shaped base material, and reflow treatment was performed. Then, the contact planned portion was removed, and nickel strike plating, zinc plating, It was manufactured by applying tin plating in order and performing heat treatment at 30° C. for 24 hours. Of these, the nickel strike plating of Example 11 was nickel phosphorus alloy plating. Regarding galvanization, in Examples 11 to 17, the elements shown in Table 1 were added.
  • a strip-shaped base material that has been degreased and pickled is sequentially subjected to copper plating and tin plating and subjected to reflow treatment, and the copper-tin alloy region is not exposed on the surface (comparative example 18) and the reflow treatment is prolonged. It was carried out for a period of time to prepare one in which the surface was almost covered with the copper-tin alloy region and only a small amount of tin region was present (Comparative Example 19). In Comparative Examples 18 and 19, the portion corresponding to the first film formed in Examples 1 to 17 was not formed.
  • the main plating conditions are as follows. ⁇ Nickel plating conditions> ⁇ Plating bath composition Nickel sulfamate: 300 g/L Nickel chloride: 5g/L Boric acid: 30 g/L ⁇ Bath temperature: 45°C ⁇ Current density: 5 A/dm 2
  • ⁇ Zinc plating conditions> (No additional element of zinc layer) ⁇ Plating bath composition Zinc sulfate heptahydrate: 250 g/L Sodium sulfate: 150 g/L ⁇ PH 1.2 ⁇ Bath temperature: 45°C ⁇ Current density: 5 A/dm 2
  • Trisodium citrate: 250 g/L ⁇ PH 5.3 ⁇ Bath temperature: 30°C ⁇ Current density: 5 A/dm 2
  • ⁇ Zinc plating conditions> Additional element of zinc layer: molybdenum
  • ⁇ Plating bath composition Hexammonium heptamolybdate (VI): 1 g/L Zinc sulfate heptahydrate: 250 g/L Trisodium citrate: 250 g/L ⁇ PH 5.3 ⁇ Bath temperature: 30°C ⁇ Current density: 5 A/dm 2
  • the total length R1 ( ⁇ m) of the zinc layer in contact with the copper-tin alloy region of the mixed layer and the length of the zinc layer in contact with the tin region in the cross section in the thickness direction To the total R2 ( ⁇ m) (R1/R2), the presence or absence of an adhesive layer and the composition and thickness of the adhesive layer, the presence or absence of NiSn 4 in the tin region of the mixed layer, and the copper of the mixed layer.
  • Nickel content in tin alloy area, presence/absence of tin layer and thickness of tin layer, zinc adhesion amount in zinc layer, additive element and its adhesion amount, copper tin alloy area in mixed layer in planned contact area The exposure rate was measured.
  • R1 and R2 were measured by observing a sample cross-section processed with a focused ion beam device: FIB (model number: SMI3050TB) manufactured by Seiko Instruments Inc. with a scanning ion microscope, and measuring the length in contact with each layer from the cross section of 15 ⁇ m square field of view. It was measured. Two fields of view were observed and taken as the average value.
  • FIB focused ion beam device
  • the adhesive layer was regarded as a part of the zinc layer and R1 and R2 were measured.
  • the thicknesses of the adhesive layer, the zinc layer, and the tin layer in the first coating are the scanning ion of the sample cross-sectioned by the focused ion beam device: FIB (model number: SMI3050TB) manufactured by Seiko Instruments Inc. It was observed with a microscope and measured from a cross section of a 15 ⁇ m square field of view. Two fields of view were observed and taken as the average value.
  • FIB focused ion beam device
  • Table 1 shows these results.
  • blanks in heat treatment conditions indicate that heat treatment was not performed.
  • ⁇ Bending test> The bending workability was evaluated by a bending test in accordance with the test method (item 4) of JCBA (Japan Copper and Brass Association Technical Standard) T307 for the portion to be contacted with the core wire on which the first coating having improved anticorrosion property is formed. .. That is, a plurality of test pieces having a width of 10 mm and a length of 30 mm were taken from the characteristic evaluation strip so that the bending axis was orthogonal to the rolling direction, and the test pieces had a bending angle of 90 degrees and a bending radius of 90 mm. Using a 0.5 mm W-type jig, a W bending test was conducted under a load of 9.8 ⁇ 10 3 N. Since the first coating was not formed in Comparative Examples 18 and 19, tests were conducted without specifying the site.
  • JCBA Japanese Copper and Brass Association Technical Standard
  • the level at which no clear cracks were observed in the bent portion after the bending test was evaluated as "A”, and the level at which minute cracks were partially generated on the plated surface but the base material was not exposed was evaluated as "A”.
  • the level at which the base material 2 is evaluated as "B” and the base material 2 is not exposed but the crack is larger than the level evaluated as "B” is evaluated as "C”, and the base material 2 is exposed by the generated cracks. was evaluated as "D”.
  • a hemispherical shape with an inner diameter of 1.5 mm is prepared for each sample so as to simulate the contact part of the male and female terminals of the fitting type connector.
  • a female test piece and a plate-shaped male test piece are prepared, and a predetermined load is applied between the female test piece and the male test piece using a friction measuring machine (horizontal load tester model M-2152ENR) manufactured by Aiko Engineering Co., Ltd.
  • the frictional force between the two test pieces was measured by sliding in the state of being applied to determine the dynamic friction coefficient. Since only the second coating was formed in Comparative Examples 18 and 19, the test was conducted without specifying the site.
  • Examples 1 to 17 in which the ratio (R1/R2) of the copper-tin alloy region to the tin region in the mixed layer is 0.05 or more and 2.5 or less are more adhesive than Comparative Examples 18 and 19. It can be seen that the bending workability is good. Among them, Examples 5 to 17 provided with an adhesive layer have excellent adhesiveness, and Examples 7 to 17 in which the NiSn 4 compound was found have particularly good adhesiveness. In Examples 9 to 17, in addition to having good adhesion, cracking or peeling of the plating film was not observed even during bending, and both adhesion and bending workability were excellent.
  • Examples 1 to 17 are superior to Comparative Examples 18 and 19.
  • Examples 10 to 17 having a tin layer on the zinc layer in the first coating have a low contact resistance in a corrosive environment test, and protect the aluminum wire from galvanic corrosion that occurs between the aluminum wire and the terminal. It can be seen that the effect of doing so is particularly high.
  • the friction coefficient of Examples 1 and 2 and Comparative Examples 18 and 19 in which the exposure ratio of the copper-tin alloy region was too small or too large was 0.4 or more, which was relatively high. It was found that Examples 3 to 17 had a low coefficient of friction, and that the exposure rate of the copper-tin alloy region was 5% or more and 70% or less.
  • FIG. 5 is a cross-sectional SIM photograph of the portion where the first film of Example 11 was formed.
  • the base layer, the mixed layer in which the copper-tin alloy region and the tin region were mixed, the adhesive layer, and the zinc layer were formed on the substrate.
  • a tin layer is sequentially formed.
  • FIG. 6 is an enlarged image of the portion surrounded by a circle in FIG. 5, and it can be seen that columnar NiSn 4 extends from the interface with the adhesive layer to the tin region.
  • Comparative Example 18 the mixed layer having the copper-tin alloy region did not exist, and the zinc layer was formed on the tin layer, resulting in poor adhesion and bending workability. Further, since the copper-tin alloy region was not exposed on the surface, the friction coefficient of the contact planned portion was also high. In Comparative Example 19, since the tin layer present in the mixed layer was small, bending workability was remarkably poor, and very severe corrosion of the aluminum wire rod occurred in the corrosion test. Further, since the surface is almost entirely covered with the copper-tin alloy region, the friction coefficient was also a high value as compared with Examples 3 to 17.
  • the adhesion of the film to the base material is good, and it is possible to suppress the occurrence of corrosion of dissimilar metal contact when it comes into contact with aluminum.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

腐食防止効果が高く、皮膜の密着性に優れる防食端子材を提供する。 少なくとも表面が銅又は銅合金からなる基材の少なくとも一部に第1皮膜が形成されており、第1皮膜は、銅錫合金からなる銅錫合金領域と銅錫合金以外の錫又は錫合金からなる錫領域とが混在する混在層の上に、亜鉛又は亜鉛合金からなる亜鉛層が形成され、亜鉛層は、混在層の銅錫合金領域及び錫領域の両方に接しており、厚さ方向に沿う断面において、銅錫合金領域に接する長さをR1(μm)、錫領域に接する長さをR2(μm)とすると、比率R1/R2が0.05以上2.5以下である。

Description

防食端子材及び端子並びに電線端末部構造
 本発明は、腐食防止効果の高い防食端子材及び端子並びに電線端末部構造に関する。
 本願は、2018年12月27日に出願された日本国特願2018-244741号に基づき優先権を主張し、その内容をここに援用する。
 従来、導線の端末部に圧着した端子を別の機器に設けられた端子に接続することにより、その導線を上記別の機器に接続することが行われている。導線および端子は、導電性の高い銅または銅合金により形成されることが一般的であるが、軽量化等のために、アルミニウム製又はアルミニウム合金製の導線も用いられる。
 例えば、特許文献1には、アルミニウムまたはアルミニウム合金からなる導線に、スズめっきが形成された銅(銅合金)からなる端子が圧着され、自動車等の車両に搭載される端子付き電線が開示されている。
 導線をアルミニウム又はアルミニウム合金で形成し、端子を銅又は銅合金で形成すると、端子と導線との間に水が入ったときに、異金属の電位差によるガルバニック腐食が発生して導線が腐食し、圧着部での電気抵抗値の上昇や圧着力の低下が生ずるおそれがある。
 ガルバニック腐食を防止するために、例えば特許文献1では、端子の基材層とスズ層との間に、基材層に対して犠牲防食作用を有する金属(亜鉛または亜鉛合金)からなる防食層が形成されている。
 特許文献2に示すコネクタ用電気接点材料は、金属材料よりなる基材と、基材上に形成された合金層と、合金層の表面に形成された導電性皮膜層とを有している。合金層は、Snを必須に含有し、さらにCu、Zn、Co、Ni及びPdから選択される1種以上の添加元素を含んでいる。導電性皮膜層としては、Sn(OH)(水酸化酸化物)を含むものが開示されている。
 SnにZnを添加した例としては、特許文献3にSnめっき材が開示されている。このSnめっき材は、銅又は銅合金の表面に、下地Niめっき層、中間Sn-Cuめっき層及び表面Snめっき層を順に有している。このSnめっき材において、下地Niめっき層はNi又はNi合金で構成され、中間Sn-Cuめっき層は少なくとも表面Snめっき層に接する側にSn-Cu-Zn合金層が形成されたSn-Cu系合金で構成され、表面Snめっき層はZnを5~1000質量ppm含有するSn合金で構成され、最表面にZn濃度が0.2質量%を超えて10質量%までのZn高濃度層をさらに有している。
 特許文献4では、銅または銅合金からなる基材の表面にSn含有層が形成されたSnめっき材において、Sn含有層がCu-Sn合金層とこのCu-Sn合金層の表面に形成された厚さ5μm以下のSnからなるSn層とから構成され、Sn含有層の表面にNiめっき層が形成され、このNiめっき層の表面に最表層としてZnめっき層が形成されている。
特開2013‐218866号公報 特開2015‐133306号公報 特開2008‐285729号公報 特開2018‐90875号公報
 特許文献1のように錫層の下地に亜鉛または亜鉛合金からなる防食層を設けた場合、防食層上に錫めっき処理を実施する際に錫置換が生じて防食層と錫めっきの密着性が悪くなるという問題があった。
 特許文献2のようにSn(OH)(水酸化酸化物)を含む導電性皮膜層を設けた場合、腐食環境や加熱環境に曝された際に速やかに導電性皮膜層に欠損が生じるため持続性が低いという問題があった。
 特許文献3のようにSn-Cu系合金層(中間Sn-Cuめっき層)上にSn-Zn合金(表面Snめっき層)が積層され、最表層にZn高濃度層を持つものは、Sn-Zn合金めっきの生産性が悪く、Sn-Cu系合金層の銅が表層に露出した場合にアルミニウム製の導線に対する防食効果がなくなるという問題があった。
 特許文献4のようにCu-Sn合金層とSn層が積層されたSnめっき材上にZnめっき層を積層した材料を用いた端子では、Sn層とZnめっき膜の密着性が非常に悪いために、Niめっき層を介在させたとしても、密着性が劣ることがあった。
 本発明は、前述の課題に鑑みてなされたものであって、腐食防止効果が高く、皮膜の密着性に優れる防食端子材及び端子並びに電線端末部構造を提供することを目的とする。
 本発明の防食端子材は、少なくとも表面が銅又は銅合金からなる基材と、前記基材の少なくとも一部に設けられた第1皮膜とを備える防食端子材であって、前記第1皮膜は、銅錫合金からなる銅錫合金領域と銅錫合金以外の錫又は錫合金からなる錫領域とが混在する混在層と、前記混在層の上に設けられた亜鉛又は亜鉛合金からなる亜鉛層とを有し、前記亜鉛層は、前記混在層の前記銅錫合金領域及び前記錫領域の両方に接しており、厚さ方向に沿う断面において前記銅錫合金領域に接する長さをR1(μm)、前記錫領域に接する長さをR2(μm)とすると、比率R1/R2が0.05以上2.5以下である。
 この防食端子材は、混在層に銅錫合金領域が混在しているので、その上に設けられる亜鉛層は、錫領域だけでなく、亜鉛層と良好な密着性を持つ銅錫合金領域にも接触して密着性が高められる。この場合、比率R1/R2が0.05未満では、銅錫合金領域に接する長さが少な過ぎて密着性が損なわれ、比率R1/R2が2.5を超えると、曲げ加工時に割れが発生して密着性がかえって損なわれる。
 この端子材を端子に成形して電線のアルミニウム線材を接続する場合には、端子に成形されたときに電線の心線が接触する部分に第1皮膜が配置されるようにすれば、亜鉛層により腐食電位がアルミニウムと近いため、アルミニウム線材と接触した場合の異種金属接触腐食の発生を抑えることができる。
 この防食端子材の一つの実施態様は、前記第1皮膜において、前記混在層と前記亜鉛層との間に、ニッケル又はニッケル合金からなる接着層をさらに備える。接着層は混在層(錫領域及び銅錫合金領域)および亜鉛層に対する密着性が良好であるため、亜鉛層と混在層との間の剥離を防止し密着性を高めることができる。
 この防食端子材のさらに他の一つの実施態様は、前記接着層から前記錫領域に入り込むNiSnからなる金属間化合物をさらに有する。
 NiSnからなる金属間化合物が接着層から錫領域に入り込んでいるので、接着層と混在層との密着性がより良好になる。したがって、端子への厳しい加工を伴う場合でも層間剥離を防止し密着性を高めることができる。
 この防食端子材のさらに他の一つの実施態様は、前記銅錫合金領域は、1at%以上50at%以下のニッケルを含有する。銅錫合金がニッケルを含有すると、銅錫合金領域と亜鉛層との密着性がより良好となる。その含有量が1at%未満では、密着性向上の効果に乏しく、50at%を超えると銅錫合金が脆弱になるとともに、摩擦低減効果が減少する。また、銅錫合金領域がこの範囲でニッケルを含有することにより銅錫合金領域と錫領域との界面を急峻な凹凸形状とすることができ、表面において硬質な銅錫合金と軟質な錫とが露出するので、摩擦係数の低減にも有利である。
 この防食端子材のさらに他の一つの実施態様は、前記亜鉛層は、単位面積当たりの亜鉛の付着量が0.07mg/cm以上2.0mg/cm以下である。ここで、「単位面積当たりの付着量」とは、亜鉛層の厚さ×単位面積に含まれる量をいう。
 亜鉛層の亜鉛付着量が0.07mg/cm未満では、亜鉛の量が不十分で腐食電流値が高くなる傾向にあり、2.0mg/cmを超えると、亜鉛の量が多過ぎて接触抵抗が高くなる傾向にある。
 この防食端子材のさらに他の一つの実施態様は、前記第1皮膜は、前記亜鉛層の上に設けられた錫又は錫合金からなる錫層をさらに有する。
 錫層が亜鉛層の腐食を防ぐため、防食性能をより高めることができる。また、錫層には結晶粒界を通して亜鉛層の亜鉛が拡散するため、錫層の腐食電位はアルミニウムに近く、アルミニウム線材と接触した場合の異種金属接触腐食の発生を有効に抑えることができる。しかも、摩耗等により錫層の全部又は一部が消失した場合でも、その下の亜鉛層により異種金属接触腐食の発生を抑えることができ、電気抵抗値の上昇やアルミニウム線材への圧着力の低下を抑制できる。
 この防食端子材のさらに他の一つの実施態様は、前記亜鉛層は、添加元素として、ニッケル、鉄、マンガン、モリブデン、コバルト、カドミウム、鉛のいずれか1種以上を含み、単位面積当たりの前記添加元素の付着量は、0.01mg/cm以上0.3mg/cm以下である。
 亜鉛層に上記添加元素を含有させて亜鉛合金とすることにより、亜鉛層自体の耐食性をさらに向上させることができる。添加元素としてニッケルを含有する亜鉛合金は、亜鉛層の耐食性を向上させる効果が高く、特に好ましい。
 亜鉛層の上に錫層が形成される場合、亜鉛層が亜鉛合金であることにより、錫層への過剰な亜鉛拡散を防ぐことができる。そして、腐食環境に晒され錫層が消失した際も、長く亜鉛層を保ち続け腐食電流の増大を防ぐことができる。添加元素の付着量が0.01mg/cm未満では亜鉛の錫層への拡散を抑制する効果に乏しく、0.3mg/cmを超えると、錫層において亜鉛が不足して腐食電流が高くなるおそれがある。添加元素の付着量がこの範囲内であることにより、亜鉛層から錫層へ適切な量の亜鉛が拡散する。
 この防食端子材のさらに一つの実施態様は、前記基材の前記第1皮膜が形成されていない部分に設けられた第2皮膜を備え、前記第2皮膜は、前記基材の上に設けられた前記混在層を有し、前記混在層の表面に前記銅錫合金領域と前記錫領域とが露出しており、前記銅錫合金領域の露出面積率が5%以上70%以下である。
 第2皮膜の表面には硬い銅錫合金領域が露出しているが、その周囲の軟らかい錫領域による潤滑作用により、摩擦係数を低減することができる。この場合、銅錫合金領域の露出面積率が5%未満では摩擦係数を低減する効果が小さく、70%を超えると、錫領域の露出面積が少なくなって電気接続特性が低下するおそれがある。
 本発明の防食端子材は、帯板状のキャリア部と、前記キャリア部の長さ方向に間隔をおいて前記キャリア部に連結された複数の端子用部材とを有する。
 そして、本発明の端子は、上記の防食端子材を成形してなる端子である。さらに、本発明の電線端末部構造は、その防食端子がアルミニウム又はアルミニウム合金のアルミニウム線材からなる電線の端末に圧着されている。
 本発明によれば、亜鉛層が混在層の錫領域と銅錫合金領域との両方に接触しているので、密着性が良く、また、端子としてアルミニウム線材と接触した場合の異種金属接触腐食の発生を抑えることができる。
本発明の防食端子材の実施形態を模式的に示す要部断面図である。 本実施形態の防食端子材の平面図である。 本実施形態の防食端子材が適用される端子の例を示す斜視図である。 図3の端子を圧着した電線の端末部を示す正面図である。 実施例11のSIM(走査イオン顕微鏡)像である。 図5の円で囲った部分の拡大TEM(透過型電子顕微鏡)像である。
 本発明の一実施形態の防食端子材1、端子10及びこの端子10による電線端末部構造を説明する。
 本実施形態の防食端子材1は、図2に全体を示したように、複数の端子10(図3参照)を成形するための帯板状に形成されたストリップ材であり、平行に延びる一対の帯状のキャリア部21の間に、端子10として成形される複数の端子用部材22がキャリア部21の長さ方向に間隔をおいて配置され、各端子用部材22の両端がそれぞれ細幅の連結部23を介して両キャリア部21に連結されている。各端子用部材22は例えば図3に示すような形状に成形され、連結部23から切断されることにより、端子10として完成する(図4参照)。
 この端子10(図3の例ではメス端子)は、先端から、オス端子15(図4参照)が嵌合される接続部11、電線12の露出した心線(アルミニウム線材)12aがかしめられる心線圧着部13、電線12の被覆部12bがかしめられる被覆圧着部14がこの順で並び、一体に形成されている。接続部11は角筒状に形成され、その先端に連続するばね片11aが折り込まれるように内部に挿入されている(図4参照)。
 図4は電線12に端子10をかしめた端末部構造を示している。この電線端末部構造において、心線圧着部13の付近が電線12の心線12aに直接接触する。
 図2に示すストリップ状の防食端子材1において、端子10に成形されたときに接続部11を形成してオス端子15に接触し接点となる部分を接点予定部25、心線圧着部13付近において心線12aが接触する部分の表面を心線接触予定部26とする。
 接点予定部25は、本実施形態の端子(メス端子)10に形成されると、角筒状に形成される接続部11の内面、およびその接続部11内に折り込まれているばね片11aとの対向面となる。図2に示すように、接続部11を展開した状態においては、接続部11の両側部の表面、ばね片11aの裏面が接点予定部25である。
 オス端子15に接触する接点予定部25においては、電気抵抗が小さいことに加えて摩擦抵抗が小さいことが求められる。心線(アルミニウム線材)12aに接触する心線接触予定部26においては、電気抵抗が小さいことに加えて心線12aの腐食電位に近く、異種金属接触腐食を抑制できることが求められる。
 防食端子材1は、図1に断面(図2のA-A線に沿う断面に相当する)を模式的に示したように、銅又は銅合金からなる基材2上に皮膜3が形成されている。
 皮膜3は、ニッケル又はニッケル合金からなる下地層4、銅錫合金と銅錫合金以外の錫又は錫合金からなる錫とが混在した混在層5が基材2の上にこの順で形成されるとともに、心線接触予定部26の表面には、混在層5の上にさらにニッケル又はニッケル合金からなる接着層6、亜鉛又は亜鉛合金からなる亜鉛層7がこの順に形成され、さらに本実施形態では亜鉛層7の上に錫又は錫合金からなる錫層8が形成されている。この皮膜3のうち、心線接触予定部26の表面に形成されている皮膜を第1皮膜31とし、心線接触予定部26を除く部分(接点予定部25を含む)の表面に形成されている皮膜を第2皮膜32とする。
 換言すると、ここで「皮膜3」とは、心線接触予定部26の表面に設けられた第1皮膜31と、心線接触予定部26を除く部分の表面に設けられた第2皮膜32とを総称している。第2皮膜32は、基材2の上に形成されたニッケルまたはニッケル合金からなる下地層4と、下地層4の上に形成された銅錫合金および銅錫合金以外の錫または錫合金からなる錫が混在した混在層5とを備えている。第1皮膜31は、この第2皮膜32に加えて混在層5の上に形成されたニッケルまたはニッケル合金からなる接着層6、接着層6の上に形成された亜鉛または亜鉛合金からなる亜鉛層7、及び亜鉛層7の上に形成された錫または錫合金からなる錫層8を備えている。
 つまり、第1皮膜31は、前述の下地層4、混在層5、接着層6、亜鉛層7、錫層8が基材2の上にこの順で形成されている。第2皮膜32は、下地層4、混在層5が基材2の上にこの順で形成されている。第1皮膜31は、端子10として成形された後の表面(端子用部材22の表面)の30%以上80%以下の面積率で存在するのが望ましい。以下、これらの詳細を説明する。
 基材2は、少なくともその表面が銅又は銅合金からなるものであれば、特に、その組成等が限定されるものではない。銅又は銅合金からなる板材を用いるとよいが、銅以外の金属(例えばステンレス)からなる板材の表面に銅又は銅合金からなる銅めっき層等の銅層が施されたものでもよい。基材2は平板状でもよく、平板を加工して得られる示すストリップ状(図2)でもよい。
 下地層4は、ニッケル又はニッケル合金からなり、例えば、厚さが0.1μm以上5.0μm以下で、ニッケル含有率は80質量%以上である。この下地層4は、基材2から亜鉛層7や錫層8への銅の拡散を防止する機能があるので、形成した方が好ましい。この下地層4のニッケル含有率は90質量%以上とするのがより好ましい。
 混在層5は、下地層4の上に、銅めっき層、錫めっき層を順に形成して、リフロー処理することにより得られた層であり、CuSnやCuSn等の銅錫合金からなる銅錫合金領域51と、これら銅錫合金以外の錫又は錫合金からなる錫領域52とが混在し、表面に、銅錫合金領域51及び錫領域52の両方が露出している。なお、下地層4が設けられない場合、混在層5は基材2の上に直接備えられる。
 混在層5の平均厚さは0.1μm以上3.0μm以下が好ましい。この場合、リフロー処理により錫めっき層の内部歪みが解放されることで、均一な混在層が形成されるため、錫ウィスカーが発生し難くなる。なお、リフロー処理が不足して混在層5の平均厚さが薄くなりすぎると、錫めっき層の内部歪みが解放しきれず、錫ウィスカーが発生し易くなる。一方、混在層5の平均厚さが厚過ぎると、加工時に割れが発生しやすくなる。
 混在層5を構成する銅錫合金領域51は、1at%以上50at%以下のニッケルを含有している。銅錫合金にニッケルが含有すると、亜鉛層7との密着性がより良好となる。ニッケルの含有量が1at%未満では、密着性向上の効果に乏しく、50at%を超えると、銅錫合金が脆弱になるとともに、摩擦低減効果が減少する。ニッケルの含有量が1at%以上50at%以下であれば、銅錫合金領域51と錫領域52との界面を急峻な凹凸形状とすることができ、すなわち急峻な凹凸形状を有する硬質な銅錫合金領域51の表面を軟質な錫領域52が平坦に均した状態となり、摩擦係数の低減に有利である。
 混在層5の上に備えられる接着層6はニッケル又はニッケル合金からなる。この接着層6は必ずしも必要ではないが、接着層6により混在層5と亜鉛層7との密着性を向上させることができ、特に、腐食環境下における剥離防止効果に優れている。また接着層6は、基材2からの高温時の銅成分拡散を防止するバリアとして機能し、耐熱性向上(高温による防食性劣化の防止)に寄与する。
 混在層5中の錫領域52は酸化されやすいので、電析を妨げ除去しにくい酸化膜を生じやすい。錫領域52上にニッケルを電析させるために、錫と密着性のよいニッケルめっき層を、錫領域52の表面を活性化するニッケルストライクめっき浴を用いた電解めっきにより形成するのが望ましい。
 この接着層6は平均厚さが0.01μm以上1.0μm以下である。接着層6の厚さが0.01μm未満では、亜鉛層7の密着性を向上させる効果に乏しい。この接着層6は厚くても特に問題ないが、密着性向上の効果を十分に持つ1.0μmで十分である。この接着層6の好ましい厚さは0.05μm以上0.3μm以下である。
 混在層5の錫領域52には、NiSnからなる金属間化合物61が接着層6から入り込んだ状態に形成されている(図6参照)。この金属間化合物61は鱗片状又は針状、柱状に形成され、接着層6から混在層5の界面を貫き、錫領域52内に延びている。この金属間化合物61が接着層6及び混在層5をつないで形成されることにより、錫領域52と接着層6との密着性もより良好になり、腐食環境下において剥離を確実に防止することができる。
 なお、接着層6は亜鉛層7と混在層5との間に設けられているが、極めて薄肉であるので、亜鉛層7と混在層5とはほぼ直接接触しているとみなしてよい。
 亜鉛層7は、亜鉛又は亜鉛合金からなり、厚さが0.1μm以上5.0μm以下で、単位面積当たりの亜鉛付着量が0.07mg/cm以上2.0mg/cm以下である。亜鉛付着量が0.07mg/cm未満では、亜鉛の量が不十分で腐食電流値が高くなる傾向にあり、2.0mg/cmを超えると、亜鉛の量が多過ぎて接触抵抗が高くなる傾向にある。ここで、単位面積当たりの亜鉛付着量とは、亜鉛層7の厚さ×単位面積に含まれる亜鉛量をいう。
 亜鉛層7の厚さが0.1μm未満では第1皮膜31の表面(錫層8)の腐食電位を卑化する効果が乏しく、5.0μmを超えるとプレス加工性が低下するため、端子10へのプレス加工時に割れが発生するおそれがある。亜鉛層7の厚さは、0.3μm以上2.0μm以下がより好ましい。
 亜鉛層7は混在層5の上に形成されるので、混在層5の銅錫合金領域51と錫領域52との両方に接触する。厚さ方向の任意の断面において、亜鉛層7と銅錫合金領域51とが接する部分の長さの合計をR1(μm)、亜鉛層7と錫領域52とが接する部分の長さの合計をR2(μm)とすると、比率R1/R2が0.05以上2.5以下である。比率R1/R2が0.05未満では、銅錫合金領域51に接する長さ(面積)が少な過ぎて密着性が損なわれ、比率R1/R2が2.5を超えると、硬質な銅錫合金領域51が大きすぎ、曲げ加工時に割れが発生して密着性がかえって損なわれる。
 亜鉛層7には、亜鉛の他に、添加元素として、ニッケル、鉄、マンガン、モリブデン、コバルト、カドミウム、鉛、錫のいずれかを1種以上含んでもよい。亜鉛層7にこれら添加元素を含有させて亜鉛合金とすることにより、亜鉛層7の耐食性を向上させることができる。ニッケル亜鉛合金は、亜鉛層7の耐食性を向上させる効果が高く、特に好ましい。亜鉛層7の上に錫層8が形成される場合、錫層8への過剰な亜鉛拡散を防ぐことができる。そして、腐食環境に晒され錫層8が消失した際も、長く亜鉛層7を保ち続け腐食電流の増大を防ぐことができる。
 亜鉛層7が添加元素を含有する場合、添加元素の付着量は、0.01mg/cm以上0.3mg/cm以下がよい。添加元素の付着量が0.01mg/cm未満では亜鉛の錫層8への拡散を抑制する効果に乏しく、0.3mg/cmを超えると、亜鉛の錫層8への拡散が不足して腐食電流が高くなるおそれがある。ここで、添加元素の付着量とは、亜鉛層の厚さと単位面積に含まれる添加元素の量との積をいう。
 錫層8は、錫又は錫合金からなり、亜鉛層7の表面を覆って亜鉛層7の腐食を防ぎ、防食性能を高めることができる。また、錫層8に亜鉛層7から亜鉛が拡散することにより、錫層8の腐食電位がアルミニウムに近くなり、アルミニウム線材と接触した場合の異種金属接触腐食の発生を有効に抑えることができる。しかも、摩耗等により錫層8の全部又は一部が消失した場合でも、その下の亜鉛層7により異種金属接触腐食の発生を抑えることができ、電気抵抗値の上昇やアルミニウム線材への圧着力の低下を抑制できる。
 錫層8の厚さは、0.3μm以上8.0μm以下が好ましい。この錫層8の厚さが0.3μm未満では、防食性能を高める効果に乏しく、錫層8の厚さが8.0μmを超えると、厚過ぎることから、亜鉛層7から錫層8の表面にまで亜鉛が拡散しにくくなる。
 なお、亜鉛層7からの亜鉛の拡散が生じるので、亜鉛層7と錫層8との全体で単位面積当たりの亜鉛の付着量((亜鉛層7中に含まれる亜鉛量+錫層8中に含まれる亜鉛量)÷亜鉛層7の面積(すなわち錫層8の面積))0.07mg/cm以上2.0mg/cm以下である。
 第2皮膜32は、第1皮膜31における下地層4及び混在層5と同じ組成、膜厚の下地層4及び混在層5により形成されている。また、第2皮膜32の最表面で、混在層5の銅錫合金領域51と錫領域52との両方が露出している。銅錫合金領域51の露出面積率は5%以上70%以下である。
 第2皮膜32は接点予定部25であり、表面にまばらに露出する硬い銅錫合金領域51と銅錫合金領域51の周囲に露出する軟らかい錫領域52とによる潤滑作用により、摩擦係数を小さくすることができる。この場合、銅錫合金領域51の露出面積率が5%未満では摩擦係数を小さくする効果が小さく、70%を超えると、電気接続特性が低下するおそれがある。
 以上の層構成を有する皮膜3において、第1皮膜31は、前述したように、接点予定部25を除く部分の表面に存在している。異種金属接触による腐食電流は接触部位から離れた部位にも流れて腐食を発生させるため、ガルバニック腐食を防止する亜鉛層8が存在している部位の比率は高い方が望ましい。端子10として成形されたときの表面全体の30%以上80%以下の面積率で、亜鉛層8が存在するのが望ましい。
 次に、この防食端子材1の製造方法について説明する。
 基材2として、銅又は銅合金からなる板材を用意する。前述したように、銅以外の金属板(ステンレスなど)に銅又は銅合金からなる銅層を形成した板材を用いてもよい。この板材(基材2)に裁断、穴明け等の加工を施すことにより、図2に示すような、キャリア部21に複数の端子用部材22を連結部23を介して連結されてなるストリップ状に成形する。
<下地用ニッケルめっき層形成工程>
 ストリップ状の基材2に脱脂、酸洗等の処理をすることによって表面を清浄にした後、その全面にニッケル又はニッケル合金からなるニッケルめっき層を形成する処理を施して、基材2の上に下地層4となるニッケルめっき層を形成する。
 このニッケルめっき処理は、緻密なニッケル主体の膜が得られる方法であれば特に限定されず、ニッケルめっき層は公知のワット浴やスルファミン酸浴、クエン酸浴などを用いて電気めっきにより形成することができる。端子10へのプレス曲げ性と銅に対するバリア性を勘案すると、スルファミン酸浴から得られる純ニッケルめっき処理が望ましい。
<混在層形成工程>
 ニッケルめっき層形成後、銅めっき処理、錫めっき処理を順に施すことにより、ニッケルめっき層の上に銅または銅合金からなる銅めっき層、錫または錫合金からなる錫めっき層を形成する。その後、熱処理(リフロー処理)することにより、ニッケル又はニッケル合金からなる下地層4の上に混在層5を形成する。
 この場合の銅めっき処理には、一般的な銅めっき浴、例えば硫酸銅(CuSO)及び硫酸(HSO)を主成分とした硫酸銅浴等を用いることができる。
 錫めっき処理には、一般的な錫めっき浴、例えば硫酸(HSO)と硫酸第一錫(SnSO)を主成分とした硫酸浴を用いることができる。
 リフロー処理として、基材2の表面温度が240℃以上360℃以下になるまで昇温後、当該温度に1秒以上12秒以下の時間保持した後、急冷する。
 このリフロー処理を施すことにより、下地層4の上に銅錫合金と錫とが混在した混在層5が形成される。この場合、銅めっき層の厚さを最適値に制御することにより、錫めっき層と銅めっき層およびニッケルめっき層を相互拡散させて、ニッケルを含む銅錫合金を成長させることができる。混在層5の表面における銅錫合金領域51の露出率は、リフロー時の熱処理条件と各めっき層の厚さを調整することにより変量することができる。
 なお、銅めっき層を形成しないで、ニッケルめっき層の上に錫めっき層を形成して、熱処理してもよい。この場合、銅錫合金領域51を形成するためにニッケルめっき層を薄く成膜して、熱処理の際に基材2から銅が供給されるようにする。
<接着用ニッケルめっき層形成工程>
 接着層6を形成する場合には、混在層5までを形成した基材2の表面の接点予定部25をマスキングした後、その状態でニッケルめっき層を形成する。
 このニッケルめっき層はニッケル又はニッケル合金からなり、電解めっきや無電解めっきにより形成することができる。めっき処理には塩化ニッケルおよび塩酸からなる公知のニッケルストライク浴を用いることが好ましいが、その他のクエン酸浴やスルファミン酸浴といった浴からもニッケルめっき層を成膜することができる。接着層6をニッケル合金で形成する場合は、市販されているニッケル錫合金めっき浴や、亜リン酸と硫酸ニッケルからなるニッケルリン合金めっき浴から成膜することができる。
 ニッケルめっき層形成の前処理として、混在層5を形成した基材2(ストリップ状)をpH=10以上のアルカリ性の水溶液に浸漬すると、銅錫合金と錫が混在した混在層5に対して密着性のよいニッケルめっき層を形成することができる。アルカリ性水溶液がクエン酸などの錫と銅の両方を錯化できる錯化剤を含むと、ニッケルめっき層の密着性はより良好である。
 この場合、前述したNiSnからなる金属間化合物61は、ニッケルめっき層のニッケルと混在層5中の錫とを相互拡散させることにより形成できる。しかしながら、硫酸による酸洗など、銅合金に用いられる前処理を使用すると、錫の酸化膜が残存してNiSnの成長を阻害することがある。これを防ぎ、NiSnを成長させるためには、十分に脱脂した混在層5付きの基材2を、30g/Lの水酸化ナトリウム中に5秒以上浸漬して錫の酸化膜を除去し、その後直ちにニッケルストライクめっきを実施することが望ましい。
 接着用のニッケルめっき層を形成した後、後述の亜鉛めっき層、錫めっき層を含めて全てのめっき成膜後に熱処理を実施することにより、接着層6が形成されるとともに、接着層6からNiSnからなる金属間化合物61が混在層5の錫領域52中に成長する。
<亜鉛めっき層形成工程>
 亜鉛層7を形成するための亜鉛めっき層は、公知の硫酸浴やジンケート浴を用いた電解亜鉛めっき浴の電析により形成することができる。亜鉛層7の下に接着層6を形成しない場合は、強酸性の硫酸浴を用いることで比較的密着性のよい皮膜が得られる。
 亜鉛合金めっき処理には、硫酸塩浴、塩化物浴、アルカリ浴を用いたニッケル亜鉛合金めっき処理、硫酸塩浴を用いた亜鉛コバルト合金めっき処理、クエン酸含有硫酸塩浴を用いた亜鉛マンガン合金めっき処理、硫酸塩浴を用いた亜鉛モリブデンめっき処理を利用できる。また、めっき法ではなく、蒸着法を用いることも可能である。亜鉛層7上に錫層8を積層する場合、亜鉛めっき層を亜鉛合金とすると、置換反応により亜鉛層7の欠損を防ぐことができる。
<錫めっき層形成工程>
 錫層8を形成するための錫めっき層の形成には電気めっき処理を採用でき、例えば有機酸浴(例えばフェノールスルホン酸浴、アルカンスルホン酸浴又はアルカノールスルホン酸浴)、酸性浴(硼フッ酸浴、ハロゲン浴、硫酸浴、ピロリン酸浴等)、或いはアルカリ浴(カリウム浴やナトリウム浴等)等を用いる。高速成膜性と皮膜の緻密さおよび亜鉛の拡散しやすさを勘案すると、酸性の有機酸浴や硫酸浴を用い、添加剤として非イオン性界面活性剤を浴に添加するとよい。
 亜鉛めっき層と錫めっき層との相互拡散を常温(25℃)で進行させるためには、亜鉛めっき層の表面を清浄な状態にしてから錫めっき層を積層することが肝要である。亜鉛めっき層と錫めっき層とをめっき処理により連続成膜する場合には、亜鉛めっき層の表面に速やかに形成される水酸化物や酸化物を除くために、水酸化ナトリウム水溶液や塩化アンモニウム水溶液で洗浄してから直ちに錫めっき層を成膜するとよい。なお、蒸着等の乾式法で錫めっき層を成膜する際には、亜鉛めっき層表面をアルゴンスパッタ処理によりエッチングしてから錫めっき層を成膜するとよい。
<熱処理工程>
 基材2上に混在層5、亜鉛めっき層及び錫めっき層を順に形成した素材に、熱処理を施す。この熱処理は、素材の表面温度が30℃以上190℃以下となる温度で加熱する。この熱処理により、接点予定部25以外の部分(マスクされていない部分)では、亜鉛めっき層中の亜鉛が錫めっき層内および錫めっき層上に拡散する。
 亜鉛の拡散は速やかに起こるため、30℃以上の温度に36時間以下晒すとよい。ただし、錫が溶融すると亜鉛合金にはじかれ、錫層5に錫はじき箇所が形成される、すなわち部分的に錫層5が形成されず亜鉛層7が露出するため、錫を溶融させないために190℃を超える温度には加熱しない。
 また、160℃を超えて長時間晒すと逆に錫が亜鉛層4側に拡散し、錫層5への亜鉛の拡散を阻害するおそれがある。このため、より好ましい条件としては、加熱温度が30℃以上160℃以下、保温時間が30分以上60分以下である。この熱処理により、混在層5上に接着層6、亜鉛層7及び錫層8が形成される。
 このようにして製造された防食端子材1は、全体としては基材2の上にニッケル又はニッケル合金からなる下地層3、その上に銅錫合金領域51と錫領域52とからなる混在層5が形成されたストリップ材であり、マスクにより覆っておいた接点予定部25においては、その混在層5の銅錫合金領域51及び錫領域52が表面に露出しており、接点予定部25以外の部分では、混在層5の上に接着層6、亜鉛層7、錫層8が順に形成されている。
 そして、連結部23を切断する前にストリップ材のままプレス加工等により図3に示す端子の形状に加工される。その後、連結部23が切断されることにより、端子10に形成される。
 図4は電線12に端子10をかしめた端末部構造を示しており、心線かしめ部13付近が電線12の心線12aに直接接触する。
 この端子10の心線接触予定部26においては、錫層8中に含有される亜鉛の腐食電位が錫の腐食電位と比較してアルミニウムに近いことから、心線接触予定部26における錫層8の腐食電位がアルミニウムに近くなっている。このため、アルミニウム製の心線(アルミニウム線材)12aの腐食を防止する効果が高く、心線接触予定部26が心線12aに圧着された状態であっても、異種金属接触腐食の発生を有効に防止することができる。
 この場合、図2のストリップ材の状態でめっき処理し、熱処理したことから、端子10の端面も連結部23で連結されていたわずかな部分(連結部23から切断された断面)を除き基材2が露出していないので、優れた防食効果を発揮することができる。
 しかも、錫層8の下に亜鉛層7が形成されているので、万一、摩耗等により錫層8の全部又は一部が消失した場合でも、その下の亜鉛層7はアルミニウムと腐食電位が近いので、異種金属接触腐食の発生を確実に抑えることができる。
 このような防食性の高い第1皮膜31において、混在層5の上に設けられる亜鉛層7は、混在層5の錫領域52だけでなく、亜鉛層7との密着性が高い銅錫合金領域51にも接触して密着性が高められ、剥離を防止することができる。しかも、混在層5と亜鉛層7との間に接着層6が介在しているので、混在層5と亜鉛層7との密着性をより高めることができる。さらに、NiSnからなる金属間化合物61が錫領域52に入り込んだ状態に形成されていることから、接着層6と混在層5との密着性も良好になる。
 接点予定部25の第2皮膜32においては、銅錫合金領域51と錫領域52とからなる混在層5が表面に配置されている。硬い銅錫合金領域51が露出し、その周囲に軟らかい錫領域52が設けられているので、錫の潤滑作用により摩擦係数を小さくすることができる。また、リフロー処理した錫領域52を有しているので接触抵抗も小さく、コネクタの接点として優れた電気的性能を発揮する。
 なお、上述の方法では、キャリア部に多数の端子用部材が連結された形状のストリップ材を板材から形成した後に各種表面処理を行ったが、板材に各種表面処理を行った後にストリップ材を形成してもよい。この場合、表面上に各層が設けられた状態の基材2を打ち抜いてキャリア部及び端子用部材が形成されるので、打ち抜き断面では基材2が露出する。
 なお、錫層8の上に薄く金属亜鉛層(表面金属亜鉛層)が形成されていてもよく、この場合、アルミニウム製の心線12aとの接触による腐食の発生をより確実に抑えることができる。この表面金属亜鉛層は、前述した熱処理によって、亜鉛合金めっき層中の亜鉛が錫めっき層を経由して表面に拡散することにより錫層8の表面に形成される層であり、錫層8の下に設けられた亜鉛層7とは異なる。
 実施例1~4は、基材としてC1020の銅板を用い、この銅板を図2に示す形状に打抜いてストリップ材とし、脱脂、酸洗し、その上に錫めっきを施してリフロー処理し、その後、接点予定部をマスキングして、亜鉛めっきを施して第1皮膜及び第2皮膜を作製した。
 実施例5は、この実施例1~4の試料に対して、亜鉛めっき処理の前にニッケルストライクめっき処理による接着層を形成し、亜鉛めっき処理の後に130℃、0.5時間の熱処理を行った。
 実施例6~9は、脱脂酸洗したストリップ形状の基材の上にニッケルめっき、銅めっき、錫めっきを順に施して、リフロー処理した後、接点予定部を除き、ニッケルストライクめっき、亜鉛めっきを施して作製した。このうち、実施例6のニッケルストライクめっきは錫ニッケル合金めっきとした。さらに亜鉛めっき処理の後、実施例6については150℃、0.5時間の熱処理、実施例7~9については30℃、24時間の熱処理を行った。
 実施例10~17は、脱脂酸洗したストリップ形状の基材の上にニッケルめっき、銅めっき、錫めっきを順に施して、リフロー処理した後、接点予定部を除き、ニッケルストライクめっき、亜鉛めっき、錫めっきを順に施して、30℃、24時間の熱処理をすることにより作製した。このうち、実施例11のニッケルストライクめっきはニッケルリン合金めっきとした。また、亜鉛めっきについては、実施例11~17では、表1に示す元素を添加した。
 比較例として、脱脂酸洗したストリップ形状の基材に銅めっき、錫めっきを順に施してリフロー処理し、銅錫合金領域が表面に露出していないもの(比較例18)と、リフロー処理を長時間実施し表面がほとんど銅錫合金領域で覆われており、わずかしか錫領域が存在しないもの(比較例19)とを作製した。比較例18,19においては、実施例1~17においては形成した第1皮膜に相当する部分を形成しなかった。
 主なめっきの条件は以下のとおりである。
 <ニッケルめっき条件>
・めっき浴組成
  スルファミン酸ニッケル:300g/L
  塩化ニッケル:5g/L
  ホウ酸:30g/L
・浴温:45℃
・電流密度:5A/dm
<亜鉛めっき条件>
(亜鉛層の添加元素なし)
・めっき浴組成
  硫酸亜鉛七水和物:250g/L
  硫酸ナトリウム:150g/L
・pH=1.2
・浴温:45℃
・電流密度:5A/dm
<亜鉛めっき条件>
(亜鉛層の添加元素:ニッケル)
・めっき浴組成
  硫酸亜鉛七水和物:75g/L
  硫酸ニッケル六水和物:180g/L
  硫酸ナトリウム:140g/L
・pH=2.0
・浴温:45℃
・電流密度:5A/dm
<亜鉛めっき条件>
(亜鉛層の添加元素:マンガン)
・めっき浴組成
  硫酸マンガン一水和物:110g/L
  硫酸亜鉛七水和物:50g/L
  クエン酸三ナトリウム:250g/L
・pH=5.3
・浴温:30℃
・電流密度:5A/dm
<亜鉛めっき条件>
(亜鉛層の添加元素:モリブデン)
・めっき浴組成
  七モリブデン酸六アンモニウム(VI):1g/L
  硫酸亜鉛七水和物:250g/L
  クエン酸三ナトリウム:250g/L
・pH=5.3
・浴温:30℃
・電流密度:5A/dm
<錫めっき条件>
・めっき浴組成
  メタンスルホン酸錫:200g/L
  メタンスルホン酸:100g/L
  光沢剤
・浴温:25℃
・電流密度:5A/dm
 得られた各実施例及び比較例の試料について、厚さ方向の断面において亜鉛層が混在層の銅錫合金領域に接する長さの合計R1(μm)と亜鉛層が錫領域に接触する長さの合計R2(μm)との比率(R1/R2)、接着層の有無と接着層を有する場合その組成及び厚さ、混在層の錫領域中へ入り込んでいるNiSnの有無、混在層の銅錫合金領域中のニッケル含有率、錫層の有無と錫層を有する場合その厚さ、亜鉛層中の亜鉛付着量、添加元素及びその付着量、接点予定部における混在層中の銅錫合金領域の露出率を測定した。
<R1/R2>
 R1およびR2の測定は、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)で断面加工した試料を走査イオン顕微鏡で観察し、視野15μm四方の断面から各層と接する長さを測定した。2視野を観察しその平均値とした。なお、亜鉛層と混在層との間に接着層を有する場合は、接着層を亜鉛層の一部とみなしてR1およびR2の測定を行った。
<接着層、亜鉛層、錫層の厚さ>
 第1皮膜(心線接触予定部)における接着層、亜鉛層、錫層の厚さは、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)で断面加工した試料を走査イオン顕微鏡で観察し、視野15μm四方の断面から測定した。2視野観察しその平均値とした。
<NiSnの有無、接着層、銅錫合金領域中のニッケル含有率>
 NiSn化合物の有無およびその同定、接着層、混在層の銅錫合金領域中のニッケル含有率は、セイコーインスツル株式会社製の集束イオンビーム装置:FIB(型番:SMI3050TB)を用いて、試料を100nm以下に薄化した断面の試料を作製し、この試料をFEI社製の走査透過型電子顕微鏡:STEM(型番:Titan G2 ChemiSTEM)を用いて、加速電圧200kVで断面観察し、STEMに付属するエネルギー分散型X線分析装置:EDSを用いて測定した。
<亜鉛層中の亜鉛、各添加元素の付着量>
 亜鉛層中の亜鉛付着量、添加金属元素の付着量は、試料の当該層が成膜されている部位を所定面積分切り出して、レイボルド社製のストリッパーL80にて亜鉛層を錫層ごと溶解し、溶解液中に含まれている亜鉛および添加元素の濃度を高周波誘導結合プラズマ発光分光分析装置で分析して算出した。表1において各添加金属元素の横に単位面積当たりの付着量(mg/cm)を記載した。
 これらの結果を表1に示す。表1中、熱処理条件における空欄は熱処理を行わなかったことを示す。
Figure JPOXMLDOC01-appb-T000001
 さらに、得られた実施例1~17、比較例18,19の各試料の接点予定部(第2皮膜)について、クロスカット試験により密着性を評価し、密着曲げ試験により曲げ加工性を評価した。また、端子に成形してアルミニウム線材をかしめた状態での腐食環境放置試験、接点予定部についての摩擦試験を実施した。
<密着性>
 防食性を高めた第1皮膜が形成されている心線接触予定部について、JIS K 5600-5-6のクロスカット法にて評価した。カット間隔は1mmとした。カットの縁がなめらかでどの格子にも剥がれがなかったものを「A」とし、カットの交差部において小さな剥がれ(全体の5%以下)が認められたものを「B」、皮膜がカットの縁に沿って又は交差部において、あるいはその両方で剥がれたものについて、剥がれ部が全体の5%を超えるが35%以下であるものを「C」、剥がれ部が35%を超えるものを「D」とした。なお、比較例18,19については第1皮膜を形成していないので、部位を特定せずに試験を行った。
<曲げ試験>
 防食性を高めた第1皮膜が形成されている心線接触予定部について、JCBA(日本伸銅協会技術標準)T307の試験方法(項目4)に準拠した曲げ試験により、曲げ加工性を評価した。すなわち、圧延方向に対して曲げの軸が直交方向になるように特性評価用条材から幅10mm×長さ30mmの試験片を複数採取し、この試験片を曲げ角度が90度、曲げ半径が0.5mmのW型の治具を用い、9.8×103Nの荷重でW曲げ試験を行った。なお、比較例18,19については第1皮膜を形成していないので、部位を特定せずに試験を行った。
 その後、実体顕微鏡にて曲げ加工部を観察し、曲げ加工性を評価した。曲げ試験後の曲げ加工部に明確なクラックが認められないレベルを「A」と評価し、めっき面に部分的に微細なクラックが発生しているが基材の露出は認められないレベルを「B」と評価し、基材の露出はないが「B」と評価したレベルより大きいクラックが発生しているレベルを「C」と評価し、発生したクラックにより基材2が露出しているレベルを「D」と評価した。
<腐食環境放置試験>
 各試料を090型(自動車業界で慣用されている端子の規格による呼称)のメス端子に成形して純アルミニウム線材をかしめ、各端子について、23℃の5%塩化ナトリウム水溶液(塩水)に24時間浸漬後、85℃、85%RHの高温高湿環境下に24時間放置し、その後、心線接触予定部(第1皮膜)におけるアルミニウム線材と端子間の接触抵抗を四端子法により測定した。電流値は10mAとした。なお、比較例18,19については第1皮膜を形成していないので、部位を特定せずに試験を行った。
<接点予定部の摩擦試験>
 摩擦係数を低減する第2皮膜が形成された接点予定部については、嵌合型のコネクタのオス端子とメス端子の接点部を模擬するように、各試料について内径1.5 mmの半球状のメス試験片と板状のオス試験片を作成し、アイコーエンジニアリング株式会社製の摩擦測定機(横型荷重試験機 型式M-2152ENR)を用い、メス試験片とオス試験片との間に所定の荷重をかけた状態で摺動することにより、両試験片間の摩擦力を測定して動摩擦係数を求めた。なお、比較例18,19については第2皮膜のみ形成したので、部位を特定せずに試験を行った。
 これらの結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、混在層における銅錫合金領域と錫領域との比率(R1/R2)が0.05以上2.5以下の実施例1~17は、比較例18,19より密着性、曲げ加工性が良好であることがわかる。その中でも接着層を設けた実施例5~17は密着性に優れており、さらに、NiSn化合物が認められた実施例7~17は特に密着性が良好である。実施例9~17は密着性が良好である上に、曲げ加工においてもめっき皮膜の割れや剥がれが認められず、密着性、曲げ加工性の両方で優れた結果となっている。
 耐食性については、実施例1~17は、比較例18,19よりも優れている。特に、第1皮膜において亜鉛層の上に錫層を有する実施例10~17は、腐食環境試験において低い接触抵抗を有しており、アルミニウム線材と端子の間に生じるガルバニック腐食からアルミニウム線材を保護する効果が特に高いことがわかる。
 接点予定部(第2皮膜)については、銅錫合金領域の露出率が過少あるいは過大な実施例1、2と比較例18及び19とは摩擦係数が0.4以上と比較的高かった。実施例3~17については低い摩擦係数であり、銅錫合金領域の露出率は5%以上70%以下が適正であるとわかった。
 図5は、実施例11の第1皮膜が形成された部分の断面SIM写真であり、基材の上に下地層、銅錫合金領域と錫領域とが混在した混在層、接着層、亜鉛層、錫層が順に形成されている。図6は、図5の円で囲った部分の拡大像であるが、柱状のNiSnが接着層との界面から錫領域に延びているのが認められる。
 これに対して、比較例18は、銅錫合金領域を有する混在層が存在せず、錫層の上に亜鉛層が形成されたため、密着性、曲げ加工性に劣る結果となった。また、表面に銅錫合金領域が露出していないので接点予定部の摩擦係数も高かった。比較例19は、混在層中に存在する錫層が少ないため曲げ加工性が著しく悪く、腐食試験においても非常に激しいアルミニウム線材の腐食が発生した。さらに表面がほとんど銅錫合金領域で覆われているので摩擦係数も実施例3~17と比較すると高い値であった。
 基材に対する皮膜の密着性が良く、アルミニウムと接触した場合の異種金属接触腐食の発生を抑えることができる。
1 防食端子材
2 基材
3 皮膜
31 第1皮膜
32 第2皮膜
4 下地層
5 混在層
51 銅錫合金領域
52 錫領域
6 接着層
61 金属間化合物(NiSn
7 亜鉛層
8 錫層
10 端子
11 接続部
11a ばね片
12 電線
12a 心線(アルミニウム線材)
12b 被覆部
13 心線圧着部
14 被覆圧着部
25 接点予定部
26 心線接触予定部

Claims (13)

  1.  少なくとも表面が銅又は銅合金からなる基材と、前記基材の少なくとも一部に設けられた第1皮膜とを備える防食端子材であって、
     前記第1皮膜は、銅錫合金からなる銅錫合金領域と銅錫合金以外の錫又は錫合金からなる錫領域とが混在する混在層と、前記混在層の上に設けられた亜鉛又は亜鉛合金からなる亜鉛層とを有し、
     前記亜鉛層は前記混在層の前記銅錫合金領域及び前記錫領域の両方に接しており、厚さ方向に沿う断面において前記亜鉛層が前記銅錫合金領域に接する長さをR1(μm)、前記錫領域に接する長さをR2(μm)とすると、比率R1/R2が0.05以上2.5以下である
    ことを特徴とする防食端子材。
  2.  前記第1皮膜において、前記混在層と前記亜鉛層との間に、ニッケル又はニッケル合金からなる接着層をさらに備えることを特徴とする請求項1に記載の防食端子材。
  3.  前記接着層から前記錫領域に入り込むNiSnからなる金属間化合物をさらに有することを特徴とする請求項2に記載の防食端子材。
  4.  前記銅錫合金領域は、1at%以上50at%以下のニッケルを含有することを特徴とする請求項1から3のいずれか一項に記載の防食端子材。
  5.  前記亜鉛層における単位面積当たりの亜鉛の付着量が0.07mg/cm以上2.0mg/cm以下であることを特徴とする請求項1から4のいずれか一項に記載の防食端子材。
  6.  前記第1皮膜は、前記亜鉛層の上に設けられた錫又は錫合金からなる錫層をさらに有することを特徴とする請求項1から5のいずれか一項に記載の防食端子材。
  7.  前記亜鉛層は、添加元素として、ニッケル、鉄、マンガン、モリブデン、コバルト、カドミウム、鉛のいずれか1種以上を含み、単位面積当たりの前記添加元素の付着量は、0.01mg/cm以上0.3mg/cm以下であることを特徴とする請求項1から6のいずれか一項に記載の防食端子材。
  8.  前記基材の前記第1皮膜が形成されていない部分に設けられた第2皮膜を備え、
     前記第2皮膜は、前記基材の上に設けられた前記混在層を有し、前記混在層の表面に前記銅錫合金領域と前記錫領域とが露出しており、前記銅錫合金領域の露出面積率が5%以上70%以下であることを特徴とする請求項1から7のいずれか一項に記載の防食端子材。
  9.  帯板状のキャリア部と、前記キャリア部の長さ方向に間隔をおいて前記キャリア部に連結された複数の端子用部材とを有することを特徴とする請求項1から8のいずれか一項に記載の防食端子材。
  10.  請求項9に記載の前記端子用部材を成形してなることを特徴とする端子。
  11.  請求項10記載の端子がアルミニウムまたはアルミニウム合金のアルミニウム線材からなる電線の端末に圧着されていることを特徴とする電線端末部構造。
  12.  請求項1から8のいずれか一項に記載の防食端子材を成形してなることを特徴とする端子。
  13.  請求項12記載の端子がアルミニウム又はアルミニウム合金のアルミニウム線材からなる電線の端末に圧着されていることを特徴とする電線端末部構造。
PCT/JP2019/051404 2018-12-27 2019-12-27 防食端子材及び端子並びに電線端末部構造 WO2020138414A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/416,542 US20220085526A1 (en) 2018-12-27 2019-12-27 Anti-corrosion terminal material, terminal, and electrical wire end section structure
CN201980079051.9A CN113166964A (zh) 2018-12-27 2019-12-27 防腐蚀端子材及端子和电线末端部结构
EP19901658.5A EP3904564A4 (en) 2018-12-27 2019-12-27 CORROSION-RESISTANT TERMINAL MATERIAL, TERMINAL, AND ELECTRICAL WIRE END SECTION STRUCTURE
KR1020217016238A KR20210106991A (ko) 2018-12-27 2019-12-27 방식 단자재 및 단자 그리고 전선 단말부 구조

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018244741A JP7211075B2 (ja) 2018-12-27 2018-12-27 防食端子材及び端子並びに電線端末部構造
JP2018-244741 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138414A1 true WO2020138414A1 (ja) 2020-07-02

Family

ID=71127881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/051404 WO2020138414A1 (ja) 2018-12-27 2019-12-27 防食端子材及び端子並びに電線端末部構造

Country Status (7)

Country Link
US (1) US20220085526A1 (ja)
EP (1) EP3904564A4 (ja)
JP (1) JP7211075B2 (ja)
KR (1) KR20210106991A (ja)
CN (1) CN113166964A (ja)
TW (1) TW202100810A (ja)
WO (1) WO2020138414A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023061782A (ja) * 2021-10-20 2023-05-02 Jx金属株式会社 めっき材及び電子部品

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023182259A1 (ja) * 2022-03-22 2023-09-28 株式会社オートネットワーク技術研究所 端子材料および電気接続端子

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068026A (ja) * 2001-07-31 2004-03-04 Kobe Steel Ltd 接続部品用導電材料及びその製造方法
JP2006183068A (ja) * 2004-12-27 2006-07-13 Kobe Steel Ltd 接続部品用導電材料及びその製造方法
JP2008285729A (ja) 2007-05-18 2008-11-27 Nikko Kinzoku Kk リフローSnめっき材及びそれを用いた電子部品
JP2015133306A (ja) 2014-01-16 2015-07-23 株式会社オートネットワーク技術研究所 コネクタ用電気接点材料及びその製造方法
JP2018090875A (ja) 2016-12-06 2018-06-14 Dowaメタルテック株式会社 Snめっき材およびその製造方法
JP2018159125A (ja) * 2017-03-22 2018-10-11 Dowaメタルテック株式会社 Snめっき材およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101978562B (zh) * 2008-03-19 2013-04-03 古河电气工业株式会社 连接器用金属材料及其制造方法
JP2013218866A (ja) 2012-04-09 2013-10-24 Auto Network Gijutsu Kenkyusho:Kk 端子付き電線及びその製造方法
JP2015110829A (ja) * 2013-10-30 2015-06-18 三菱マテリアル株式会社 錫めっき銅合金端子材
US11214692B2 (en) * 2017-12-04 2022-01-04 Hamilton Sundstrand Corporation Increasing anti-corrosion through nanocomposite materials
JP7333010B2 (ja) * 2019-06-27 2023-08-24 株式会社オートネットワーク技術研究所 電気接点材料、端子金具、コネクタ、ワイヤーハーネス、及び電気接点材料の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004068026A (ja) * 2001-07-31 2004-03-04 Kobe Steel Ltd 接続部品用導電材料及びその製造方法
JP2006183068A (ja) * 2004-12-27 2006-07-13 Kobe Steel Ltd 接続部品用導電材料及びその製造方法
JP2008285729A (ja) 2007-05-18 2008-11-27 Nikko Kinzoku Kk リフローSnめっき材及びそれを用いた電子部品
JP2015133306A (ja) 2014-01-16 2015-07-23 株式会社オートネットワーク技術研究所 コネクタ用電気接点材料及びその製造方法
JP2018090875A (ja) 2016-12-06 2018-06-14 Dowaメタルテック株式会社 Snめっき材およびその製造方法
JP2018159125A (ja) * 2017-03-22 2018-10-11 Dowaメタルテック株式会社 Snめっき材およびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904564A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2023061782A (ja) * 2021-10-20 2023-05-02 Jx金属株式会社 めっき材及び電子部品

Also Published As

Publication number Publication date
CN113166964A (zh) 2021-07-23
TW202100810A (zh) 2021-01-01
US20220085526A1 (en) 2022-03-17
JP7211075B2 (ja) 2023-01-24
KR20210106991A (ko) 2021-08-31
EP3904564A1 (en) 2021-11-03
JP2020105574A (ja) 2020-07-09
EP3904564A4 (en) 2022-09-21

Similar Documents

Publication Publication Date Title
JP6304447B2 (ja) 錫めっき付銅端子材及び端子並びに電線端末部構造
KR102355341B1 (ko) 주석 도금 형성 구리 단자재 및 단자 그리고 전선 단말부 구조
JP2017110290A (ja) 錫めっき付き銅端子材の製造方法
CN110214203B (zh) 连接器用端子材及端子以及电线末端部结构
JP7167932B2 (ja) 防食端子材及び防食端子並びに電線端末部構造
WO2020138414A1 (ja) 防食端子材及び端子並びに電線端末部構造
JP6620897B2 (ja) 錫めっき付銅端子材及び端子並びに電線端末部構造
WO2018212174A1 (ja) 錫めっき付銅端子材及び端子並びに電線端末部構造
JP6743556B2 (ja) 錫めっき付銅端子材の製造方法
JP6930327B2 (ja) 防食端子材とその製造方法、及び防食端子並びに電線端末部構造
JP2019011504A (ja) 防食端子材とその製造方法、及び防食端子並びに電線端末部構造
JP2020056090A (ja) 防食端子材とその製造方法、及び防食端子並びに電線端末部構造
JP7380448B2 (ja) アルミニウム心線用防食端子材とその製造方法、及び防食端子並びに電線端末部構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901658

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019901658

Country of ref document: EP

Effective date: 20210727