WO2020138174A1 - 樹脂成形体の製造方法および樹脂成形体 - Google Patents
樹脂成形体の製造方法および樹脂成形体 Download PDFInfo
- Publication number
- WO2020138174A1 WO2020138174A1 PCT/JP2019/050838 JP2019050838W WO2020138174A1 WO 2020138174 A1 WO2020138174 A1 WO 2020138174A1 JP 2019050838 W JP2019050838 W JP 2019050838W WO 2020138174 A1 WO2020138174 A1 WO 2020138174A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- resin
- molded body
- molded product
- thin film
- resin composition
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y40/00—Auxiliary operations or equipment, e.g. for material handling
- B33Y40/20—Post-treatment, e.g. curing, coating or polishing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C63/00—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor
- B29C63/02—Lining or sheathing, i.e. applying preformed layers or sheathings of plastics; Apparatus therefor using sheet or web-like material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/106—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
- B29C64/118—Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C64/00—Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
- B29C64/10—Processes of additive manufacturing
- B29C64/141—Processes of additive manufacturing using only solid materials
- B29C64/153—Processes of additive manufacturing using only solid materials using layers of powder being selectively joined, e.g. by selective laser sintering or melting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1632—Laser beams characterised by the way of heating the interface direct heating the surfaces to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1629—Laser beams characterised by the way of heating the interface
- B29C65/1654—Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/112—Single lapped joints
- B29C66/1122—Single lap to lap joints, i.e. overlap joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/01—General aspects dealing with the joint area or with the area to be joined
- B29C66/05—Particular design of joint configurations
- B29C66/10—Particular design of joint configurations particular design of the joint cross-sections
- B29C66/11—Joint cross-sections comprising a single joint-segment, i.e. one of the parts to be joined comprising a single joint-segment in the joint cross-section
- B29C66/114—Single butt joints
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/40—General aspects of joining substantially flat articles, e.g. plates, sheets or web-like materials; Making flat seams in tubular or hollow articles; Joining single elements to substantially flat surfaces
- B29C66/41—Joining substantially flat articles ; Making flat seams in tubular or hollow articles
- B29C66/45—Joining of substantially the whole surface of the articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/50—General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
- B29C66/51—Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
- B29C66/53—Joining single elements to tubular articles, hollow articles or bars
- B29C66/532—Joining single elements to the wall of tubular articles, hollow articles or bars
- B29C66/5326—Joining single elements to the wall of tubular articles, hollow articles or bars said single elements being substantially flat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7316—Surface properties
- B29C66/73161—Roughness or rugosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/735—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the extensive physical properties of the parts to be joined
- B29C66/7352—Thickness, e.g. very thin
- B29C66/73521—Thickness, e.g. very thin of different thickness, i.e. the thickness of one of the parts to be joined being different from the thickness of the other part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/739—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/7392—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
- B29C66/73921—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/83—General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
- B29C66/836—Moving relative to and tangentially to the parts to be joined, e.g. transversely to the displacement of the parts to be joined, e.g. using a X-Y table
- B29C66/8362—Rollers, cylinders or drums moving relative to and tangentially to the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/06—Fibrous reinforcements only
- B29C70/10—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres
- B29C70/16—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length
- B29C70/20—Fibrous reinforcements only characterised by the structure of fibrous reinforcements, e.g. hollow fibres using fibres of substantial or continuous length oriented in a single direction, e.g. roofing or other parallel fibres
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y10/00—Processes of additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B33—ADDITIVE MANUFACTURING TECHNOLOGY
- B33Y—ADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
- B33Y80/00—Products made by additive manufacturing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1606—Ultraviolet [UV] radiation, e.g. by ultraviolet excimer lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1609—Visible light radiation, e.g. by visible light lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/02—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
- B29C65/14—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
- B29C65/16—Laser beams
- B29C65/1603—Laser beams characterised by the type of electromagnetic radiation
- B29C65/1612—Infrared [IR] radiation, e.g. by infrared lasers
- B29C65/1616—Near infrared radiation [NIR], e.g. by YAG lasers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/71—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/70—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
- B29C66/73—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
- B29C66/731—General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the intensive physical properties of the material of the parts to be joined
- B29C66/7316—Surface properties
- B29C66/73161—Roughness or rugosity
- B29C66/73162—Roughness or rugosity of different roughness or rugosity, i.e. the roughness or rugosity of the surface of one of the parts to be joined being different from the roughness or rugosity of the surface of the other part
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/80—General aspects of machine operations or constructions and parts thereof
- B29C66/84—Specific machine types or machines suitable for specific applications
- B29C66/863—Robotised, e.g. mounted on a robot arm
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/91—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux
- B29C66/919—Measuring or controlling the joining process by measuring or controlling the temperature, the heat or the thermal flux characterised by specific temperature, heat or thermal flux values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C66/00—General aspects of processes or apparatus for joining preformed parts
- B29C66/90—Measuring or controlling the joining process
- B29C66/94—Measuring or controlling the joining process by measuring or controlling the time
- B29C66/949—Measuring or controlling the joining process by measuring or controlling the time characterised by specific time values or ranges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29K—INDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
- B29K2101/00—Use of unspecified macromolecular compounds as moulding material
- B29K2101/12—Thermoplastic materials
Definitions
- the present invention relates to a resin molded body manufacturing method and a resin molded body.
- Molding method of resin molded product using additive molding method such as stereolithography (SLA) method, material extrusion (MEX) method, powder bed fusion bonding (PBF) method, sheet lamination method, binder jetting method and material jetting method It has been known.
- SLA stereolithography
- MEX material extrusion
- PPF powder bed fusion bonding
- sheet lamination method binder jetting method
- binder jetting method material jetting method
- a resin molded body to be manufactured is extruded in a height direction by extruding a filamentous resin composition melted or softened at a high temperature from a nozzle and arranging it in a plane. Each divided layer is formed. Then, the dissolved or softened resin composition is further extruded from a nozzle and placed in contact with the formed layer to form the next divided layer. In this way, by sequentially forming and stacking the above layers, a resin molded body having a desired shape is manufactured.
- Patent Literature 1 and Patent Literature 2 describe a molded body containing a resin composition containing an olefin resin and which can be used for producing a resin molded body by the MEX method.
- the MEX method is also called a hot melt lamination (FDM) method or a fused filament manufacturing (FFF) method.
- a method in which a resin composition is melted by an extruder and directly extruded from a nozzle and placed on a flat surface is also used for molding a large resin molded product.
- the particles of the resin composition spread on the stage are irradiated with a laser or an electron beam to sinter or fuse the particles (hereinafter, referred to as “sintering and fusion bonding”). Either or one of them” is also simply referred to as “fusion or the like”.) to form each layer obtained by dividing the resin molded body to be manufactured in the height direction. After that, particles of the resin composition are spread in contact with the formed layer and irradiated with a laser or an electron beam to form the next divided layer. In this way, by sequentially forming and stacking the above layers, a resin molded body having a desired shape is manufactured.
- the SLS method melts or sinters the object, or the powder bed sinter bonding (SLS) method, the laser melting (SLM) method, the electron beam melting ( EBM) method.
- the degree of unevenness on the surface of the resin molded body depends on the filament diameter used. For example, the larger the diameter of the filament, the larger the unevenness tends to be.
- Patent Document 3 a body portion forming ink that is cured by irradiation with ultraviolet light and a sacrificial layer forming ink that is not cured by irradiation with ultraviolet light are ejected onto a layer of modeling powder.
- a method for producing a three-dimensional structure which includes a step of allowing each of the two types of ink to penetrate into the layer, is described.
- Patent Document 3 by forming a boundary between the regions where the two types of ink have penetrated in the layer, it is possible to prevent occurrence of irregular steps (unevenness) on the outer surface of the three-dimensional structure. It is said that it is possible to manufacture a three-dimensional structure having a smooth outer surface.
- Patent Document 3 describes that a three-dimensional structure having a smooth outer surface can be manufactured by the method described in the document.
- the applicable additive modeling method is limited to the binder jetting method, and in other additive modeling methods such as the MEX method and the PBF method, the cubic process having a smooth surface is similarly performed. The original model cannot be manufactured.
- the present invention is a method for producing a resin molded article by various additional modeling methods, a method for producing a resin molded article having a smooth surface, and a resin molded article produced by the production method.
- the purpose is to provide.
- the method for producing a resin molded body according to an aspect of the present invention for solving the above-mentioned problems is that the maximum peak height (Rp) measured according to JIS B0601 is 10 ⁇ m or more and 5000 ⁇ m or less, or JIS B0601.
- a thin layer of the resin composition is laminated or laminated by sintering or fusion between layers, or particles of the resin composition is An internal layer formed by sintering or fusing between particles, and arranged in contact with the laminated layers, or arranged in contact with the sintered or fused particles, and A surface layer made of a resin composition containing arranged reinforcing fibers, which is sintered or fused to the layer.
- a method for producing a resin molded article by various additional modeling methods a method for producing a resin molded article having a smooth surface, and a resin molded article produced by the production method. ..
- FIG. 1A is a sectional view schematically showing a method for manufacturing an intermediate molded body by the MEX method
- FIG. 1B is a sectional view schematically showing an intermediate molded body manufactured by the MEX method
- FIG. 2A is a sectional view schematically showing a method for manufacturing an intermediate molded body by the SLS method
- FIG. 2B is a sectional view schematically showing an intermediate molded body manufactured by the SLS method
- FIG. 3 is a schematic diagram showing an example of a method for fusing a thin film-shaped molded product using a fusing device for fusing a tape-shaped thin film-shaped molded product to an intermediate molded product by laser irradiation.
- FIG. 3 is a schematic diagram showing an example of a method for fusing a thin film-shaped molded product using a fusing device for fusing a tape-shaped thin film-shaped molded product to an intermediate molded product by laser irradiation.
- FIG. 4A is a schematic view showing a cross-sectional shape of an intermediate molded body used for manufacturing a resin molded body according to an embodiment of the present invention
- FIGS. 4B and 4C show the intermediate molded body shown in FIG. 4A.
- It is a schematic diagram which shows the cross-sectional shape of the resin molded body manufactured by.
- a method for manufacturing a resin molded product according to an embodiment of the present invention has a maximum peak height (Rp) of 10 ⁇ m or more and 5000 ⁇ m or less measured according to JIS B 0601, or according to JIS B 0601.
- Step of Preparing Intermediate Molded Body The above-mentioned intermediate molded body has a maximum peak height (Rp) measured according to JIS B 0601 of 10 ⁇ m or more and 5000 ⁇ m or less, or a maximum peak depth measured according to JIS B 0601. It is a molded product molded from a resin composition, having a rough surface having (Rv) of 10 ⁇ m or more and 5000 ⁇ m or less.
- the intermediate molded product may be prepared by purchasing a commercially available product or the like, or may be prepared by molding the molded product having the rough surface before this step.
- the above intermediate molded body has substantially the same shape as the resin molded body to be manufactured, and the outer diameter of the intermediate molded body is to be manufactured by the thickness of the thin film-shaped molded body which is fused or the like. It is preferable to have a shape smaller than that of the resin molded body.
- the above-mentioned intermediate molded body may be prepared by purchasing a commercially available resin molded body or may be prepared by a known method.
- the above-mentioned intermediate molded product is, for example, a three-dimensional molded product molded from a resin composition by an additive molding method.
- the additive modeling method is not particularly limited, and known methods such as stereolithography (SLA) method, material extrusion (MEX) method, powder bed fusion bonding (PBF) method, sheet laminating method, binder jetting method and material jetting method are known. Method may be used.
- SLA stereolithography
- MEX material extrusion
- PBF powder bed fusion bonding
- sheet laminating method binder jetting method
- binder jetting method binder jetting method
- material jetting method material jetting method
- Method may be used.
- the MEX method and the PBF method are particularly likely to form a rough surface that satisfies the above-described requirements for the maximum peak height (Rp) or the maximum peak depth (Rv), and thus a smooth surface is formed by the method of the present embodiment. The effect of being performed is remarkable.
- FIG. 1A is a sectional view schematically showing a method for manufacturing an intermediate molded body by the MEX method
- FIG. 1B is a sectional view schematically showing an intermediate molded body manufactured by the MEX method.
- a resin composition melted or softened at a high temperature is extruded from a nozzle 110 and placed on a stage 120 in a planar shape.
- the resin composition extruded from the nozzle 110 is cooled and solidified to form one layer obtained by dividing the intermediate compact in the height direction (Z direction in FIG. 1A).
- the resin composition newly extruded from the nozzle 110 is cooled and solidified.
- the following layer is formed by dividing the intermediate compact in the height direction.
- the resin composition forming the layer formed earlier and the resin composition forming the layer formed next are fused by the heat of the resin composition that is heated and extruded, first.
- the formed layer and the formed layer are fused and laminated. Further, by repeating the extrusion and solidification of the resin composition to form a new layer, the intermediate molded body 130 is formed (FIG. 1B).
- the intermediate molded body shaped in this manner satisfies the above-mentioned maximum peak height (Rp) or maximum peak depth (Rv), which is a surface extending in the stacking direction over a plurality of stacked layers. It has a rough surface 135.
- the nozzle diameter in the MEX method is not particularly limited, and a conventionally known nozzle diameter can be used. If the nozzle diameter is small, the maximum peak height (Rp) or maximum peak depth (Rv) tends to be small, and if the nozzle diameter is large, the maximum peak height (Rp) or maximum peak depth (Rv) is small. Tends to grow.
- the maximum peak height (Rp) or maximum peak depth (Rv) in the MEX method can be adjusted by, for example, the extrusion speed and the temperature of the resin composition, in addition to the nozzle diameter. Increasing the extrusion speed tends to increase the maximum peak height (Rp) or maximum peak depth (Rv) due to the viscoelastic effect of the resin composition, and increasing the temperature of the resin composition increases the maximum peak height (Rp). Alternatively, the maximum mountain depth (Rv) tends to decrease.
- FIG. 2A is a sectional view schematically showing a method for manufacturing an intermediate molded body by the SLS method, which is one form of the PBF method
- FIG. 2B is a sectional view schematically showing an intermediate molded body manufactured by the SLS method.
- a resin composition in which a laser oscillated from a laser oscillation source 212 is spread on a stage 220 that can vertically descend from a laser irradiation unit 214 that is an objective lens unit. Irradiate the particles of the object.
- the laser-irradiated particles are sintered adjacent to the laser-irradiated particles to form one layer obtained by dividing the intermediate compact in the height direction (Z direction in FIG. 2A).
- particles of the resin composition are spread in contact with the formed layer, and when the layer of spread particles is irradiated with a laser, the particles irradiated with the laser sinter with each other to form an intermediate molded body.
- the next layer divided in the height direction is formed.
- the resin composition forming the layer formed earlier and the resin composition forming the layer formed next are sintered by the heat applied by the irradiation of the laser, the resin composition formed earlier is formed.
- the layer and the formed layer are sintered and laminated.
- the intermediate molded body 230 is formed (FIG. 2B).
- the intermediate compact thus formed has the above-mentioned maximum peak height (Rp) or maximum peak depth (Rv), which is a surface extending in the stacking direction over a plurality of sintered particles.
- Rp maximum peak height
- Rv maximum peak depth
- the maximum peak height (Rp) or maximum peak depth (Rv) in the PBF method can be adjusted by, for example, the size of particles of the resin composition.
- the rough surface has a maximum peak height (Rp) measured according to JIS B0601 of 10 ⁇ m or more and 5000 ⁇ m or less, or a maximum peak depth (Rv) measured according to JIS B0601 of 10 ⁇ m or more and 5000 ⁇ m or less. It is the surface.
- the rough surface satisfying the requirements of the maximum peak height (Rp) or the maximum peak depth (Rv) is a rough surface peculiar to a three-dimensional object molded by the additional molding method, and is modeled by another molding method.
- the maximum peak height (Rp) or maximum peak depth (Rv) is usually smaller, so the maximum peak height (Rp) or maximum peak height (Rp) The rough surface does not satisfy the requirement of the mountain depth (Rv).
- the rough surface 135 of the intermediate compact formed by the MEX method usually has the maximum peak height (Rp) or maximum peak depth (Rv) of 20 ⁇ m or more and 450 ⁇ m or less, and more typically. Is 20 ⁇ m or more and 400 ⁇ m or less, and more typically 30 ⁇ m or more and 350 ⁇ m or less.
- the rough surface 235a and the rough surface 235b of the intermediate molded body formed by the PBF method usually have the maximum peak height (Rp) or the maximum peak depth (Rv) of 10 ⁇ m or more and 450 ⁇ m or less, and more typically. And 10 ⁇ m or more and 100 ⁇ m or less, and more typically 15 ⁇ m or more and 100 ⁇ m or less.
- the rough surface has an arithmetic average roughness (Ra) measured according to JIS B0601 of 5 ⁇ m or more and 1250 ⁇ m or less. More specifically, the rough surface 135 of the intermediate molded body formed by the MEX method usually has an arithmetic average roughness (Ra) of 5 ⁇ m or more and 1250 ⁇ m or less, and more typically 10 ⁇ m or more and 250 ⁇ m or less. Yes, and more typically 15 ⁇ m or more and 80 ⁇ m or less.
- the rough surface 235a and the rough surface 235b of the intermediate compact formed by the PBF method usually have the arithmetic average roughness (Ra) of 5 ⁇ m or more and 1000 ⁇ m or less, and more typically 6 ⁇ m or more and 100 ⁇ m or less. Yes, and more typically 7 ⁇ m or more and 50 ⁇ m or less.
- Resin composition The above resin composition is a composition containing one or more kinds of resins and an additive optionally mixed.
- the resin may be any of a thermoplastic resin, a thermosetting resin and a photocurable resin, but from the viewpoint of further increasing the degree of freedom in the shape of the resin molded body and from the viewpoint of making the surface of the resin molded body smoother. From the above, a thermoplastic resin is preferable.
- thermoplastic resin examples include ether imide resin, polysulfone resin, polyether ketone resin, polyether ether ketone resin, polyarylate resin, polyether nitrile resin, vinyl chloride resin, ABS resin and fluororesin.
- the resin may be an elastomer.
- thermosetting resin examples include epoxy resin, phenol resin, melamine resin, urea resin, diallyl phthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, thermosetting polyimide resin, unsaturated polyester. Resins and diallyl terephthalate resins are included.
- the resin preferably contains an olefin resin including an ethylene polymer, a propylene polymer and other ⁇ -olefin polymers, more preferably a propylene polymer, and a propylene resin. It is more preferable to include both the polymer and the other ⁇ -olefin polymer.
- the above ethylene-based polymers include ethylene homopolymers and copolymers of ethylene and ⁇ -olefins having 3 to 20 carbon atoms. These ethylene polymers may be used alone or in combination of two or more.
- the propylene-based polymer includes a propylene homopolymer and a copolymer of propylene and ethylene or an ⁇ -olefin having 4 to 20 carbon atoms. These propylene-based polymers may be used alone or in combination of two or more.
- the ⁇ -olefin-based polymer includes an ⁇ -olefin homopolymer having 4 to 20 carbon atoms and an ⁇ -olefin copolymer having 2 to 20 carbon atoms (provided that the ethylene polymer and propylene are System polymers are excluded).
- Examples of the ⁇ -olefin are ethylene, propylene, 1-butene, 3-methyl-1-butene, 4-methyl-1-pentene, 3-methyl-1-pentene, 4-methyl-1-hexene. , 4,4 dimethyl-1-hexene, 1-nonene, 1-octene, 1-heptene, 1-hexene, 1-decene, 1-undecene, 1-dodecene, 1-tetradecene, 1-hexadecene, 1-octadecene, And 1-eicosene and the like.
- the ⁇ -olefin-based polymer is preferably a copolymer containing 1-butene, ethylene, 4-methyl-1-pentene, and 1-hexene, and 1-butene and 4-methyl- More preferably, it is a copolymer containing 1-pentene.
- the ⁇ -olefin-based polymer may be a random copolymer or a block copolymer, but is preferably a random copolymer.
- the above resin is preferably the same type of resin as the thin film molded body, and is preferably the same type of resin as the matrix resin (described later) of the thin film molded body.
- the same type of resin has the same bond structure (for example, an ester structure and an amide bond) that bonds the constituent units derived from the monomer in the main chain constituting the resin, or the same polymerization. It is meant to be bound by a functional group (eg vinyl group).
- the same type of resin preferably has structural units derived from the same monomer (for example, ethylene and propylene).
- additives examples include known fillers (inorganic fillers and organic fillers), pigments, dyes, weather resistance stabilizers, heat resistance stabilizers, antistatic agents, antislip agents, antioxidants, antifungal agents. , Antibacterial agents, flame retardants, and softeners.
- the filler as the additive examples include powder filler containing mica, carbon black, silica, calcium carbonate, talc, graphite, stainless steel, aluminum, etc., and carbon fiber, glass fiber, metal fiber, metal oxide.
- Fibrous fillers including physical fibers, mosheige (basic magnesium sulfate inorganic fiber), calcium carbonate whiskers, and the like. These fillers can increase the strength of the resin molded body.
- the resin composition contains an appropriate amount of the fibrous filler, it is possible to suppress the occurrence of warpage of the molded article when the molded article is molded from the resin composition by an additional modeling method. .. It is considered that this is because the fibrous filler appropriately inhibits the crystallization of the resin and suppresses the shrinkage of the resin. Therefore, the effect of suppressing the generation of the warp is remarkably exhibited when the resin composition contains the crystalline resin and the fibrous filler, and the resin composition is particularly prone to warp propylene-based polymer It is more remarkably exhibited when (in particular, propylene homopolymer) and the above fibrous filler are contained.
- a propylene-based polymer particularly propylene homopolymer
- ⁇ -olefin-based polymer excluding the above-mentioned propylene-based polymer, based on the total mass of the resin composition.
- Resin composition containing 1% by mass or more and 20% by mass or less of ⁇ -olefin random copolymer and 20% by mass or more and 60% by mass or less of the fibrous filler (particularly carbon fiber and glass fiber).
- the product is preferable because it can effectively suppress the occurrence of warpage, which is a problem when a shaped product is molded from a propylene-based polymer by an addition modeling method.
- pigments and dyes as the above additives include known pigments.
- the pigment and the dye are pigments having a larger absorbance at the same wavelength as the wavelength of the laser to be irradiated, and A dye is preferable, and specifically, a pigment and a dye having an absorption maximum wavelength of 300 nm to 3000 nm are preferable, and a pigment and a dye having an absorption maximum wavelength of 500 nm to 2000 nm are more preferable. More preferably, the pigment and the dye have an absorption maximum wavelength of 700 nm or more and 1500 nm or less.
- the pigment and dye are preferably pigments and dyes (or combinations thereof) capable of absorbing a wider range of wavelengths.
- a black pigment and a dye (or a combination thereof) are preferable, a carbon pigment is more preferable, and carbon black is further preferable.
- the content of the pigments and dyes as the above additives is such that the absorption of laser by the intermediate molded body is sufficiently enhanced and does not significantly affect other properties such as the strength of the intermediate molded body and the resin molded body. I wish I had it.
- the content of carbon black as the additive is preferably 0.1% by mass or more and 10% by mass or less, and 0.5% by mass or more and 5% by mass or less, based on the total mass of the resin composition. More preferably.
- Step of Fusing Thin Film Molded Product a thin film molded product of a resin composition containing reinforcing fibers arranged in one direction is fused to the rough surface of the intermediate molded product by laser irradiation.
- the above-mentioned intermediate molded body has a maximum peak height (Rp) measured according to JIS B0601 of 10 ⁇ m or more and 5000 ⁇ m or less, or a maximum peak depth (Rv) measured according to JIS B0601 of 10 ⁇ m.
- Rp maximum peak height
- Rv maximum peak depth
- the intermediate molded product and the thin film-shaped molded product are fused by laser irradiation, they are melted and integrated at the interface and are more strongly bonded. Therefore, the surface layer formed by fusing the thin-film molded body is less likely to be peeled off from the resin molded body.
- the thin-film molded body is fused not only on the rough surface of the intermediate molded body but also on the surface of the intermediate molded body that does not satisfy the above-described requirements for the maximum peak height (Rp) or the maximum peak depth (Rv). May be. This makes it possible to obtain a resin molded body having a more uniform surface roughness.
- a thin film is further formed on the rough surface of the intermediate molded product or the surface of the thin film-shaped molded product fused to the surface that does not satisfy the above-described requirements for the maximum peak height (Rp) or the maximum peak depth (Rv).
- the molded body may be fused to form a plurality of layers of the thin film-shaped molded body.
- the plurality of layers may include a combination of layers in which the reinforcing fibers are oriented in the same direction, or may include a combination of layers in which the reinforcing fibers are oriented in different directions. From the viewpoint of improving both bendability and compression resistance of the molded product, it is preferable to include a combination of layers in which the reinforcing fibers in two adjacent layers have different orientations.
- the thin film molded product is a molded product obtained by impregnating the reinforcing fiber with a resin composition (hereinafter, also referred to as “matrix resin”).
- the above-mentioned thin-film molded body is a sheet-shaped or tape-shaped (long-shaped) molded body. From the viewpoint of facilitating fusion of the thin film-shaped molded product, the thin film-shaped molded product is preferably a tape-shaped molded product.
- the thickness of the thin film-shaped molded product is preferably 0.05 mm or more and 1.0 mm or less, and more preferably 0.1 mm or more and 0.5 mm or less.
- the width of the thin film shaped body is not particularly limited and may be appropriately selected according to the surface shape of the intermediate shaped body. For example, when the irregularities on the surface of the intermediate compact are striped and the thin film compact is arranged in parallel with the stripes, the appearance of the thin compact is larger than the width of the irregularities. It tends to be excellent, which is preferable.
- the width of the thin film shaped body is preferably 5 mm or more and 150 mm or less, more preferably 7 mm or more and 100 mm or less, and even more preferably 10 mm or more and 50 mm or less.
- the width of the thin film molded product is 5 mm or more, troubles such as cutting of the thin film molded product during fusion due to laser irradiation are less likely to occur, which is preferable. It is preferable that the width of the thin film-shaped molded product is 150 mm or less because heating with a laser becomes easy.
- the thin film-shaped molded product has a surface whose arithmetic mean roughness (Ra) measured according to JIS B0601 is smaller than the arithmetic mean roughness (Ra) of the rough surface of the intermediate molded product.
- the surface of the thin film-shaped molded product has a surface with an arithmetic average roughness (Ra) measured according to JIS B0601 of 0.1 ⁇ m or more and 10 ⁇ m or less, preferably 0.5 ⁇ m or more and 5 ⁇ m or less.
- the above-mentioned thin film molded body may be prepared by purchasing a commercially available fiber-reinforced resin, or may be manufactured by a known method of impregnating the reinforcing fiber with a resin composition for a matrix resin.
- the resin type of the matrix resin is not particularly limited, and may be any of a thermoplastic resin, a thermosetting resin, and a photocurable resin, but from the viewpoint of further increasing the degree of freedom of the shape of the resin molded body and the resin molding From the viewpoint of making the body surface smoother, a thermoplastic resin is preferable.
- the resin composition may contain only one type of resin, or may be a blend of two or more types of resins or a polymer alloy.
- thermoplastic resin examples include polyolefin resin, polyamide resin, polyester resin, polystyrene resin, polyimide resin, polyamideimide resin, polycarbonate resin, polyphenylene ether resin, polyphenylene sulfide resin, polyacetal resin, acrylic resin (polymethylmethacrylate). Etc.), polyetherimide resin, polysulfone resin, polyethersulfone resin, polyketone resin, polyetherketone resin, polyetheretherketone resin, polyarylate resin, polyethernitrile resin, vinyl chloride resin, ABS resin and fluorine resin, etc. included.
- polyolefin resin examples include ethylene-based polymers, propylene-based polymers, butylene-based polymers and 4-methyl-1-pentene-based polymers.
- polyamide resin examples include aliphatic polyamide resins (nylon 6, nylon 11, nylon 12, nylon 66, nylon 610, nylon 612, etc.), semi-aromatic polyamide resins (nylon 6T, nylon 6I, nylon 9T, etc.), and Includes wholly aromatic polyamide resins.
- polyester resin examples include polyethylene terephthalate, polybutylene terephthalate, polytrimethylene terephthalate and polyethylene naphthalate.
- thermosetting resin examples include epoxy resin, phenol resin, melamine resin, urea resin, diallyl phthalate resin, silicone resin, urethane resin, furan resin, ketone resin, xylene resin, thermosetting polyimide resin, unsaturated polyester. Resins and diallyl terephthalate resins are included.
- a resin composition that constitutes the intermediate molded product and a resin composition that constitutes the thin film-shaped molded product Preferably contains the same type of resin.
- the intermediate molded body is a molded body containing a polyamide resin
- the thin film molded body is also preferably a molded body containing a polyamide resin.
- the intermediate molded product is a molded product containing a polyolefin resin
- the thin film molded product is also a molded product containing a polyolefin resin.
- the intermediate molded product is a molded product containing an ethylene-based polymer
- the thin film-shaped molded product is also preferably a molded product containing an ethylene-based polymer
- the intermediate molded product is a molded product containing a propylene-based polymer.
- the thin film shaped article also be a shaped article containing a propylene-based polymer.
- thermoplastic resin composition preferably contains a polyolefin resin, and more preferably contains a propylene-based polymer. ..
- the propylene-based polymer as the matrix resin may be an unmodified propylene-based copolymer or a propylene-based resin containing a carboxylic acid structure or a carboxylate structure by a method such as modification.
- the propylene-based polymer as the matrix resin is: It is preferable to include both the unmodified propylene-based copolymer and the modified propylene-based copolymer.
- the mass ratio (unmodified/modified) ratio is preferably 80/20 to 99/1, more preferably 89/11 to 99/1, and 89/11 to 93/. 7 is more preferable, and 90/10 to 95/5 is particularly preferable.
- the propylene polymer as the matrix resin may be a known propylene polymer including homopolypropylene, random polypropylene, block polypropylene, modified polypropylene and the like.
- the stereoregularity of the propylene-based polymer as the matrix resin may be isotactic, syndiotactic, or atactic, but is preferably isotactic or syndiotactic.
- the weight average molecular weight of the propylene-based polymer as the matrix resin is preferably 50,000 or more and 350,000 or less, more preferably 100,000 or more and 330,000 or less, and further preferably 150,000 or more and 320,000 or less.
- thermoplastic resin composition preferably contains a polyamide resin.
- polyamide resin examples include polyamide 4 (poly ⁇ -pyrrolidone), polyamide 6 (polycaproamide), polyamide 11 (polyundecane amide), polyamide 12 (polydodecane amide), polyamide 46 (polytetramethylene adipamide).
- polyamide 56 polypentamethylene adipamide
- polyamide 66 polyhexamethylene adipamide
- polyamide 610 polyhexamethylene sebacamide
- polyamide 612 polyhexamethylene dodecamide
- polyamide 116 polyunne) Decamethylene adipamide
- polyamide TMHT trimethylhexamethylene terephthalamide
- polyamide 6T polyhexamethylene terephthalamide
- polyamide 2Me-5T poly-2-methylpentamethylene terephthalamide
- polyamide 9T polynonamethylene terephthalamide)
- 2Me-8T poly-2-methyloctamethylene terephthalamide
- polyamide 6I polyhexamethyleneisophthalamide
- polyamide 6C polyhexamethylenecyclohexanedicarboxamide
- polyamide 2Me-5C poly2-methylpentamethylenecyclohexanediene) Carboxamide
- polyamide 9C polyamide
- polyamide 6 and polyamide 12 are more preferable.
- the above polyamide resin has a melting point (Tm) or a glass transition temperature measured by a differential scanning calorimeter (DSC).
- Tm melting point
- DSC differential scanning calorimeter
- the (Tg) is preferably 30° C. or higher and 350° C. or lower, more preferably 30° C. or higher and 230° C. or lower, and further preferably 30° C. or higher and 180° C. or lower.
- the weight average molecular weight (Mw) of the polyamide resin is preferably 10,000 or more and 20,000 or less, more preferably 10,000 or more and 18,000 or less, and more preferably 10500 or more and 17,000, from the viewpoint of further increasing the mechanical strength of the thin film-shaped molded product.
- Mw weight average molecular weight
- the number average molecular weight (Mn) of the polyamide resin is preferably 2000 or more and 10000 or less, more preferably 2500 or more and 8000 or less, and more preferably 2800 or more and 7600, from the viewpoint of making it easier to impregnate the reinforcing resin with the matrix resin. The following is more preferable.
- the ratio (Mw/Mn) of the weight average molecular weight to the number average molecular weight of the polyamide resin is 2 from the viewpoint of achieving both the mechanical strength of the thin film-shaped molded product and the ease of impregnating the reinforcing fibers of the matrix resin. It is preferably 0.000 or more and 5.00 or less, more preferably 2.10 or more and 4.00 or less, and further preferably 2.15 or more and 3.80 or less.
- weight average molecular weight (Mw) and number average molecular weight (Mn) are values measured by gel permeation chromatography (GPC) and calculated in terms of styrene.
- the melt flow rate (MFR) of the above polyamide resin measured at a temperature of 230° C. and a load of 2.16 kg in accordance with ASTM D1238 is preferably 100 g/10 min or more and 350 g/10 min or less, and 100 g/10 min. More preferably, it is 320 g/10 min or less, more preferably 100 g/10 min or more and 230 g/10 min or less.
- MFR of the above polyamide resin is in the above range, the matrix resin can be more easily impregnated into the reinforcing fiber, and the matrix resin can easily fill the gaps of the irregularities forming the rough surface when fused by the laser.
- the surface of the resin molded body can be made smoother, and peeling of the surface layer of the resin molded body formed of the thin film-shaped molded body can be made less likely to occur.
- the polyamide resin preferably has an amount of terminal carboxylic acid groups of 65 mmol/kg or more and 100 mmol/kg or less, and more preferably 68 mmol/kg or more and 95 mmol/kg or less, from the viewpoint of further improving the adhesiveness to carbon fibers. It is more preferably 68 mmol/kg or more and 85 mmol/kg or less, and particularly preferably 68 mmol/kg or more and 75 mmol/kg or less.
- the above polyamide resin preferably has an amount of terminal amino groups of 5 mmol/kg or more and 50 mmol/kg or less from the viewpoint of further improving the adhesiveness to carbon fibers.
- the reinforcing fiber is a fibrous substance added to the resin composition in order to increase the strength of the molded product molded from the resin composition.
- the reinforcing fiber include carbon fiber, glass fiber, aramid fiber, silicon carbide fiber, boron fiber, metal fiber, metal oxide fiber (alumina fiber, etc.), mosheige (basic magnesium sulfate inorganic fiber), and calcium carbonate. Includes whiskers and more. Of these, carbon fibers and glass fibers are preferable, and carbon fibers are more preferable.
- the average fiber diameter of the reinforcing fibers is preferably 1 ⁇ m or more and 20 ⁇ m or less, more preferably 3 ⁇ m or more and 15 ⁇ m or less.
- the average fiber diameter is 3 ⁇ m or more, when the reinforcing fibers are bundled, it is necessary to bundle only a smaller amount of the reinforcing fibers, so that the productivity of the resin composition can be improved.
- the average fiber diameter is 1 ⁇ m or more, the reinforcing fibers are less likely to be damaged, so that the strength of the injection molded body can be further increased.
- the average fiber diameter is 20 ⁇ m or less, the aspect ratio of the reinforcing fibers can be more easily increased and the decrease in strength of the injection-molded article can be suppressed.
- the reinforcing fibers are typically bundled into a bundle of fibers and arranged in one direction to be contained in the thin film shaped body.
- the number of fibers contained in each bundle is not particularly limited, but is preferably 100 or more and 350,000 or less, more preferably 1,000 or more and 250,000 or less, and 5,000. It is more preferable that the number is not less than 220,000 and not more than 220,000.
- the type of carbon fiber is not particularly limited, and various types of carbon fiber such as polyacrylonitrile (PAN) type, rayon type, polyvinyl alcohol type, regenerated cellulose, and pitch type manufactured from mesophase pitch can be used. Of these, PAN-based, rayon-based, and pitch-based carbon fibers are preferable because of their higher strength and lighter weight.
- PAN polyacrylonitrile
- rayon type rayon type
- polyvinyl alcohol type polyvinyl alcohol type
- pitch type manufactured from mesophase pitch can be used.
- PAN-based, rayon-based, and pitch-based carbon fibers are preferable because of their higher strength and lighter weight.
- the carbon fiber may be coated with a conductive material such as nickel, copper, and ytterbium depending on the use of the resin molded body.
- the epoxy content of the carbon fiber is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.5% by mass or more and 9% by mass or less.
- the carbon content of the carbon fiber can be increased to the above range by using an epoxy resin as a sizing agent.
- the tensile strength of the carbon fiber is preferably 2500 MPa or more and 6000 MPa or less, more preferably 3500 MPa or more and 6000 MPa or less, and further preferably 4500 MPa or more and 6000 MPa or less.
- the tensile strength is 2500 MPa or more, the mechanical strength of the injection molded body can be further increased.
- the tensile strength is 6000 MPa or less, molding of the injection molded body, particularly extrusion and injection molding, becomes easier.
- the carbon fiber is a carbon fiber bundle (tow) in which several thousand to tens of thousands of single fibers (filaments) are bundled.
- the number of filaments constituting one tow can be 500 or more and 80,000 or less, and preferably 12,000 or more and 60,000 or less.
- the surface of the carbon fiber is preferably subjected to surface treatment such as oxidative etching or coating.
- oxidative etching treatments are air oxidation treatment, oxygen treatment, treatment with oxidizing gas, treatment with ozone, corona treatment, flame treatment, (atmospheric pressure) plasma treatment, and oxidizing liquids (nitric acid, alkali hypochlorite).
- Treatment with an aqueous solution of a metal salt, potassium dichromate-sulfuric acid, and potassium permanganate-sulfuric acid) is included.
- materials that coat the carbon fibers include carbon, silicon carbide, silicon dioxide, silicon, plasma monomers, ferrocene, iron trichloride, and the like.
- a sizing agent such as urethane type, olefin type, acrylic type, nylon type, butadiene type and epoxy type may be used.
- the sizing agent is preferably, for example, a propylene-based polymer when the matrix resin is the polyolefin resin (particularly the propylene-based polymer), and an epoxy-based polymer when the matrix resin is the polyamide resin. It is preferably a resin.
- the propylene-based polymer as the sizing agent more preferably contains the propylene-based polymer (A1) and the acid-modified polyolefin-based resin (A2).
- the propylene-based polymer (A1) may be a propylene homopolymer or a copolymer of propylene and another ⁇ -olefin.
- the propylene-based polymer (A1) may consist of one kind of polymer having a substantially single composition ratio and structure, or may be a combination of two or more kinds of polymers having different composition ratios and structures. Good.
- the propylene-based polymer (A1) is one or more selected from a propylene homopolymer, a propylene/ethylene block copolymer, and a propylene/ethylene random copolymer having an ethylene content of 5% by mass or less. More preferably, it is a propylene polymer.
- the propylene polymer (A1) may include two kinds of propylene polymers having different weight average molecular weights (Mw).
- Mw weight average molecular weights
- the propylene-based polymer having a higher Mw (hereinafter, also simply referred to as “PP(A1)-1”) has an Mw of 50,000 or more
- the propylene polymer having a smaller Mw (hereinafter, also simply referred to as "PP(A1)-2”) has an Mw of 100,000 or less.
- the Mw of PP(A1)-1 is preferably 70,000 or more, more preferably 100,000 or more. From the viewpoint of facilitating extrusion from the nozzle or melting by laser irradiation, Mw of PP(A1)-1 is preferably 700,000 or less, and preferably 500,000 or less. It is more preferably 450,000 or less, still more preferably 400,000 or less.
- the Mw of PP(A1)-2 is preferably 50,000 or less, more preferably 40,000 or less.
- the Mw of PP(A1)-2 is preferably 10,000 or more, and more preferably 15,000 or more from the viewpoint of increasing the strength of the resin molded product and suppressing the stickiness of the surface. It is more preferably 20,000 or more, still more preferably 25,000 or more.
- the ratio of the total mass of PP(A1)-1 to the total mass of PP(A1)-1 and the total mass of PP(A1)-2 is 60% by mass. It is more than 100 mass% and the proportion of the total mass of PP(A1)-2 is more than 0 mass% and 40 mass% or less.
- the ratio of the total mass of PP(A1)-1 is preferably more than 70% by mass and less than 100% by mass, and more preferably more than 73% by mass and less than 100% by mass.
- the proportion of the total mass of PP(A1)-2 is preferably more than 0% by mass and less than 30% by mass, and more preferably more than 0% by mass and less than 27% by mass.
- the acid-modified polyolefin resin (A2) is a modified polyolefin polymer modified with an acid or the like.
- the above-mentioned acid is not particularly limited, but unsaturated carboxylic acid and its derivative are preferable.
- the acid-modified polyolefin-based resin (A2) can further enhance the interfacial adhesion of the thermoplastic resin composition to the carbon fiber, and can more fully exert the reinforcing effect of the thermoplastic resin composition by the carbon fiber.
- Examples of unsaturated carboxylic acids used for the modification include acrylic acid, methacrylic acid, maleic acid, fumaric acid, tetrahydrofumaric acid, itaconic acid, crotonic acid, citraconic acid, crotonic acid, isocrotonic acid, sorbic acid, mesaconic acid, And angelica acid and the like.
- Examples of the above derivatives include acid anhydrides, esters, amides, imides, and metal salts of these unsaturated carboxylic acids.
- the acid-modified polyolefin resin (A2) may be a modified product with one type of acid or a derivative thereof, or a modified product with two or more types of acid or a derivative thereof.
- the acid-modified polyolefin-based resin (A2) is preferably an acid-modified propylene-based polymer and an acid-modified ethylene-based polymer, more preferably a maleic acid-modified propylene-based polymer and a maleic acid-modified ethylene-based polymer, and a maleic acid-modified propylene-based polymer. Polymers are more preferred.
- Epoxy Resin The epoxy resin as the sizing agent may be an epoxy resin that is commonly used as a sizing agent. These epoxy resins are preferably multifunctional epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, aliphatic epoxy resin, and phenol novolac type epoxy resin, and have good adhesiveness to polyamide resin. From the viewpoint of further increasing, an aliphatic epoxy resin is more preferable. Since the aliphatic epoxy resin has a flexible skeleton, it tends to have high toughness even if the crosslink density is high. Therefore, the aliphatic epoxy resin satisfactorily suppresses peeling between the reinforcing fiber and the matrix resin, and easily increases the strength of the thin film-shaped molded product.
- Examples of the aliphatic epoxy resin include ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, propylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, 1,4-butanediol diglycidyl ether, neopentyl glycol diglycidyl ether, Diglycidyl ether compounds including polytetramethylene glycol diglycidyl ether and polyalkylene glycol diglycidyl ether, and glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyglycerol polyglycidyl ether, sorbitol polyglycidyl ether, arabitol poly Included are polyglycidyl ether compounds including glycidyl ether, trimethylolpropane polyglycidyl ether, pentaerythritol polyglycidyl ether, and poly
- polyglycidyl ether compounds having a large number of highly reactive glycidyl groups are preferable, and glycerol polyglycidyl ether, diglycerol polyglycidyl ether, polyethylene glycol glycidyl ether, and polypropylene glycol glycidyl ether are more preferable.
- the thin film molded body may contain a pigment and/or a dye.
- pigments and dyes include known pigments.
- the pigment and the dye are It is preferable to use pigments and dyes having a higher absorbance at the same wavelength as the wavelength.
- the pigment and dye are preferably pigments and dyes having an absorption maximum wavelength of 300 nm to 3000 nm, and more preferably pigments and dyes having an absorption maximum wavelength of 500 nm to 2000 nm.
- Pigments and dyes having an absorption maximum wavelength of 700 nm or more and 1500 nm or less are more preferable.
- the pigment and dye are preferably pigments and dyes (or combinations thereof) capable of absorbing a wider range of wavelengths.
- a black pigment and a dye (or a combination thereof) are preferable, a carbon pigment is more preferable, and carbon black is further preferable.
- the content of the pigment and the dye may be such that the absorption of laser by the thin film molded article is sufficiently enhanced and does not significantly affect other properties such as the strength of the thin film molded article and the resin molded article. ..
- the content of carbon black as the additive is preferably 0.01% by mass or more and 5% by mass or less, and 0.1% by mass or more and 3% by mass or less, based on the total mass of the thin film-shaped molded product. Is more preferable and 0.1% by mass or more and 2% by mass or less is further preferable.
- the above thin film formed body can be fused to the rough surface of the intermediate formed body by a known fusion method using a laser.
- FIG. 3 is a schematic diagram showing an example of a method for fusing a thin film-shaped molded product using a fusing device for fusing a tape-shaped thin film-shaped molded product to a rough surface of an intermediate molded product by laser irradiation. ..
- FIG. 3 shows a state in which a tape-shaped thin film-shaped molded product is fused to the rough surface of the intermediate molded product molded by the MEX method by laser irradiation, other additional modeling methods such as the PBF method.
- the fusing device 300 supports the accommodating portion 310 that accommodates the thin film molded body 380 wound in a roll shape so that the thin film molded body 380 can be paid out, and the thin film shaped body 380 that is paid out from the housing part 310 to the intermediate molded body 390.
- At least one of the guiding guide rollers 320a and 320b, the laser oscillating source 332, the thin-film shaped body 380 and the intermediate shaped body 390 to be joined is a laser irradiation unit 334 which is an objective lens unit for irradiating the laser oscillated from the laser oscillation source 332.
- the fusing device 300 has a fusing unit 350 in which the guide rollers 320a and 320b, the laser irradiation section 334, and the pressing roller 340 are mounted and integrated. Further, the fusing device 300 has a holding stage 360 that holds the intermediate molded body 390. The fusing device 300 moves at least one of the fusing unit 350 and the holding stage 360 to move a position where the thin film compact 380 is bonded to the rough surface 395 of the intermediate compact 390. Is possible.
- the accommodating section 310 accommodates the thin-film molded body 380 wound in a roll shape, and when the thin-film molded body 380 is fused to the intermediate molded body 390, the thin-film molded body 380 is delivered.
- the feeding speed of the thin film molded body 380 may be a speed at which the thin film molded body 380 can be sufficiently fused to the intermediate molded body 390 by laser irradiation, and for example, 10 m/min or more and 100 m. It can be selected from the range of not more than /min and is preferably not less than 30 m/min and not more than 90 m/min.
- the guide rollers 320a and 320b are arranged in contact with the moving path of the thin film molded body 380 that connects the housing portion 310 and the rough surface 395 of the intermediate molded body 390 on which the thin film molded body 380 is fused, and the guide rollers 320a and 320b The moving thin film molded body 380 is guided to the intermediate molded body 390 while being supported under tension.
- the laser oscillation source 332 oscillates a laser applied to at least one of the thin film shaped body 380 and the intermediate shaped body 390.
- the type of the laser oscillation source 332 is not particularly limited, and a solid laser including a ruby laser, a YAG laser, an Nd:YAG laser, and a diode-pumped solid state laser, a liquid laser including a dye laser, a gas laser including a CO 2 laser, and a semiconductor. It can be appropriately selected from laser and the like.
- the above-mentioned laser should have energy enough to melt the resin composition constituting at least one of the thin-film molded body 380 and the intermediate molded body 390, while not causing deterioration or deformation of the resin composition.
- the output of the laser can be selected from the range of 50 W or more and 5 kW or less.
- the laser has a wavelength that is absorbed by the resin composition that constitutes at least one of the thin film molded body 380 and the intermediate molded body 390.
- the wavelength of the laser can be selected from the range of 300 nm or more and 3000 nm or less.
- the laser irradiation unit 334 is connected to the laser oscillation source 332 via an optical fiber or the like for optical communication, and emits the laser oscillated by the laser oscillation source 332 while converging it with an objective lens. Specifically, the laser irradiation unit 334 applies a laser beam to at least one of the thin film molded body 380 and the intermediate molded body 390 immediately before or when the moving thin film molded body 380 and the intermediate molded body 390 contact each other. The laser is emitted so that the laser beam is irradiated.
- the laser irradiation unit 334 is configured to irradiate the thin film-shaped compact 380 and the intermediate compact, which are irradiated with the laser, when the thin-film compact 380 contacting at least the intermediate compact 390 is pressed by the pressing roller 340. A laser is emitted so that at least one of 390 is melted.
- the pressing roller 340 comes into contact with the intermediate compact 390 and reduces the thin-film compact 380 arranged on the rough surface 395 of the intermediate compact 390 toward the intermediate compact 390.
- the thin film molded body 380 and the intermediate molded body 390 are melted, the thin film molded body 380 is pressed toward the intermediate molded body 390, so that the thin film molded body 380 and the intermediate molded body 390 are separated from each other. Fuse together.
- the fusing unit 350 holds the guide rollers 320a and 320b, the laser irradiation section 334, and the pressing roller 340.
- the fusing unit 350 accommodates each of the above components inside a robot arm, and fuses the thin-film molded body 380 to the surface of the intermediate molded body 390 by vertical movement, parallel movement, or rotational movement of the robot arm.
- the position to be moved may be adjustable.
- the holding stage 360 holds the intermediate molded body 390.
- the holding stage 360 may be, for example, a mandrel that holds the intermediate molded body 390 while rotating it.
- the fusing device 300 has a moving unit (not shown) that moves at least one of the holding stage 360 and the fusing unit 350.
- the moving unit moves at least one of the holding stage 360 and the fusing unit 350 vertically, in parallel, or rotationally to move the relative position of the thin film compact 380 and the intermediate compact 390 to the thin film compact 380. It is possible to change the position at which the thin-film molded body 380 is bonded to the rough surface 395 of the intermediate molded body 390 by changing the speed at substantially the same speed.
- the fusing unit 350 fuses the thin-film molded body 380 along the rough surface 395 while moving the moving portion to the joining position, so that the rough surface 395 of the intermediate molded body 390 is thin-film molded.
- a resin molded body is produced by fusing the body 380.
- the fusion bonding apparatus 300 is a thin film not only on the rough surface 395 of the intermediate molded body 390 but also on the surface of the intermediate molded body 390 that does not satisfy the above-described requirements for the maximum peak height (Rp) or the maximum peak depth (Rv).
- the shaped body 380 may be fused. This makes it possible to obtain a resin molded body having a more uniform surface roughness.
- the fusing device 300 includes a thin film-shaped compact 380 fused to the rough surface 395 of the intermediate compact 390 or a surface that does not satisfy the above-described maximum peak height (Rp) or maximum peak depth (Rv) requirements.
- the thin-film molded body 380 may be further fused on the surface to form a plurality of layers of the thin-film molded body 380. As a result, it is possible to obtain a resin molded body having a higher surface strength.
- the direction in which the thin film molded body 380 is fused to the surface of the intermediate molded body 390 is not particularly limited.
- the fusing device 300 forms the thin film molded body 380 so that a combination of layers is formed such that the reinforcing fibers are oriented in the same direction.
- the directions in which the thin film molded body 380 is fused may be aligned so that the directions in which the reinforcing fibers are fused may be aligned between the layers, or a combination of layers in which the orientations of the reinforcing fibers are different may be formed. You may change it with.
- the fusion bonding apparatus 300 is configured such that a combination of layers in which the reinforcing fibers in two adjacent layers are oriented in different directions is formed. In addition, it is preferable to change the direction in which the thin-film molded body 380 is fused when forming each layer.
- FIG. 4A is a schematic diagram showing a cross-sectional shape of an intermediate molded body used for manufacturing a resin molded body according to an embodiment of the present invention
- FIGS. 4B and 4C are intermediate molded bodies shown in FIG. 4A.
- It is a schematic diagram which shows the cross-sectional shape of the resin molded body manufactured by the method mentioned above using a body.
- 4A to 4C show cross-sectional views of an intermediate molded body formed by the MEX method and a resin molded body obtained by fusing a tape-shaped thin film-shaped molded body on the rough surface of the intermediate molded body.
- the resin-molded body is also manufactured.
- the cross-sectional view of the resin molded body is also substantially the same as that of FIGS. 4B and 4C except the internal structure of the intermediate layer.
- the intermediate molded body 390 has a rough surface 395.
- the resin molded body 400 manufactured by the method described above by fusing the thin film-shaped molded body to the rough surface 395 of the intermediate molded body 390 is derived from the intermediate molded body 390. It has an inner layer 410 and a surface layer 420 derived from the above-mentioned thin film shaped body.
- the rough surface 395 of the intermediate molded body is melted by the laser irradiation by the laser irradiation section 334, and the thin film-shaped molded body 380 is melted and at the same time flattened by the compression force of the pressing roller 340.
- FIG. 4B shows a state in which the number of layers of the fused thin film-shaped molded body is one layer
- FIG. 4C shows a state in which the number of layers of the fused thin film-shaped molded body is plural.
- the 420 is melted again by irradiating the surface layer 420 of the fused thin film-shaped molded product with a laser, but also the rough surface 395 is melted again because it is a thin film and the second layer is formed.
- a compression force by the pressing roller 340 acts to further flatten it.
- FIG. 4C the more the two layers are stacked, the flatter the outer surface of the surface layer 420 becomes.
- the inner layer 410 is a layer forming the inside of the resin molded body.
- the inner layer 410 is a layer in which thin layers of the resin composition are fused and laminated between the layers.
- the inner layer 410 is a layer formed by sintering or fusing particles of the resin composition between the particles.
- the surface layer 420 is a layer including the arranged reinforcing fibers, which is fused to the inner layer 410 and is arranged on the outer surface side of the inner layer 410 of the resin molded body.
- the surface layer 420 is arranged at a position that covers the rough surface of the intermediate molded body.
- the surface layer 420 is arranged in contact with the plurality of stacked layers forming the inner layer 410.
- the surface layer 420 is arranged in contact with the plurality of sintered or fused particles constituting the inner layer 410.
- the reinforcing fibers are arranged and bundled in one direction to form a fiber bundle, which extends along the direction in which the thin film molded body was fused.
- the surface layer 420 includes a plurality of fiber bundles derived from the fused thin-film molded body.
- the surface layer 420 is formed inside the surface layer 420 from the boundary with the inner layer 410. It may include a plurality of layers laminated toward the outside (surface). At this time, each of the plurality of layers may include a plurality of fiber bundles diffused in the plane direction. Further, the plurality of layers may have different orientations in which the reinforcing fibers forming the fiber bundle are arranged.
- the rough surface 395 of the intermediate molded body 390 has a small maximum peak height (Rp) and maximum peak depth (Rv) due to melting when welding to the thin film molded body. It has been transformed to become. That is, the size of the unevenness (AA in FIG. 4A) of the rough surface 395 of the intermediate molded body 390 shown in FIG. 4A decreases due to the fusion of the thin film-shaped molded body, and as shown in FIG. The size of the unevenness at the interface between the inner layer 410 and the surface layer 420 of the molded body 400 is smaller (BB in FIG. 4B). Then, when the number of layers of the thin-film molded body 380 fused is increased, the size of the unevenness at the interface between the inner layer 410 and the surface layer 420 of the resin molded body 400 becomes smaller (see FIG. 4C). CC).
- the intermediate molded body 390 by welding the thin-film molded body to the intermediate molded body 390, it is possible to melt and deform the rough surface 395 so that the thin-film molded body can penetrate to the bottom of the valley of the rough surface 395. Conceivable. It is considered that, as a result, the intermediate molded body 390 and the thin film-shaped molded body melt better with each other and are joined together without a gap, resulting in stronger adhesion.
- the resin molded body 400 is completely fused because the interface between the inner layer 410 and the surface layer 420 has been solidified through a molten state. Therefore, in the resin molded body 400, the inner layer 410 and the surface layer 420 are not easily peeled off, and the peeling strength of the surface layer 420 derived from the thin film-shaped molded body in the 45° peeling test is 4000 N/m or more.
- the peel strength may be tested by leaving the ends unwelded and gripping them with a measuring device when performing tape placement on each intermediate molded body.
- a measuring device when performing tape placement on each intermediate molded body.
- the end portion When the end portion is welded, the end portion may be peeled off carefully, and the peeled portion may be held by a measuring device for testing.
- the resin composition was heated to 220° C. and melted to be extruded onto a stage from a nozzle having a diameter of 3 mm, and an intermediate molded body F1 having a width of 5 mm, a length of 500 mm and a height of 37.5 mm was laminated.
- the moving speed of the nozzle was 0.038 m/s
- the discharge rate of the extruder was 1 kg/h
- the height of one layer was 1.5 mm
- the width was 5 mm
- the number of layers was 25 layers.
- a carbon fiber bundle (manufactured by Mitsubishi Rayon Co., Ltd., trade name Pyrofil TR50S12L, number of filaments 12000, strand strength 5000 MPa, strand elastic modulus 242 GPa) is immersed in acetone and subjected to ultrasonic treatment for 10 minutes. It was pulled up, washed with acetone three more times, and dried at room temperature for 8 hours.
- a propylene/butene/ethylene copolymer having a weight average molecular weight (Mw) measured by GPC of 120,000 and having no melting point was used.
- Mw weight average molecular weight measured by GPC of 120,000 and having no melting point
- B 96 parts by mass of a propylene/butene copolymer, 4 parts by mass of maleic anhydride, and 0.4 parts by mass of NOF CORPORATION Perhexa 25B as a polymerization initiator (“ "Perhexa” is a registered trademark of the same company, and is modified at a heating temperature of 160° C.
- Mw weight average molecular weight
- 100 parts by mass of the propylene-based polymer (A), 10 parts by mass of the propylene-based polymer (B), and 3 parts by mass of potassium oleate as a surfactant were mixed to obtain a mixture.
- the extruded resin mixture was cooled to 110° C. with a jacketed static mixer installed at the same extruder port, and then poured into warm water at 80° C. to obtain an emulsion having a solid content concentration of 45%.
- the emulsion was attached to the carbon fiber bundle from which the sizing agent had been removed, using a roller impregnation method. Then, it was dried online at 130° C. for 2 minutes to remove low-boiling components to obtain a reinforcing fiber bundle. The amount of adhesion of the emulsion was 0.87%. The fluffing property of the reinforcing fiber bundle was acceptable.
- a resin composition containing 57 parts by mass of the reinforcing fiber bundle and 43 parts by mass of a matrix resin was prepared.
- the matrix resin is an unmodified propylene resin (Prime Polymer Co., Ltd., Prime Polypro J106MG, melting point 160° C.) and modified polypropylene grafted with 0.5% by mass of maleic anhydride (190° C. according to ASTM D1238, load 2). Melt flow rate measured at 0.16 kg was 9.1 g/10 min, melting point 155° C.).
- the mass ratio of the unmodified propylene resin and the modified polypropylene used in the preparation of the matrix resin (unmodified propylene resin/modified polypropylene) was 90/10.
- the melting point of the matrix resin was 160°C.
- a fiber-reinforced resin sheet in which fibers were oriented in one direction was prepared from the above matrix resin by a conventional method.
- the reinforcing fiber bundle is opened and heated, the heated reinforcing fiber bundle and the matrix resin melted by an extruder are formed into a film by a T die, and sandwiched between release papers.
- the reinforced fiber bundle was impregnated with the matrix resin by heating and pressurizing with a pressure roller, and then cooled and solidified to obtain a unidirectional sheet.
- the temperature of the extruder and T-die was 250°C, and the temperature of the pressure roll was 275°C.
- the obtained unidirectional sheet had a thickness of 130 ⁇ m and a fiber volume fraction Vf of 0.4.
- the unidirectional sheet was cut in the direction in which the carbon fibers were arranged so as to have a width of 12 mm, to obtain a tape-shaped thin-film molded body.
- a single layer of thin film molded body was welded to the entire surface of the intermediate molded body F1 to obtain a resin molded body F1.
- a single layer of thin film molded body was welded to the entire surface of the intermediate molded body S1 to obtain a resin molded body S1.
- the intermediate molded body F1, the resin molded body F1, the resin molded body F2, the intermediate molded body S1, and the resin molded body F2 were cut into a length of 51 mm and a height of 13 mm to obtain test pieces.
- the bending strength (MPa) was measured according to the thickness of the test piece under the conditions of a test speed of 1.2 to 1.3 mm/min and a span distance of 44 to 46 mm.
- Rp maximum peak height
- Rv maximum peak depth
- the method for producing a resin molded body of the present invention regardless of the type of the additional modeling method for manufacturing the resin molded body, eliminating the unevenness of the surface peculiar to the molded body modeled by the additional modeling method, A resin molded product having a smoother surface can be obtained. Therefore, the method for producing a resin molded body of the present invention is expected to expand the area in which the molded article molded by the additional molding method can be used, and contribute to further spread of the field.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- Toxicology (AREA)
- Composite Materials (AREA)
- Textile Engineering (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
- Laminated Bodies (AREA)
Abstract
JIS B0601に準じて測定される最大山高さ(Rp)が10μm以上5000μmであるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μmである粗表面を有する、樹脂組成物の中間成形体を用意する工程と、前記中間成形体の前記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着させる工程と、を有する樹脂成形体の製造方法。
Description
本発明は、樹脂成形体の製造方法および樹脂成形体に関する。
光造形(SLA)法、材料押出(MEX)法、粉末床溶融結合(PBF)法、シート積層法、バインダージェッティング法およびマテリアルジェッティング法などの付加造形方法を用いた樹脂成形体の成形方法が知られている。これらの付加造形方法は、製造しようとする樹脂成形体を高さ方向に分割した各層を順次形成し、形成された各層を積層していくことにより、所望の形状の樹脂成形体を製造する成形方法である。
たとえば、材料押出(MEX)法では、高温で溶解または軟化させたフィラメント状の樹脂組成物をノズルから押し出して平面状に配置していくことにより、製造しようとする樹脂成形体を高さ方向に分割した各層を形成する。その後、溶解または軟化させた樹脂組成物をノズルからさらに押し出して上記形成された層に接して配置することで、上記分割された次の層が形成される。このようにして上記各層を順次形成して積層していくことにより、所望の形状の樹脂成形体が製造される。特許文献1および特許文献2には、オレフィン系樹脂を含む樹脂組成物を含む、MEX法による樹脂成形体の製造に使用できる成形体が記載されている。MEX法は、熱溶解積層(FDM)法や溶融フィラメント製造(FFF)法とも呼ばれている。
また、押出機により樹脂組成物を溶融してノズルから直接押し出し平面上に配置してゆく方法も、大型の樹脂成形品を造形するために用いられる。
また、粉末床溶融結合(PBF)法では、ステージ上に敷き詰めた樹脂組成物の粒子にレーザーや電子線を照射して、上記粒子を焼結または融着(以下、「焼結および融着のいずれかまたは一方」を単に「融着等」ともいう。)させていくことにより、製造しようとする樹脂成形体を高さ方向に分割した各層を形成する。その後、樹脂組成物の粒子を上記形成された層に接して敷き詰めてレーザーや電子線を照射することで、上記分割された次の層が形成される。このようにして上記各層を順次形成して積層していくことにより、所望の形状の樹脂成形体が製造される。SLS法は、対象を溶融させるか焼結させるか、または用いる手段がレーザーであるか電子線であるかにより、粉末床焼結結合(SLS)法、レーザー溶融(SLM)法、電子線溶融(EBM)法に分けられる。
これらの付加造形方法によって製造された樹脂成形体には、上記製造されていく各層の端部形状に由来する段差、および融着等される粒子の形状に由来する凹凸などが、その表面に残存することが知られている。そのため、上記各付加造形方法は、造形される樹脂成形体の寸法精度や美感などを十分には高めにくい。
また、MEX法では、樹脂成形体の表面の凹凸の程度は、使用するフィラメント径に依存する。例えば、フィラメントの径が太いほど、凹凸が大きくなる傾向にある。
特許文献3には、造形用粉末の層に対して、紫外光の照射により硬化する実体部形成用インクと、紫外光を照射しても硬化しない犠牲層形成用インクと、を吐出して、上記2種類のインクのそれぞれを上記層内に浸透させる工程を有する、三次元造形物の製造方法が記載されている。特許文献3によれば、上記2種類のインクが浸透した領域の境界を上記層内に形成することによって、三次元造形物の外表面に不規則な段差(凹凸)が発生することを防止し、滑らかな外表面を有する三次元造形物を製造できるとされている。
特許文献3には、当該文献に記載の方法により、滑らかな外表面を有する三次元造形物を製造できると記載されている。しかし、特許文献3に記載の方法は、適用できる付加造形方法がバインダージェッティング法に制限されており、MEX法およびPBF法などの他の付加造形方法では、同様にして滑らかな表面を有する三次元造形物を製造することはできない。
上記問題に鑑み、本発明は、様々な付加造形方法で樹脂成形体を製造する方法であって、滑らかな表面を有する樹脂成形体の製造方法、および当該製造方法で製造された樹脂成形体を提供することを目的とする。
上記の課題を解決するための本発明の一態様に関する樹脂成形体の製造方法は、JISB 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJIS B 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物の中間成形体を用意する工程と、前記中間成形体の前記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着させる工程と、を有する。
また、上記の課題を解決するための本発明の一態様に関する樹脂成形体は、樹脂組成物の薄層が層間で焼結または融着して積層してなるか、または樹脂組成物の粒子が粒子間で焼結または融着してなる内部層と、前記積層された複数の層に接して配置され、または前記焼結または融着された複数の粒子に接して配置され、かつ、前記内部層に焼結または融着された、配列された強化繊維を含む樹脂組成物からなる表面層と、を有する。
本発明によれば、様々な付加造形方法で樹脂成形体を製造する方法であって、滑らかな表面を有する樹脂成形体の製造方法、および当該製造方法で製造された樹脂成形体が提供される。
1.樹脂成形体の製造方法
本発明の一実施形態に関する樹脂成形体の製造方法は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物の中間成形体を用意する工程と、上記中間成形体の上記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着等させる工程と、を有する。
本発明の一実施形態に関する樹脂成形体の製造方法は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物の中間成形体を用意する工程と、上記中間成形体の上記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着等させる工程と、を有する。
1-1.中間成形体を用意する工程
上記中間成形体は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物から成形された成形体である。上記中間成形体は、市販品などを購入して用意してもよいし、本工程の前に上記粗表面を有する成形体を成形して用意してもよい。
上記中間成形体は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物から成形された成形体である。上記中間成形体は、市販品などを購入して用意してもよいし、本工程の前に上記粗表面を有する成形体を成形して用意してもよい。
1-1-1.中間成形体の形状およびその製造
上記中間成形体は、製造しようとする樹脂成形体と略同一の形状であり、かつ、その外径が融着等される薄膜状成形体の厚みだけ製造しようとする樹脂成形体よりも小さい形状を有することが好ましい。
上記中間成形体は、製造しようとする樹脂成形体と略同一の形状であり、かつ、その外径が融着等される薄膜状成形体の厚みだけ製造しようとする樹脂成形体よりも小さい形状を有することが好ましい。
上記中間成形体は、市販の樹脂成形体を購入して用意してもよいし、公知の方法で製造して用意してもよい。
上記中間成形体は、たとえば、付加造形方法により樹脂組成物から造形された立体造形物である。上記付加造形方法は、特に限定されず、光造形(SLA)法、材料押出(MEX)法、粉末床溶融結合(PBF)法、シート積層法、バインダージェッティング法およびマテリアルジェッティング法などの公知の方法であってもよい。これらのうち、MEX法およびPBF法は、特に上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面が形成されやすいため、本実施形態の方法により滑らかな表面が形成されるという効果が顕著である。
図1Aは、MEX法による中間成形体の製造方法を模式的に示す断面図であり、図1Bは、MEX法により製造された中間成形体を模式的に示す断面図である。MEX法によれば、図1Aに示すように、高温で溶解または軟化させた樹脂組成物をノズル110から押し出して、ステージ120上に平面状に配置する。ノズル110から押し出された樹脂組成物は、冷却されて固化し、中間成形体を高さ方向(図1AにおけるZ方向)に分割した1つの層を形成する。さらに、高温で溶解または軟化させた樹脂組成物をノズル110から押し出して、形成された層に接して平面状に配置すると、新たにノズル110から押し出された樹脂組成物は、冷却されて固化し、中間成形体を高さ方向に分割した次の層を形成する。このとき、先に形成された層を構成する樹脂組成物と次に形成される層を構成する樹脂組成物とは、加熱されて押し出された樹脂組成物の熱によって融着するため、先に形成された層と形成される層とは融着して積層される。さらに樹脂組成物の押し出しおよび固化による新たな層の形成を繰り返すことで、中間成形体130が造形される(図1B)。このようにして造形された中間成形体は、積層された複数の層にまたがって積層方向に延在する表面である、上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面135を有する。
MEX法におけるノズルの口径は特に制限されず、従来公知の口径のノズルを用いることができる。ノズルの口径が小さいと上記最大山高さ(Rp)または最大山深さ(Rv)が小さくなる傾向にあり、ノズルの口径が大きいと上記最大山高さ(Rp)または最大山深さ(Rv)が大きくなる傾向にある。
また、MEX法において上記最大山高さ(Rp)または最大山深さ(Rv)は、例えば、ノズル径の他に、押し出し速度、樹脂組成物の温度によって、調整することができる。押し出し速度を上げると、樹脂組成物の粘弾性効果により最大山高さ(Rp)または最大山深さ(Rv)が多きくなる傾向にあり、樹脂組成物の温度を上げると最大山高さ(Rp)または最大山深さ(Rv)が小さくなる傾向にある。
図2Aは、PBF法の一形態であるSLS法による中間成形体の製造方法を模式的に示す断面図であり、図2Bは、SLS法により製造された中間成形体を模式的に示す断面図である。SLS法によれば、図2Aに示すように、レーザー発振源212から発振されたレーザーを、対物レンズユニットであるレーザー照射部214から、鉛直方向に降下可能なステージ220上に敷き詰められた樹脂組成物の粒子に照射する。レーザーを照射された粒子は、隣接して配置されかつレーザーを照射された粒子と焼結していき、中間成形体を高さ方向(図2AにおけるZ方向)に分割した1つの層を形成する。さらに、形成された層に接して樹脂組成物の粒子を敷き詰め、敷き詰められた粒子の層にレーザーを照射していくと、レーザーを照射された粒子同士は焼結していき、中間成形体を高さ方向に分割した次の層を形成する。このとき、先に形成された層を構成する樹脂組成物と次に形成される層を構成する樹脂組成物とは、レーザーの照射により付与された熱によって焼結するため、先に形成された層と形成される層とは焼結して積層される。さらに樹脂組成物の粒子の敷き詰めおよびレーザーの照射による新たな層の形成を繰り返すことで、中間成形体230が造形される(図2B)。このようにして造形された中間成形体は、焼結された複数の粒子にまたがって積層方向に延在する表面である、上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面235a、および焼結された複数の粒子にまたがって積層方向以外の方向に延在する表面である、上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面235bを有する。
PBF法において上記最大山高さ(Rp)または最大山深さ(Rv)は、例えば、樹脂組成物の粒子の大きさによって、調整することができる。
上記粗表面は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である、表面である。なお、上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面は、付加造形方法により造形された立体造形物に特有の粗表面であり、他の造形方法によって造形された立体造形物の表面にブラスト処理などの粗表面化処理を行っても、通常、最大山高さ(Rp)または最大山深さ(Rv)はより小さくなるため、上記最大山高さ(Rp)または最大山深さ(Rv)の要件を満たす粗表面とはならない。
より具体的には、MEX法で形成された中間成形体が有する粗表面135は、通常、上記最大山高さ(Rp)または最大山深さ(Rv)が20μm以上450μm以下であり、より典型的には20μm以上400μm以下であり、さらに典型的には30μm以上350μm以下である。また、PBF法で形成された中間成形体が有する粗表面235aおよび粗表面235bは、通常、上記最大山高さ(Rp)または最大山深さ(Rv)が10μm以上450μm以下であり、より典型的には10μm以上100μm以下であり、さらに典型的には15μm以上100μm以下である。
また、上記粗表面は、JIS B 0601に準じて測定される算術平均粗さ(Ra)が5μm以上1250μm以下であることが好ましい。より具体的には、MEX法で形成された中間成形体が有する粗表面135は、通常、上記算術平均粗さ(Ra)が5μm以上1250μm以下であり、より典型的には10μm以上250μm以下であり、さらに典型的には15μm以上80μm以下である。また、PBF法で形成された中間成形体が有する粗表面235aおよび粗表面235bは、通常、上記算術平均粗さ(Ra)が5μm以上1000μm以下であり、より典型的には6μm以上100μm以下であり、さらに典型的には7μm以上50μm以下である。
1-1-2.樹脂組成物
上記樹脂組成物は、1種または複数種の樹脂、および任意に配合される添加剤を含む組成物である。
上記樹脂組成物は、1種または複数種の樹脂、および任意に配合される添加剤を含む組成物である。
上記樹脂は、熱可塑性樹脂、熱硬化性樹脂および光硬化性樹脂のいずれであってもよいが、樹脂成形体の形状の自由度をより高める観点及び樹脂成形体の表面をより滑らかにする観点からは、熱可塑性樹脂であることが好ましい。上記熱可塑性樹脂の例には、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、熱可塑性ポリイミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド樹脂、ポリアセタール樹脂、アクリル系樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリエーテルニトリル樹脂、塩化ビニル樹脂、ABS樹脂およびフッ素樹脂などが含まれる。なお、上記樹脂は、エラストマーであってもよい。
上記熱硬化性樹脂の例には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、不飽和ポリエステル樹脂およびジアリルテレフタレート樹脂などが含まれる。
上記樹脂は、これらのうち、エチレン系重合体、プロピレン系重合体およびその他のα-オレフィン系重合体を含むオレフィン系樹脂を含むことが好ましく、プロピレン系重合体を含むことがより好ましく、プロピレン系重合体および上記その他のα-オレフィン系重合体をいずれも含むことがさらに好ましい。
上記エチレン系重合体には、エチレンの単独重合体、およびエチレンと炭素数3以上20以下のα-オレフィンとの共重合体が含まれる。なお、これらのエチレン系重合体は、1種のみを用いてもよいし、複数種を併用してもよい。
上記プロピレン系重合体には、プロピレンの単独重合体、およびプロピレンとエチレンまたは炭素数4以上20以下のα-オレフィンとの共重合体が含まれる。なお、これらのプロピレン系重合体は、1種のみを用いてもよいし、複数種を併用してもよい。
上記α-オレフィン系重合体には、炭素数4以上20以下のα-オレフィンの単独重合体、および炭素数2以上20以下のα-オレフィンの共重合体(ただし、上記エチレン系重合体およびプロピレン系重合体は除く。)が含まれる。
なお、上記α-オレフィンの例には、エチレン、プロピレン、1-ブテン、3-メチル-1-ブテン、4-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ヘキセン、4,4ジメチル-1-ヘキセン、1-ノネン、1-オクテン、1-ヘプテン、1-ヘキセン、1-デセン、1-ウンデセン、1-ドデセン、1-テトラデセン、1-ヘキサデセン、1-オクタデセン、および1-エイコセンなどが含まれる。上記α-オレフィン系重合体は、これらのうち、1-ブテン、エチレン、4-メチル-1-ペンテン、および1-ヘキセンを含む共重合体であることが好ましく、1-ブテンおよび4-メチル-1-ペンテンを含む共重合体であることがより好ましい。上記α-オレフィン系重合体は、ランダム共重合体であってもよいしブロック共重合体であってもよいが、ランダム共重合体であることが好ましい。
上記樹脂は、薄膜状成形体と同じ種類の樹脂であることが好ましく、薄膜状成形体のマトリックス樹脂(後述)と同じ種類の樹脂であることが好ましい。なお、同じ種類の樹脂とは、樹脂を構成する主鎖における、モノマーに由来する各構成単位同士を結合する結合構造(たとえば、エステル構造およびアミド結合など)が同一であるか、または同一の重合性基(たとえば、ビニル基など)によって結合されていることを意味する。上記同じ種類の樹脂は、同じモノマー(たとえばエチレン、プロピレン)に由来する構成単位を有することが好ましい。
上記添加剤の例には、公知の充填剤(無機充填剤、有機充填剤)、顔料、染料、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、酸化防止剤、防黴剤、抗菌剤、難燃剤、および軟化剤などが含まれる。
上記添加剤としての充填剤の例には、マイカ、カーボンブラック、シリカ、炭酸カルシウム、タルク、グラファイト、ステンレス、およびアルミニウムなどを含む粉末充填剤、ならびに、炭素繊維、ガラス繊維、金属繊維、金属酸化物繊維、モスハイジ(塩基性硫酸マグネシウム無機繊維)、および炭酸カルシウムウィスカーなどを含む繊維状充填剤などが含まれる。これらの充填剤は、樹脂成形体の強度を高めることができる。
なお、上記樹脂組成物が適度な量の上記繊維状充填剤を含有すると、上記樹脂組成物から付加造形方法で造形物を成形する際の、造形物への反りの発生を抑制することができる。これは、上記繊維状充填剤が樹脂の結晶化を適度に阻害して樹脂の収縮を抑制することによるものであると考えられる。そのため、上記反りの発生の抑制効果は、上記樹脂組成物が結晶性樹脂および上記繊維状充填剤を含有するときに顕著に奏され、上記樹脂組成物が特に反りを発生しやすいプロピレン系重合体(特にはプロピレン単独重合体)および上記繊維状充填剤を含有するときにより顕著に奏される。
特に、樹脂組成物の全質量に対し、プロピレン系重合体(特にはプロピレン単独重合体)を30質量%以上70質量%以下、α-オレフィン系重合体(上記プロピレン系重合体を除く。特にはα-オレフィン系ランダム共重合体)を1質量%以上20質量%以下、上記繊維状充填剤(特には炭素繊維およびガラス繊維)を20質量%以上60質量%以下、の割合で含有する樹脂組成物は、プロピレン系重合体から付加造形方法で造形物を成形する際に問題となる反りの発生を効果的に抑制できるため好ましい。
上記添加剤としての顔料および染料の例には、公知の色素が含まれる。特に、後の工程におけるレーザーによる照射での薄膜状成形体の融着を容易にする観点からは、上記顔料および染料は、上記照射されるレーザーの波長と同一の波長の吸光度がより大きい顔料および染料であることが好ましく、具体的には、吸収極大波長が300nm以上3000nm以下である顔料および染料であることが好ましく、吸収極大波長が500nm以上2000nm以下である顔料および染料であることがより好ましく、吸収極大波長が700nm以上1500nm以下である顔料および染料であることがさらに好ましい。逆に、レーザーの波長の選択をより自由にする観点からは、上記顔料および染料は、より広い範囲の波長を吸収できる顔料および染料(あるいはその組み合わせ)であることが好ましく、具体的には、黒色系の顔料および染料(あるいはその組み合わせ)であることが好ましく、カーボン系の顔料を含むがより好ましく、カーボンブラックを含むことがさらに好ましい。
上記添加剤としての顔料および染料の含有量は、中間成形体によるレーザーの吸収を十分に高め、かつ、中間成形体および樹脂成形体の強度などの他の特性に顕著な影響を与えない程度であればよい。たとえば、上記添加剤としてのカーボンブラックの含有量は、樹脂組成物の全質量に対して0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。
1-2.薄膜状成形体を融着させる工程
次に、上記中間成形体の上記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着させる。
次に、上記中間成形体の上記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着させる。
このとき、レーザーを照射せずに単に薄膜状成形体を接着などさせただけでは、上記粗表面を構成する凹凸を薄膜状成形体が十分に吸収しきれないため、粗表面の形状に沿った形状の表面が薄膜状成形体を接着させた中間成形体の外部側に残存する。これに対し、中間成形体および薄膜状成形体の少なくとも一方にレーザーを照射して、これらを融着させると、中間成形体および薄膜状成形体を構成する樹脂組成物が部分的に溶融して中間成形体と薄膜状成形体との間の隙間を埋めて、上記粗表面を構成する凹凸を減少させる。そのため、レーザーの照射により薄膜状成形体が上記粗表面に融着されると、中間成形体の外部側に、より平滑な表面が形成される。
特に、上記中間成形体が、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有すると、中間成形体に薄膜状成形体が融着してなる樹脂成形体の曲げ強度および曲げ弾性率をより高めることができる。これは、中間成形体と薄膜状成形体とが互いによりよく溶融しあい、かつ、粗表面が有する谷の底まで薄膜状成形体が十分に侵入して互いに隙間なく接合されることにより、中間成形体と薄膜状成形体とがより強固に接着されて、薄膜状成形体による強度付与の程度を大きくできるためと考えられる。
また、レーザーの照射により中間成形体と薄膜状成形体とを融着させると、これらはその界面で溶融して一体化されてより強力に接合される。そのため、薄膜状成形体を融着させてなる表面層の、樹脂成形体からの剥離が、生じにくい。
本工程において、中間成形体の粗表面のみならず、上述した最大山高さ(Rp)または最大山深さ(Rv)の要件を満たさない中間成形体の表面にも薄膜状成形体を融着させてもよい。これにより、表面の粗さがより均一な樹脂成形体を得ることができる。
また、本工程において、中間成形体の粗表面あるいは上述した最大山高さ(Rp)または最大山深さ(Rv)の要件を満たさない表面に融着された薄膜状成形体の表面にさらに薄膜状成形体を融着させて、薄膜状成形体による複数の層を形成してもよい。これにより、表面の強度をより高めた樹脂成形体を得ることができる。このとき、上記複数の層は、強化繊維が配向された向きが同じであるような層の組み合わせを含んでもよいし、強化繊維が配向された向きが異なる層の組み合わせを含んでもよいが、樹脂成形体の曲げやすさおよび耐圧縮性をいずれも高める観点からは、隣接する2つの層における強化繊維が配向された向きが異なるような層の組み合わせを含むことが好ましい。
1-2-1.薄膜状成形体の形状
上記薄膜状成形体は、上記強化繊維に樹脂組成物(以下、「マトリックス樹脂」ともいう。)を含浸させてなる成形体である。
上記薄膜状成形体は、上記強化繊維に樹脂組成物(以下、「マトリックス樹脂」ともいう。)を含浸させてなる成形体である。
上記薄膜状成形体は、シート状またはテープ状(長尺状)の成形体である。薄膜状成形体の融着を容易にする観点からは、上記薄膜状成形体は、テープ状の成形体であることが好ましい。上記薄膜状成形体の厚みは、0.05mm以上1.0mm以下であることが好ましく、0.1mm以上0.5mm以下であることがより好ましい。
薄膜状成形体の幅は特に制限されず、中間成形体の表面形状に応じて適宜選択すればよい。例えば、中間成形体の表面の凹凸が縞状であり、縞と並行に薄膜状成形体を配置する場合には、凹凸の幅よりも薄膜状成形体の幅を大きくした方が、外観がより優れる傾向にあり好ましい。たとえば、薄膜状成形体の幅は、5mm以上150mm以下であることが好ましく、7mm以上100mm以下であることがより好ましく、10mm以上50mm以下であることがよりさらに好ましい。薄膜状成形体の幅が5mm以上であると、レーザーの照射による融着中の薄膜状成形体の切断などのトラブルが発生しにくいため好ましい。薄膜状成形体の幅が150mm以下であると、レーザーでの加熱が容易となるため好ましい。
上記薄膜状成形体は、JIS B 0601に準じて測定される算術平均粗さ(Ra)が、上記中間成形体が有する上記粗表面の上記算術平均粗さ(Ra)よりも小さい表面を有する。具体的には、上記薄膜状成形体の表面は、JISB 0601に準じて測定される算術平均粗さ(Ra)が0.1μm以上10μm以下、好ましくは0.5μm以上5μm以下の表面である。
上記薄膜状成形体は、市販の繊維強化樹脂を購入して用意してもよいし、強化繊維にマトリックス樹脂用の樹脂組成物を含浸させる公知の方法で製造してもよい。
1-2-2.マトリックス樹脂
マトリックス樹脂の樹脂種は特に限定されず、熱可塑性樹脂、熱硬化性樹脂および光硬化性樹脂のいずれであってもよいが、樹脂成形体の形状の自由度をより高める観点及び樹脂成形体の表面をより滑らかにする観点からは、熱可塑性樹脂であることが好ましい。上記樹脂組成物は、1種類の樹脂のみを含んでもでもよいし、2種類以上の樹脂のブレンドまたはポリマーアロイであってもよい。
マトリックス樹脂の樹脂種は特に限定されず、熱可塑性樹脂、熱硬化性樹脂および光硬化性樹脂のいずれであってもよいが、樹脂成形体の形状の自由度をより高める観点及び樹脂成形体の表面をより滑らかにする観点からは、熱可塑性樹脂であることが好ましい。上記樹脂組成物は、1種類の樹脂のみを含んでもでもよいし、2種類以上の樹脂のブレンドまたはポリマーアロイであってもよい。
上記熱可塑性樹脂の例には、ポリオレフィン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリスチレン樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリカーボネート樹脂、ポリフェニレンエーテル樹脂、ポリフェニレンスルファイド樹脂、ポリアセタール樹脂、アクリル系樹脂(ポリメチルメタクリレートなど)、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリアリレート樹脂、ポリエーテルニトリル樹脂、塩化ビニル樹脂、ABS樹脂およびフッ素樹脂などが含まれる。
上記ポリオレフィン樹脂の例には、エチレン系重合体、プロピレン系重合体、ブチレン系重合体および4-メチル-1-ペンテン系重合体などが含まれる。
上記ポリアミド樹脂の例には、脂肪族ポリアミド樹脂(ナイロン6、ナイロン11、ナイロン12、ナイロン66、ナイロン610およびナイロン612など)、半芳香族ポリアミド樹脂(ナイロン6T、ナイロン6Iおよびナイロン9Tなど)および全芳香族ポリアミド樹脂が含まれる。
上記ポリエステル樹脂の例には、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリトリメチレンテレフタレートおよびポリエチレンナフタレートなどが含まれる。
上記熱硬化性樹脂の例には、エポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ウレタン樹脂、フラン樹脂、ケトン樹脂、キシレン樹脂、熱硬化性ポリイミド樹脂、不飽和ポリエステル樹脂およびジアリルテレフタレート樹脂などが含まれる。
なお、薄膜状成形体を融着させてなる表面層を樹脂成形体からより剥離しにくくする観点からは、中間成形体を構成する樹脂組成物と、薄膜状成形体を構成する樹脂組成物と、は同種の樹脂を含むことが好ましい。たとえば、中間成形体がポリアミド樹脂を含む成形体であるときは、薄膜状成形体もポリアミド樹脂を含む成形体であることが好ましい。
また、中間成形体がポリオレフィン樹脂を含む成形体であるときは、薄膜状成形体もポリオレフィン樹脂を含む成形体であることが好ましい。さらには、中間成形体がエチレン系重合体を含む成形体であるときは、薄膜状成形体もエチレン系重合体を含む成形体であることが好ましく、中間成形体がプロピレン系重合体を含む成形体であるときは、薄膜状成形体もプロピレン系重合体を含む成形体であることが好ましい。
1-2-2-1.ポリオレフィン樹脂
剛性に優れ、リサイクルが容易であり、かつ、高速成型が可能であるという観点からは、熱可塑性樹脂組成物は、ポリオレフィン樹脂を含むことが好ましく、プロピレン系重合体を含むことがより好ましい。
剛性に優れ、リサイクルが容易であり、かつ、高速成型が可能であるという観点からは、熱可塑性樹脂組成物は、ポリオレフィン樹脂を含むことが好ましく、プロピレン系重合体を含むことがより好ましい。
上記マトリックス樹脂としてのプロピレン系重合体は、未変性のプロピレン系共重合体であってもよいし、変性などの方法でカルボン酸構造やカルボン酸塩構造を含むプロピレン系樹脂であってもよい。レーザーによる溶着時の強化繊維とプロピレン系重合体との間の構造変化を抑制して、溶着後の薄膜状成形体の強度をより高める観点からは、上記マトリックス樹脂としてのプロピレン系重合体は、未変性のプロピレン系共重合体および上記変性されたプロピレン系共重合体の両方を含むことが好ましい。このとき、その質量比(未変性体/変性体比)は、80/20~99/1であることが好ましく、89/11~99/1であることがより好ましく、89/11~93/7であることがさらに好ましく、90/10~95/5であることが特に好ましい。
なお、上記マトリックス樹脂としてのプロピレン系重合体は、ホモポリプロピレン、ランダムポリプロピレン、ブロックポリプロピレン、および変性ポリプロピレンなどを含む公知のプロピレン系重合体とすることができる。また、上記マトリックス樹脂としてのプロピレン系重合体の立体規則性は、イソタクチックであっても、シンジオタクチックであっても、アタクチックであってもよいが、イソタクチックまたはシンジオタクチックであることが好ましい。
上記マトリックス樹脂としてのプロピレン系重合体の重量平均分子量は、50000以上350000以下であることが好ましく、100000以上330000以下であることがより好ましく、150000以上320000以下であることがさらに好ましい。
1-2-2-2.ポリアミド樹脂
靱性、耐摩耗性、耐熱性、耐油性および耐衝撃性に優れるという観点からは、熱可塑性樹脂組成物は、ポリアミド樹脂を含むことが好ましい。
靱性、耐摩耗性、耐熱性、耐油性および耐衝撃性に優れるという観点からは、熱可塑性樹脂組成物は、ポリアミド樹脂を含むことが好ましい。
上記ポリアミド樹脂の例には、ポリアミド4(ポリα-ピロリドン)、ポリアミド6(ポリカプロアミド)、ポリアミド11(ポリウンデカンアミド)、ポリアミド12(ポリドデカンアミド)、ポリアミド46(ポリテトラメチレンアジパミド)、ポリアミド56(ポリペンタメチレンアジパミド)、ポリアミド66(ポリヘキサメチレンアジパミド)、ポリアミド610(ポリヘキサメチレンセバカミド)、ポリアミド612(ポリヘキサメチレンドデカミド)、ポリアミド116(ポリウンデカメチレンアジパミド)、ポリアミドTMHT(トリメチルヘキサメチレンテレフタルアミド)、ポリアミド6T(ポリヘキサメチレンテレフタルアミド)、ポリアミド2Me-5T(ポリ2-メチルペンタメチレンテレフタルアミド)、ポリアミド9T(ポリノナメチレンテレフタルアミド)、2Me-8T(ポリ2-メチルオクタメチレンテレフタルアミド)、ポリアミド6I(ポリヘキサメチレンイソフタルアミド)、ポリアミド6C(ポリヘキサメチレンシクロヘキサンジカルボキサミド)、ポリアミド2Me-5C(ポリ2-メチルペンタメチレンシクロヘキサンジカルボキサミド)、ポリアミド9C(ポリノナメチレンシクロヘキサンジカルボキサミド)、2Me-8C(ポリ2-メチルオクタメチレンシクロヘキサンジカルボキサミド)、ポリアミドPACM12(ポリビス(4-アミノシクロヘキシル)メタンドデカミド)、ポリアミドジメチルPACM12(ポリビス(3-メチル-アミノシクロヘキシル)メタンドデカミド、ポリアミドMXD6(ポリメタキシリレンアジパミド)、ポリアミド10T(ポリデカメチレンテレフタルアミド)、ポリアミド11T(ポリウンデカメチレンテレフタルアミド)、ポリアミド12T(ポリドデカメチレンテレフタルアミド)、ポリアミド10C(ポリデカメチレンシクロヘキサンジカルボキサミド)、ポリアミド11C(ポリウンデカメチレンシクロヘキサンジカルボキサミド)、およびポリアミド12C(ポリドデカメチレンシクロヘキサンジカルボキサミド)などが含まれる(なお、「Me」は、メチル基を示す。)。
これらのポリアミド系樹脂のうち、ポリアミド6、ポリアミド12、ポリアミド66、ポリアミド11、および芳香族系ポリアミドが好ましく、ポリアミド6およびポリアミド12がより好ましい。
なお、上記ポリアミド樹脂は、レーザーによる融着を容易にし、かつ、薄膜状成形体への成形を容易にする観点からは、示差走査熱量系(DSC)で測定した融点(Tm)またはガラス転移温度(Tg)が30℃以上350℃以下であることが好ましく、30℃以上230℃以下であることがより好ましく、30℃以上180℃以下であることがさらに好ましい。
上記ポリアミド樹脂の重量平均分子量(Mw)は、薄膜状成形体の機械的強度をより高める観点から、10000以上20000以下であることが好ましく、10000以上18000以下であることがより好ましく、10500以上17000以下であることがさらに好ましい。
上記ポリアミド樹脂の数平均分子量(Mn)は、マトリックス樹脂を強化繊維へより含浸しやすくする観点から、2000以上10000以下であることが好ましく、2500以上8000以下であることがより好ましく、2800以上7600以下であることがさらに好ましい。
上記ポリアミド樹脂の重量平均分子量と数平均分子量との比(Mw/Mn)は、薄膜状成形体の機械的強度と、マトリックス樹脂の強化繊維への含浸しやすさと、を両立させる観点から、2.00以上5.00以下であることが好ましく、2.10以上4.00以下であることがより好ましく、2.15以上3.80以下であることがさらに好ましい。
なお、上記重量平均分子量(Mw)および数平均分子量(Mn)はゲルパーミエーションクロマトグラフィー(GPC)によって測定され、スチレン換算で算出される値である。
また、上記ポリアミド樹脂の、ASTM D1238に準拠して、温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)は、100g/10min以上350g/10min以下であることが好ましく、100g/10min以上320g/10min以下であることがより好ましく、100g/10min以上230g/10min以下であることがさらに好ましい。上記ポリアミド樹脂のMFRが上記範囲であると、マトリックス樹脂を強化繊維へより含浸しやすくし、かつ、レーザーにより融着されたときに粗表面を構成する凹凸の隙間をマトリックス樹脂が埋めやすくして、樹脂成形体の表面をより平滑にし、かつ薄膜状成形体により形成される樹脂成形体の表面層の剥離をより生じさせにくくすることができる。
上記ポリアミド樹脂は、炭素繊維への接着性をより高める観点から、末端カルボン酸基量が65mmol/kg以上100mmol/kg以下であることが好ましく、68mmol/kg以上95mmol/kg以下であることがより好ましく、68mmol/kg以上85mmol/kg以下であることがさらに好ましく、68mmol/kg以上75mmol/kg以下であることが特に好ましい。
また、上記ポリアミド樹脂は、炭素繊維への接着性をより高める観点から、末端アミノ基量が5mmol/kg以上50mmol/kg以下であることが好ましい。
1-2-3.強化繊維
上記強化繊維は、樹脂組成物から成形される成形体の強度を高めるために当該樹脂組成物に配合される繊維状物質である。上記強化繊維の例には、炭素繊維、ガラス繊維、アラミド繊維、炭化珪素繊維、ボロン繊維、金属繊維、金属酸化物繊維(アルミナ繊維など)、モスハイジ(塩基性硫酸マグネシウム無機繊維)、および炭酸カルシウムウィスカーなどが含まれる。これらのうち、炭素繊維およびガラス繊維が好ましく、炭素繊維がより好ましい。
上記強化繊維は、樹脂組成物から成形される成形体の強度を高めるために当該樹脂組成物に配合される繊維状物質である。上記強化繊維の例には、炭素繊維、ガラス繊維、アラミド繊維、炭化珪素繊維、ボロン繊維、金属繊維、金属酸化物繊維(アルミナ繊維など)、モスハイジ(塩基性硫酸マグネシウム無機繊維)、および炭酸カルシウムウィスカーなどが含まれる。これらのうち、炭素繊維およびガラス繊維が好ましく、炭素繊維がより好ましい。
強化繊維の平均繊維径は、1μm以上20μm以下であることが好ましく、3μm以上15μm以下であることがより好ましい。上記平均繊維径が3μm以上であると、強化繊維を集束するときなどに、より少量の強化繊維のみを束ねればよいため、樹脂組成物の生産性を高めることができる。また、上記平均繊維径が1μm以上であると、強化繊維が破損しにくいため、射出成形体の強度をより高めることができる。上記平均繊維径が20μm以下であると、強化繊維のアスペクト比をより高めやすくして、射出成形体の強度低下を抑制することができる。
強化繊維は、典型的には、集束された繊維束となって、一方向に配列されて薄膜状成形体中に含まれる。それぞれの束に含まれる繊維の数は、特に限定されないものの、100本以上350,000本以下であることが好ましく、1,000本以上250,000本以下であることがより好ましく、5,000本以上220,000本以下であることがさらに好ましい。
上記炭素繊維の種類は特に限定されず、ポリアクリルニトリル(PAN)系、レーヨン系、ポリビニルアルコール系、再生セルロース、メゾフェーズピッチから製造されたピッチ系などの各種の炭素繊維を用いることができる。これらのうち、強度がより高く、かつより軽量であることから、PAN系、レーヨン系およびピッチ系の炭素繊維が好ましい。
なお、樹脂成形体の用途に応じて、ニッケル、銅およびイッテルビウムなどの導電性材料で炭素繊維を被覆していてもよい。
炭素繊維のエポキシ含有量は、0.1質量%以上10質量%以下であることが好ましく、0.5質量%以上9質量%以下であることがより好ましい。
炭素繊維は、たとえば集束剤としてエポキシ系樹脂を用いることで、エポキシ含有量を上記範囲にまで高めることができる。
炭素繊維の引張強度は、2500MPa以上6000MPa以下であることが好ましく、3500MPa以上6000MPa以下であることがより好ましく、4500MPa以上6000MPa以下であることがさらに好ましい。上記引張強度が2500MPa以上であると、射出成形体の機械的強度をより高めることができる。上記引張強度が6000MPa以下であると、射出成形体の成形、特には押出および射出成形がより容易になる。
炭素繊維は、数千本から数万本程度の単繊維(フィラメント)が束になった炭素繊維束(トウ)であることが好ましい。1つのトウを構成するフィラメントの本数は、500本以上80000本以下であることができ、12000本以上60000本以下であることが好ましい。
炭素繊維は、その表面が、酸化エッチングや被覆などの表面処理を施されていることが好ましい。酸化エッチング処理の例には、空気酸化処理、酸素処理、酸化性ガスによる処理、オゾンによる処理、コロナ処理、火炎処理、(大気圧)プラズマ処理、ならびに酸化性液体(硝酸、次亜塩素酸アルカリ金属塩の水溶液、重クロム酸カリウム-硫酸、および過マンガン酸カリウム-硫酸)による処理などが含まれる。炭素繊維を被覆する物質の例には、炭素、炭化珪素、二酸化珪素、珪素、プラズマモノマー、フェロセン、および三塩化鉄等などが含まれる。また、必要に応じて、ウレタン系、オレフィン系、アクリル系、ナイロン系、ブタジエン系およびエポキシ系などのサイジング剤を使用してもよい。
上記サイジング剤は、たとえば、マトリックス樹脂が上記ポリオレフィン樹脂(特には上記プロピレン系重合体)であるときは、プロピレン系重合体とすることが好ましく、マトリックス樹脂が上記ポリアミド樹脂であるときは、エポキシ系樹脂とすることが好ましい。
1-2-3-1.プロピレン系重合体
上記サイジング剤としてのプロピレン系重合体は、プロピレン系重合体(A1)と酸変性ポリオレフィン系樹脂(A2)とを含むことがさらに好ましい。
上記サイジング剤としてのプロピレン系重合体は、プロピレン系重合体(A1)と酸変性ポリオレフィン系樹脂(A2)とを含むことがさらに好ましい。
プロピレン系重合体(A1)は、プロピレン単独重合体でもよいし、プロピレンと他のα-オレフィンとの共重合体でもよい。プロピレン系重合体(A1)は、略単一の組成比および構造を有する1種の重合体からなってもよいし、組成比および構造などが異なる2種以上の重合体の組み合わせであってもよい。これらの重合体のうち、プロピレン系重合体(A1)は、プロピレン単独重合体、プロピレン・エチレンブロック共重合体、およびエチレン含量が5質量%以下のプロピレン・エチレンランダム共重合体から選ばれる一種以上のプロピレン系重合体であることがより好ましい。
プロピレン系重合体(A1)は、重量平均分子量(Mw)が異なる2種類のプロピレン系重合体を含んでもよい。なお、このとき、上記2種類のプロピレン系重合体のうち、Mwがより大きいプロピレン系重合体(以下、単に「PP(A1)-1」ともいう。)のMwは50,000以上であり、Mwがより小さいプロピレン系重合体(以下、単に「PP(A1)-2」ともいう。)のMwは100,000以下である。
PP(A1)-1のMwは、70,000以上であることが好ましく、100,000以上であることがより好ましい。また、ノズルからの押し出しを容易にし、あるいはレーザー照射によって溶融しやすくする観点からは、PP(A1)-1のMwは、700,000以下であることが好ましく、500,000以下であることがより好ましく、450,000以下であることがさらに好ましく、400,000以下であることが特に好ましい。
PP(A1)-2のMwは、50,000以下であることが好ましく、40,000以下であることがより好ましい。また、PP(A1)-2のMwは、樹脂成形体の強度を高め、かつ表面のベタ付きを抑制する観点からは、10,000以上であることが好ましく、15,000以上であることがより好ましく、20,000以上であることがさらに好ましく、25,000以上であることが特に好ましい。
プロピレン系重合体(A1)は、PP(A1)-1の全質量とPP(A1)-2の全質量との合計量に対し、PP(A1)-1の全質量の割合が60質量%以上100質量%未満であり、PP(A1)-2の全質量の割合が0質量%より多く40質量%以下である。上記PP(A1)-1の全質量の割合は、70質量%より多く100質量%未満であることが好ましく、73質量%より多く100質量%未満であることがより好ましい。上記PP(A1)-2の全質量の割合は、0質量%より多く30質量%未満であることが好ましく、0質量%より多く27質量%未満であることがより好ましい。
酸変性ポリオレフィン系樹脂(A2)は、ポリオレフィン系重合体の、酸などで変性された変性体である。上記酸は、特に限定されないが、不飽和カルボン酸およびその誘導体などが好ましい。
酸変性ポリオレフィン系樹脂(A2)は、熱可塑性樹脂組成物の炭素繊維に対する界面接着性をより高めて、炭素繊維による熱可塑性樹脂組成物の補強効果をより十分に発揮させることができる。
上記変性に用いる不飽和カルボン酸の例には、アクリル酸、メタクリル酸、マレイン酸、フマル酸、テトラヒドロフマル酸、イタコン酸、クロトン酸、シトラコン酸、クロトン酸、イソクロトン酸、ソルビン酸、メサコン酸、およびアンゲリカ酸などが含まれる。上記誘導体の例には、これらの不飽和カルボン酸の酸無水物、エステル、アミド、イミド、および金属塩などが含まれる。上記誘導体の具体例には、無水マレイン酸、無水イタコン酸、無水シトラコン酸、アクリル酸メチル、メタクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、マレイン酸エチル、アクリルアミド、マレイン酸アミド、アクリル酸ナトリウム、およびメタクリル酸ナトリウムなどが含まれる。これらのうち、不飽和ジカルボン酸およびその誘導体が好ましく、マレイン酸および無水マレイン酸がより好ましい。酸変性ポリオレフィン系樹脂(A2)は、1種の酸による変性体またはその誘導体であってもよく、2種以上の酸による変性体またはその誘導体であってもよい。
酸変性ポリオレフィン系樹脂(A2)は、酸変性プロピレン系重合体および酸変性エチレン系重合体が好ましく、マレイン酸変性プロピレン系重合体およびマレイン酸変性エチレン系重合体がより好ましく、マレイン酸変性プロピレン系重合体がさらに好ましい。
1-2-3-2.エポキシ系樹脂
上記サイジング剤としてのエポキシ系樹脂は、サイジング剤として通常用いられているエポキシ系樹脂であればよい。これらのエポキシ系樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂肪族エポキシ樹脂、およびフェノールノボラック型エポキシ樹脂などの多官能エポキシ系樹脂であることが好ましく、ポリアミド樹脂への接着性をより高める観点からは、脂肪族エポキシ樹脂であることがより好ましい。脂肪族エポキシ樹脂は、柔軟な骨格を有するため、架橋密度が高くても靱性が高くなりやすい。そのため、脂肪族エポキシ樹脂は、強化繊維とマトリックス樹脂との間の剥離を良好に抑制して、薄膜状成形体の強度を高めやすい。
上記サイジング剤としてのエポキシ系樹脂は、サイジング剤として通常用いられているエポキシ系樹脂であればよい。これらのエポキシ系樹脂は、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、脂肪族エポキシ樹脂、およびフェノールノボラック型エポキシ樹脂などの多官能エポキシ系樹脂であることが好ましく、ポリアミド樹脂への接着性をより高める観点からは、脂肪族エポキシ樹脂であることがより好ましい。脂肪族エポキシ樹脂は、柔軟な骨格を有するため、架橋密度が高くても靱性が高くなりやすい。そのため、脂肪族エポキシ樹脂は、強化繊維とマトリックス樹脂との間の剥離を良好に抑制して、薄膜状成形体の強度を高めやすい。
脂肪族エポキシ樹脂の例には、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、1,4-ブタンジオールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、ポリテトラメチレングリコールジグリシジルエーテル、およびポリアルキレングリコールジグリシジルエーテルなどを含むジグリシジルエーテル化合物、ならびに、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリグリセロールポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、アラビトールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、および脂肪族多価アルコールのポリグリシジルエーテルなどを含むポリグリシジルエーテル化合物などが含まれる。
これらのうち、反応性の高いグリシジル基を多数有するポリグリシジルエーテル化合物が好ましく、グリセロールポリグリシジルエーテル、ジグリセロールポリグリシジルエーテル、ポリエチレングリコールグリシジルエーテル、およびポリプロピレングリコールグリシジルエーテルがさらに好ましい。
1-2-4.顔料及び染料
薄膜状成形体は、顔料及び/又は染料を含んでいても良い。顔料および染料の例には、公知の色素が含まれる。強化繊維がガラス繊維などの無色の繊維である場合は、後の工程におけるレーザーによる照射での中間成形体との融着を容易にする観点から、上記顔料および染料は、上記照射されるレーザーの波長と同一の波長の吸光度がより大きい顔料および染料であることが好ましい。具体的には、顔料及び染料としては、吸収極大波長が300nm以上3000nm以下である顔料および染料であることが好ましく、吸収極大波長が500nm以上2000nm以下である顔料および染料であることがより好ましく、吸収極大波長が700nm以上1500nm以下である顔料および染料であることがさらに好ましい。逆に、レーザーの波長の選択をより自由にする観点からは、上記顔料および染料は、より広い範囲の波長を吸収できる顔料および染料(あるいはその組み合わせ)であることが好ましく、具体的には、黒色系の顔料および染料(あるいはその組み合わせ)であることが好ましく、カーボン系の顔料を含むがより好ましく、カーボンブラックを含むことがさらに好ましい。
薄膜状成形体は、顔料及び/又は染料を含んでいても良い。顔料および染料の例には、公知の色素が含まれる。強化繊維がガラス繊維などの無色の繊維である場合は、後の工程におけるレーザーによる照射での中間成形体との融着を容易にする観点から、上記顔料および染料は、上記照射されるレーザーの波長と同一の波長の吸光度がより大きい顔料および染料であることが好ましい。具体的には、顔料及び染料としては、吸収極大波長が300nm以上3000nm以下である顔料および染料であることが好ましく、吸収極大波長が500nm以上2000nm以下である顔料および染料であることがより好ましく、吸収極大波長が700nm以上1500nm以下である顔料および染料であることがさらに好ましい。逆に、レーザーの波長の選択をより自由にする観点からは、上記顔料および染料は、より広い範囲の波長を吸収できる顔料および染料(あるいはその組み合わせ)であることが好ましく、具体的には、黒色系の顔料および染料(あるいはその組み合わせ)であることが好ましく、カーボン系の顔料を含むがより好ましく、カーボンブラックを含むことがさらに好ましい。
顔料および染料の含有量は、薄膜状成形体によるレーザーの吸収を十分に高め、かつ、薄膜状成形体および樹脂成形体の強度などの他の特性に顕著な影響を与えない程度であればよい。たとえば、上記添加剤としてのカーボンブラックの含有量は、薄膜状成形体の全質量に対して0.01質量%以上5質量%以下であることが好ましく、0.1質量%以上3質量%以下であることがより好ましく、0.1質量%以上2質量%以下であることがさらに好ましい。
1-2-5.薄膜状成形体の融着
上記薄膜状成形体は、レーザーを用いた公知の融着方法で、中間成形体の粗表面に融着させることができる。
上記薄膜状成形体は、レーザーを用いた公知の融着方法で、中間成形体の粗表面に融着させることができる。
図3は、テープ状の薄膜状成形体をレーザーの照射により中間成形体の粗表面に融着させるための融着装置を用いる、薄膜状成形体の融着方法の一例を示す模式図である。なお、図3は、MEX法により造形された中間成形体の粗表面にテープ状の薄膜状成形体をレーザーの照射により融着させる様子を示しているが、PBF法などの他の付加造形方法により造形された中間成形体の粗表面にも、同様にテープ状の薄膜状成形体をレーザーの照射により融着させることが可能である。
融着装置300は、ロール状に巻回された薄膜状成形体380を繰り出し可能に収容する収容部310、収容部310から繰り出された薄膜状成形体380を支持しつつ中間成形体390へと導くガイドローラー320aおよび320b、レーザー発振源332、接合される薄膜状成形体380および中間成形体390の少なくとも一方にレーザー発振源332から発振されたレーザーを照射する対物レンズユニットであるレーザー照射部334、および中間成形体390の粗表面395に配置された薄膜状成形体380を中間成形体390に向けて圧下する圧下ローラー340を有する。本実施形態において、融着装置300は、ガイドローラー320aおよび320b、レーザー照射部334および圧下ローラー340が装着されて一体化された融着ユニット350を有する。また、融着装置300は、中間成形体390を保持する保持ステージ360を有する。融着装置300は、融着ユニット350および保持ステージ360の少なくとも一方を移動させることによって、中間成形体390の粗表面395に対して薄膜状成形体380が接合される位置を移動させていくことが可能である。
収容部310は、ロール状に巻回された薄膜状成形体380を収容し、かつ、中間成形体390に融着させるときには薄膜状成形体380を繰り出す。薄膜状成形体380の繰り出し速度(薄膜状成形体380の移動速度)は、レーザーの照射により中間成形体390に十分に融着させることができる速度であればよく、たとえば、10m/分以上100m/分以下の範囲から選択することができ、30m/分以上90m/分以下の範囲から選択されることが好ましい。
ガイドローラー320aおよび320bは、収容部310と薄膜状成形体380が融着される中間成形体390の粗表面395とを繋ぐ薄膜状成形体380の移動経路に接して配置され、上記移動経路を移動する薄膜状成形体380を張力がかかった状態で支持しつつ中間成形体390へと導く。
レーザー発振源332は、薄膜状成形体380および中間成形体390の少なくとも一方に照射されるレーザーを発振する。
レーザー発振源332の種類は特に限定されず、ルビーレーザー、YAGレーザー、Nd:YAGレーザー、およびダイオード-励起固体レーザーを含む固体レーザー、色素レーザーを含む液体レーザー、CO2レーザーを含むガスレーザ、ならびに半導体レーザーなどから適宜選択することができる。
上記レーザーは、薄膜状成形体380および中間成形体390の少なくとも一方を構成する樹脂組成物を溶融させ、一方では上記樹脂組成物の劣化および変形などを生じさせない程度のエネルギーを有すればよい。たとえば、上記レーザーの出力は、50W以上5kW以下の範囲から選択することができる。
また、上記レーザーは、薄膜状成形体380および中間成形体390の少なくとも一方を構成する樹脂組成物が吸収する波長を有することが好ましい。たとえば、上記レーザーの波長は300nm以上3000nm以下の範囲から選択することができる。
レーザー照射部334は、レーザー発振源332と光ファイバーなどにより光通信可能に接続され、レーザー発振源332が発振したレーザーを、対物レンズにより収束させながら出射する。具体的には、レーザー照射部334は、移動する薄膜状成形体380と中間成形体390とが接触する直前、または接触するときに、薄膜状成形体380および中間成形体390の少なくとも一方にレーザーが照射されるように、上記レーザーを出射する。より具体的には、レーザー照射部334は、少なくとも中間成形体390に接触した薄膜状成形体380が圧下ローラー340により圧下される際に、レーザーを照射された薄膜状成形体380および中間成形体390の少なくとも一方が溶融しているように、レーザーを出射する。
圧下ローラー340は、中間成形体390に接触して中間成形体390の粗表面395に配置された薄膜状成形体380を中間成形体390に向けて圧下する。薄膜状成形体380および中間成形体390の少なくとも一方が溶融した状態で、薄膜状成形体380が中間成形体390に向けて圧下されることにより、薄膜状成形体380と中間成形体390とが融着する。
融着ユニット350は、ガイドローラー320aおよび320b、レーザー照射部334および圧下ローラー340を保持する。融着ユニット350は、たとえば、ロボットアームの内部に上記各構成部を収容し、ロボットアームの垂直移動、平行移動または回転移動により中間成形体390の表面に対して薄膜状成形体380を融着させる位置を調整可能に構成されていてもよい。
保持ステージ360は、中間成形体390を保持する。保持ステージ360は、たとえば、中間成形体390を回転させつつ保持するマンドレルであってもよい。
本実施形態では、融着装置300は、保持ステージ360および融着ユニット350の少なくとも一方を移動させる移動部(不図示)を有する。移動部は、保持ステージ360および融着ユニット350の少なくとも一方を垂直移動、平行移動または回転移動させることにより、薄膜状成形体380と中間成形体390との相対位置を薄膜状成形体380の移動速度と略同一の速度で変化させ、中間成形体390の粗表面395に対して薄膜状成形体380が接合される位置を移動させていくことが可能である。移動部が上記接合される位置を移動させつつ、融着ユニット350が粗表面395に沿って薄膜状成形体380を融着していくことで、中間成形体390の粗表面395に薄膜状成形体380が融着されてなる樹脂成形体が作製される。
なお、融着装置300は、中間成形体390の粗表面395のみならず、上述した最大山高さ(Rp)または最大山深さ(Rv)の要件を満たさない中間成形体390の表面にも薄膜状成形体380を融着させてもよい。これにより、表面の粗さがより均一な樹脂成形体を得ることができる。
また、融着装置300は、中間成形体390の粗表面395あるいは上述した最大山高さ(Rp)または最大山深さ(Rv)の要件を満たさない表面に融着された薄膜状成形体380の表面にさらに薄膜状成形体380を融着させて、薄膜状成形体380による複数の層を形成してもよい。これにより、表面の強度をより高めた樹脂成形体を得ることができる。
このとき、中間成形体390の表面に対して薄膜状成形体380を融着させていく向きは、特に限定されない。薄膜状成形体380を複数層に融着させていくとき、融着装置300は、強化繊維が配向された向きが同じであるような層の組み合わせが形成されるように、薄膜状成形体380を融着させていく向きを層間で整列させてもよいし、強化繊維が配向された向きが異なる層の組み合わせが形成されるように、薄膜状成形体380を融着させていく向きを層間で変更してもよい。樹脂成形体の曲げやすさおよび耐圧縮性をいずれも高める観点からは、融着装置300は、隣接する2つの層における強化繊維が配向された向きが異なるような層の組み合わせが形成されるように、各層を形成するときの薄膜状成形体380を融着させていく向きを変更することが好ましい。
2.樹脂成形体
図4Aは、本発明の一実施形態に関する、樹脂成形体を製造するために用いる中間成形体の断面形状を示す模式図であり、図4Bおよび図4Cは、図4Aに示す中間成形体を用いて上述した方法により製造された樹脂成形体の断面形状を示す模式図である。なお、図4A~図4Cは、MEX法により造形された中間成形体、および当該中間成形体の粗表面にテープ状の薄膜状成形体を融着させてなる樹脂成形体の断面図を示しているが、PBF法などの他の付加造形方法により造形された中間成形体の粗表面にテープ状の薄膜状成形体をレーザーの照射により融着させて樹脂成形体を製造したときも、製造された樹脂成形体の断面図も、中間層の内部構成以外は図4Bおよび図4Cと略同様である。
図4Aは、本発明の一実施形態に関する、樹脂成形体を製造するために用いる中間成形体の断面形状を示す模式図であり、図4Bおよび図4Cは、図4Aに示す中間成形体を用いて上述した方法により製造された樹脂成形体の断面形状を示す模式図である。なお、図4A~図4Cは、MEX法により造形された中間成形体、および当該中間成形体の粗表面にテープ状の薄膜状成形体を融着させてなる樹脂成形体の断面図を示しているが、PBF法などの他の付加造形方法により造形された中間成形体の粗表面にテープ状の薄膜状成形体をレーザーの照射により融着させて樹脂成形体を製造したときも、製造された樹脂成形体の断面図も、中間層の内部構成以外は図4Bおよび図4Cと略同様である。
図4Aに示すように、中間成形体390は、粗表面395を有する。そして、図4Bおよび図4Cに示すように、中間成形体390の粗表面395に薄膜状成形体を融着させて上述した方法により製造された樹脂成形体400は、中間成形体390に由来する内部層410と、上記薄膜状成形体に由来する表面層420と、を有する。中間成形体の粗表面395がレーザー照射部334によるレーザー照射により溶融し、薄膜状成形体380が融着されると同時に圧下ローラー340による圧縮力が作用することにより平坦化される。なお、図4Bは、融着された薄膜状成形体の層数が1層の状態を示し、図4Cは、融着された薄膜状成形体の層数が複数の状態を示す。図4Bに示すように、融着された薄膜状成形体の表面層420にレーザー照射することで420が再び溶融するのみでなく、薄膜状であるため粗表面395も再び溶融して2層目の薄膜状成形体380が融着されると同時に圧下ローラー340による圧縮力が作用することによりさらに平坦化される。図4Cに示すように2層、かつより多くの層を積層するほど、表面層420の外表面はより平坦になる。
内部層410は、樹脂成形体の内部を構成する層である。たとえば、MEX法により中間成形体が造形されたときは、内部層410は、樹脂組成物の薄層が層間で融着して積層してなる層である。また、PBF法により中間成形体が造形されたときは、内部層410は、樹脂組成物の粒子が粒子間で焼結または融着してなる層である。
表面層420は、内部層410に融着されて、樹脂成形体の内部層410よりも外表面側に配置される、配列された強化繊維を含む層である。表面層420は、中間成形体が有する粗表面を被覆する位置に配置される。たとえば、内部層410がMEX法により造形された中間成形体に由来するときは、表面層420は、内部層410を構成する積層された複数の層に接して配置される。また、内部層410がPBF法により造形された中間成形体に由来するときは、表面層420は、内部層410を構成する焼結または融着された複数の粒子に接して配置される。
表面層420において、上記強化繊維は、一方向に配列されて集束された繊維束となって、薄膜状成形体が融着されていった方向に沿って延在する。典型的には、表面層420は、融着させた薄膜状成形体に由来する複数の繊維束を含む。融着された薄膜状成形体の表面にさらに薄膜状成形体を融着させたときなどには、表面層420は、表面層420の内部に、内部層410との境界から樹脂成形体400の外部(表面)に向けて積層された複数の層を含んでもよい。このとき、上記複数の層のそれぞれは、平面方向に拡散された複数の繊維束を含んでもよい。また、上記複数の層は、繊維束を構成する強化繊維が配列された向きが層ごとに異なっていてもよい。
図4A~図4Cから明らかなように、中間成形体390の粗表面395は、薄膜状成形体と溶着する際の溶融により、その最大山高さ(Rp)および最大山深さ(Rv)が小さくなるように変形している。つまり、図4Aに示した中間成形体390の粗表面395が有する凹凸の大きさ(図4AのA-A)が、薄膜状成形体の融着によって減少して、図4Bに示すように樹脂成形体400が有する内部層410と表面層420との界面における凹凸の大きさは、より小さくなっている(図4BのB-B)。そして、融着させた薄膜状成形体380の層をより多くすると、樹脂成形体400が有する内部層410と表面層420との界面における凹凸の大きさは、さらに小さくなっていく(図4CのC-C)。
このように、中間成形体390に対して薄膜状成形体を溶着させることにより、粗表面395の溶融および変形により、粗表面395が有する谷の底まで薄膜状成形体が侵入することができると考えられる。これにより、中間成形体390と薄膜状成形体とは、互いによりよく溶融しあい、かつ隙間なく接合されて、より強固に接着されると考えられる。
また、樹脂成形体400は、内部層410と表面層420との界面が溶融状態を経て固化しているため完全に融着されている。そのため、樹脂成形体400は、内部層410と表面層420とが剥離しにくく、上記薄膜状成形体に由来する表面層420の45°剥離試験における剥離強度が4000N/m以上である。
剥離強度は、それぞれの中間成形体にテーププレースメントを行う時、端部を溶着させずに残し、測定装置に把持させて試験すれば良い。端部まで溶着している場合には、端部を丁寧に剥離し、剥離した部分を測定装置に把持させて試験すれば良い。
以下、実施例を参照して本発明を更に具体的に説明するが、本発明の範囲は実施例の記載に限定されない。
1.中間成形体の作製
1-1.MEX法による中間成形体の作製
60質量部のプロピレン重合体(プライムポリマー社製、R350G)と、35質量部のガラス繊維のチョップドストランド(日本電気硝子社製、HP3273)と、5質量部の熱可塑性エラストマー(三井化学社製、A1040S、α-オレフィン系のランダム共重合体)、カーボンブラックを含有するマスターバッチ(株式会社DIC製PEONY BLACK BMB-16117:カーボンブラック含有量40%)と、をカーボンブラックの含有量が樹脂組成物全体の1質量%となるように調整したものを2軸押出機で混合して、樹脂組成物を得た。
1-1.MEX法による中間成形体の作製
60質量部のプロピレン重合体(プライムポリマー社製、R350G)と、35質量部のガラス繊維のチョップドストランド(日本電気硝子社製、HP3273)と、5質量部の熱可塑性エラストマー(三井化学社製、A1040S、α-オレフィン系のランダム共重合体)、カーボンブラックを含有するマスターバッチ(株式会社DIC製PEONY BLACK BMB-16117:カーボンブラック含有量40%)と、をカーボンブラックの含有量が樹脂組成物全体の1質量%となるように調整したものを2軸押出機で混合して、樹脂組成物を得た。
AFPT社製、MEX造形装置(Robot:IRB 6640-185/2.8(ABB Ltd) のアームに押出機(Dohle Extrusionstechnik GmbH社製 ExOn 8に3mmのノズルを取り付けた物)を使用して、上記樹脂組成物を220℃に加熱して溶融させた状態でφ3mmのノズルからステージ上に押し出し、幅5mm、長さ500mm、高さ37.5mmの寸法に積層させた中間成形体F1を作製した。ノズルの移動速度は 0.038m/s、押出機の吐出量は1kg/h、1層の高さは1.5mm、幅は5mmで積層数は25層とした。
1-2.SLS法による中間成形体の作製
1-1に記載の樹脂組成物を粉砕し、平均粒径100μmのパウダー状にしたものを用い、SLS法の造形装置として、RICOH AM S5500pを使用して、中間成形体F1と同形状の中間成形体S1を造形した。プロセス温度は、230°とした。
1-1に記載の樹脂組成物を粉砕し、平均粒径100μmのパウダー状にしたものを用い、SLS法の造形装置として、RICOH AM S5500pを使用して、中間成形体F1と同形状の中間成形体S1を造形した。プロセス温度は、230°とした。
2.薄膜状成形体の作製
(サイジング剤の除去)
炭素繊維束(三菱レイヨン株式会社製、商品名パイロフィルTR50S12L、フィラメント数12000本、ストランド強度5000MPa、ストランド弾性率242GPa)をアセトン中に浸漬し、10分間超音波処理した後、炭素繊維束をアセトンから引き上げ、さらに3回アセトンで洗浄し、室温で8時間乾燥した。
(サイジング剤の除去)
炭素繊維束(三菱レイヨン株式会社製、商品名パイロフィルTR50S12L、フィラメント数12000本、ストランド強度5000MPa、ストランド弾性率242GPa)をアセトン中に浸漬し、10分間超音波処理した後、炭素繊維束をアセトンから引き上げ、さらに3回アセトンで洗浄し、室温で8時間乾燥した。
(エマルションの調製)
プロピレン系重合体(A)として、GPCで測定した重量平均分子量(Mw)が120,000である、融点を持たないプロピレン・ブテン・エチレン共重合体を用いた。プロピレン系重合体(B)として、96質量部のプロピレン・ブテン共重合体、4質量部の無水マレイン酸、および重合開始剤としての0.4質量部の日油株式会社製、パーヘキサ25B(「パーヘキサ」は同社の登録商標)を混合し、加熱温度160℃、2時間で変性を行って得られた無水マレイン酸変性プロピレン系重合体(重量平均分子量(Mw)=27,000、酸価:45mg-KOH/g、無水マレイン酸含有率:4質量%、融点:140℃)を用いた。100質量部のプロピレン系重合体(A)と、10質量部のプロピレン系重合体(B)と、界面活性剤としての3質量部のオレイン酸カリウムと、を混合して混合物を得た。上記混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30,L/D=40)のホッパーより3000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給しながら、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して、固形分濃度が45%であるエマルションを得た。
プロピレン系重合体(A)として、GPCで測定した重量平均分子量(Mw)が120,000である、融点を持たないプロピレン・ブテン・エチレン共重合体を用いた。プロピレン系重合体(B)として、96質量部のプロピレン・ブテン共重合体、4質量部の無水マレイン酸、および重合開始剤としての0.4質量部の日油株式会社製、パーヘキサ25B(「パーヘキサ」は同社の登録商標)を混合し、加熱温度160℃、2時間で変性を行って得られた無水マレイン酸変性プロピレン系重合体(重量平均分子量(Mw)=27,000、酸価:45mg-KOH/g、無水マレイン酸含有率:4質量%、融点:140℃)を用いた。100質量部のプロピレン系重合体(A)と、10質量部のプロピレン系重合体(B)と、界面活性剤としての3質量部のオレイン酸カリウムと、を混合して混合物を得た。上記混合物を2軸スクリュー押出機(池貝鉄工株式会社製、PCM-30,L/D=40)のホッパーより3000g/時間の速度で供給し、同押出機のベント部に設けた供給口より、20%の水酸化カリウム水溶液を90g/時間の割合で連続的に供給しながら、加熱温度210℃で連続的に押出した。押出した樹脂混合物を、同押出機口に設置したジャケット付きスタティックミキサーで110℃まで冷却し、さらに80℃の温水中に投入して、固形分濃度が45%であるエマルションを得た。
(強化繊維束の作製)
ローラー含浸法を用いて、サイジング剤を除去した上記炭素繊維束に上記エマルションを付着させた。次いで、オンラインで130℃、2分乾燥して低沸点成分を除去し、強化繊維束を得た。エマルションの付着量は0.87%であった。強化繊維束の毛羽立ち性は合格であった。
ローラー含浸法を用いて、サイジング剤を除去した上記炭素繊維束に上記エマルションを付着させた。次いで、オンラインで130℃、2分乾燥して低沸点成分を除去し、強化繊維束を得た。エマルションの付着量は0.87%であった。強化繊維束の毛羽立ち性は合格であった。
(繊維強化樹脂シートの作製)
57質量部の上記強化繊維束と、43質量部のマトリックス樹脂と、を含む樹脂組成物を調製した。上記マトリックス樹脂は、未変性プロピレン樹脂(株式会社プライムポリマー製、プライムポリプロJ106MG、融点160℃)と、無水マレイン酸を0.5質量%グラフトした変性ポリプロピレン(ASTM D1238に準じて190℃、荷重2.16kgで測定したメルトフローレートが9.1g/10分、融点155℃)と、を含んでいた。上記マトリックス樹脂の調製に用いた上記未変性プロピレン樹脂と上記変性ポリプロピレンとの質量比(未変性プロピレン樹脂/変性ポリプロピレン)は、90/10だった。また、上記マトリックス樹脂の融点は、160℃だった。上記マトリックス樹脂から、常法により、繊維が一方向に配向した繊維強化樹脂シート(以下、一方向性シートとも言う)を作成した。
57質量部の上記強化繊維束と、43質量部のマトリックス樹脂と、を含む樹脂組成物を調製した。上記マトリックス樹脂は、未変性プロピレン樹脂(株式会社プライムポリマー製、プライムポリプロJ106MG、融点160℃)と、無水マレイン酸を0.5質量%グラフトした変性ポリプロピレン(ASTM D1238に準じて190℃、荷重2.16kgで測定したメルトフローレートが9.1g/10分、融点155℃)と、を含んでいた。上記マトリックス樹脂の調製に用いた上記未変性プロピレン樹脂と上記変性ポリプロピレンとの質量比(未変性プロピレン樹脂/変性ポリプロピレン)は、90/10だった。また、上記マトリックス樹脂の融点は、160℃だった。上記マトリックス樹脂から、常法により、繊維が一方向に配向した繊維強化樹脂シート(以下、一方向性シートとも言う)を作成した。
具体的には、上記強化繊維束を開繊して加熱し、上記加熱された強化繊維束と押出機により溶融させた上記マトリックス樹脂とをTダイにより膜状に成形し、離型紙に挟んで加圧ローラーにて加熱および加圧して上記マトリックス樹脂を強化繊維束に含浸させ、その後冷却および固化して一方向性シートを得た。押出機及びTダイの温度は250℃、加圧ロールの温度は275℃とした。得られた一方向性シートは、厚さが130μm、繊維体積分率Vfが0.4であった。
(テープ状の薄膜状成形体の作製)
上記一方向性シートを、幅12mmとなるように上記炭素繊維の配列方向に切断して、テープ状の薄膜状成形体を得た。
上記一方向性シートを、幅12mmとなるように上記炭素繊維の配列方向に切断して、テープ状の薄膜状成形体を得た。
3.樹脂成形体の作製(テーププレースメント成形)
レーザー融着装置(AFPT社製、STWH INB)を用いて、上記中間成形体の表面に、上記テープ状の薄膜状成形体を、単層または複数層で融着させて、樹脂成形体を得た。このときのレーザーの波長は960~1070nmであり、ヘッドの移動速度は0.5m/秒、設定温度は、230℃とした。このとき、テープの貼着方向は、中間成形体の側周面については側周面の周方向と並行になるように行い、上面および下面については長さ方向と並行になるように行った。
レーザー融着装置(AFPT社製、STWH INB)を用いて、上記中間成形体の表面に、上記テープ状の薄膜状成形体を、単層または複数層で融着させて、樹脂成形体を得た。このときのレーザーの波長は960~1070nmであり、ヘッドの移動速度は0.5m/秒、設定温度は、230℃とした。このとき、テープの貼着方向は、中間成形体の側周面については側周面の周方向と並行になるように行い、上面および下面については長さ方向と並行になるように行った。
中間成形体F1の表面の全面に薄膜状成形体を単層で溶着させて、樹脂成形体F1を得た。
中間成形体F1の表面の全面に薄膜状成形体を2層溶着させて、樹脂成形体F2を得た。
中間成形体S1の表面の全面に薄膜状成形体を単層で溶着させて、樹脂成形体S1を得た。
4.測定および評価
上記樹脂成形体の表面粗さ、剥離強度および界面形状を、以下の方法で測定した。
上記樹脂成形体の表面粗さ、剥離強度および界面形状を、以下の方法で測定した。
4-1.表面粗さ
株式会社東京精密製 表面粗さ試験機 サ-フコム1400を使用し、JIS B 0601(2013年)に準じて、以下の条件で、中間成形体F1、樹脂成形体F1、樹脂成形体F2、中間成形体S1,および樹脂成形体F2の算術平均粗さ(Ra)、最大山高さ(Rp)、および最大谷高さ(Rv)を測定した。
接触針式:先端半径が5μmの測定子を使用
長さ:12.5mm
カットオフ:2.5mm
速度:0.15mm/s
株式会社東京精密製 表面粗さ試験機 サ-フコム1400を使用し、JIS B 0601(2013年)に準じて、以下の条件で、中間成形体F1、樹脂成形体F1、樹脂成形体F2、中間成形体S1,および樹脂成形体F2の算術平均粗さ(Ra)、最大山高さ(Rp)、および最大谷高さ(Rv)を測定した。
接触針式:先端半径が5μmの測定子を使用
長さ:12.5mm
カットオフ:2.5mm
速度:0.15mm/s
4-2.剥離強度
それぞれの中間成形体にテーププレースメントを行う時、上記テープ状の薄膜状成形体の端部を200mm中間成形体に溶着させずに残して、樹脂成形体を製造した。樹脂成形体のテーププレースメントされている面を上面として、下面を固定し、テープ先端をばねばかりに取り付けて45°の角度で引張り、薄膜状成形体を強制的に剥離したときの荷重を記録し、平均剥離力を剥離面の幅で規格化することにより剥離強度(N/m)を測定した。
それぞれの中間成形体にテーププレースメントを行う時、上記テープ状の薄膜状成形体の端部を200mm中間成形体に溶着させずに残して、樹脂成形体を製造した。樹脂成形体のテーププレースメントされている面を上面として、下面を固定し、テープ先端をばねばかりに取り付けて45°の角度で引張り、薄膜状成形体を強制的に剥離したときの荷重を記録し、平均剥離力を剥離面の幅で規格化することにより剥離強度(N/m)を測定した。
4-3.曲げ強度
中間成形体F1、樹脂成形体F1、樹脂成形体F2、中間成形体S1,および樹脂成形体F2を長さ51mm、高さ13mmに切断して、試験片とした。
中間成形体F1、樹脂成形体F1、樹脂成形体F2、中間成形体S1,および樹脂成形体F2を長さ51mm、高さ13mmに切断して、試験片とした。
ASTM D790に準じて、試験片厚みに応じて、試験速度1.2~1.3mm/分、スパン間距離44~46mmの条件で曲げ強度(MPa)を測定した。
4-4.曲げ弾性率
ASTM D790に準じて、試験片厚みに応じて、試験速度1.2~1.3mm/分、スパン間距離44~46mmの条件で曲げ弾性率(MPa)を測定した。
ASTM D790に準じて、試験片厚みに応じて、試験速度1.2~1.3mm/分、スパン間距離44~46mmの条件で曲げ弾性率(MPa)を測定した。
結果を表1に示す。
JIS B0601に準じて測定される最大山高さ(Rp)が10μm以上5000μmであるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μmである粗表面を有する、樹脂組成物の中間成形体の、上記粗表面に、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体をレーザーによる照射で融着させことにより、より平滑な表面を有する樹脂成形体を作製することができた。
本出願は、2018年12月28日出願の日本国出願番号2018-248105号に基づく優先権を主張する出願であり、当該出願の特許請求の範囲、明細書および図面に記載された内容は本出願に援用される。
本発明の樹脂成形体の製造方法によれば、樹脂成形体を製造するための付加造形方法の種類によらず、付加造形方法で造形された造形体に特有の表面の凹凸を解消して、より滑らかな表面を有する樹脂成形体を得ることができる。そのため、本発明の樹脂成形体の製造方法は、付加造形方法により造形された造形物を使用できる領域を拡大し、当分野のさらなる普及に寄与すると期待される。
110 ノズル
120 ステージ
130 中間成形体
135 粗表面
212 レーザー発振源
214 レーザー照射部
220 ステージ
230 中間成形体
235a、235b 粗表面
300 融着装置
310 収容部
320a、320b ガイドローラー
332 レーザー発振源
334 レーザー照射部
340 圧下ローラー
350 融着ユニット
360 保持ステージ
380 薄膜状成形体
390 中間成形体
395 粗表面
400 樹脂成形体
410 内部層
420 表面層
120 ステージ
130 中間成形体
135 粗表面
212 レーザー発振源
214 レーザー照射部
220 ステージ
230 中間成形体
235a、235b 粗表面
300 融着装置
310 収容部
320a、320b ガイドローラー
332 レーザー発振源
334 レーザー照射部
340 圧下ローラー
350 融着ユニット
360 保持ステージ
380 薄膜状成形体
390 中間成形体
395 粗表面
400 樹脂成形体
410 内部層
420 表面層
Claims (14)
- 樹脂組成物の中間成形体に薄膜状成形体を融着させる、樹脂成形体の製造方法であって、
前記中間成形体は、JIS B0601に準じて測定される最大山高さ(Rp)が10μm以上5000μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上5000μm以下である粗表面を有する、樹脂組成物の中間成形体であり、
前記薄膜状成形体は、一方向に配列された強化繊維を含む樹脂組成物の薄膜状成形体であり、
前記薄膜状成形体は、前記中間成形体の前記粗表面に、レーザーによる照射で融着される、
樹脂成形体の製造方法。 - 前記中間成形体は、熱可塑性樹脂を含む樹脂組成物の成形体である、請求項1に記載の樹脂成形体の製造方法。
- 前記熱可塑性樹脂は、プロピレン系重合体を含む、請求項2に記載の樹脂成形体の製造方法。
- 前記熱可塑性樹脂は、プロピレン系重合体およびα-オレフィン系重合体(ただし、プロピレン系重合体を除く)を含む、請求項2に記載の樹脂成形体の製造方法。
- 前記中間成形体は、前記薄膜状成形体と同じ種類の樹脂を含む樹脂組成物の成形体である、請求項1~4のいずれか1項に記載の樹脂成形体の製造方法。
- 前記融着させるときに、前記中間成形体を構成する樹脂組成物および前記薄膜状成形体を含む樹脂組成物の少なくとも一方が溶融する温度に、前記中間成形体または前記薄膜状成形体が加熱される条件で、前記レーザーを前記中間成形体または前記薄膜状成形体に照射する、請求項1~5のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体は、前記融着ときに照射されるレーザーの波長と同一の波長の光を吸収する色素を含む樹脂組成物の成形体である、請求項1~6のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体の前記粗表面は、JIS B 0601に準じて測定される最大山高さ(Rp)が20μm以上450μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が20μm以上450μm以下である、請求項1~7のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体の前記粗表面は、JIS B 0601に準じて測定される最大山高さ(Rp)が10μm以上100μm以下であるか、またはJISB 0601に準じて測定される最大山深さ(Rv)が10μm以上100μm以下である、請求項1~7のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体の前記粗表面は、JIS B 0601に準じて測定される算術平均粗さRaが5μm以上1250μm以下である、請求項1~9のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体は、付加造形方法で製造された樹脂組成物の成形体である、請求項1~10のいずれか1項に記載の樹脂成形体の製造方法。
- 前記中間成形体は、材料押出(MEX)法または粉末床溶融結合(PBF)法で製造された樹脂組成物の成形体である、請求項11に記載の樹脂成形体の製造方法。
- 樹脂組成物の薄層が層間で融着して積層してなるか、または樹脂組成物の粒子が粒子間で焼結または融着してなる内部層と、
前記積層された複数の層に接して配置され、または前記焼結または融着された複数の粒子に接して配置され、かつ、前記内部層に融着された、配列された強化繊維を含む樹脂組成物からなる表面層と、
を有する樹脂成形体。 - 前記内部層と前記表面層とは、その界面が融着しており、45°剥離試験における前記表面層の剥離強度が4000N/m以上である、請求項13に記載の樹脂成形体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/418,328 US20220063185A1 (en) | 2018-12-28 | 2019-12-25 | Manufacturing method for resin molded body and resin molded body |
JP2020563346A JPWO2020138174A1 (ja) | 2018-12-28 | 2019-12-25 | 樹脂成形体の製造方法および樹脂成形体 |
EP19903901.7A EP3904058A4 (en) | 2018-12-28 | 2019-12-25 | METHOD OF MANUFACTURING RESIN CAST BODY, AND RESIN CAST BODY |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018248105 | 2018-12-28 | ||
JP2018-248105 | 2018-12-28 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020138174A1 true WO2020138174A1 (ja) | 2020-07-02 |
Family
ID=71125756
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/050838 WO2020138174A1 (ja) | 2018-12-28 | 2019-12-25 | 樹脂成形体の製造方法および樹脂成形体 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220063185A1 (ja) |
EP (1) | EP3904058A4 (ja) |
JP (1) | JPWO2020138174A1 (ja) |
TW (1) | TW202037481A (ja) |
WO (1) | WO2020138174A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7176155B1 (ja) | 2022-09-21 | 2022-11-21 | 城東テクノ株式会社 | 立体造形装置用樹脂組成物、立体造形装置用フィラメント、及び造形物 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10520923B2 (en) * | 2018-05-22 | 2019-12-31 | Mantle Inc. | Method and system for automated toolpath generation |
US12037499B2 (en) * | 2019-12-11 | 2024-07-16 | The Boeing Company | Processable polymer, method, and apparatus for additive manufacture |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002331588A (ja) * | 2001-05-11 | 2002-11-19 | Honda Motor Co Ltd | レーザ溶着方法 |
JP2011224989A (ja) * | 2010-04-01 | 2011-11-10 | Tokyo Fluid Research Co Ltd | 複次曲面サンドイッチパネル |
JP2015139977A (ja) | 2014-01-30 | 2015-08-03 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形物 |
JP2016183709A (ja) * | 2015-03-26 | 2016-10-20 | 株式会社明治ゴム化成 | 高圧ガス貯蔵容器とその製造方法 |
JP2017100319A (ja) * | 2015-11-30 | 2017-06-08 | トヨタ自動車株式会社 | 樹脂体及び樹脂体の製造方法 |
JP2018501979A (ja) * | 2014-11-20 | 2018-01-25 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 強化構造体を成形体表面に形成する装置 |
JP2018035461A (ja) | 2016-08-31 | 2018-03-08 | 三菱ケミカル株式会社 | モノフィラメント及びその製造方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0717015B2 (ja) * | 1991-01-28 | 1995-03-01 | 積水化成品工業株式会社 | 発泡体の積層方法 |
JP2563694B2 (ja) * | 1991-07-22 | 1996-12-11 | 三菱電機株式会社 | 高熱放射性繊維強化プラスチックの製造方法 |
JP4770298B2 (ja) * | 2005-07-07 | 2011-09-14 | 東レ株式会社 | プリフォーム用基材、プリフォーム、およびこれらを用いた繊維強化複合材料構造物 |
JP2016083875A (ja) * | 2014-10-28 | 2016-05-19 | 東レ株式会社 | 積層シートおよびその製造方法 |
US10625486B2 (en) * | 2016-06-20 | 2020-04-21 | Johns Manville | Methods of producing thermoplastic composites using fabric-based thermoplastic prepregs |
-
2019
- 2019-12-25 JP JP2020563346A patent/JPWO2020138174A1/ja active Pending
- 2019-12-25 WO PCT/JP2019/050838 patent/WO2020138174A1/ja unknown
- 2019-12-25 US US17/418,328 patent/US20220063185A1/en not_active Abandoned
- 2019-12-25 EP EP19903901.7A patent/EP3904058A4/en not_active Withdrawn
- 2019-12-26 TW TW108147889A patent/TW202037481A/zh unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002331588A (ja) * | 2001-05-11 | 2002-11-19 | Honda Motor Co Ltd | レーザ溶着方法 |
JP2011224989A (ja) * | 2010-04-01 | 2011-11-10 | Tokyo Fluid Research Co Ltd | 複次曲面サンドイッチパネル |
JP2015139977A (ja) | 2014-01-30 | 2015-08-03 | セイコーエプソン株式会社 | 三次元造形物の製造方法および三次元造形物 |
JP2018501979A (ja) * | 2014-11-20 | 2018-01-25 | カウテックス テクストロン ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | 強化構造体を成形体表面に形成する装置 |
JP2016183709A (ja) * | 2015-03-26 | 2016-10-20 | 株式会社明治ゴム化成 | 高圧ガス貯蔵容器とその製造方法 |
JP2017100319A (ja) * | 2015-11-30 | 2017-06-08 | トヨタ自動車株式会社 | 樹脂体及び樹脂体の製造方法 |
JP2018035461A (ja) | 2016-08-31 | 2018-03-08 | 三菱ケミカル株式会社 | モノフィラメント及びその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3904058A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7176155B1 (ja) | 2022-09-21 | 2022-11-21 | 城東テクノ株式会社 | 立体造形装置用樹脂組成物、立体造形装置用フィラメント、及び造形物 |
WO2024062693A1 (ja) * | 2022-09-21 | 2024-03-28 | 城東テクノ株式会社 | 立体造形装置用樹脂組成物、立体造形装置用フィラメント、造形物、及び立体造形装置用ペレット |
JP2024044385A (ja) * | 2022-09-21 | 2024-04-02 | 城東テクノ株式会社 | 立体造形装置用樹脂組成物、立体造形装置用フィラメント、及び造形物 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020138174A1 (ja) | 2021-10-21 |
EP3904058A1 (en) | 2021-11-03 |
EP3904058A4 (en) | 2022-09-28 |
TW202037481A (zh) | 2020-10-16 |
US20220063185A1 (en) | 2022-03-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020138174A1 (ja) | 樹脂成形体の製造方法および樹脂成形体 | |
US9605149B2 (en) | Fiber-reinforced thermoplastic-resin molding material and method of manufacturing fiber-reinforced thermoplastic-resin molding material | |
US10385174B2 (en) | Fiber reinforced thermoplastic resin molding material, and fiber reinforced thermoplastic resin molded article | |
KR102335716B1 (ko) | 플라스틱-금속 접합체 및 그 제조 방법 | |
JP5676080B2 (ja) | 有機繊維強化複合樹脂組成物および有機繊維強化複合樹脂成形品 | |
JP6123955B1 (ja) | 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 | |
JP6123956B1 (ja) | 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 | |
JP7262479B2 (ja) | 付加製造組成物 | |
JP6199655B2 (ja) | 複合成形品 | |
JP6766877B2 (ja) | 繊維強化熱可塑性樹脂成形品 | |
JP2009114332A (ja) | 長繊維強化複合樹脂組成物および成形品 | |
JP2017082215A (ja) | 繊維強化熱可塑性樹脂成形品および繊維強化熱可塑性樹脂成形材料 | |
JP7273795B2 (ja) | 熱可塑性樹脂組成物、繊維強化プラスチック成形用材料および成形物 | |
JP2022167988A (ja) | 樹脂組成物の製造方法 | |
KR102401427B1 (ko) | 복합 적층체 및 그의 제조 방법 | |
WO2018117182A1 (ja) | 加工品の製造方法および加工品 | |
JP2008138331A (ja) | オキシメチレン共重合体多層繊維 | |
JP2010155970A (ja) | 熱可塑性樹脂組成物 | |
KR102029382B1 (ko) | 복합재 및 이의 제조방법 | |
JP7543670B2 (ja) | 繊維強化熱可塑性樹脂成形品 | |
JP2014024969A (ja) | 繊維強化複合材料 | |
JP6996351B2 (ja) | 繊維強化熱可塑性樹脂組成物、繊維強化熱可塑性樹脂成形材料およびそれからなる成形品 | |
JP6255693B2 (ja) | 炭素繊維樹脂複合材成形体の製造方法 | |
JP2018161799A (ja) | 炭素繊維強化シートおよびその製造方法 | |
US11697274B2 (en) | Molded article and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19903901 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020563346 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019903901 Country of ref document: EP Effective date: 20210728 |