WO2020137924A1 - トリポード型等速自在継手 - Google Patents

トリポード型等速自在継手 Download PDF

Info

Publication number
WO2020137924A1
WO2020137924A1 PCT/JP2019/050225 JP2019050225W WO2020137924A1 WO 2020137924 A1 WO2020137924 A1 WO 2020137924A1 JP 2019050225 W JP2019050225 W JP 2019050225W WO 2020137924 A1 WO2020137924 A1 WO 2020137924A1
Authority
WO
WIPO (PCT)
Prior art keywords
tripod
roller
universal joint
type constant
constant velocity
Prior art date
Application number
PCT/JP2019/050225
Other languages
English (en)
French (fr)
Other versions
WO2020137924A8 (ja
Inventor
卓 板垣
達朗 杉山
将太 河田
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to US17/414,436 priority Critical patent/US12038050B2/en
Priority to CN201980083877.2A priority patent/CN113195915B/zh
Priority to EP19905147.5A priority patent/EP3904716B1/en
Publication of WO2020137924A1 publication Critical patent/WO2020137924A1/ja
Publication of WO2020137924A8 publication Critical patent/WO2020137924A8/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D3/00Yielding couplings, i.e. with means permitting movement between the connected parts during the drive
    • F16D3/16Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts
    • F16D3/20Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members
    • F16D3/202Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints
    • F16D3/205Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part
    • F16D3/2055Universal joints in which flexibility is produced by means of pivots or sliding or rolling connecting parts one coupling part entering a sleeve of the other coupling part and connected thereto by sliding or rolling members one coupling part having radially projecting pins, e.g. tripod joints the pins extending radially outwardly from the coupling part having three pins, i.e. true tripod joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • F16D2200/0021Steel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0038Surface treatment
    • F16D2250/0053Hardening
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S464/00Rotary shafts, gudgeons, housings, and flexible couplings for rotary shafts
    • Y10S464/904Homokinetic coupling
    • Y10S464/905Torque transmitted via radially extending pin

Definitions

  • the present invention relates to a tripod type constant velocity universal joint used for power transmission of automobiles and various industrial machines.
  • a sliding constant velocity universal joint is connected to the inboard side (center side in the vehicle width direction) of the intermediate shaft and the outboard side (end portion in the vehicle width direction). It is often the case that a fixed type constant velocity universal joint is connected to the side).
  • the sliding constant velocity universal joint here allows both angular displacement between the two axes and relative movement in the axial direction, while the fixed type constant velocity universal joint allows angular displacement between the two axes. However, relative movement in the axial direction between the two axes is not allowed.
  • a tripod type constant velocity universal joint is known as a sliding type constant velocity universal joint.
  • the tripod type constant velocity universal joint there are a single roller type and a double roller type.
  • a roller inserted into the track groove of the outer joint member is rotatably attached to the leg shaft of the tripod member via a plurality of needle rollers.
  • the double roller type includes a roller that is inserted into the track groove of the outer joint member and an inner ring that is fitted onto the leg shaft of the tripod member to rotatably support the roller.
  • the double roller type allows the roller to swing around the leg shaft, so compared to the single roller type, induced thrust (axial force induced by friction between parts inside the joint) and sliding It has the advantage that a reduction in resistance can be achieved.
  • An example of a double roller type tripod type constant velocity universal joint is described in, for example, Japanese Patent No. 3599618.
  • the tripod member may be made of a steel material having an increased carbon content, for example, carbon steel for machine structure such as S50C to S55C (see JIS G4051), and a hardened layer may be formed on the surface by induction hardening. Conceivable.
  • the steel material becomes hard due to the increase in the amount of carbon, so that the processing load when forming the tripod member by forging increases. Therefore, the forging equipment becomes large and the life of the forging die is shortened.
  • an object of the present invention is to improve durability of the axle of the tripod member while suppressing a rise in manufacturing cost.
  • the carbon content in the steel material is increased as compared with the steel material that has been conventionally used, and at the same time, the hardened layer is effectively hardened. It was found that it is effective to set the layer depth (critical hardness 600 HV) to be equal to or greater than the maximum shear stress depth according to the torque applied to the tripod type constant velocity universal joint.
  • the present invention made on the basis of the above findings is provided with three axially extending track grooves in the circumferential direction, and each track groove is provided with a pair of roller guide surfaces arranged to face each other in the circumferential direction.
  • a joint member a tripod member having three leg shafts protruding in the radial direction, a roller inserted into the track groove, and an inner ring externally fitted to the leg shaft and rotatably supporting the roller.
  • a roller unit including the roller and the inner ring is swingable and swingable with respect to the leg shaft, and the roller unit is movable in the axial direction of the outer joint member along the roller guide surface.
  • the tripod member In the tripod type constant velocity universal joint in which a hardened layer is formed on the surface of each axle of the tripod member by carburizing, quenching and tempering, the tripod member has a carbon content of 0.23% to 0.44%.
  • the effective hardened layer depth of the hardened layer is 600 HV as the limit hardness, where Ts torque is 0.3 times the minimum static torsional torque that causes the shaft connected to the tripod member to torsionally break. Is greater than or equal to the maximum shear stress depth when the Ts torque is applied.
  • the outer peripheral surface of the leg shaft has a shape that is straight in a vertical cross section and substantially elliptical in a horizontal cross section, and the inner peripheral surface of the inner ring is formed of a convex curved surface,
  • the outer peripheral surface of the leg shaft is in contact with the inner peripheral surface of the inner ring in a direction orthogonal to the axis of the joint, and forms a gap between the inner peripheral surface of the inner ring in the axial direction of the joint.
  • an outer joint member having track grooves extending in the axial direction at three locations in the circumferential direction, each track groove having a pair of roller guide surfaces arranged to face each other in the circumferential direction, and a radial direction.
  • a tripod member having three leg shafts projecting in the direction, and a roller rotatably attached to each leg shaft via a plurality of needle rollers, wherein the roller is the outer joint along the roller guide surface.
  • the tripod type constant velocity universal joint which is configured to be movable in the axial direction of the member and has a hardened layer formed on the surface of each leg shaft of the tripod member by carburizing, quenching and tempering, the tripod member has a carbon content of 0.23.
  • the hardened layer has a limit hardness of 600 HV, where Ts torque is 0.3 times the minimum static torsion torque that causes the shaft connected to the tripod member to undergo torsional breakage.
  • the effective hardened layer depth of is not less than the maximum shear stress depth when the Ts torque is applied.
  • the effective hardened layer depth By increasing the internal hardness after carburizing, quenching and tempering, the effective hardened layer depth can be increased. By setting the internal hardness to 513 HV or more, it becomes possible to obtain the effective hardened layer depth (critical hardness: 600 HV) which is equal to or more than the maximum shear stress depth as described above.
  • the surface hardness of the axle is preferably 653 HV or more in order to suppress the wear of the mating parts on the axle due to rolling.
  • FIG. 2 is a cross-sectional view taken along the line KK of FIG.
  • FIG. 2 is a cross-sectional view taken along the line LL of FIG.
  • It is a longitudinal cross-sectional view showing the state which the tripod type constant velocity universal joint of FIG. 1 took the operating angle.
  • It is a longitudinal section showing a hardened layer formed in a tripod member. It is a figure explaining surface pressure distribution of a contact ellipse and change of shear stress of the depth direction.
  • 6 is a graph showing a hardness distribution of a conventional product. It is a graph which shows the hardness distribution of an Example product. It is a table showing the measurement results of the effective hardened layer depth and the durability of the axle.
  • It is a cross-sectional view of a tripod type constant velocity universal joint according to another embodiment.
  • FIGS. 1 to 9 A first embodiment of a tripod type constant velocity universal joint according to the present invention will be described with reference to FIGS. 1 to 9.
  • the tripod type constant velocity universal joint 1 of this embodiment shown in FIGS. 1 to 4 is a double roller type.
  • 1 is a longitudinal sectional view showing a double roller type tripod type constant velocity universal joint
  • FIG. 2 is a partial transverse sectional view taken along the line KK of FIG. 3 is a cross-sectional view taken along the line LL in FIG. 1
  • FIG. 4 is a vertical cross-sectional view showing the tripod type constant velocity universal joint at an operating angle.
  • the tripod type constant velocity universal joint 1 is mainly composed of an outer joint member 2, a tripod member 3 as an inner joint member, and a roller unit 4 as a torque transmission member.
  • the outer joint member 2 has a cup shape with one end opened, and three linear track grooves 5 extending in the axial direction are formed on the inner peripheral surface at equal intervals in the circumferential direction.
  • Roller guide surfaces 6 are arranged in each track groove 5 so as to face each other in the circumferential direction of the outer joint member 2 and extend in the axial direction of the outer joint member 2.
  • the tripod member 3 and the roller unit 4 are housed inside the outer joint member 2.
  • the tripod member 3 integrally has a trunnion body 3a and three leg shafts 7 (trunnion journals) projecting radially from the circumferential trisecting position of the trunnion body 3a.
  • the female spline 23 formed in the center hole 8 of the trunnion body 3a is fitted with the male spline 24 (see FIG. 1) formed on the shaft 9 as a shaft, so that the torque of the shaft 9 is reduced.
  • Communicatively coupled By engaging the retaining ring 10 attached to the tip of the shaft 9 with the end surface of the tripod member 3, the tripod member 3 is axially fixed to the shaft 9.
  • the roller unit 4 includes an outer ring 11 which is a roller, an annular inner ring 12 which is arranged inside the outer ring 11 and is fitted onto the leg shaft 7, and between the outer ring 11 and the inner ring 12.
  • the main part is composed of a large number of needle rollers 13 interposed, and is housed in the track groove 5 of the outer joint member 2.
  • the roller unit 4 including the inner ring 12, the needle rollers 13, and the outer ring 11 has a structure in which washers 14 and 15 do not separate the roller unit 4.
  • the outer peripheral surface of the outer ring 11 is a convex curved surface having an arc having a center of curvature on the axis of the leg shaft 7 as a generatrix.
  • the outer peripheral surface of the outer ring 11 is in angular contact with the roller guide surface 6.
  • the needle roller 13 has a cylindrical inner peripheral surface of the outer ring 11 as an outer raceway surface and a cylindrical outer peripheral surface of the inner ring 12 as an inner raceway surface, and is freely rollable between the outer raceway surface and the inner raceway surface. Is located in.
  • each leg shaft 7 of the tripod member 3 has a straight shape in a vertical cross section including the axis of the leg shaft 7. Further, as shown in FIG. 3, the outer peripheral surface of the leg shaft 7 has a substantially elliptical shape in a cross section orthogonal to the axis of the leg shaft 7.
  • the outer peripheral surface of the leg shaft 7 contacts the inner peripheral surface 12a of the inner ring 12 in a direction orthogonal to the axis of the joint, that is, in the direction of the major axis a. In the axial direction of the joint, that is, in the direction of the short axis b, a gap m is formed between the outer peripheral surface of the leg shaft 7 and the inner peripheral surface 12a of the inner ring 12.
  • the inner peripheral surface 12a of the inner ring 12 has a convex curved surface shape, specifically, a convex arc shape in a vertical cross section including the axis of the inner ring 12. Because of this fact and the cross-sectional shape of the leg shaft 7 being substantially elliptical as described above, and the predetermined gap m being provided between the leg shaft 7 and the inner ring 12, the inner ring 12 is It becomes possible to swing around. As described above, the inner ring 12 and the outer ring 11 are assembled so as to be rotatable relative to each other via the needle roller 13, so that the outer ring 11 is integrated with the inner ring 12 and swings with respect to the leg shaft 7. It is possible to move. That is, the axes of the outer ring 11 and the inner ring 12 can be tilted with respect to the axis of the leg shaft 7 within a plane including the axis of the leg shaft 7 (see FIG. 4 ).
  • the leg shaft 7 on the torque load side is The outer peripheral surface and the inner peripheral surface 12a of the inner ring 12 contact each other in a narrow area close to point contact. Therefore, the force for tilting the roller unit 4 is reduced, and the stability of the posture of the outer ring 11 is improved.
  • the tripod member 3 described above is manufactured from a steel material through the main steps of forging ⁇ machining (turning) ⁇ carburizing and tempering ⁇ grinding of the outer peripheral surface of the stem 7.
  • the outer peripheral surface of the axle 7 can be finished by quenching steel cutting instead of grinding.
  • FIG. 5 is a cross-sectional view showing the hardened layer 16 formed on the tripod member 3.
  • the hardened layer 16 is formed on the outer peripheral surface of the leg shaft 7 of the tripod member 3 and the entire surface including the female spline 23.
  • the depth of the hardened layer 16 on the outer peripheral surface of the leg shaft 7 is larger than that in other regions. It is shallow as much as the allowance due to etc.
  • the machining allowance is usually as small as about 0.1 mm, the thickness of the hardened layer 16 is depicted uniformly on the entire surface in FIG.
  • the outer peripheral surface of the leg shaft 7 and the inner peripheral surface 12a of the inner ring 12 are pointed on the torque load side. Since the contact is made in the near region M, there is a problem that the surface pressure of the contact portion becomes high when a high torque load is applied. If the surface pressure becomes excessive, the durability of the leg shaft 7 will be reduced.
  • the idea is to form a hardened layer of high hardness deeply.
  • the amount of carbon in the steel material is increased as compared with the steel material used conventionally as the material of the tripod member 3, and at the same time, the effective hardened layer depth of the hardened layer is changed to a tripod type constant velocity universal joint.
  • the conventional tripod member 3 often uses chrome/molybdenum steel, which is a type of case hardening steel, as a raw material.
  • a steel material having a carbon content of more than 0.23% preferably a steel material having a carbon content of 0.24% or more, more preferably 0.32% or more
  • representing the carbon content” "%” means "mass%”
  • a steel material having a carbon content of 0.44% or less is used.
  • Examples of the case-hardening steel that meets this condition include chromium-molybdenum steel SCM435 or SCM440 specified in JIS G4053. Further, as the steel material, it is preferable to use so-called H steel (SCM435H, SCM440H) defined in JIS G4052, in which the hardenability is guaranteed.
  • H steel SCM435H, SCM440H
  • the carbon content of SCM435H is 0.32% to 0.39%
  • the carbon content of SCM440 is 0.37% to 0.44%.
  • case-hardening steel satisfies the above carbon content (0.23% to 0.44% or less)
  • use another type of steel material for example, chromium steel (SCr435, SCr440, etc.) specified in JIS G4053.
  • chromium steel SCr435, SCr440, etc.
  • H steel such as SCr435H and SCr440H as described above.
  • the carbon content of SCr435H is 0.32% to 0.39%
  • the carbon content of SCr440H is 0.37% to 0.44%.
  • the effective hardened layer depth H (critical hardness 600 HV) of the hardened layer 16 formed on the surface of the tripod member 3 is set to the tripod type constant velocity universal joint.
  • the maximum shear stress depth when the Ts torque is applied to 1 is Z or more (H ⁇ Z).
  • the "Ts torque” here is a value 0.3 times the minimum static torsional torque that causes the shaft 9 connected to the tripod member 3 to undergo torsional breakage.
  • the tripod type constant velocity universal joint 1 comes into contact with the outer peripheral surface of the leg shaft 7 which constitutes the contact portion M (see FIG. 3) on the load side with the inner peripheral surface 12a of the inner ring 12.
  • An ellipse arises.
  • the center of the contact ellipse is the maximum surface pressure Pmax.
  • the depth at which the maximum shear stress ⁇ max is generated in the direction directly below the leg axis (inner diameter direction of the leg axis 7) is the “maximum shear stress depth Z”.
  • the effective hardened layer depth means the distance from the surface of the steel material to the position of the limit hardness.
  • the limit hardness of the effective hardened layer is 550 HV, but "if the hardness at the position three times the distance from the surface to the hardened layer exceeds the Vickers hardness of 450 HV, 550 HV is agreed by the parties. It is also possible to use a limit hardness that exceeds ".
  • the effective hardened layer depth is defined as 600 HV. The harder the hardened layer 16 is, the more preferable it is from the viewpoint of durability of the axle 7. Therefore, it is preferable to define the limit hardness of the effective hardened layer depth to 653 HV or more.
  • the effective hardened layer depth By increasing the internal hardness after carburizing, quenching and tempering, the effective hardened layer depth can be increased. By setting the internal hardness to 513 HV or more, it becomes possible to obtain the effective hardened layer depth (critical hardness 600 HV) that is equal to or more than the maximum shear stress depth as described above.
  • the surface hardness of the axle 7 is preferably 653 HV or more in order to suppress wear of the mating component (inner ring 12 in this embodiment) due to rolling on the axle.
  • FIG. 7 and FIG. 8 are diagrams showing hardness distribution when the depth from the surface of the leg shaft is taken on the horizontal axis. The hardness is measured at a contact portion M of the outer peripheral surface of the leg shaft 7 with the inner peripheral surface 12a of the inner ring 12.
  • FIG. 7 is the hardness distribution of the conventional product
  • FIG. 8 is the hardness distribution of the example product using a high carbon content steel material (material equivalent to 0.34% carbon content).
  • the effective hardened layer depth when the hardness is 600 HV is represented by "A" in FIG. 7 and by "B" in FIG. As described above, it was revealed that the difference in the amount of carbon causes a difference in the effective hardened layer depth even when the carburizing, quenching and tempering are performed under the same processing conditions (A ⁇ B).
  • FIG. 9 shows the results obtained by actually measuring the effective hardened layer depth and evaluating the durability of the axle 7 for the conventional product (specification 1) and the two example products (specification 2).
  • the example product two types of steel materials, that is, a material equivalent to 0.34% carbon and a material equivalent to 0.41% carbon are used.
  • the limit hardness of the effective hardened layer depth is 600 HV.
  • the conventional product and the products of each example differ in the type of steel used, but the size and heat treatment (carburizing, quenching and tempering) conditions are the same.
  • carburizing and quenching the intermediate product of the tripod member is soaked and held at about 850°C for 1 hour, then heated to about 940°C, carburized at this temperature for 3 hours, and then cooled to about 860°C by furnace cooling. The procedure of lowering the temperature, holding the state for 30 minutes, and then oil quenching was adopted. Tempering is performed under the condition of holding at about 180° C. for 40 minutes.
  • the effective hardened layer depth is doubled (2.0 A) when a material having a carbon content of 0.34% is used as compared with the conventional effective hardened layer depth A.
  • the effective hardened layer depth was 2.5 times (2.5 A) when a material having a higher carbon content of 0.41% was used. It was also found that the durability of the axle reaches the target characteristic when the carbon content is 0.34% and reaches the target characteristic with a margin when the carbon content is 0.41%.
  • the effective hardened layer depth H of the hardened layer 16 can be set to the maximum shear stress depth Z or more when the Ts torque is applied to the tripod type constant velocity universal joint 1.
  • the carbon content is regulated to 0.44% or less, the forging formability of the tripod member 3 is not significantly deteriorated, and it is possible to prevent the forging cost of the tripod member 3 from rising sharply.
  • the effective hardened layer depth can be determined in a form that matches actual usage conditions. Therefore, regardless of the size of the tripod type constant velocity universal joint, it is possible to stably obtain the above-described effects.
  • the present invention is not limited to the embodiments described above, and can be applied to a double roller type tripod type constant velocity universal joint having another configuration.
  • the outer peripheral surface of the leg shaft 7 may be formed into a convex curved surface (for example, a convex arc shape in cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a cylindrical surface shape.
  • the outer peripheral surface of the leg shaft 7 may be formed into a convex curved surface (for example, a convex arc shape in cross section), and the inner peripheral surface 12a of the inner ring 12 may be formed into a concave spherical surface that fits with the outer peripheral surface of the leg shaft.
  • the washers 14 and 15 can be omitted by providing the collars at both ends of the inner diameter of the outer ring.
  • FIG. 10 is a cross-sectional view of a single roller type tripod type constant velocity universal joint 100 according to the second embodiment.
  • the tripod type constant velocity universal joint 100 mainly includes an outer joint member 102, a tripod member 103 as an inner joint member, a roller 111 as a torque transmitting member, and a needle roller 113 as a rolling element. It has a different configuration.
  • the outer joint member 102 is in the shape of a hollow cup having three track grooves 105 extending in the axial direction on the inner periphery thereof at three equally divided positions in the circumferential direction.
  • Roller guide surfaces 106 are formed on the side walls of each track groove 105 that are opposed to each other in the circumferential direction.
  • the roller guide surface 106 is formed of a part of the cylindrical surface, that is, a partial cylindrical surface.
  • the tripod member 103 has three leg shafts 107 protruding in the radial direction from the trunnion body at three circumferential positions.
  • the tripod member 103 is spline-fitted to the shaft so that torque can be transmitted.
  • a roller 111 is rotatably mounted around the cylindrical outer peripheral surface of the leg shaft 107 via a plurality of needle rollers 113.
  • the outer peripheral surface of the leg shaft 7 forms the inner raceway surface of the needle roller 113.
  • the inner diameter surface of the roller 111 is cylindrical and forms the outer raceway surface of the needle roller 113.
  • a retaining ring 112 is attached via an outer washer 115.
  • the needle roller 113 is restricted by the inner washer 114 and the outer washer 115 from moving in the axial direction of the leg shaft 107.
  • the roller 111 rotatably mounted on the leg shaft 7 of the tripod member 103 is rotatably guided to the roller guide surface 106 of the track groove 105 of the outer joint member 102.
  • the tripod member 103 is made of a steel material having a carbon content of 0.23% to 0.44% as in the first embodiment already described.
  • the shaft 9 connected to the tripod member 103 has a Ts torque of 0.3 times the minimum static torsional torque that causes torsional breakage, and the effective hardness of the hardened layer is 600 HV as the critical hardness.
  • the tripod type constant velocity universal joints 1 and 100 described above are not limited to the drive shafts of automobiles, but can be widely used in power transmission paths of automobiles and industrial equipment.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Heat Treatment Of Articles (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

トリポード型等速自在継手(1)は、トラック溝(5)を備える外側継手部材(2)と、半径方向に突出した三つの脚軸(7)を備えたトリポード部材(3)と、トラック溝(5)に挿入されたローラ(11)と、脚軸(7)に外嵌され、ローラ(11)を回転自在に支持するインナリング(12)とを備える。各脚軸(7)の表面に、浸炭焼入れ焼戻しにより硬化層(16)が形成される。トリポード部材(3)は、炭素含有量が0.23%~0.44%の鋼材で形成する。トリポード部材(3)に連結される軸(9)が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした硬化層(16)の有効硬化層深さ(H)を、Tsトルクを負荷した時の最大せん断応力深さ(Z)以上にする。

Description

トリポード型等速自在継手
 本発明は、自動車や各種産業機械の動力伝達用に用いられるトリポード型等速自在継手に関する。
 自動車の動力伝達系で使用されるドライブシャフトにおいては、中間軸のインボード側(車幅方向の中央側)に摺動式等速自在継手を結合し、アウトボード側(車幅方向の端部側)に固定式等速自在継手を結合する場合が多い。ここでいう摺動式等速自在継手は、二軸間の角度変位および軸方向相対移動の双方を許容するものであり、固定式等速自在継手は、二軸間での角度変位を許容するが、二軸間の軸方向相対移動は許容しないものである。
 摺動式等速自在継手としてトリポード型等速自在継手が公知である。このトリポード型等速自在継手としては、シングルローラタイプとダブルローラタイプとが存在する。シングルローラタイプは、外側継手部材のトラック溝に挿入されるローラを、トリポード部材の脚軸に複数の針状ころを介して回転可能に取り付けたものである。ダブルローラタイプは、外側継手部材のトラック溝に挿入されるローラと、トリポード部材の脚軸に外嵌して前記ローラを回転自在に支持するインナリングとを備えるものである。ダブルローラタイプは、ローラを脚軸に対して首振り揺動させることが可能となるため、シングルローラタイプに比べ、誘起スラスト(継手内部での部品間の摩擦により誘起される軸力)とスライド抵抗の低減を達成できるという利点を有する。ダブルローラタイプのトリポード型等速自在継手の一例が、例えば特許第3599618号公報に記載されている。
特許第3599618号公報
 特許文献1に記載されたダブルローラタイプのトリポード型等速自在継手では、トルク負荷側において、トリポード部材の脚軸の外周面とインナリングの内周面とが点に近い形で接触する。特に高負荷トルク時には、この接触部における面圧が高くなるため、脚軸外周面の耐久性に影響する。脚軸の耐久性を向上させることができれば、ローラの安定した動きを維持することが可能となり、振動特性の経時劣化をより防止することができる。
 脚軸の耐久性の向上のためには、脚軸の表面に形成した硬化層の深さを深くするのが有効となる。しかしながら、トリポード部材では、肌焼鋼に浸炭焼入れ焼戻しを適用して表面に硬化層を形成するのが一般的であるため、硬化層をより深くまで形成するためには、膨大な浸炭時間が必要となり、製造コストが嵩む。
 また、硬化層の深さを深くするにしても、脚軸の耐久性を確保する上でどの程度まで深くすべきか、についての検証は十分に進んでいない。
 他の対策として、トリポード部材を、炭素含有量を増やした鋼材、例えばS50C~S55C等の機械構造用炭素鋼(JIS G4051参照)で製作し、その表面に高周波焼入れにより硬化層を形成することも考えられる。しかしながら、この手法では、炭素量の増加により、鋼材が硬くなるため、トリポード部材を鍛造加工により成形する際の加工荷重が大きくなる。そのため、鍛造設備の大型化や鍛造金型寿命の低下を招く。
 そこで、本発明は、製造コストの高騰を抑制しつつトリポード部材の脚軸の耐久性を向上させることを目的とする。
 上記の課題を解決するには、既に述べたように、高硬度の硬化層をより深く形成することが有効となる。本発明者の検証と通じて、上記の課題を解決するためには、トリポード部材の素材として、従来使用していた鋼材よりも、鋼材中の炭素量を増やし、併せて、硬化層の有効硬化層深さ(限界硬さ600HV)をトリポード型等速自在継手に負荷されるトルクに応じた最大せん断応力深さ以上に設定することが有効である、との知見が得られた。
 以上の知見に基づいてなされた本発明は、円周方向の三カ所に軸方向に延びるトラック溝を備え、各トラック溝が円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、半径方向に突出した三つの脚軸を備えたトリポード部材と、前記トラック溝に挿入されたローラと、前記脚軸に外嵌され、前記ローラを回転自在に支持するインナリングとを備え、前記ローラと前記インナリングとを有するローラユニットが前記脚軸に対して首振り揺動可能であり、前記ローラユニットが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能に構成され、前記トリポード部材の各脚軸の表面に、浸炭焼入れ焼戻しにより硬化層が形成されたトリポード型等速自在継手において、前記トリポード部材が、炭素含有量が0.23%~0.44%の鋼材で形成され、前記トリポード部材に連結される軸が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした前記硬化層の有効硬化層深さが、前記Tsトルクを負荷した時の最大せん断応力深さ以上であることを特徴とする。
 かかる構成から、脚軸の耐久性を向上させることが可能となる。従って、ローラの動きが阻害される事態を抑制し、振動特性の経時劣化を防止することが可能となる。その一方で、鋼材の炭素量を0.44%以下に規制しているので、トリポード部材の鍛造成形性が極端に悪化することはなく、トリポード部材の鍛造コストの高騰を防止することができる。
 加えて、上記のようにTsトルクの概念に基づいて最大せん断応力深さを定めるようにしたことで、実際の使用状況に適合した形で有効硬化層深さを定めることができる。従って、トリポード型等速自在継手のサイズを問わず、上記の作用効果を安定的に得ることが可能となる。
 このトリポード型等速自在継手としては、前記脚軸の外周面が、縦断面においてはストレートで横断面においては略楕円となる形状をなし、前記インナリングの内周面が凸曲面で形成され、前記脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と接触し、かつ継手の軸線方向で前記インナリングの内周面との間に隙間を形成するものが好ましい。
 また、本発明は、円周方向の三カ所に軸方向に延びるトラック溝を備え、各トラック溝が円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、半径方向に突出した三つの脚軸を備えたトリポード部材と、各脚軸に複数の針状ころを介して回転可能に取り付けられたローラとを備え、前記ローラが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能に構成され、前記トリポード部材の各脚軸の表面に、浸炭焼入れ焼戻しにより硬化層が形成されたトリポード型等速自在継手において、前記トリポード部材が炭素含有量0.23%~0.44%の鋼材で形成され、前記トリポード部材に連結される軸が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした前記硬化層の有効硬化層深さが、前記Tsトルクを負荷した時の最大せん断応力深さ以上であることを特徴とする。
 浸炭焼入れ焼戻し後の内部硬さを高めることにより、有効硬化層深さを深くすることができる。内部硬さを513HV以上にすることで、上記のように最大せん断応力深さ以上の有効硬化層深さ(限界硬さ:600HV)を得ることが可能となる。
 脚軸に対する相手部品の転動による摩耗を抑制するため、脚軸の表面硬さは653HV以上にするのが好ましい。
 本発明によれば、製造コストの高騰を抑制しつつトリポード部材の脚軸の耐久性を向上させることが可能となる。
トリポード型等速自在継手の第一の実施形態の縦断面図である。 図1のK-K線で矢視した横断面図である。 図1のL-L線で矢視した横断面図である。 図1のトリポード型等速自在継手が作動角をとった状態を表す縦断面図である。 トリポード部材に形成した硬化層を示す縦断面図である。 接触楕円の面圧分布と深さ方向のせん断応力の変化を説明する図である。 従来品の硬度分布を示すグラフである。 実施例品の硬度分布を示すグラフである。 有効硬化層深さおよび脚軸の耐久性の測定結果を示す表である。 他の実施形態にかかるトリポード型等速自在継手の横断面図である。
 本発明に係るトリポード型等速自在継手の第一の実施形態を図1~図9に基づいて説明する。
 図1~図4に示す本実施形態のトリポード型等速自在継手1はダブルローラタイプである。なお、図1は、ダブルローラタイプのトリポード型等速自在継手を示す縦断面図であり、図2は図1のK-K線で矢視した部分横断面図である。図3は、図1のL-L線で矢視した横断面図であり、図4は、作動角をとった時のトリポード型等速自在継手を示す縦断面図である。
 図1および図2に示すように、このトリポード型等速自在継手1は、外側継手部材2と、内側継手部材としてのトリポード部材3と、トルク伝達部材としてのローラユニット4とで主要部が構成されている。外側継手部材2は、一端が開口したカップ状をなし、内周面に軸方向に延びる3本の直線状トラック溝5が周方向等間隔に形成される。各トラック溝5には、外側継手部材2の円周方向に対向して配置され、それぞれ外側継手部材2の軸方向に延びるローラ案内面6が形成されている。外側継手部材2の内部には、トリポード部材3とローラユニット4が収容されている。
 トリポード部材3は、トラニオン胴部3aと、トラニオン胴部3aの円周方向の三等分位置から半径方向に突出する3本の脚軸7(トラニオンジャーナル)とを一体に有する。トリポード部材3は、トラニオン胴部3aの中心孔8に形成された雌スプライン23に、軸としてのシャフト9に形成された雄スプライン24(図1参照)を嵌合させることで、シャフト9とトルク伝達可能に結合される。シャフト9の先端に装着した止め輪10をトリポード部材3の端面と係合させることで、トリポード部材3がシャフト9に対して軸方向に固定される。
 ローラユニット4は、ローラであるアウタリング11と、このアウタリング11の内側に配置されて脚軸7に外嵌された円環状のインナリング12と、アウタリング11とインナリング12との間に介在された多数の針状ころ13とで主要部が構成されており、外側継手部材2のトラック溝5に収容されている。インナリング12、針状ころ13、およびアウタリング11からなるローラユニット4は、ワッシャ14、15により分離しない構造となっている。
 この実施形態において、アウタリング11の外周面は、脚軸7の軸線上に曲率中心を有する円弧を母線とする凸曲面である。アウタリング11の外周面は、ローラ案内面6とアンギュラコンタクトしている。
 針状ころ13は、アウタリング11の円筒状内周面を外側軌道面とし、インナリング12の円筒状外周面を内側軌道面として、これらの外側軌道面と内側軌道面の間に転動自在に配置される。
 トリポード部材3の各脚軸7の外周面は、脚軸7の軸線を含んだ縦断面においてストレート形状をなす。また、図3に示すように、脚軸7の外周面は、脚軸7の軸線に直交する横断面において略楕円形状をなす。脚軸7の外周面は、継手の軸線と直交する方向、すなわち長軸aの方向でインナリング12の内周面12aと接触する。継手の軸線方向、すなわち短軸bの方向では、脚軸7の外周面とインナリング12の内周面12aとの間に隙間mが形成されている。
 インナリング12の内周面12aは凸曲面状、具体的にはインナリング12の軸線を含む縦断面において凸円弧状をなす。このことと、脚軸7の断面形状が上述のように略楕円形状であり、脚軸7とインナリング12の間に所定の隙間mを設けてあることから、インナリング12は、脚軸7に対して首振り揺動可能となる。上述のとおりインナリング12とアウタリング11が針状ころ13を介して相対回転自在にアセンブリとされているため、アウタリング11はインナリング12と一体となって脚軸7に対して首振り揺動可能である。つまり、脚軸7の軸線を含む平面内で、脚軸7の軸線に対してアウタリング11およびインナリング12の軸線は傾くことができる(図4参照)。
 図4に示すように、トリポード型等速自在継手1が作動角をとって回転すると、外側継手部材2の軸線に対してトリポード部材3の軸線は傾斜するが、ローラユニット4が首振り揺動可能であるため、アウタリング11とローラ案内面6とが斜交した状態になることを回避することができる。これにより、アウタリング11がローラ案内面6に対して水平に転動するので、誘起スラストやスライド抵抗の低減を図ることができ、継手の低振動化を実現することができる。
 また、既に述べたように、脚軸7の横断面が略楕円状で、インナリング12の内周面12aの横断面が円弧状凸断面であることから、トルク負荷側での脚軸7の外周面とインナリング12の内周面12aとは点接触に近い狭い面積で接触する。よって、ローラユニット4を傾かせようとする力が小さくなり、アウタリング11の姿勢の安定性が向上する。
 以上に述べたトリポード部材3は、鋼材料から、鍛造加工→機械加工(旋削)→浸炭焼入れ焼戻し→脚軸7の外周面の研削加工、という主要工程を経て製作される。脚軸7の外周面は、研削加工に代えて焼入れ鋼切削で仕上げることもできる。
 図5は、トリポード部材3に形成された硬化層16を示す断面図である。図5に示すように、トリポード部材3の脚軸7の外周面および雌スプライン23を含む全表面に硬化層16が形成される。完成品としてのトリポード部材3は、脚軸7の外周面が研削(もしくは焼入れ鋼切削)で仕上げられるため、脚軸7の外周面の硬化層16の深さは、他の領域に比べて研削等による取り代分だけ浅い。なお、この取り代は、通常、0.1mm程度で小さいため、図5では硬化層16の厚さを全表面で均一に描いている。
 ところで、既に述べたように、ダブルローラタイプのトリポード型等速自在継手では、図3に示すように、トルク負荷側で脚軸7の外周面とインナリング12の内周面12aとが点に近い領域Mで接触するため、高トルク負荷時には当該接触部の面圧が高くなる問題がある。面圧が過大となると、脚軸7の耐久性の低下につながる。
 この問題に対処するため、本実施形態では、高硬度の硬化層を深く形成すべきとの着想に至った。そして、この着想の下、トリポード部材3の素材として、従来使用していた鋼材よりも、鋼材中の炭素量を増やし、併せて、硬化層の有効硬化層深さをトリポード型等速自在継手に負荷されるトルクに応じた深さに設定することにした。以下、それぞれについて説明する。
(1)炭素量の増大
 従来のトリポード部材3は、肌焼鋼の一種であるクロム・モリブデン鋼を素材として使用する場合が多い。本実施形態では、炭素量が0.23%よりも多い鋼材(好ましくは炭素量が0.24%以上、さらに好ましくは0.32%以上の鋼材)を素材として使用する(炭素量を表す「%」は「質量%」を意味する)。但し、炭素量が多すぎると、トリポード部材を鍛造する際の成形性が低下するため、炭素量は0.44%以下の鋼材を使用する。この条件に該当する肌焼鋼として、例えばJIS G4053に規定のクロム・モリブデン鋼SCM435、もしくはSCM440を挙げることができる。また、鋼材として、焼入れ性が保証された、JIS G4052に規定の所謂H鋼(SCM435H、SCM440H)を使用するのが好ましい。ちなみに、JIS G4052によれば、SCM435Hの炭素量は0.32%~0.39%、SCM440の炭素量は0.37%~0.44%である。
 なお、上記炭素量(0.23%~0.44%以下)を満たす肌焼鋼であれば、他の種類の鋼材、例えばJIS G4053に規定のクロム鋼(SCr435、SCr440等)を使用することもできる。クロム鋼についても、上記と同様にSCr435H、SCr440H等のH鋼を使用するのが好ましい。ちなみにSCr435Hの炭素量は0.32%~0.39%、SCr440Hの炭素量は0.37%~0.44%である。
(2)有効硬化層深さの設定
 また、本実施形態では、トリポード部材3の表面に形成された硬化層16の有効硬化層深さH(限界硬さ600HV)を、トリポード型等速自在継手1にTsトルクを負荷した時の最大せん断応力深さZ以上としている(H≧Z)。
 ここでいう「Tsトルク」は、トリポード部材3に連結されるシャフト9が捩り破断を起こす最小の静的捩りトルクの0.3倍の値である。トリポード型等速自在継手1にTsトルクが負荷されると、インナリング12の内周面12aとの間で負荷側の接触部M(図3参照)を構成する脚軸7の外周面に接触楕円が生じる。この時、図6に示すように、接触楕円の中心が最大面圧Pmaxとなる。この接触楕円の中心上で脚軸直下方向(脚軸7の内径方向)において最大のせん断応力τmaxを発生する深さが「最大せん断応力深さZ」である。
 なお、有効硬化層深さは鋼材の表面から限界硬さの位置までの距離を意味する。JIS G0557によれば、有効硬化層の限界硬さは550HVであるが、「表面から硬化層の3倍の距離の位置の硬さがビッカース硬さ450HVを超える場合は 当事者間の協定で550HVを超える限界硬さを用いてもよい」とも規定されている。本実施形態において、後述のようにトリポード部材3の内部硬さ(焼入れされていない領域の硬さ)は513HV以上であるので、上記の例外を受けて、本実施形態では、有効硬化層深さの限界硬さを600HVに規定している。なお、硬化層16の硬さを硬くするほど脚軸7の耐久性の面で好ましいため、有効硬化層深さの限界硬さを653HV、もしくはそれ以上に規定するのが好ましい。
 浸炭焼入れ焼戻し後の内部硬さを高めることにより、有効硬化層深さを深くすることができる。内部硬さを513HV以上にすることで、上記のように最大せん断応力深さ以上の有効硬化層深さ(限界硬さ600HV)を得ることが可能となる。
 なお、脚軸に対する相手部品(本実施形態ではインナリング12)の転動による摩耗を抑制するため、脚軸7の表面硬さは653HV以上にするのが好ましい。
 図7および図8は、脚軸表面からの深さを横軸にとった時の硬度分布を示す図である。なお、硬度は脚軸7の外周面のうち、インナリング12の内周面12aとの接触部Mで測定している。両図のうち、図7は従来品の硬度分布であり、図8は高炭素量鋼材(炭素量0.34%相当材)を使用した実施例品の硬度分布である。600HVを限界硬さとした時の有効硬化層深さは、図7では「A」で表され、図8では「B」で表される。このように炭素量が異なることで、同じ処理条件で浸炭焼入れ焼き戻しを行っても、有効硬化層深さに差が生じることが明らかになった(A<B)。
 図9に、従来品(仕様1)と二つの実施例品(仕様2)について、有効硬化層深さを実測すると共に、脚軸7の耐久性を評価した結果を示す。実施例品では、炭素量0.34%相当材と炭素量0.41%相当材の2種類の鋼材を使用している。有効硬化層深さの限界硬さは600HVである。「脚軸耐久性」に示される評価指標のうち、「△」は「目標特性未達」を、「○」は「目標特性を満足」を、「◎」は「目標特性を十分に満足」を意味する。
 従来品と各実施例品では、使用する鋼種が異なるが、サイズおよび熱処理(浸炭焼入れ焼き戻し)の条件は同じである。浸炭焼入れとして、トリポード部材の中間製品を約850℃で1時間均熱保持し、その後、約940℃まで加熱し、この温度で3時間浸炭を行った後、炉冷により約860℃まで温度を下げ、その状態を30分保持した後、油焼入れする、という手順を採用した。焼戻しは、約180℃で40分保持する条件としている。
 図9から明らかなように、従来品の有効硬化層深さAに比べ、炭素量が多い炭素量0.34%相当材を使用した場合で有効硬化層深さが2倍(2.0A)となり、炭素量がさらに多い炭素量0.41%相当材を使用した場合で有効硬化層深さが2.5倍(2.5A)になることが確認された。また、脚軸の耐久性も、炭素量0.34%で目標特性に達し、炭素量0.41%相当材で目標特性に余裕を持って達することが判明した。
 図8に示す結果から、実施例品では、表面から内部にかけての硬さの低下を抑えることができ、内部においても目標特性である513HVの硬さを維持することができる。従って、硬化層16の有効硬化層深さHを、トリポード型等速自在継手1にTsトルクを負荷した時の最大せん断応力深さZ以上に設定することが可能となる。これにより、トルク負荷側で脚軸7の外周面とインナリング12の内周面12aとが点に近い領域で接触するダブルローラタイプのトリポード型等速自在継手において、脚軸の耐久性を向上させることが可能となる。従って、ローラユニット4の動きが阻害される事態を抑制し、振動特性の経時劣化を防止することが可能となる。
 その一方で、炭素量を0.44%以下に規制しているので、トリポード部材3の鍛造成形性が極端に悪化することはなく、トリポード部材3の鍛造コストの高騰を防止することができる。
 加えて、本実施形態のようにTsトルクの概念に基づいて最大せん断応力深さを定めるようにしたことで、実際の使用条件に適合した形で有効硬化層深さを定めることができる。従って、トリポード型等速自在継手のサイズを問わず、上記の作用効果を安定的に得ることが可能となる。
 本発明は、以上に述べた実施形態には限定されず、他の構成を有するダブルローラタイプのトリポード型等速自在継手にも適用することができる。
 例えば、脚軸7の外周面を凸曲面(例えば断面凸円弧状)に形成し、インナリング12の内周面12aを円筒面状に形成することもできる。また、脚軸7の外周面を凸曲面(例えば断面凸円弧状)に形成し、インナリング12の内周面12aを脚軸外周面と嵌合する凹球面に形成することもできる。この際、アウタリングの内径両端部に鍔を設けることにより、ワッシャ14,15を不要とすることもできる。
 次に、本発明の第二の実施形態を図10に基づいて説明する。
 図10は、第二の実施形態にかかるシングルローラタイプのトリポード型等速自在継手100の横断面図である。
 図10に示すように、このトリポード型等速自在継手100は、外側継手部材102、内側継手部材としてのトリポード部材103、トルク伝達部材としてのローラ111、および転動体としての針状ころ113を主な構成とする。外側継手部材102は、その内周に円周方向の三等分位置に軸方向に延びる3本のトラック溝105を有する中空カップ状である。各トラック溝105の円周方向で対向する側壁にローラ案内面106が形成されている。ローラ案内面106は、円筒面の一部、すなわち部分円筒面で形成されている。
 トリポード部材103は、トラニオン胴部から円周方向の三等分位置で半径方向に突出した3本の脚軸107を有する。トリポード部材103は、シャフトとトルク伝達可能にスプライン嵌合している。脚軸107の円筒状外周面の周りに複数の針状ころ113を介して回転自在にローラ111が装着されている。脚軸7の外周面は針状ころ113の内側軌道面を形成する。ローラ111の内径面は円筒形状で、針状ころ113の外側軌道面を形成する。
 トラニオンジャーナル9の軸端付近には、アウタワッシャ115を介して止め輪112が装着されている。針状ころ113は、インナワッシャ114とアウタワッシャ115により、脚軸107の軸線方向への移動が規制されている。
 トリポード部材103の脚軸7に回転自在に装着されたローラ111は、外側継手部材102のトラック溝105のローラ案内面106に回転自在に案内される。このような構造により、外側継手部材102とトリポード部材103との間の相対的な軸方向変位や角度変位が吸収され、回転が等速で伝達される。
 以上に述べたシングルローラタイプのトリポード型等速自在継手100においても、既に述べた第一の実施形態と同様に、トリポード部材103を、炭素含有量が0.23%~0.44%の鋼材で形成すると共に、トリポード部材103に連結されるシャフト9が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした前記硬化層の有効硬化層深さHを、Tsトルクを負荷した時の最大せん断応力深さZ以上とすることにより(H≧Z)、第一の実施形態と同様に、脚軸107の耐久性を向上させて同様の作用効果を得ることができる。
 以上に述べたトリポード型等速自在継手1,100は、自動車のドライブシャフトに限って適用されるものではなく、自動車や産業機器等の動力伝達経路に広く用いることができる。
1,100  トリポード型等速自在継手
2,102  外側継手部材
3,103  トリポード部材
4      ローラユニット
5,105  トラック溝
6,106  ローラ案内面
7,107  脚軸
9      軸(シャフト)
11     ローラ(アウタリング)
12     インナリング
13,113 針状ころ
16     硬化層
111    ローラ
 
 

Claims (5)

  1.  円周方向の三カ所に軸方向に延びるトラック溝を備え、各トラック溝が円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、半径方向に突出した三つの脚軸を備えたトリポード部材と、前記トラック溝に挿入されたローラと、前記脚軸に外嵌され、前記ローラを回転自在に支持するインナリングとを備え、前記ローラと前記インナリングとを有するローラユニットが前記脚軸に対して首振り揺動可能であり、
     前記ローラユニットが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能に構成され、
     前記トリポード部材の各脚軸の表面に、浸炭焼入れ焼戻しにより硬化層が形成されたトリポード型等速自在継手において、
     前記トリポード部材が、炭素含有量が0.23%~0.44%の鋼材で形成され、
     前記トリポード部材に連結される軸が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした前記硬化層の有効硬化層深さが、前記Tsトルクを負荷した時の最大せん断応力深さ以上であることを特徴とするトリポード型等速自在継手。
  2.  前記脚軸の外周面が、縦断面においてはストレートで横断面においては略楕円となる形状をなし、前記インナリングの内周面が凸曲面で形成され、前記脚軸の外周面が、継手の軸線と直交する方向で前記インナリングの内周面と接触し、かつ継手の軸線方向で前記インナリングの内周面との間に隙間を形成する請求項1に記載のトリポード型等速自在継手。
  3.  円周方向の三カ所に軸方向に延びるトラック溝を備え、各トラック溝が円周方向に対向して配置された一対のローラ案内面を有する外側継手部材と、半径方向に突出した三つの脚軸を備えたトリポード部材と、各脚軸に複数の針状ころを介して回転可能に取り付けられたローラとを備え、
     前記ローラが前記ローラ案内面に沿って前記外側継手部材の軸方向に移動可能に構成され、
     前記トリポード部材の各脚軸の表面に、浸炭焼入れ焼戻しにより硬化層が形成されたトリポード型等速自在継手において、
     前記トリポード部材が炭素含有量0.23%~0.44%の鋼材で形成され、
     前記トリポード部材に連結される軸が捩り破断を起こす最小の静的捩りトルクの0.3倍をTsトルクとして、600HVを限界硬さとした前記硬化層の有効硬化層深さが、前記Tsトルクを負荷した時の最大せん断応力深さ以上であることを特徴とするトリポード型等速自在継手。
  4.  前記トリポード部材の内部硬さが513Hv以上である請求項1~3何れか1項に記載のトリポード型等速自在継手。
  5.  前記トリポード部材の各脚軸の表面硬さが653Hv以上である請求項1~4何れか1項に記載のトリポード型等速自在継手。
     
PCT/JP2019/050225 2018-12-27 2019-12-20 トリポード型等速自在継手 WO2020137924A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/414,436 US12038050B2 (en) 2018-12-27 2019-12-20 Tripod-type constant velocity universal joint
CN201980083877.2A CN113195915B (zh) 2018-12-27 2019-12-20 三球销型等速万向联轴器
EP19905147.5A EP3904716B1 (en) 2018-12-27 2019-12-20 Tripod-type constant velocity universal joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-245469 2018-12-27
JP2018245469A JP7358046B2 (ja) 2018-12-27 2018-12-27 トリポード型等速自在継手

Publications (2)

Publication Number Publication Date
WO2020137924A1 true WO2020137924A1 (ja) 2020-07-02
WO2020137924A8 WO2020137924A8 (ja) 2021-05-06

Family

ID=71125962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/050225 WO2020137924A1 (ja) 2018-12-27 2019-12-20 トリポード型等速自在継手

Country Status (5)

Country Link
US (1) US12038050B2 (ja)
EP (1) EP3904716B1 (ja)
JP (1) JP7358046B2 (ja)
CN (1) CN113195915B (ja)
WO (1) WO2020137924A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022148774A (ja) 2021-03-24 2022-10-06 Ntn株式会社 トリポード型等速自在継手
JP2023037300A (ja) 2021-09-03 2023-03-15 Ntn株式会社 トリポード型等速自在継手
JP2023162620A (ja) * 2022-04-27 2023-11-09 Ntn株式会社 トリポード型等速自在継手

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599618B2 (ja) 1980-04-21 1984-03-03 株式会社クボタ 溶融ほう砂用耐食合金
JP2001208091A (ja) * 2000-01-27 2001-08-03 Ntn Corp 等速自在継手
JP2017061988A (ja) * 2015-09-24 2017-03-30 Ntn株式会社 トリポード型等速自在継手
JP2017180675A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 トリポード型等速自在継手およびトリポード部材の熱処理方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1178571A (zh) * 1996-02-05 1998-04-08 株式会社Ntn 三通型等速万向联轴节
JP3599618B2 (ja) 1999-03-05 2004-12-08 Ntn株式会社 等速自在継手
US6478682B1 (en) 1999-11-05 2002-11-12 Ntn Corporation Constant velocity universal joint
JP2001330047A (ja) * 2000-05-22 2001-11-30 Astec:Kk 等速自在継手
KR100815677B1 (ko) * 2006-05-11 2008-03-20 위아 주식회사 트라이포드식 등속조인트
JP2008064158A (ja) * 2006-09-05 2008-03-21 Ntn Corp トリポード型等速自在継手
US20120329564A1 (en) 2010-03-19 2012-12-27 Taku Itagaki Tripod constant velocity universal joint
JP5921858B2 (ja) * 2011-11-28 2016-05-24 Ntn株式会社 トリポード型等速自在継手およびその製造方法
JP6422743B2 (ja) * 2014-11-11 2018-11-14 Ntn株式会社 トリポード型等速自在継手のトリポード部材の製造方法
JP6545489B2 (ja) 2015-03-13 2019-07-17 Ntn株式会社 トリポード型等速自在継手
JP2017141895A (ja) 2016-02-10 2017-08-17 トヨタ自動車株式会社 摺動式トリポード型等速ジョイントのローラユニット
CN205663784U (zh) * 2016-06-02 2016-10-26 温州市冠盛汽车零部件集团股份有限公司 集成复合式双球环内置大滚针三球销总成
JP2018155379A (ja) * 2017-03-21 2018-10-04 Ntn株式会社 トリポード型等速自在継手
JP2018155378A (ja) * 2017-03-21 2018-10-04 Ntn株式会社 トリポード型等速自在継手

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS599618B2 (ja) 1980-04-21 1984-03-03 株式会社クボタ 溶融ほう砂用耐食合金
JP2001208091A (ja) * 2000-01-27 2001-08-03 Ntn Corp 等速自在継手
JP2017061988A (ja) * 2015-09-24 2017-03-30 Ntn株式会社 トリポード型等速自在継手
JP2017180675A (ja) * 2016-03-30 2017-10-05 Ntn株式会社 トリポード型等速自在継手およびトリポード部材の熱処理方法

Also Published As

Publication number Publication date
CN113195915A (zh) 2021-07-30
CN113195915B (zh) 2024-09-24
US12038050B2 (en) 2024-07-16
US20220090635A1 (en) 2022-03-24
WO2020137924A8 (ja) 2021-05-06
EP3904716A4 (en) 2022-10-12
EP3904716A1 (en) 2021-11-03
JP2020106087A (ja) 2020-07-09
EP3904716B1 (en) 2024-07-17
JP7358046B2 (ja) 2023-10-10

Similar Documents

Publication Publication Date Title
WO2020137924A1 (ja) トリポード型等速自在継手
WO2017169674A1 (ja) トリポード型等速自在継手およびトリポード部材の熱処理方法
US20120329564A1 (en) Tripod constant velocity universal joint
JP7088865B2 (ja) トリポード型等速自在継手
JP3949863B2 (ja) 等速自在継手
WO2020195487A1 (ja) トリポード型等速自在継手
WO2023210365A1 (ja) トリポード型等速自在継手
JP2009275878A (ja) スプライン軸、動力伝達シャフトおよび等速自在継手外輪
WO2022202421A1 (ja) トリポード型等速自在継手
JP2020159546A (ja) トリポード型等速自在継手
WO2023032631A1 (ja) トリポード型等速自在継手
JP2008064158A (ja) トリポード型等速自在継手
JP2007224981A (ja) 等速自在継手の外方部材及びその製造方法
JP2008190621A (ja) トリポード型等速自在継手
JP6532793B2 (ja) トリポード型等速自在継手
WO2023189289A1 (ja) トリポード型等速自在継手
JP5085465B2 (ja) トリポード型等速自在継手
US20180266491A1 (en) Tripod type constant velocity universal joint
JP2001200859A (ja) 等速自在継手
JP2009156401A (ja) トリポード型等速自在継手
JP5372364B2 (ja) トリポード型等速自在継手
JP5165488B2 (ja) 等速自在継手の内側継手部材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905147

Country of ref document: EP

Effective date: 20210727