JP3949863B2 - 等速自在継手 - Google Patents

等速自在継手 Download PDF

Info

Publication number
JP3949863B2
JP3949863B2 JP2000003987A JP2000003987A JP3949863B2 JP 3949863 B2 JP3949863 B2 JP 3949863B2 JP 2000003987 A JP2000003987 A JP 2000003987A JP 2000003987 A JP2000003987 A JP 2000003987A JP 3949863 B2 JP3949863 B2 JP 3949863B2
Authority
JP
Japan
Prior art keywords
roller
peripheral surface
leg shaft
support ring
constant velocity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000003987A
Other languages
English (en)
Other versions
JP2001193752A (ja
Inventor
竜宏 後藤
重好 石黒
和彦 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2000003987A priority Critical patent/JP3949863B2/ja
Priority to US09/698,243 priority patent/US6478682B1/en
Priority to KR1020000065282A priority patent/KR100662220B1/ko
Priority to FR0014162A priority patent/FR2800817B1/fr
Publication of JP2001193752A publication Critical patent/JP2001193752A/ja
Priority to US10/198,172 priority patent/US6719635B2/en
Priority to US10/198,134 priority patent/US6579188B1/en
Priority to US10/765,472 priority patent/US7052400B2/en
Priority to FR0406966A priority patent/FR2856445B1/fr
Priority to FR0406967A priority patent/FR2856446B1/fr
Application granted granted Critical
Publication of JP3949863B2 publication Critical patent/JP3949863B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、自動車や各種産業機械等の動力伝達装置に使用される等速自在継手に関し、特にトリポード型等速自在継手に関するものである。
【0002】
【従来の技術】
例えば、自動車のエンジンから車輪に回転動力を伝達する動力伝達装置の一要素として(ドライブシャフトやプロペラシャフトの連結用継手として)、トリポード型等速自在継手が用いられている。
【0003】
トリポード型等速自在継手は、一般に、内周部に軸方向の3本のトラック溝が形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材と、半径方向に突出した3本の脚軸を有し、各脚軸にそれぞれローラを回転自在に配設したトリポード部材とを主体として構成される。トリポード部材の脚軸と外側継手部材のローラ案内面とがローラを介して回転方向に係合することにより、駆動側から従動側に回転トルクが等速で伝達される。また、各ローラが脚軸に対して回転しながらローラ案内面上を転動することにより、外側継手部材とトリポード部材との間の相対的な軸方向変位や角度変位が吸収されると同時に、外側継手部材とトリポード部材とが作動角を取りつつ回転トルクを伝達する際の、回転方向位相の変化に伴う、各脚軸のローラ案内面に対する軸方向変位が吸収される。
【0004】
トリポード型等速自在継手としては、上記ローラを複数のニードルローラを介して脚軸の円筒状外周面に装着したものもあるが、外側継手部材とトリポード部材とが作動角をとりつつ回転トルクを伝達する際、脚軸の傾きに伴って各ローラとローラ案内面とが互いに斜交した関係になるので、両者の間に滑りが生じ、その際の摺動抵抗によって各ローラの円滑な転動が妨げられて誘起スラストが大きくなるという問題がある。また、各ローラとローラ案内面との間の摺動抵抗によって、外側継手部材とトリポード部材とが軸方向に相対変位する際のスライド抵抗が大きくなるという問題がある。
【0005】
そこで、ローラとローラ案内面との斜交状態を解消して、誘起スラストやスライド抵抗の低減を図るため、脚軸に対するローラの首振り揺動を自在とする機構(ローラ機構)を備えたトリポード型等速自在継手が種々提案され、実用化されている。この種のトリポード型等速自在継手として、例えば、ローラ案内面に案内される外側ローラと、脚軸の外周面に複数のニードルローラを介して回転自在に支持された内側ローラとを備えた構成が知られている。この構成はさらに以下の▲1▼〜▲4▼の態様に大別することができる。
【0006】
▲1▼外側ローラの外周面を凸球状(曲率中心が脚軸の軸線上にある「真球面」、曲率中心が脚軸の軸線から外径側にオフセットされている、いわゆる「トーラス面」の双方を含む。)、内周面を円筒状、内側ローラの外周面を凸球状とし、外側ローラの円筒状の内周面と内側ローラの凸球状の外周面との間の滑りによって、外側ローラの首振り揺動を自在としたもの(特公平3−1529号等)。
【0007】
▲2▼外側ローラの外周面を凸球状(真球面、トーラス面の双方を含む。)、内周面を内側ローラの外周面と線接触する形状、内側ローラの外周面を凸球状とし、外側ローラの内周面と内側ローラの凸球状の外周面との間の滑りによって、外側ローラの首振り揺動を自在とし、かつ、誘起スラストやスライド抵抗を一層低減するため、外側ローラの内周面を内側ローラの外周面との接触位置で脚軸先端側に向いた負荷分力を発生させる形状としたもの(特開平9−14280号等)。
【0008】
▲3▼ローラ案内面を平坦面、外側ローラの外周面を円筒状、内周面を凹球状、内側ローラの外周面を凸球状とし、外側ローラの凹球状の内周面と内側ローラの凸球状の外周面との間の滑りによって、外側ローラの首振り揺動を自在としたもの(特願平8−4073号、特願平8−138335号)。
【0009】
▲4▼上記▲3▼の構成に加え、ローラ案内面と脚軸の軸線とを作動角が0°の状態で互いに非平行としたもの(特開平11−13779号)。
【0010】
また、この種のトリポード型等速自在継手として、▲5▼脚軸の外周面を凸球状に形成すると共に、ローラを複数のニードルローラを介して支持リングに組み付けてローラアッセンブリを構成し、支持リングの円筒状の内周面を脚軸の凸球状の外周面に外嵌した構成が知られている(特公平7−117108号、特許2623216号等)。この構成によれば、支持リングの円筒状の内周面と脚軸の凸球状の外周面との間の滑りによって、ローラを含むローラアッセンブリの首振り揺動が自在となる。
【0011】
さらに、本出願人は、この種のトリポード型等速自在継手における誘起スラストやスライド抵抗を一層効果的に低減するため、▲6▼ローラ案内面に案内されるローラと、脚軸の外周面に外嵌されてローラを回転自在に支持する支持リングとを有し、支持リングの内周面は円弧状凸断面であり、脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で支持リングの内周面と接触し、かつ、継手の軸線方向で支持リングの内周面との間にすきまを形成するようになっている構成について既に出願している(特願平11−059040号)。この構成によれば、支持リングの円弧状凸断面の内周面と脚軸のストレート形状の外周面との間の滑りによって、ローラを含むローラアッセンブリの首振り揺動が自在となる。
【0012】
【発明が解決しようとする課題】
本発明は、上述したようなローラ機構を備えたトリポード型等速自在継手において、構成部品の転動疲労寿命を高め、また捩り疲労等に対する強度を高めることにより、現状のサイズを維持したままより耐久性や強度に優れたトリポード型等速自在継手を提供し、また、現状品と同等以上の耐久性や強度を確保しつつよりコンパクトなトリポード型等速自在継手を提供しようとするものである。
【0013】
【課題を解決するための手段】
上記課題を解決するため、本発明は、内周部に軸方向の3本のトラック溝が形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、トリポード部材の各脚軸にそれぞれ装着されたローラ機構とを備え、ローラ機構は、脚軸に対して首振り揺動自在で、ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内されるローラを有する等速自在継手において、ローラ機構が、ローラ案内面に案内されるローラと、脚軸の外周面に外嵌されてローラを回転自在に支持する支持リングとを有し、支持リングの内周面は円弧状凸断面であり、脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で支持リングの内周面と接触し、かつ、継手の軸線方向で支持リングの内周面との間にすきまを形成するようになっており、少なくとも1つの構成部品の軟化抵抗特性値(R)を所定範囲内に規制した構成を提供する。
【0014】
本出願人は多くの実験の結果、上記等速自在継手の構成部品の耐久性、特にトリポード部材や外側継手部材の耐久性を上記の軟化抵抗特性値Rを用いることによって精度良く良く管理できることを見出した。
【0015】
トリポード部材を例にとると、その耐久性に影響を及ぼす因子として、脚軸の外周面の転動疲労、脚軸の基端部の捩り疲労、セレーション部(又はスプライン部)の捩り疲労等が挙げられる。脚軸の外周面は、ニードルローラの外周面と転がり接触し、あるいはローラアッセンブリの支持リングの内周面と転がり及び滑り接触するため、転動疲労が問題となる。脚軸の基端部やセレーション部は、トルク伝達時に捩り応力が集中し、しかもこれらの部分は通常非研削の状態で残されるため、捩り疲労が問題となる。また、外側継手部材を例にとると、その耐久性に影響を及ぼす因子として、トラック溝のローラ案内面の転動疲労等が挙げられる。ローラ案内面は、ローラの外周面と転がり及び滑り接触するため、転動疲労が問題となる。また、外側継手部材はローラを介して継手荷重を受けるので、割れ強度も問題となる。さらに、ローラ機構を構成する部品についても、相手部材と転がり接触や滑り接触を生じる部位の転動疲労が問題となる。
【0016】
一般に、鋼材料の疲労強度が表面硬さと相関のあることは良く知られており、鋼材料に熱処理等を施して表面硬化層を形成し、その表面硬化層の表面硬さを管理することによって、所要の疲労強度を確保することが行われている。しかしながら、本出願人による実験の結果では、疲労強度は表面硬さよりも、表面から所定深さまでの領域の軟化抵抗特性(ある程度の高温になっても材料が軟化し難い性質)とより密接な相関を有することが認められた。そして、この軟化抵抗特性は、所定表面から深さ0.5mm以内の領域での最高硬さによって正しく評価することができ(軟化抵抗特性値R)、この軟化抵抗特性値Rを疲労強度の評価指数として使用できることが分かった。ここで、「軟化抵抗特性値R」は、構成部品を焼入れした後に200°C×2時間の焼戻しを行って、表面から深さ0.5mm以内の領域での最高ビッカース硬さHvの値として表す。この軟化抵抗特性値Rを所定範囲内に規制することにより、構成部品の転動疲労寿命を高め、また捩り疲労等に対する強度を高めることができる。
【0017】
構成部品を炭素含有量0.15〜0.40wt%の鋼で形成し、所定表面の直下に浸炭焼入れ焼戻しによる表層部を形成する場合は、軟化抵抗特性値Rを705<R≦820、好ましくは710≦R≦815の範囲内に規制することにより、望ましい結果を得ることができる。
【0018】
構成部品を炭素含有量0.15〜0.40wt%の鋼で形成し、所定表面の直下に浸炭窒化焼入れ焼戻しによる表層部を形成する場合も、軟化抵抗特性値Rを705<R≦820、好ましくは710≦R≦815の範囲内に規制することにより、望ましい結果を得ることができる。
【0019】
また、構成部品を炭素含有量0.45〜0.60wt%の鋼で形成し、所定表面の直下に高周波焼入れ焼戻しによる表層部を形成する場合は、軟化抵抗特性値Rを630<R≦820、好ましくは640≦R≦810の範囲内に規制することにより、望ましい結果を得ることができる。
【0020】
本発明において、ローラ機構、ローラ案内面に案内されるローラと、脚軸の外周面に外嵌されてローラを回転自在に支持する支持リングとを有し、支持リングの内周面は円弧状凸断面であり、脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で支持リングの内周面と接触し、かつ、継手の軸線方向で支持リングの内周面との間にすきまを形成するようになっている。この構成では、ローラ及び支持リングを含むローラアッセンブリが、脚軸に対して、ユニットとして首振り揺動する。ここで、首振揺動とは、脚軸の軸線を含む平面内で、脚軸の軸線に対して支持リングおよびローラの軸線が傾くことをいう。
【0021】
脚軸の横断面形状について、継手の軸線と直交する方向で支持リングの内周面と接触するとともに継手の軸線方向で支持リングの内周面との間にすきまを形成するような形状とは、言い換えれば、トリポード部材の軸方向で互いに向き合った面部分が相互方向に、つまり、仮想円筒面よりも小径側に退避している形状を意味する。その一つの具体例として略楕円形が挙げられる。「略楕円形」には、字義どおりの楕円形の他、一般に卵形、小判形等と称される形状も含まれる。
【0022】
従来円形であった脚軸の断面形状を上記の形状としたことにより、継手が作動角をとったとき、ローラアセンブリの姿勢を変えることなく、脚軸が外側継手部材に対して傾くことができる。しかも、脚軸の外周面と支持リングとの接触楕円が従来の横長から点に近づくため(図1(C)参照)、ローラアセンブリを傾けようとする摩擦モーメントが低減する。したがって、ローラアセンブリの姿勢が常に安定し、ローラがローラ案内面と平行に保持されるため円滑に転動することができる。これにより、スライド抵抗の低減ひいては誘起スラストの低減に寄与する。
【0023】
なお、ローラアセンブリは脚軸と外側継手部材との間に介在してトルクを伝達する役割を果たすものであるが、この種の等速自在継手におけるトルクの伝達方向は常に継手の軸線に直交する方向であるため、当該トルクの伝達方向において脚軸と支持リングとが接していることでトルクの伝達は可能であり、継手の軸線方向において両者間にすきまがあってもトルク伝達に支障を来すことはない。
【0024】
上記構成において、支持リングの内周面の母線を、中央部の円弧部と両端部の逃げ部とで構成することができる。円弧部の曲率半径は、2〜3°程度の脚軸の傾きを許容できる大きさとするのが好ましい。また、支持リングとローラの間に複数の転動体を配置して支持リングとローラを相対回転自在とすることができ、その転動体として、ニードルローラを用いることができる。さらに、ローラの外周面を球状(真球面又はトーラス面)に形成し、このローラの球状外周面を外側継手部材のローラ案内面とアンギュラコンタクトさせた構成とすることができる。ローラとローラ案内面とをアンギュラコンタクトさせることにより、ローラが振れにくくなってその姿勢が一層安定するため、ローラが外側継手部材の軸方向に移動する際にローラ案内面上をより少ない抵抗で円滑に転動する。かかるアンギュラコンタクトを実現するための具体的な構成として、ローラ案内面の断面形状をテーパ形状またはゴシックアーチ形状とすることが挙げられる。
【0025】
一方、上記構成の等速自在継手の場合、脚軸の外周面と支持リングの内周面との接触部の接触面圧が他の構成に比べて高くなり、脚軸の外周面の転動疲労寿命が低くなる傾向にある。また、他の構成に比べて脚軸の基端部に応力集中が生じ易く、基端部の疲労強度が低くなる傾向にある。従って、上述のように、脚軸の外周面や基端部表面の軟化抵抗特性値Rを所定範囲に規制して、外周面の転動疲労寿命を高め、また基端部の捩り疲労強度等を高めることは、特にこの構成の等速自在継手において有用である。
【0029】
以上の構成において、脚軸の外周面やローラ案内面等の接触面には、微小な凹部を無数にランダムに形成しても良い。接触面に形成された微小凹部が油溜りの役割を果たし、接触面における油膜形成が促進されるので、潤滑性が改善され、接触面の転動疲労寿命が向上する。微小凹部は、例えば大きさ数10μm程度、深さ1μm程度のものである。接触面の研磨条件を変えることにより、任意の大きさ、深さ、数の微小凹部を形成することが可能である。尚、接触面にのみ選択的に微小凹部を形成することが困難な場合は、その構成部品の接触面の周辺部を含めて、あるいは全表面に微小凹部を形成しても良い。
【0030】
また、脚軸の外周面やローラ案内面等の接触面には、化成処理被膜を下地層とする固体潤滑被膜を形成しても良い。固体潤滑被膜により、接触面の摩擦抵抗が軽減され、潤滑性が改善されるので、接触面の転動疲労寿命が向上する。下地層となる化成処理被膜は、固体潤滑被膜の接触面に対する密着性を高める目的で形成される。化成処理被膜としては、例えばりん酸マンガン処理被膜、りん酸鉄処理被膜、りん酸亜鉛処理被膜等を挙げることができる。また、固体潤滑被膜としては、二硫化モリブデン被膜、PTFE被膜等を挙げることができる。尚、処理前の接触面(母材表面)の表面粗さは処理後の効果に影響するので、適度な油溜りの作用が得られるように、接触面の表面粗さを、Ra0.2〜0.8に仕上げ加工しておくのが望ましい。また、接触面にのみ選択的に被膜処理を施すことが困難な場合は、その構成部品の接触面の周辺部を含めて、あるいは全表面に被膜処理を施しても良い。
【0031】
また、脚軸の外周面やローラ案内面等の接触面には、常温浸硫処理を施しても良い。浸硫処理は、鋼の表面に硫黄を浸透させ、硫化鉄を生成させる表面処理法である。浸硫処理を施すことにより、表面の摩擦抵抗が軽減されるので、初期なじみ性が改善され、転動疲労寿命の向上になる他、NVH特性も安定する。また、常温浸硫処理によれば、例えば30〜40°C×10〜30分の条件で処理を行うので、表面硬化層の硬さ低下も起こらない。処理前の接触面の表面粗さは処理後の効果に影響するので、適度な油溜りの作用が得られるように、接触面の表面粗さを、Ra0.2〜0.8に仕上げ加工しておくのが望ましい。
【0032】
【発明の実施の形態】
以下、本発明の実施形態について説明する。
【0033】
図1および図2は、本発明の第1の実施の形態を示している。図1(A)は継手の横断面を示し、図1(B)は脚軸に垂直な断面を示し、図1(C)は支持リングの断面を示し、図2は作動角(θ)をとった状態の継手の縦断面を示している。
【0034】
図1に示すように、等速自在継手は外側継手部材10とトリポード部材20とを主体として構成され、連結すべき2軸の一方が外側継手部材10と連結され、他方がトリポード部材20と連結される。
【0035】
外側継手部材10は内周部に軸方向に延びる3本のトラック溝12を有する。各トラック溝12の円周方向で向かい合った側壁にそれぞれローラ案内面14が形成されている。トリポード部材20は半径方向に突設した3本の脚軸22を有し、各脚軸22にはローラ34が取り付けてあり、このローラ34が外側継手部材10のトラック溝12内に収容される。ローラ34の外周面34aはローラ案内面14に適合する凸曲面である。
【0036】
ここでは、ローラ34の外周面34aは脚軸22の軸線から半径方向に離れた位置に曲率中心を有する円弧を母線とする凸曲面であり、ローラ案内面14の断面形状はゴシックアーチ形状であって、これにより、ローラ34の外周面34aとローラ案内面14とがアンギュラコンタクトをなす。図1(A)に、2つの当たり位置を一点鎖線で示してある。球状のローラ外周面に対してローラ案内面14の断面形状をテーパ形状としても両者のアンギュラコンタクトが実現する。このようにローラ34の外周面34aとローラ案内面14とがアンギュラコンタクトをなす構成を採用することによって、ローラが振れにくくなるため姿勢が安定する。なお、アンギュラコンタクトを採用しない場合には、たとえば、ローラ案内面14を軸線が外側継手部材10の軸線と平行な円筒面の一部で構成し、その断面形状をローラ34の外周面34aの母線に対応する円弧とすることもできる。
【0037】
脚軸22の外周面22aに支持リング32が外嵌している。この支持リング32とローラ34とは複数のニードルローラ36を介してアッセンブリ(ユニット化)され、相対回転可能なローラアセンブリを構成している。すなわち、支持リング32の円筒形外周面を内側軌道面とし、ローラ34の円筒形内周面を外側軌道面として、これらの内外軌道面間にニードルローラ36が転動自在に介在する。図1(B)に示されるように、ニードルローラ36は、できるだけ多くのころを入れた、保持器のない、いわゆる総ころ状態で組み込まれている。符号33,35で示してあるのは、ニードルローラ36の抜け落ち止めのためにローラ34の内周面に形成した環状溝に装着した一対のワッシャである。
【0038】
脚軸22の外周面22aは、縦断面{図1(A)}で見ると脚軸22の軸線と平行なストレート形状であり、横断面{図1(B)}で見ると、長軸が継手の軸線に直交する楕円形状である。脚軸の断面形状は、トリポード部材20の軸方向で見た肉厚を減少させて略楕円状としてある。言い換えれば、脚軸の断面形状は、トリポード部材の軸方向で互いに向き合った面が相互方向に、つまり、仮想円筒面よりも小径側に退避している。
【0039】
支持リング32の内周面32cは円弧状凸断面を有する。すなわち、内周面32cの母線が半径rの凸円弧である{図1(C)}。このことと、脚軸22の断面形状が上述のように略楕円形状であり、脚軸22と支持リング32との間には所定のすきまが設けてあることから、支持リング32は脚軸22の軸方向での移動が可能であるばかりでなく、脚軸22に対して首振り揺動自在である。また、上述のとおり支持リング32とローラ34はニードルローラ36を介して相対回転自在にアッセンブリ(ユニット化)されているため、脚軸22に対し、支持リング32とローラ34がユニットとして首振り揺動可能な関係にある。ここで、首振りとは、脚軸22の軸線を含む平面内で、脚軸22の軸線に対して支持リング32およびローラ34の軸線が傾くことをいう(図2参照)。
【0040】
この種の従来継手の場合、脚軸の外周面が全周にわたって支持リングの内周面と接するため、接触楕円が円周方向に延びた横長形状を呈する。そのため、外側継手部材に対して脚軸が傾くとき、脚軸の動きに伴って支持リングを、延いてはローラを傾かせるように作用する摩擦モーメントが発生する。これに対し、図1に示した実施の形態では、脚軸22の横断面が略楕円状で、支持リング32の内周面32cの横断面が円弧状凸断面であることから、図1(C)に破線で示すように、両者の接触楕円は点に近いものとなり、同時に面積も小さくなる。したがって、ローラアセンブリ(32、34、36)を傾かせようとする力が従来のものに比べると非常に低減し、ローラ34の姿勢の安定性が一層向上する。
【0041】
上記構成において、トリポード部材20は炭素含有量0.15〜0.40wt%の鋼材料から、鍛造加工→機械加工→浸炭焼入れ焼戻し→脚軸22の外周面22aの研削加工という主要工程を経て製造される。完成後のトリポード部材20における脚軸22の外周面22aやその他の表面を基準とする軟化特性抵抗値Rは、705<R≦820、好ましくは710≦R≦810の範囲内に規制されている。そのため、トリポード部材20は、脚軸22の外周面22aの転動疲労寿命が高く、また脚軸22の基端部やセレーション部(又はスプライン部)の捩り疲労強度等が高く、優れた耐久性と強度を有する。
【0042】
尚、上記工程中の浸炭焼入れ焼戻しに代えて、浸炭窒化焼入れ焼戻しを採用すると、転動疲労寿命や捩り疲労強度等の向上により効果的である。
【0043】
また、浸炭焼入れ焼戻しにより形成された表層部(浸炭層)、または、浸炭窒化焼入れ焼戻しにより形成された表層部(浸炭窒化層)の残留オーステナイト量を20〜40vol%の範囲内に適正化することにより、表面の亀裂敏感性を改善して、転動疲労寿命を一層高めることができる。
【0044】
あるいは、トリポード部材20は炭素含有量0.45〜0.60wt%の鋼材料から、鍛造加工→機械加工→高周波焼入れ焼戻し→脚軸22の外周面22aの研削加工という主要工程を経て製造することもできる。この場合、完成後のトリポード部材20における脚軸22の外周面22aやその他の表面を基準とする軟化特性抵抗値Rは、630<R≦820、好ましくは640≦R≦810の範囲内に規制される。そのため、トリポード部材20は、脚軸22の外周面22aの転動疲労寿命が高く、また脚軸22の基端部やセレーション部(又はスプライン部)の捩り疲労強度等が高く、優れた耐久性と強度を有する。尚、高周波焼入れ焼戻しは、脚軸22の外周面22aや基端部の全周にわたって行っても良いし、あるいは、脚軸22の軸線を含み、トリポード部材20の軸線と直交する平面内の位置を中心とする周辺領域にのみ局部的に行っても良い。浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻しの場合も、防炭・防窒を行うことにより、そのような局部的な処理が可能である。
【0045】
外側継手部材10は炭素含有量0.15〜0.40wt%の鋼材料から、鍛造加工→機械加工→浸炭焼入れ焼戻し→軸部10a{図2(A)参照}の研削加工という主要工程を経て製造される。浸炭焼入れ焼戻しに代えて、浸炭窒化焼入れ焼戻し又は高周波焼入れ焼戻しを採用することもできる。軟化抵抗特性値Rの規制やその他の事項はトリポード部材20に準じるので、重複する記載を省略する。
【0046】
また、トリポード部材20の脚軸22の外周面22aや外側継手部材10のローラ案内面14には、前述した微小凹部、化成処理被膜を下地層とする固体潤滑被膜を形成しても良い。また、常温浸硫処理を施しても良い。
【0047】
さらに、上述した主要工程を経た後、トリポード部材20の脚軸22の外周面22a、基端部、およびセレーション部(又はスプライン部)のうち少なくとも1個所、外側継手部材10のローラ案内面14および軸部10a(特にセレーション部又はスプライン部)のうち少なくとも一個所にショットピーニング処理を施しても良い。ショットピーニング処理を施すことにより、表面組織が微細化されると共に、表面に残留圧縮応力が発生する。そのため、転動疲労寿命が向上し、また捩り疲労等に対する強度が向上する。また、浸炭層又は浸炭窒化層を形成した場合では、ショット粒の高い衝突エネルギーにより、表層部の残留オーステナイトがマルテンサイト変態を起こす。これにより、残留圧縮応力がさらに増加し、同時に表面に微小ディンプルが形成されて油溜りとなり、耐摩耗性の向上、転動疲労寿命や捩り疲労強度の向上に一層効果的である。特に、残留オーステナイト量が多い浸炭窒化層ではその傾向が顕著である。
【0048】
この実施形態の等速自在継手は、トリポード部材20や外側継手部材10の材料、表面及びその下層部の性状が最適化され、転動疲労寿命の向上や捩り疲労等に対する強度向上が図られている結果、現状の同サイズの等速自在継手と比較して、優れた耐久性や強度を有する。また、現状品と同等以上の耐久性や強度を確保しつつ、よりコンパクト化を図ることが可能である。
【0049】
図3および図4は、本発明の第2の実施の形態を示している。この第2の実施の形態は、支持リング32の内周面32cの母線が、上述の第1の実施の形態では単一の円弧で形成されているのに対して、中央の円弧部32aとその両側の逃げ部32bとの組合せで形成されている点でのみ相違する。逃げ部32bは、図3(C)のように作動角(θ)をとったときの脚軸22との干渉を避けるための部分であり、円弧部32aの端から支持リング32の端部に向かって徐々に拡径した直線または曲線で構成する。ここでは、逃げ部32bを円錐角α=50°の円錐面の一部とした場合を例示してある。円弧部32aは、支持リング32に対する脚軸22の2〜3°程度の傾きを許容するため、たとえば30mm程度の大きな曲率半径(r)とする。トリポード型等速自在継手では、機構上、外側継手部材10が1回転するときトリポード部材20は外側継手部材10の中心に対して3回振れ回る。このとき符号e{図2(A)}で表わされる偏心量は作動角(θ)に比例して増加する。そして、3本の脚軸22は120°ずつ離間しているが、作動角(θ)をとると、図2(B)に示すように、図の上側に表われている垂直な脚軸22を基本として考えると、他の2本の脚軸22は、一点鎖線で示す作動角0のときのそれらの軸線からわずかに傾く。その傾きは作動角(θ)がたとえば約23°のとき2〜3°程度となる。この傾きが支持リング32の内周面32cの円弧部32aの曲率によって無理なく許容されるため、脚軸22と支持リング32との接触部における面圧が過度に高くなるのを防止することができる。なお、図2(B)は、図2(A)の左側面から見たトリポード部材20の3本の脚軸22を模式的に図示したもので、実線が脚軸を表わしている。
【0050】
この実施形態においても、トリポード部材20や外側継手部材10は、それらの材料、表面及び下層部の性状が最適化され、転動疲労寿命の向上や捩り疲労等に対する強度向上が図られている。そのため、この実施形態の等速自在継手は、現状の同サイズの等速自在継手と比較して、優れた耐久性や強度を有する。また、現状品と同等以上の耐久性や強度を確保しつつ、よりコンパクト化を図ることが可能である。
【0051】
図5および図6は、参考例を示している。尚、図5は、継手の作動角が0°で、かつ、継手に回転トルクが負荷されていない時の状態を示している。
【0052】
この参考例のトリポード型等速自在継手は、連結すべき二軸の一方に結合される外側継手部材1と、他方に結合されるトリポード部材2とを備えている。
【0053】
外側継手部材1は概ねカップ状の外観をなし、軸方向に延びる3本のトラック溝1aが内周部の円周等配位置に形成されている。各トラック溝1aの両側には、それぞれローラ案内面1a1が設けられている。
【0054】
トリポード部材2は半径方向に突出した3本の脚軸2aを円周等配位置に有する。各脚軸2aの外周面2a1は凸球状に形成され、その外周面2a1に、支持リング3、複数のニードルローラ4、およびローラ5をアッセンブリしたローラアッセンブリAが装着されている。
【0055】
図5(B)に拡大して示すように、ローラアッセンブリAは、支持リング3の円筒状の外周面3aとローラ5の円筒状の内周面5aとの間に複数のニードルローラ4を転動自在に介装し、ローラ5の内周面5aに嵌着した一対のスナップリング6によって、支持リング3およびニードルローラ4の両端を係止して、ローラ5に対する支持リング3およびニードルローラ4の軸方向移動(脚軸2aの軸線Z方向への移動)を規制したものである。支持リング3の両端面およびニードルローラ4の両端面と、一対のスナップ支持リング6との間には僅かなアキシャル隙間δがある。図面では、アキシャル隙間δの大きさを実際よりもかなり誇張して示している。また、支持リング3の端面とスナップ支持リング6との間のアキシャル隙間と、ニードルローラ4の端面とスナップ支持リング6との間のアキシャル隙間とは、設計上、同じ値に設定する場合もあるし、異なる値に設定する場合もあるが、図面では両者の場合を区別することなくアキシャル隙間δとして示している。さらに、支持リング3の外周面3aおよびローラ5の内周面5aとニードルローラ4の転動面との間には僅かなラジアル隙間がある。
【0056】
支持リング3の内周面3bは、脚軸2aの球状の外周面2a1に嵌合される。この参考例において、支持リング3の内周面3bは脚軸2aの先端側に向かって漸次縮径した円錐状で、脚軸2aの外周面2a1と線接触する。これにより、ローラアッセンブリAの脚軸2aに対する首振り揺動が許容される。支持リング3の内周面3bの傾斜角αは、例えば0.1°〜3°、好ましくは0.1°〜1°と僅かなものであり、この参考例ではα=0.5°に設定している。図面では、内周面3bの傾斜の度合をかなり誇張して示している。
【0057】
ローラ5の外周面5bの母線は、脚軸2aの中心から外側にオフセットされた点を中心とする円弧である。
【0058】
この参考例において、外側継手部材1のローラ案内面1a1の断面形状は、2円弧状(ゴシックアーチ状)になっている。そのため、ローラ案内面1a1とローラ5の外周面5bとは2点p、qでアンギュラコンタクトする。アンギュラコンタクト点p、qは、ローラ5の外周面5bの中心を含み、脚軸2aの軸線Zと直交する中心線に対して、軸線Z方向に等距離だけ反対側に離れた位置にある。尚、ローラ案内面1a1の断面形状は、V字状または放物線状等でも良い。また、この参考例において、トラック溝1aに、ローラ案内面1a1と近接して肩面1a2が設けられ、この肩面1a2によってローラ5の脚軸先端側の端面5cが案内される。
【0059】
支持リング3の内周面3bが脚軸先端側に向かって漸次縮径した円錐状になっているため、この継手に回転トルクが負荷されると、図6に示すように(内周面3bの傾斜の度合いを図5よりもさらに誇張して示している。)、支持リング3の内周面3bと脚軸2aの外周面2a1との接触位置Sに脚軸先端側に向いた負荷分力Fが発生する。この負荷分力Fは、支持リング3およびニードルローラ4を脚軸先端側に押し上げるように作用して、支持リング3およびニードルローラ4を、脚軸先端側のワッシャ6に押し付けた状態にする。そのため、支持リング3の内周面3bと脚軸2aの外周面2a1との接触位置Sが安定する。また、この負荷分力Fは、支持リング3およびニードルローラ4を介して、ローラ5を脚軸先端側に押し上げるように作用して、ローラ案内面1a1に対するローラ5の姿勢を安定させる。このような接触位置Sの安定化とローラ5の姿勢安定化とが相俟って、誘起スラストが効果的に低減され、また安定化される。尚、支持リング3の内周面3bは円筒状にしても良い。
【0060】
トリポード部材2や外側継手部材1は、第1及び第2の実施形態と同様に、それらの材料、表面及び下層部の性状が最適化され、転動疲労寿命の向上や捩り疲労等に対する強度向上が図られている。そのため、この参考例の等速自在継手は、現状の同サイズの等速自在継手と比較して、優れた耐久性や強度を有する。また、現状品と同等以上の耐久性や強度を確保しつつ、よりコンパクト化を図ることが可能である。
【0061】
図7は、他の参考例を示している。尚、図7は、継手の作動角が0°の時の状態を示している。
【0062】
図7に示すように、この参考例の等速自在継手は、連結すべき二軸の一方に結合される外側継手部材1’と、他方に結合されるトリポード部材2’とを備えている。外側継手部材1’は概ねカップ状の外観をなし、軸方向に延びる3本のトラック溝1a’が内周部の円周等配位置に形成されている。各トラック溝1a’の両側には、それぞれローラ案内面1a’1が設けられている。トリポード部材2’は半径方向に突出した3本の脚軸2a’を円周等配位置に有する。各脚軸2a’の円筒状の外周面には、複数のニードルローラ7’を介して内側ローラ3’が回転自在に嵌合され、さらにその外側に外側ローラ4’が回転自在に嵌合されている。
【0063】
図7(B)に拡大して示すように、ニードルローラ7’および内側ローラ3’は、それらの一端が脚軸2a’の先端部に装着された抜け止めリング8’と止め輪9’によって係止され、他端が脚軸2a’の基端部に装着されたワッシャ10’によって係止され、脚軸2a’の軸線Z方向への移動が規制されている。実際には、ニードルローラ7’および内側ローラ3’と、抜け止めリング8’およびワッシャ10’との間には僅かなアキシャル隙間δ’がある。図面では、アキシャル隙間δ’の大きさが実際よりもかなり誇張されている。また、脚軸2a’の外周面および内側ローラ3’の内周面3a’とニードルローラ7’との間には僅かなラジアル隙間がある。内側ローラ3’の内周面3a’は円筒状、外周面3b’は凸球状である。この参考例において、外周面3b’の母線は、内側ローラ3’の半径中心O2’から所定量だけ外側にオフセットされた点O1’を中心とする半径r1の円弧である。半径r1は、外周面3b’の最大半径r2よりも小さい。
【0064】
外側ローラ4’は、内側ローラ3’の外周面3b’に嵌合される。この参考例において、外側ローラ4’の内周面4a’は脚軸2a’の先端側に向かって漸次縮径した円錐状で、内側ローラ3’の外周面3b’と線接触する。これにより、外側ローラ4’の脚軸2a’に対する首振り揺動が許容される。内周面4a’の傾斜角は例えば0.1°〜3°と僅かなものであり、この参考例では0.3°〜0.7°に設定している。図面では、内周面4a’の傾斜がかなり誇張されている。外側ローラ4’の外周面4b’の母線は、点O1’よりもさらに外側にオフセットされた点O3’を中心とする半径r3の円弧である。
【0065】
この参考例において、外側継手部材1’のローラ案内面1a’1の断面形状は、2円弧状(ゴシックアーチ状)になっている。そのため、ローラ案内面1a’1と外側ローラ4’の外周面4b’とは2点p’、q’でアンギュラコンタクトする。アンギュラコンタクト点p’、q’は、外側ローラ4’の外周面4b’の中心O3’を含み、脚軸2a’の軸線Zと直交する中心線に対して、軸線Z方向に等距離だけ反対側に離れた位置にある。尚、ローラ案内面1a’1の断面形状は、V字状または放物線状等でも良い。
【0066】
外側ローラ4’の内周面4a’が脚軸先端側に向かって漸次縮径した円錐状になっているため、図7(C)に示すように、内側ローラ3’の外周面3b’との接触位置S’に脚軸先端側に向いた負荷分力Fが発生する。この負荷分力Fは、外側ローラ4’を脚軸先端側に押し上げるように作用して、非負荷側のローラ案内面1a’1におけるB部の接触面圧を低減する。また、接触位置S’には、負荷分力Fの反力として脚軸基端側(同図で下側)に向いた力が発生する。この反力は、内側ローラ3’を脚軸基端側に押し下げるように作用して、内側ローラ3’およびニードルローラ7’の脚軸2a’に対する軸方向移動を抑制する。その結果、図7(B)に示すように、内側ローラ3’およびニードルローラ7’は下側のワッシャ10’に押し付けられた状態になり、アキシャル隙間δ’に起因する接触位置S’の変動が抑制される。このような非負荷側のローラ案内面1a’1におけるB部の接触面圧低減と、接触位置S’の安定化とが相俟って、誘起スラストが効果的に低減され、また安定化される。尚、外側ローラ4’の内周面4a’は円筒状にしても良い。
【0067】
トリポード部材2’や外側継手部材1’は、第1、第2の実施形態及び前述の参考例と同様に、それらの材料、表面及びその下層部の性状が最適化され、転動疲労寿命の向上や捩り疲労等に対する強度向上が図られている。そのため、この参考例の等速自在継手は、現状の同サイズの等速自在継手と比較して、優れた耐久性や強度を有する。また、現状品と同等以上の耐久性や強度を確保しつつ、よりコンパクト化を図ることが可能である。
【0068】
尚、本発明は、以上に説明した構成の等速自在継手に限らず、例えば、ローラ案内面を平坦面、外側ローラの外周面を円筒状、内周面を凹球状、内側ローラの外周面を凸球状とし、外側ローラの凹球状の内周面と内側ローラの凸球状の外周面との間の滑りによって、外側ローラの首振り揺動を自在とした等速自在継手(特願平8−4073号、特願平8−138335号)、さらにローラ案内面と脚軸の軸線とを作動角が0°の状態で互いに非平行とした等速自在継手(特開平11−13779号)にも同様に適用することができる。
【0069】
【実施例】
表1、表2は第1の実施形態の等速自在継手のトリポード部材について行った試験の結果を示している。
【0070】
【表1】
Figure 0003949863
【0071】
【表2】
Figure 0003949863
【0072】
まず、主要成分含有量が種々異なる鋼材料を用いてトリポード部材を形成し(試料No1〜No17)、950°C×8時間の浸炭焼入れの後、200°C×2時間の焼戻しを行って、脚軸の外周面の軟化特性抵抗値R(外周面から深さ0.5mm以内の領域での最高ビッカース硬さHv)を実測した。その結果を表1に示す。尚、脚軸の外周面には、浸炭焼入れ焼戻しの後、研削加工を施してあり、上記の「深さ0.5mm」は研削加工後の表面を基準にしている。つぎに、各試料について、耐久性、鍛造加工性を評価した。その内、6種類の試料に対する評価と軟化抵抗特性値R(Hv)の実測値および推測値(推測値については後述する)との関係を表2に示す。評価項目の◎は目標特性を十分満足できたもの、○は目標特性を満足できたもの、△は目標特性を満足できなかったものを表している。
【0073】
表2に示す結果より、浸炭焼入れ焼戻し品の場合、軟化特性抵抗値Rを705<R≦820、好ましくは710≦R≦815の範囲内に規制することにより、耐久性および鍛造加工性ともに満足できる結果が得られることが確認できた。軟化特性抵抗値Rが705以下であると、耐久性の点で好ましい結果が得られず、また軟化特性抵抗値Rが820を越えると鍛造加工性の点で好ましい結果が得られない。
【0074】
一方、芯部の硬さを左右する母材の炭素含有量は、疲労強度確保の観点から、0.15〜0.40wt%の範囲内とするのが好ましい。母材の炭素含有量が0.15wt%よりも低くなると、浸炭に要する時間が長くなってしまうと同時に、芯部の硬さが不足し、満足する疲労強度が得られない。逆に、炭素含有量が0.4wt%よりも多くなると、芯部の硬さが必要以上に上昇して、靭性が著しく低下し、同時に歪みも増加する。
【0075】
以上により、トラニオン部材や外側継手部材等の構成部品を浸炭焼入れ焼戻し品とする場合は、これら部品を炭素含有量0.15〜0.40wt%の鋼で形成し、かつ、軟化抵抗特性値Rを705<R≦820、好ましくは710≦R≦815の範囲内に規制することが望ましく、これにより、転動疲労寿命や疲労強度等を高めて耐久性を向上させ、同時に鍛造加工性も確保することができる。さらに、軟化抵抗特性値Rを上記範囲に規制することにより、材料の焼入れ性も良くなり、従来よりも深焼きが可能となるので、疲労強度等の向上に一層効果的である。
【0076】
上述した軟化抵抗特性値Rは、実測によって求めても良いが、以下に示す回帰式(a)を用いて比較的精度良く推定することができる。
Figure 0003949863
上記回帰式(a)は、表1に示す17種類の試料(試料No1〜No17)の軟化特性抵抗値R(実測値)と各試料の主要成分元素含有率(wt%)との重回帰分析を行って求めたものである。この例では、主要成分元素としてSi、Mn、Ni、Cr、Moを選定し、炭素Cについては浸炭によりどの試料も含有率が均等になるため、変数から除外している。
【0077】
表2に示すように、上記回帰式(a)に求めた軟化特性抵抗値Rの推定値は、実測値と良く近似しており、この推定値Rを705<R≦820、好ましくは710≦R≦815の範囲内に規制することにより、耐久性および鍛造加工性を簡易にかつ比較的精度良く評価することが可能となる。
【0078】
尚、トラニオン部材や外側継手部材等の構成部品を浸炭窒化焼入れ焼戻し品とすることもでき、その場合、母材の炭素含有量、軟化抵抗特性値R(実測値又は推定値)を浸炭焼入れ焼戻し品と同様に規制することにより、上記と同様の効果を得ることができる。さらに、浸炭窒化焼入れ焼戻し品では、表層部(浸炭窒化層)の残留オーステナイト量が適度に増え、亀裂敏感性が改善されるので、転動疲労寿命の向上に一層効果的である。また、脚軸の基端部やセレーション部の表面硬さが上昇し、捩り疲労強度等も向上する。
【0079】
また、浸炭焼入れ焼戻し、浸炭窒化焼入れ焼戻しを行う場合、表1に示す鋼材料の他、表5に示す種々の鋼材料を使用することができる。
【0080】
【表5】
Figure 0003949863
【0081】
下記の表3、表4は、第1の実施形態の等速自在継手のトリポード部材について行った他の試験の結果を示している。まず、主要成分含有量が種々異なる鋼材料を用いてトリポード部材を形成し(試料No1〜No18)、10KHz×170KW×3秒の高周波焼入れの後、200°C×2時間の焼戻しを行って、脚軸の外周面の軟化特性抵抗値R(外周面から深さ0.5mm以内の領域での最高ビッカース硬さHv)を実測した。その結果を表3に示す。尚、脚軸の外周面には、高周波焼入れ焼戻しの後、研削加工を施してあり、上記の「深さ0.5mm」は研削加工後の表面を基準にしている。つぎに、各試料について、耐久性、鍛造加工性を評価した。その内、7種類の試料に対する評価と軟化抵抗特性値R(Hv)の実測値および推測値(推測値については後述する)との関係を表4に示す。評価項目の◎は目標特性を十分満足できたもの、○は目標特性を満足できたもの、△は目標特性を満足できなかったものを表している。
【0082】
【表3】
Figure 0003949863
【0083】
【表4】
Figure 0003949863
【0084】
表4に示す結果より、高周波焼入れ焼戻し品の場合、軟化特性抵抗値Rを630<R≦820、好ましくは640≦R≦810の範囲内に規制することにより、耐久性および鍛造加工性ともに満足できる結果が得られることが確認できた。軟化特性抵抗値Rが630以下であると、耐久性の点で好ましい結果が得られず、また軟化特性抵抗値Rが820を越えると鍛造加工性の点で好ましい結果が得られない。
【0085】
一方、高周波焼入れにより十分な表面硬さを得るためには、母材の炭素含有量を0.45〜0.60wt%の範囲内にすることが必要である。
【0086】
以上により、トラニオン部材や外側継手部材等の構成部品を高周波焼入れ焼戻し品とする場合は、これら部品を炭素含有量0.45〜0.60wt%%の鋼で形成し、かつ、軟化抵抗特性値Rを630<R≦820、好ましくは640≦R≦810の範囲内に規好ましくは640≦R≦810の範囲内に規制することが望ましく、これにより、転動疲労寿命や疲労強度等を高めて耐久性を向上させ、同時に鍛造加工性も確保することができる。また、高周波焼入れ焼戻しにより、表面に残留圧縮応力が発生するので、転動疲労寿命や疲労強度の向上に一層効果的である。
【0087】
上述した軟化抵抗特性値Rは、実測によって求めても良いが、以下に示す回帰式(b)を用いて比較的精度良く推定することができる。
Figure 0003949863
上記回帰式(b)は、表3に示す18種類の試料(試料No1〜No18)の軟化特性抵抗値R(実測値)と各試料の主要成分元素含有率(%)との重回帰分析を行って求めたものである。この例では、主要成分元素としてC、Si、Mn、Ni、Cr、Moを選定している。
【0088】
表3に示すように、上記回帰式(b)に求めた軟化特性抵抗値Rの推定値は、実測値と良く近似しており、この推定値Rを630<R≦820、好ましくは640≦R≦810の範囲内に規制することにより、耐久性および鍛造加工性を簡易にかつ比較的精度良く評価することが可能となる。
【0089】
また、高周波焼入れ焼戻しを行う場合、表3に示す鋼材料の他、表6に示す種々の鋼材料を使用することができる。
【0090】
【表6】
Figure 0003949863
【0091】
尚、上記はトラニオン部材について行った試験の結果であるが、外側継手部材、ローラ、支持リング等のその他の構成部品についても同様の結果が得られた。また、第2の実施形態の等速自在継手及び上述した参考例の等速自在継手についても同様の結果が得られた。
【0092】
【発明の効果】
本発明によれば、構成部品、特にトリポード部材や外側継手部材の材料、表面及びその下層部の性状が最適化され、転動疲労寿命や捩り疲労等に対する強度が向上するので、現状のサイズを維持したままより耐久性や強度に優れたトリポード型等速自在継手を提供し、また、現状品と同等以上の耐久性や強度を確保しつつよりコンパクトなトリポード型等速自在継手を提供することができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態を示し、図1(A)は一部を断面にした端面図、図1(B)は図1(A)における脚軸に垂直な断面図、図1(C)は接触楕円を説明するための支持リングの断面図である。
【図2】 図2(A)は図1の等速自在継手の縦断面図であって作動角をとった状態を示し、図2(B)は図2(A)におけるトリポード部材の模式的側面図である。
【図3】 本発明の第2の実施の形態を示し、図3(A)は一部を断面にした端面図、図3(B)は図3(A)における脚軸に垂直な断面図、図3(C)は作動角をとった状態を示す縦断面図である。
【図4】 図3における支持リングの拡大断面図である。
【図5】 本発明の参考例を示し、図5(A)は一部を断面にした端面図、図5(B)は図5(A)の要部拡大横断面図である。
【図6】 図5における支持リングと脚軸との接触位置に発生する負荷分力Fを説明するための図である。
【図7】 本発明の他の参考例を示し、図7(A)は横断面図、図7(B)は図7(A)の要部拡大横断面図、図7(C)は外側ローラと内側ローラとの接触位置に発生する負荷分力Fを説明するための図である。
【符号の説明】
10 外側継手部材
12 トラック溝
14 ローラ案内面
20 トリポード部材
22 脚軸
32 支持リング
32a 円弧部
32b 逃げ部
34 ローラ
36 ニードルローラ

Claims (9)

  1. 内周部に軸方向の3本のトラック溝が形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、前記トリポード部材の各脚軸にそれぞれ装着されたローラ機構とを備え、前記ローラ機構は、前記脚軸に対して首振り揺動自在で、前記ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内されるローラを有する等速自在継手において、
    前記ローラ機構が、前記ローラ案内面に案内されるローラと、前記脚軸の外周面に外嵌されて前記ローラを回転自在に支持する支持リングとを有し、前記支持リングの内周面は円弧状凸断面であり、前記脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で前記支持リングの内周面と接触し、かつ、継手の軸線方向で前記支持リングの内周面との間にすきまを形成するようになっており、
    少なくとも1つの構成部品が炭素含有量0.15〜0.40wt%の鋼で形成され、所定表面の直下に浸炭焼入れ焼戻しにより形成された表層部を有し、かつ、前記構成部品を焼入れした後に200°C×2時間の焼戻しを行ったときの、前記所定表面から深さ0.5mm以内の領域での最高ビッカース硬さ(Hv)で表される軟化抵抗特性値(R)が705<R≦820であることを特徴とする等速自在継手。
  2. 内周部に軸方向の3本のトラック溝が形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、前記トリポード部材の各脚軸にそれぞれ装着されたローラ機構とを備え、前記ローラ機構は、前記脚軸に対して首振り揺動自在で、前記ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内されるローラを有する等速自在継手において、
    前記ローラ機構が、前記ローラ案内面に案内されるローラと、前記脚軸の外周面に外嵌されて前記ローラを回転自在に支持する支持リングとを有し、前記支持リングの内周面は円弧状凸断面であり、前記脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で前記支持リングの内周面と接触し、かつ、継手の軸線方向で前記支持リングの内周面との間にすきまを形成するようになっており、
    少なくとも1つの構成部品が炭素含有量0.15〜0.40wt%の鋼で形成され、所定表面の直下に浸炭窒化焼入れ焼戻しにより形成された表層部を有し、かつ、前記構成部品を焼入れした後に200°C×2時間の焼戻しを行ったときの、前記所定表面から深さ0.5mm以内の領域での最高ビッカース硬さ(Hv)で表される軟化抵抗特性値(R)が705<R≦820であることを特徴とする等速自在継手。
  3. 内周部に軸方向の3本のトラック溝が形成され、各トラック溝の両側にそれぞれ軸方向のローラ案内面を有する外側継手部材と、半径方向に突出した3本の脚軸を有するトリポード部材と、前記トリポード部材の各脚軸にそれぞれ装着されたローラ機構とを備え、前記ローラ機構は、前記脚軸に対して首振り揺動自在で、前記ローラ案内面に沿って外側継手部材の軸線と平行な方向に案内されるローラを有する等速自在継手において、
    前記ローラ機構が、前記ローラ案内面に案内されるローラと、前記脚軸の外周面に外嵌されて前記ローラを回転自在に支持する支持リングとを有し、前記支持リングの内周面は円弧状凸断面であり、前記脚軸の外周面は縦断面においてはストレート形状で、横断面においては継手の軸線と直交する方向で前記支持リングの内周面と接触し、かつ、継手の軸線方向で前記支持リングの内周面との間にすきまを形成するようになっており、
    少なくとも1つの構成部品が炭素含有量0.45〜0.60wt%の鋼で形成され、所定表面の直下に高周波焼入れ焼戻しにより形成された表層部を有し、かつ、前記構成部品を焼入れした後に200°C×2時間の焼戻しを行ったときの、前記所定表面から深さ0.5mm以内の領域での最高ビッカース硬さ(Hv)で表される軟化抵抗特性値(R)が630<R≦820であることを特徴とする等速自在継手。
  4. 前記脚軸の横断面が、継手の軸線と直交する長軸をもった略楕円形である請求項1〜3の何れかに記載の等速自在継手。
  5. 前記構成部品がトリポード部材である請求項1〜3の何れかに記載の等速自在継手。
  6. 前記構成部品が外側継手部材である請求項1〜3の何れかに記載の等速自在継手。
  7. 前記構成部品の所定表面に微小な凹部が無数にランダムに形成されている請求項1〜3の何れかに記載の等速自在継手。
  8. 前記構成部品の所定表面に化成処理被膜を下地層とする固体潤滑被膜が形成されている請求項1〜3の何れかに記載の等速自在継手。
  9. 前記構成部品の所定表面に常温浸硫処理が施されている請求項1〜3の何れかに記載の等速自在継手。
JP2000003987A 1999-11-05 2000-01-12 等速自在継手 Expired - Lifetime JP3949863B2 (ja)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2000003987A JP3949863B2 (ja) 2000-01-12 2000-01-12 等速自在継手
US09/698,243 US6478682B1 (en) 1999-11-05 2000-10-30 Constant velocity universal joint
KR1020000065282A KR100662220B1 (ko) 1999-11-05 2000-11-03 등속자재 조인트
FR0014162A FR2800817B1 (fr) 1999-11-05 2000-11-06 Joint homocinetique tripode
US10/198,172 US6719635B2 (en) 1999-11-05 2002-07-19 Constant velocity universal joint
US10/198,134 US6579188B1 (en) 1999-11-05 2002-07-19 Constant velocity universal joint
US10/765,472 US7052400B2 (en) 1999-11-05 2004-01-28 Constant velocity universal joint
FR0406966A FR2856445B1 (fr) 1999-11-05 2004-06-25 Joint homocinetique tripode
FR0406967A FR2856446B1 (fr) 1999-11-05 2004-06-25 Joint homocinetique

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000003987A JP3949863B2 (ja) 2000-01-12 2000-01-12 等速自在継手

Publications (2)

Publication Number Publication Date
JP2001193752A JP2001193752A (ja) 2001-07-17
JP3949863B2 true JP3949863B2 (ja) 2007-07-25

Family

ID=18532833

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000003987A Expired - Lifetime JP3949863B2 (ja) 1999-11-05 2000-01-12 等速自在継手

Country Status (1)

Country Link
JP (1) JP3949863B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3894760B2 (ja) * 2001-09-26 2007-03-22 Ntn株式会社 等速自在継手
JP4238583B2 (ja) * 2003-01-24 2009-03-18 株式会社ジェイテクト スプライン連結構造
JP2007016851A (ja) * 2005-07-06 2007-01-25 Ntn Corp トリポード型等速自在継手
JP2007100801A (ja) * 2005-10-03 2007-04-19 Ntn Corp 等速自在継手用ケージおよび等速自在継手
JP2007100835A (ja) * 2005-10-04 2007-04-19 Ntn Corp トリポード型等速自在継手のトラニオン及びその製造方法
JP2008256082A (ja) * 2007-04-04 2008-10-23 Jtekt Corp トリポード型等速ジョイント
JP2009002388A (ja) * 2007-06-19 2009-01-08 Ntn Corp トリポード型等速自在継手
JP5085465B2 (ja) * 2008-08-19 2012-11-28 Ntn株式会社 トリポード型等速自在継手

Also Published As

Publication number Publication date
JP2001193752A (ja) 2001-07-17

Similar Documents

Publication Publication Date Title
KR100662220B1 (ko) 등속자재 조인트
JP3949866B2 (ja) 等速自在継手
CN109154328A (zh) 三球销型等速万向联轴器以及三球销构件的热处理方法
JP3949863B2 (ja) 等速自在継手
US20120329564A1 (en) Tripod constant velocity universal joint
WO2020137924A1 (ja) トリポード型等速自在継手
US7217194B2 (en) Constant velocity universal joint
JP2002235766A (ja) トリポード型等速自在継手
JP3949864B2 (ja) 等速自在継手
JP3949865B2 (ja) 等速自在継手
JP2011185346A (ja) 等速自在継手
JP2008064158A (ja) トリポード型等速自在継手
JP5085465B2 (ja) トリポード型等速自在継手
JP2007224981A (ja) 等速自在継手の外方部材及びその製造方法
CN116981856A (zh) 三球销型等速万向联轴器
TW202342897A (zh) 三腳等速萬向接頭
JP7088865B2 (ja) トリポード型等速自在継手
WO2020195487A1 (ja) トリポード型等速自在継手
JP2004150592A (ja) トロイダル型無段変速機
WO2023032631A1 (ja) トリポード型等速自在継手
JP2000220654A (ja) 等速自在継手
JP5165488B2 (ja) 等速自在継手の内側継手部材
JP5621338B2 (ja) トロイダル型無段変速機
JP2020159546A (ja) トリポード型等速自在継手
JP2008089019A (ja) 等速自在継手

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060414

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070419

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3949863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140427

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term