WO2020137520A1 - クレーンの制御システム及び制御方法 - Google Patents

クレーンの制御システム及び制御方法 Download PDF

Info

Publication number
WO2020137520A1
WO2020137520A1 PCT/JP2019/048276 JP2019048276W WO2020137520A1 WO 2020137520 A1 WO2020137520 A1 WO 2020137520A1 JP 2019048276 W JP2019048276 W JP 2019048276W WO 2020137520 A1 WO2020137520 A1 WO 2020137520A1
Authority
WO
WIPO (PCT)
Prior art keywords
crane
traveling
target line
current position
target
Prior art date
Application number
PCT/JP2019/048276
Other languages
English (en)
French (fr)
Inventor
淳也 宮田
浩司 岡
欣也 市村
Original Assignee
株式会社三井E&Sマシナリー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018247465A external-priority patent/JP6587734B1/ja
Priority claimed from JP2019141500A external-priority patent/JP7101146B2/ja
Application filed by 株式会社三井E&Sマシナリー filed Critical 株式会社三井E&Sマシナリー
Priority to US17/418,554 priority Critical patent/US20220073320A1/en
Publication of WO2020137520A1 publication Critical patent/WO2020137520A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/22Control systems or devices for electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/46Position indicators for suspended loads or for crane elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • B66C13/085Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions electrical
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/48Automatic control of crane drives for producing a single or repeated working cycle; Programme control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C19/00Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries
    • B66C19/007Cranes comprising trolleys or crabs running on fixed or movable bridges or gantries for containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/14Receivers specially adapted for specific applications
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C2700/00Cranes
    • B66C2700/08Electrical assemblies or electrical control devices for cranes, winches, capstans or electrical hoists

Definitions

  • the present disclosure relates to a crane control system and control method.
  • the container yard has different water gradients for each storage lane and for each bay of the storage lane, and the crane, which is a steel structure, leans against the road surface due to this water gradient. If the current position acquired by the antenna of the Global Positioning Satellite System installed on the upper part of the structure with the crane tilted is aligned with the linear target line, the position of the lower part of the crane structure and the traveling device will be from the linear target line. Shift and separate. Therefore, it is necessary to correct the deviation, and there is a problem that extra time is required for alignment.
  • the current position acquired by the device is converted into a value based on the road surface on which the straight target line exists in consideration of the inclination of the crane, and the converted value is the straight target line.
  • the crane described in Patent Document 1 uses a method of calculating a value based on the road surface in consideration of the inclination of the crane every time the current position of the crane is acquired. Therefore, the calculation is periodically performed, and the frequency of the calculation is high. As described above, when the frequency of calculation in the traveling control of the crane increases, the load on the calculation processing becomes heavy and the probability of calculation error increases. That is, the high calculation frequency is a factor that hinders highly accurate and high-speed alignment in the crane.
  • An object of the present disclosure is to provide a crane control system and a control method for accurately and quickly aligning a crane with a target position.
  • a crane control system of the present invention that achieves the above-mentioned object is a crane having a pair of traveling devices that are spaced apart from each other in the extending direction of a girder portion arranged at the upper part of a structure and are attached to the lower end of the structure.
  • the control system of the crane which includes a position acquisition unit that sequentially acquires the current position of the crane and a traveling control unit that is connected to each of the position acquisition unit and the pair of traveling devices, in a plan view, the traveling direction of the crane.
  • the traveling control unit Based on the deviation from the current position acquired by the acquisition unit, the traveling control unit adjusts the traveling speed of each of the pair of traveling devices to control the traveling of the crane. To do.
  • a crane control method of the present invention that achieves the above object is a crane having a pair of traveling devices, which are spaced apart from each other in the extending direction of a girder portion arranged at an upper portion of a structure and are attached to a lower end of the structure.
  • the control method of the crane to travel the crane by adjusting the traveling speed of each of the pair of traveling devices, before traveling of the crane,
  • the traveling speed of each of the pair of traveling devices is adjusted based on a deviation between the set target line and the acquired current position to cause the crane to travel.
  • the present invention it is possible to control the traveling of the crane with high accuracy and high speed, and it is possible to position the crane to the target position accurately and quickly.
  • FIG. 1 is a plan view of a container terminal on which a crane equipped with a first embodiment of a control system travels.
  • FIG. 2 is a perspective view illustrating the crane of FIG.
  • FIG. 3 is a block diagram illustrating the control system of FIG.
  • FIG. 4 is a perspective view illustrating the target line of FIG.
  • FIG. 5 is a flow chart illustrating a first embodiment of the crane control method.
  • FIG. 6 is a block diagram illustrating a second embodiment of the control system.
  • FIG. 7 is a plan view illustrating the second target line in FIG.
  • FIG. 8 is a plan view illustrating another example of the second target line in FIG.
  • FIG. 9 is a flowchart illustrating a second embodiment of the crane control method.
  • FIG. 1 is a plan view of a container terminal on which a crane equipped with a first embodiment of a control system travels.
  • FIG. 2 is a perspective view illustrating the crane of FIG.
  • FIG. 3 is a block diagram
  • FIG. 10 is a perspective view illustrating a crane equipped with the third embodiment of the control system.
  • 11 is a block diagram illustrating the control system of FIG.
  • FIG. 12 is a flowchart illustrating a third embodiment of the crane control method.
  • FIG. 13 is a perspective view illustrating a crane equipped with the fourth embodiment of the control system.
  • FIG. 14 is a block diagram illustrating the control system of FIG.
  • FIG. 15 is an explanatory diagram illustrating the measurement result of the corrected position acquisition device in FIG.
  • FIG. 16 is a perspective view illustrating a crane equipped with the fifth embodiment of the control system.
  • FIG. 17 is a block diagram illustrating the control system of FIG.
  • FIG. 18 is a part of a flow chart illustrating a fifth embodiment of the crane control method.
  • FIG. 19 is a flowchart following “A” in FIG. 18.
  • FIG. 20 is a perspective view illustrating a crane equipped with the sixth embodiment of the control system.
  • 21 is a block diagram illustrating the control system of FIG. 22 is a plan view illustrating the main target line and the preliminary target line of FIG.
  • FIG. 23 is a flow chart illustrating a sixth embodiment of the crane control method.
  • FIG. 24 is another flowchart illustrating the sixth embodiment of the crane control method.
  • the X direction is the longitudinal direction of the storage lane 13
  • the Y direction is the lateral direction of the storage lane 13
  • the Z direction is the vertical direction.
  • t and u used in the reference numerals indicate cycles.
  • straight line refers to a line having a curvature of zero in plan view (including cases where it can be regarded as an error)
  • curve is a line other than a straight line and has a curvature of zero in plan view.
  • the curved line is larger than the above, and the curved or curved line is shown, and the "straight line” and the “curved line” are distinguished as different lines. That is, in the present disclosure, the “polygonal line” is defined as a curve formed by connecting a number of line segments at their end points.
  • control system 30 is a system that controls the gate-type crane 20 that loads and unloads the container C at the container terminal 10 based on the target line 40. is there.
  • the container terminal 10 is partitioned into a container storage yard 11 and a vessel handling area 12 that are adjacent in the X direction.
  • the container storage yard 11 includes a plurality of storage lanes 13 in which a large number of containers C are stored.
  • the storage lane 13 extends in the X direction (the direction from the quay to the ship in the embodiment), and is installed with its longitudinal direction oriented in the X direction.
  • the cargo handling area 12 includes a plurality of quay cranes 14 that travel on rails laid along the quay.
  • the storage lane 13 may be installed with its longitudinal direction oriented in the Y direction.
  • an on-site chassis 15 that transports the container C between the container storage yard 11 and the cargo handling area 12 and an external chassis 16 that transports the container C between the container storage yard 11 and the outside travel.
  • a plurality of gate type cranes 20 travel in the X direction along the storage lane 13 while straddling the storage lane 13 in the Y direction.
  • a management building 17 is installed in the container terminal 10.
  • An upper system 18 and a communication device 19 are installed in the management ridge 17, and instructions from the upper system 18 to the cargo handling devices (14 to 16 and 20) via the communication device 19 for cargo handling work.
  • Examples of the container terminal 10 include an automated terminal that allows cargo handling equipment to automatically carry out cargo handling according to an instruction from the host system 18, and a terminal that has a remote control controller or the like installed in the management ridge 17 and that can remotely operate cargo handling equipment. .. Moreover, the container terminal 10 can also be exemplified as a terminal that is operated directly by a driver who rides on cargo handling equipment.
  • the gate-type crane 20 includes a hoisting tool 21, a girder portion 22, a structure 23, and a pair of traveling devices 24a and 24b.
  • the hoisting tool 21 is a device that can be moved up and down in the Z direction by a wire suspended from a trolley 25 configured to traverse in the Y direction along the girder portion 22.
  • the girder portion 22 is a member that suspends and supports the hanging tool 21 via the trolley 25 and that extends in the Y direction.
  • the structure 23 is a member that supports the girder portion 22 on the upper portion.
  • the structure 23 has a trolley 25 and leg portions 26a and 26b, and has a substantially rectangular shape in which the longitudinal direction faces the Y direction and the lateral direction faces the X direction in a plan view.
  • the leg portion has four leg bodies 26a extending in the Z direction and two horizontal beams 26b connecting the lower ends of the leg bodies 26a adjacent to each other in the X direction.
  • the upper ends of the legs 26a adjacent to each other in the Y direction are connected by the girder portion 22.
  • the pair of traveling devices 24 a and 24 b are devices that are arranged apart from each other in the extending direction (Y direction) of the girder portion 22 in a plan view and are attached to the lower end of the structure 23.
  • Each of the pair of traveling devices 24a and 24b is disposed at the lower end of the horizontal beam 26b and has tires 27a and 27b and electric motors 28a and 28b, and the electric motors 28a and 28b are either horizontal beams 26b. Is electrically connected to the inverter 29 installed in the.
  • the electric motors (rotary driving machines) 28a and 28b are devices that are provided corresponding to the pair of traveling devices 24a and 24b, and that are connected to the corresponding tires 27a and 27b.
  • the electric motors 28a and 28b include speed reducers.
  • the inverter 29 is a device that adjusts the rotation speed or rotation torque of the electric motors 28a and 28b.
  • the traveling devices 24a and 24b may include passive wheels to which the electric motors 28a and 28b are not connected, in addition to the tires 27a and 27b that are drive wheels. Further, each of the traveling devices 24a and 24b may have a plurality of electric motors.
  • the pair of traveling devices 24a and 24b are paired on the left and right, and are spaced apart from each other in the Y direction of the structure 23 in plan view.
  • the pair of traveling devices 24a and 24b are devices in which the electric motors 28a and 28b are driven left and right independently by the inverter 29, and the corresponding tires 27a and 27b roll independently left and right.
  • the portal crane 20 travels in the lateral direction of the structure 23 and in the X direction, which is the extending direction of the storage lane 13. More specifically, when the electric motors 28a, 28b have the same rotational speed or rotational torque, the traveling speeds of the pair of traveling devices 24a, 24b become equal, and the portal crane 20 moves straight without changing its direction.
  • the traveling speed of the traveling devices 24a and 24b indicates the amount of change in the position of the traveling devices 24a and 24b per unit time.
  • Electric power for driving the electric motors 28a and 28b is supplied from a battery (not shown) installed in the gate crane 20 or a generator. Alternatively, electric power is externally supplied by a cable, a bus bar, or the like.
  • the control system 30 includes antennas 31a and 31b and a control device 32, and the control device 32 controls the drive of the electric motors 28a and 28b of the traveling devices 24a and 24b. It is configured to be electrically connected to the antennas 31a and 31b and the communication device 33.
  • Each of the antennas 31a and 31b is an antenna of two global positioning satellite systems (GNSS), and is composed of longitude, latitude, and altitude based on information such as time received from a plurality of artificial satellites at a predetermined cycle t.
  • Position coordinates Pa and Pb are measured. Examples of the method for positioning the position coordinates Pa and Pb include single positioning, relative positioning, DGPS (differential GPS) positioning, and RTK (real time kinematic GPS) positioning.
  • Each of the antennas 31a and 31b may have a configuration capable of acquiring longitude and latitude as plane coordinates.
  • Each of the antennas 31a and 31b is in a direction orthogonal to the Y direction that is the extending direction of the girder portion 22 in a plan view, and in the X direction that is the traveling direction in which the portal crane 20 travels in the lateral direction of the structure 23. Spaced at both ends.
  • the antennas 31a and 31b may be installed at a midway portion of the leg 26a of the portal crane 20 in the Z direction or in the vicinity of the traveling devices 24a and 24b, but the structure such as the upper end of the leg 26a or the girder portion 22 may be provided. It is preferable to install it on the upper part of the body 23 because the sensitivity when receiving information from the artificial satellite is improved.
  • the control device 32 is a hardware including a central processing unit (CPU) that performs various types of information processing, an internal storage device that can read and write programs used for performing the various types of information processing, and information processing results, and various interfaces. Is.
  • CPU central processing unit
  • the control device 32 has a position acquisition unit 34 and a traveling control unit 35 as respective functional elements, and the traveling control unit 35 travels the gate-type crane 20 based on a target line 40 stored in advance in an internal storage device.
  • Control Each functional element is stored as a program in the internal storage device of the control device 32, read by the central processing unit, and appropriately executed. In addition to the program, each functional element is also exemplified by an electric circuit that independently functions. Further, each functional element may be configured by a programmable logic controller (PLC), and the control device 32 may be an aggregate of a plurality of PLCs.
  • PLC programmable logic controller
  • the position acquisition unit 34 receives the position coordinates Pa and Pb acquired by the antennas 31a and 31b at each predetermined cycle t, and acquires and calculates the current position Pt of the portal crane 20 at each predetermined cycle t. It is a functional element that outputs the current position Pt to the traveling control unit 35.
  • the position acquisition unit 34 preferably calculates the current position Pt as the midpoint of the position coordinates Pa and Pb.
  • the position acquisition unit 34 may be a functional element that calculates the current position Pt based on the position coordinates Pa, Pb and the structural dimensions of the portal crane 20.
  • the current position Pt indicates a position (planar coordinate position) where the portal crane 20 is currently present in a plan view.
  • the current position Pt is the Y-direction end portion or the Y-direction end of the structure 23 in the plane (not limited to the horizontal plane) where the position coordinates Pa and Pb acquired by the antennas 31a and 31b installed on the structure 23 are present. It is preferable to indicate the position of the central portion.
  • the current position Pt preferably indicates the position of the center of the structure 23 in the X direction in plan view, and more preferably indicates the position of the midpoint of the position coordinates Pa and Pb in plan view.
  • the center of the container C in the X direction can be set as the target value for controlling the gate crane 20, and the alignment of the gate crane 20 can be performed.
  • the height of the current position Pt is preferably higher than the upper surface of the structure 23.
  • the traveling control unit 35 receives the current position Pt output from the position acquisition unit 34, and based on the traveling deviation ⁇ Dt between the target line 40 and the current position Pt stored in the internal storage device in advance, the inverter 29. Is a functional element that adjusts the rotational speeds Na and Nb of the electric motors 28a and 28b via the motor to adjust the traveling speeds of the pair of traveling devices 24a and 24b.
  • the deviation ⁇ Dt for traveling indicates the amount of deviation of the current position Pt from the target line 40, and is a perpendicular line passing through the current position Pt in a plan view and orthogonal to the target line 40, and between the intersection of the target line 40 and the current position Pt. Indicates the distance.
  • the deviation ⁇ Dt for traveling the shift on the left side in the Y direction in the figure is positive, and the shift on the right side in the Y direction is negative.
  • the target line 40 is stored (set) in the internal storage device of the control device 32 in advance and becomes a target value in the control for traveling the portal crane 20.
  • the target line 40 is set for each storage lane 13, and a plurality of target lines 40 are set at the container terminal 10.
  • the target line 40 is a line that extends in the X direction in plan view and bends in the Y direction according to the inclination of the portal crane 20 in the Y direction when the traveling portal crane 20 is inclined with respect to the horizontal plane. Composed of.
  • the target line 40 is, for example, a polygonal line formed by connecting a plurality of line segments at their end points.
  • the target line 40 forms a straight line extending in the X direction in a plan view when the portal crane 20 that is traveling does not tilt with respect to the horizontal plane.
  • the inclination with respect to the horizontal plane that occurs in the traveling gate crane 20 includes not only the inclination due to the water gradient provided on the road surface 48 of the container storage yard 11, but also the inclination due to deterioration over time. Examples of the deterioration with time include deterioration of the tires 27a and 27b of the gate crane 20 and subsidence of the road surface 48 of the container storage yard 11.
  • the target line 40 is bent at its midway position according to the inclination in the Y direction of the traveling gate crane 20 with reference to a straight target line 42 extending in the X direction and forming a straight line in a plan view as described later. It is a line made.
  • the target line 40 is obtained by previously conducting experiments and tests by connecting a plurality of current positions Pt acquired by the position acquisition unit 34 during the traveling when the gate-type crane 20 is traveled with the linear target line 42 as the target value in the traveling order. Composed of trajectories.
  • the target line 40 connects a plurality of current positions Pt predicted to be acquired by the position acquisition unit 34 in the order of travel when it is assumed that the portal crane 20 has traveled with the straight target line 42 as a target value by simulation in advance. It may be composed of a trail.
  • the target line 40 is a straight target line 42 in plan view. It is located on the right side in the Y direction, and is bent in the front and back. Further, when the gate crane 20 traveling on a place where the road surface of the container storage yard 11 is horizontal is not inclined, the target line 40 overlaps the straight target line 42 in a plan view and is straight in the X direction. ..
  • the target line 40 is a straight target line in plan view when the gate crane 20 inclines to the left in the Y direction. It is located on the left side in the Y direction with respect to 42, and is bent before and after it.
  • each of the target line 40 and the straight line target line 42 need only have coordinate information on the XY plane, and need not include coordinate information in the Z direction.
  • the height of the target line 40 in the Z direction is the height of the antennas 31a and 31b with the road surface 48 of the container storage yard 11 as the height reference. Preferably.
  • the target line 40 has a plurality of target positions 41, and is composed of a polygonal line that is bent with the position where the inclination of the gate crane 20 in the Y direction changes before and after the target position 41 as an inflection point. Is desirable.
  • a plurality of target positions 41 are arranged on the line of the target line 40, and one of them is a stop target of the gate crane 20 traveling on the target line 40.
  • the target position 41 is a position corresponding to the stop position 43 arranged at every predetermined distance on the straight target line 42 as described later.
  • the target position 41 is, in plan view, a position that moves back and forth in the X direction according to the tilt in the X direction of the traveling gate crane 20 with respect to the corresponding stop position 43, and in the Y direction according to the tilt in the Y direction. The position depends on.
  • the stop position 43 is arranged on the line of the straight target line 42 that extends in the X direction and forms a straight line in a plan view, and is arranged at each predetermined distance on the straight target line 42.
  • the position is based on the road surface.
  • the stop position 43 is a position based on the traveling devices 24a and 24b.
  • the stop position 43 is set for each bay indicating the arrangement position of the containers C in the X direction of the storage lane 13 when the straight target line 42 is a straight line extending in the X direction which is the longitudinal direction of the storage lane 13. It is preferable that the center is set in the X direction in the bay.
  • the target position 41 when the gate crane 20 traveling in a place where the road surface 48 of the container storage yard 11 inclines downward toward the front side in the X direction and the gate crane 20 inclines toward the front side in the X direction, the target position 41 at the corresponding stop in plan view. It is located on the front side in the X direction with respect to the position 43. Further, when the gate crane 20 traveling on the road surface 48 of the container storage yard 11 is horizontal, the target position 41 overlaps the stop position 43 in plan view. Further, when the gate crane 20 traveling on a place where the road surface 48 of the container storage yard 11 inclines downward toward the rear side in the X direction, the target position 41 corresponds to the target position 41 in a plan view.
  • the target position 41 at the corresponding stop in plan view. It is located on the right side in the Y direction with respect to the position 43. Further, when the gate-shaped crane 20 traveling on a place where the road surface 48 of the container storage yard 11 inclines downward toward the left side in the Y direction, the target position 41 corresponds to the stop when the gate type crane 20 inclines to the left side in the Y direction. It is located on the left side in the Y direction with respect to the position 43.
  • the target position 41 moves up and down in the Z direction according to the inclination of the gate crane 20 in the X direction.
  • the target line 40 is a three-dimensional polygonal line.
  • the communication device 33 receives the cargo handling instruction from the host system 18, and causes the portal crane 20 to travel based on the cargo handling instruction. Is the way.
  • This control method is repeatedly performed at a predetermined cycle t while the portal crane 20 is traveling.
  • the control method of this indication shall set the position used as the stop target of the gate crane 20 at the time of a start, and shall end it when the gate crane 20 is stopped in the position used as the stop target. ..
  • each antenna 31a, 31b acquires the position coordinates Pa, Pb, and the position acquisition unit 34 acquires the current position Pt of the portal crane 20 based on the position coordinates Pa, Pb (S110).
  • the traveling control unit 35 calculates the traveling deviation ⁇ Dt based on the current position Pt acquired by the position acquisition unit 34 and the preset target line 40 (S120).
  • the traveling control unit 35 determines whether the calculated traveling deviation ⁇ Dt is zero (S130). When it is determined that the traveling deviation ⁇ Dt is zero (S130: YES), the traveling control unit 35 maintains the traveling speed difference between the pair of traveling devices 24a and 24b at the current traveling speed difference via the inverter 29 (S140). ), return to the start. On the other hand, when it is determined that the traveling deviation ⁇ Dt is not zero (S150: NO), the traveling control unit 35 sets the traveling speed difference between the pair of traveling devices 24a and 24b to zero by using the inverter 29. After adjusting the difference in traveling speed (S150), the process returns to the start.
  • the control system 30 of the first embodiment is not the straight target line 42 that forms a straight line in plan view with the road surface 48 of the container storage yard 11 as a reference, but the tilt of the moving gate-type crane 20 in the Y direction. Is controlled and the traveling of the portal crane 20 is controlled based on the target line 40 that is bent in a plan view. Therefore, according to this control system 30, the current position Pt acquired by the position acquisition unit 34 is obtained by setting the target value of the control for traveling the target line 40 in which the inclination of the traveling gate-type crane 20 is reflected. It is possible to omit the calculation for converting to the value of the road surface reference.
  • the traveling control of the portal crane 20 can be performed with high accuracy and high speed, and the portal crane 20 can be accurately and quickly aligned with the target position.
  • control system 30 sets a target position 41 that shifts in the front-rear direction and the left-right direction in plan view as a position to be the stop target of the gate crane 20 with respect to a corresponding stop position 43. It Therefore, by making the current position Pt of the portal crane 20 coincide with the target position 41 by the traveling control and stopping the traveling, it is advantageous for the alignment of the portal crane 20 in the cargo handling work.
  • the current position Pt may be acquired based on the position coordinates acquired by the antenna of one global positioning satellite system, or may be acquired using an antenna capable of transmitting and receiving with the host system 18 in addition to the global positioning satellite system. ..
  • the control device 32 has a target area 44 for the target line 40 in the internal storage device as compared with the first embodiment, and the control device 30 has a target area 44 as a functional element.
  • the difference is that a setting unit 36 that sets the second target line 45 using the target region 44 is provided, and the traveling control unit 35 uses the second target line 45 instead of the target line 40.
  • the setting unit 36 inputs the target line 40 and the target area 44 stored in advance in the internal storage device, and sets the second target line 45 as the target value between the start point P0 and the end point P1 of the control for traveling. These are functional elements that are created and output to the traveling control unit 35.
  • the target region 44 is spread from the target line 40 in both directions in the Y direction by predetermined widths Ba and Bb in plan view, and one limit end 44a and the other end in the Y direction. It is a region surrounded by the limit edge 44b of.
  • the target area 44 includes a container C stored in the storage lane 13 and other storage lanes adjacent to the storage lane 13 in which the traveling gate-type crane 20 is previously tested or tested or simulated. It is set as a region where it does not collide with another portal crane 20 that is traveling across 13 and a region where the premises chassis 15 and the foreign chassis 16 do not enter the traveling path along the storage lane 13.
  • the widths Ba and Bb are set to widths that can avoid collision and intrusion of the structure 23 and the pair of traveling devices 24a and 24b even when the current position Pt of the traveling gate crane 20 reaches the one limit end 44a. ..
  • the widths Ba and Bb may be set to different values.
  • the second target line 45 is a target value of control for traveling, and is set to a route different from the route tracing the target line 40 between the start point P0 and the end point P1 within a range that falls within the target area 44. It The route length of the second target line 45 is preferably shorter than the route length of the route tracing the target line 40 from the start point P0 to the end point P1, and within the range of the target region 44 from the start point P0. The shortest distance to the end point P1 is more preferable.
  • the second target line 45 is exemplified by the spline curve of FIG. 7, the approximate straight line of FIG.
  • the start point P0 is a point at which the traveling control is started, and the present position of the gate crane 20 before the control for traveling is exemplified, and the end point P1 is instructed by the cargo handling instruction received from the host system 18.
  • the position which is the stopped target is illustrated.
  • the current position Pt output from the position acquisition unit 34 and the second target line 45 set by the setting unit 36 instead of the target line 40 are input to the traveling control unit 35, and the second target thereof is input.
  • the rotational speeds Na, Nb of the electric motors 28a, 28b are adjusted via the inverter 29 to determine the traveling speeds of the pair of traveling devices 24a, 24b. It is a functional element that regulates.
  • the communication device 33 receives the cargo handling instruction from the host system 18, and causes the portal crane 20 to travel based on the cargo handling instruction.
  • the setting unit 36 sets the second target line 45 before performing step S110 in the control method described above (S100).
  • the second target line 45 for which the traveling control unit 35 has been set is used.
  • the control system 30 of the second embodiment enables highly accurate and high-speed traveling control of the portal crane 20, and the portal crane 20 is moved to the target position.
  • the position can be accurately and quickly adjusted.
  • control system 30 does not search for a route that follows the target line 40 as a target value of control for traveling, but searches for a route that allows smooth traveling or a route that can arrive earlier at a stop target position. Therefore, by using a smoothly curved route as the target value for the control for traveling, it is advantageous to gently change the speed difference between the pair of traveling devices 24a and 24b, and the gate associated with the abrupt change in the speed difference. It is possible to suppress shaking of the model crane 20. In addition, by using a route shorter than the route length of the route tracing the target line 40 as the target value of the control for traveling, it is advantageous to make the gantry crane 20 reach the stop target position earlier, and it is allowed to travel. The time required for control can be shortened.
  • control system 30 may set a target line having a route length longer than the route length of the route tracing the target line 40 within a range that falls within the target region 44 as the target value of the control for traveling, depending on the situation. ..
  • the control system 30 of the third embodiment is different in that an antenna 31c is provided. Further, the control device 32 stores the inclination in the Y direction of the gate crane 20 as a reference value when the current position Pt matches the correction position 46 in the internal storage device, that is, the reference inclination ⁇ a that serves as a reference for the angle around the X axis. The difference is that it has a parameter acquisition unit 37 and a correction unit 38 as functional elements. This reference inclination ⁇ a is an inclination with respect to the horizontal plane.
  • the antenna 31c is an antenna of the Global Positioning Satellite System (GNSS) like the antennas 31a and 31b, and based on information such as time received from a plurality of artificial satellites at a predetermined cycle t, the longitude, the latitude, and the altitude.
  • the position coordinate Pc is obtained.
  • the antenna 31c is arranged at the other end of the structure 23 in the X direction with respect to the antenna 31a or the antenna 31b in a plan view.
  • each antenna 31a, 31b, 31c is configured to be able to acquire the longitude, latitude and height as spatial coordinates (three-dimensional coordinates) using the global positioning satellite system.
  • the three antennas 31a to 31c are arranged at three corners of the four corners of the rectangle, assuming that the structure 23 of the portal crane 20 has a substantially rectangular shape in plan view.
  • At least one correction position 46 is arranged on the target line 40. It is preferable that a plurality of correction positions 46 are arranged on the line of one target line 40, and it is more preferable that the correction positions 46 are composed of a plurality of target positions 41 arranged on the line of the target line 40. Since the correction position 46 is configured by the target position 41, it is possible to perform the correction control every time the portal crane 20 passes through the target position 41 or stops at the target position 41 by the traveling control. It is advantageous to increase the frequency of.
  • the reference inclination ⁇ a is set as an initial value of the inclination of the road surface 48 of the container storage yard 11 at the correction position 46 in the Y direction, and the inclination of the portal crane 20 when the current position Pt coincides with the correction position 46. Of these, the left and right inclinations in the Y direction are shown.
  • the current position Pt matches the correction position 46
  • the current position Pt when the portal crane 20 is stopped is corrected in addition to the correction position 46, and the current position Pt is corrected while the portal crane 20 is traveling. Also includes when passing through position 46.
  • the parameter acquisition unit 37 receives the position coordinates Pa and Pc acquired by the antennas 31a and 31c at predetermined cycles t, and calculates the inclination ⁇ t of the portal crane 20 with respect to the horizontal plane as a parameter at predetermined cycles t.
  • the parameter indicates a value that changes depending on the tilt of the portal crane 20 in the Y direction, and the tilt ⁇ t is specifically exemplified.
  • the correction unit 38 receives the inclination ⁇ t as the parameter acquired by the parameter acquisition unit 37, and based on the correction deviation ⁇ t between the input inclination ⁇ t and the reference inclination ⁇ a that is a reference value stored in advance in the internal storage device. It is a functional element that corrects the target line 40.
  • the correction deviation ⁇ t is a value obtained by subtracting the inclination ⁇ t from the reference inclination ⁇ a, and the inclination to the left in the Y direction in the figure is positive and the inclination to the right in the Y direction is negative.
  • the portal crane 20 is tilted to the right in the Y direction due to deterioration over time, and when the current position Pt coincides with the correction position 46, the portal crane 20 moves.
  • the lower portion of the structure 23 and the traveling device 24b are in a state of being laterally closer to the storage lane 13.
  • the portal crane 20 when the correction deviation ⁇ t is positive, the portal crane 20 is tilted to the left in the Y direction due to deterioration over time, and when the current position Pt coincides with the correction position 46, the portal crane 20 moves.
  • the lower left part of the structure 23 and the traveling device 24a are in a state of being laterally closer to the storage lane 13.
  • the correcting unit 38 corrects the target line 40 by shifting it in parallel to the left side in the Y direction in plan view so that the correction deviation ⁇ t becomes zero when the correction deviation ⁇ t is positive. Further, the correction unit 38 corrects the target line 40 by shifting it in parallel to the right side in the Y direction in plan view so that the correction deviation ⁇ t becomes zero when the correction deviation ⁇ t is negative.
  • the control method of the portal crane 20 by the control system 30 of the third embodiment is a method that is repeatedly performed while the portal crane 20 is traveling. The method is also performed when the gate crane 20 is stopped.
  • each antenna 31a, 31b, 31c acquires the position coordinates Pa, Pb, Pc
  • the position acquisition unit 34 acquires the current position Pt of the portal crane 20 based on the position coordinates Pa, Pb (S210).
  • the parameter acquisition unit 37 acquires the current inclination ⁇ t of the portal crane 20 in the Y direction as a parameter based on the position coordinates Pa and Pc (S220).
  • the correction unit 38 determines whether or not the current position Pt acquired by the position acquisition unit 34 matches the corrected position 46 (S230). When it is determined that the current position Pt does not match the corrected position 46 (S230: NO), the process returns to the start. On the other hand, when it is determined that the current position Pt matches the corrected position 46 (S230: YES), the correction unit 38 determines the inclination ⁇ t that is the parameter acquired by the parameter acquisition unit 37 and the reference inclination ⁇ a that is a preset reference value. The correction deviation ⁇ t is calculated based on (S240).
  • the correction unit 38 determines whether or not the calculated correction deviation ⁇ t is zero (S250). When it is determined that the correction deviation ⁇ t is zero (S250: YES), the process returns to the start. On the other hand, if it is determined that the correction deviation ⁇ t is not zero (S250: NO), the correction unit 38 corrects the target line 40 so that the correction deviation ⁇ t becomes zero (S260), and the process returns to the start. ..
  • the control system 30 of the portal crane 20 sets the target line 40 so as to reflect the deviation when the current inclination ⁇ t of the portal crane 20 deviates from the reference inclination ⁇ a. to correct.
  • the corrected target line 40 can be made to correspond to aging deterioration of the gate crane 20 and aging deterioration of the road surface 48 of the container storage yard 11, which enables highly accurate and high-speed traveling control of the gate crane 20. Therefore, the gate crane 20 can be accurately and quickly aligned with the target position.
  • control system 30 does not correct the reference inclination ⁇ a at the time of correction, but corrects only the target line 40 included in the control system 30.
  • the control system 30 does not correct the reference inclination ⁇ a at the time of correction, but corrects only the target line 40 included in the control system 30.
  • the road surface of the container storage yard 11 is May be considered to have deteriorated over time, and the reference inclination ⁇ a may be corrected.
  • the control system 30 of the fourth embodiment is different in that it has a correction position acquisition device 39a and a correction target 39b instead of the antenna 31a.
  • the control device 32 has the reference position Qa of the correction target body 39b as a reference value when the current position Pt matches the correction position 46 in the internal storage device, and the parameter acquisition unit 37 sets the reference position Qa of the correction target body 39b as a parameter.
  • the difference is that the position coordinate Qt is acquired and the correction unit 38 corrects the target line 40 based on the correction deviation ⁇ Qt between the position coordinate Qt and the reference position Qa.
  • the corrected position acquisition device 39a is a device that is installed in the structure 23 or the traveling device 24b of the gate crane 20 and measures the distance from the corrected position acquisition device 39a to the correction target body 39b at every predetermined cycle t.
  • a one-dimensional, two-dimensional, or three-dimensional lidar sensor is exemplified.
  • At least one correction target body 39b is installed along the target line 40, and when the current position Pt of the portal crane 20 matches the correction position 46 as the installation position, the position that can be measured by the correction position acquisition device 39a is It is illustrated.
  • the correction target object 39b can specify the cross-sectional shape of the side part (the left part in the Y direction) facing the gate crane 20 based on a plurality of distances measured by the correction position acquisition device 39a at predetermined intervals t.
  • the cross-sectional shape of the side portion is preferably a shape having at least one corner between both ends in the X direction.
  • the side part facing the gate crane 20 is a part whose distance can be measured by the correction position acquisition device 39a.
  • the shape having at least one corner between both ends in the X direction is exemplified by a triangular shape, a stepped shape, or a polygonal shape (excluding a rectangular shape).
  • the corner is not limited to the one protruding leftward in the Y direction, and the corner may be recessed rightward in the Y direction.
  • the horizontal cross-sectional shape of the lateral portion of the correction target body 39b is formed in a shape having at least one corner between both ends in the X direction, so that the cross-sectional shape specified by the correction position acquisition device 39a It is possible to specify the plane coordinates of the corner, and the position coordinates Qt of the correction target body 39b can be specified from the specified plane coordinates of the corner.
  • the reference position Qa is set with the position coordinates of the correction target body 39b measured by the correction position acquisition device 39a in advance in a state where the current position Pt of the gate crane 20 matches the correction position 46 as an initial value.
  • a calculated value calculated based on the Y-direction inclination of the road surface inclination of the container storage yard 11 at the correction position 46 may be used.
  • the parameter acquisition unit 37 receives the plurality of distances acquired by the correction position acquisition device 39a at each predetermined cycle t, calculates the position coordinates Qt of the correction target body 39b as a parameter, and calculates the calculated position coordinates Qt.
  • 38 is a functional element to be output to 38.
  • the parameter refers to a value that changes depending on the tilt of the portal crane 20 in the Y direction, and a specific example is the position coordinate Qt of the correction target body 39b.
  • the correction unit 38 receives the position coordinates Qt acquired by the parameter acquisition unit 37, and based on the correction deviation ⁇ Qt between the input position coordinates Qt and the reference position Qa that is a reference value stored in advance in the internal storage device. It is a functional element that corrects the target line 40.
  • the correction deviation ⁇ Qt is a value obtained by subtracting the position coordinate Qt from the reference position Qa, and the distance to the left in the Y direction in the figure is positive, and the distance to the right in the Y direction is negative.
  • the portal crane 20 is tilted to the right in the Y direction due to deterioration over time, and when the current position Pt coincides with the correction position 46, the portal crane 20 moves.
  • the lower portion of the structure 23 and the traveling device 24b are in a state of being laterally closer to the storage lane 13.
  • the portal crane 20 When the correction deviation ⁇ Qt is positive, the portal crane 20 is tilted to the left in the Y direction due to deterioration over time, and when the current position Pt coincides with the correction position 46, the portal crane 20 moves.
  • the lower left part of the structure 23 and the traveling device 24a are in a state of being laterally closer to the storage lane 13.
  • the correction section 38 corrects the target line 40 by shifting it in parallel to the left side in the Y direction in plan view so that the correction deviation ⁇ Qt becomes zero when the correction deviation ⁇ Qt is positive. Further, the correction unit 38 corrects the target line 40 by shifting the target line 40 parallel to the right side in the Y direction in plan view so that the correction deviation ⁇ Qt becomes zero when the correction deviation ⁇ Qt is negative.
  • the control method of the portal crane 20 by the control system 30 of the fourth embodiment may be such that the inclination ⁇ t in the flowchart illustrated in FIG. 12 is the position coordinate Qt and the correction deviation ⁇ t is the correction deviation ⁇ Qt. This is the method performed in the step of.
  • the control system 30 of the portal crane 20 of the fourth embodiment causes the target line to reflect the deviation. Correct 40.
  • the traveling control of the portal crane 20 can be performed with high accuracy and high speed, and the portal crane 20 can be accurately and quickly aligned with the target position.
  • the control system 30 uses the same method as the method for correcting the deviation in the Y direction, on the target line 40 at the target position 41 in accordance with the inclination of the gate crane 20 in the X direction. May be configured to correct the position. For example, when the current position Pt of the gate crane 20 matches the correction position 46 and the gate crane 20 is tilted further toward the front side in the X direction, the target position 41 in the plan view is in the X direction with respect to the corresponding stop position 43. It is corrected to the front position. In this way, by correcting the target line 40 in the Y direction and correcting the target position 41 in the X direction in plan view, it is advantageous for alignment when the traveling of the portal crane 20 is stopped.
  • the parameter acquisition unit 37 calculates the inclination ⁇ t of the portal crane 20 based on the position coordinates Pa and Pc acquired by the antennas 31a and 31c.
  • the configuration is not limited to this.
  • an inclinometer that directly measures the inclination ⁇ t of the portal crane 20 may be provided.
  • the inclinometer is preferably installed on the girder portion 22 of the gate crane 20.
  • control system 30 of the fifth embodiment is different from the above-described embodiment in that control for creating the target line 40 is performed.
  • the control device 32 has a conversion position acquisition unit 50, a creation control unit 51, and a creation unit 52 as respective functional elements, and the creation control unit 51 is stored in advance in the internal storage device.
  • the control for running the portal crane 20 based on the straight target line 42 is performed, and then the control for creating the target line 40 is performed.
  • the converted position acquisition unit 50 receives the current position Pt acquired by the position acquisition unit 34 and the inclination ⁇ t acquired by the parameter acquisition unit 37, and acquires the converted position Rt of the portal crane 20 at every predetermined cycle t. , Is a functional element that outputs the acquired converted position Rt to the creation control unit 51.
  • the converted position acquisition unit 50 preferably calculates the current position Pt as the midpoint of the position coordinates Pa and Pb.
  • the position acquisition unit 34 may be a functional element that calculates the current position Pt based on the position coordinates Pa, Pb and the structural dimensions of the portal crane 20.
  • the converted position Rt is the Y-direction end of the structure 23 or the Y-direction as a position (planar coordinate) where the portal crane 20 is currently present in a plan view on a reference horizontal plane 47 which is a horizontal plane on which the straight target line 42 is present. It is preferable to be the position of the central part of the.
  • the converted position Rt is a distance calculated by a trigonometric function using the height and inclination ⁇ t of the current position Pt with respect to the reference horizontal plane 47, with the spatial position coordinates of the straight target line 42 and the reference horizontal plane 47 known, and the current position. It is a position where Pt is shifted in the Y direction.
  • the converted position Rt is the current position Pt in plan view. It is located on the right side in the Y direction. Further, when the gate crane 20 traveling on a place where the road surface 48 of the container storage yard 11 is horizontal is not tilted, the conversion position Rt overlaps the current position Pt in plan view. Further, when the gate crane 20 traveling on the road surface 48 of the container storage yard 11 inclining to the right in the Y direction downwards inclines to the right in the Y direction, the converted position Rt is the current position Pt in plan view. It is located on the left side in the Y direction.
  • the reference horizontal plane 47 is set on the road surface 48 where no water gradient is formed in the container storage yard 11. Further, the reference horizontal plane 47 may be set as a horizontal plane having a height that is the average value of the heights of the road surfaces 48 in the container storage yard 11.
  • the conversion position Rt output from the conversion position acquisition unit 50 is input to the creation control unit 51, and a creation deviation ⁇ dt that is a deviation between the straight target line 42 and the conversion position Rt stored in advance in the internal storage device is input to the creation control unit 51.
  • a creation deviation ⁇ dt that is a deviation between the straight target line 42 and the conversion position Rt stored in advance in the internal storage device is input to the creation control unit 51.
  • the rotational speeds Na and Nb of the electric motors 28a and 28b are adjusted to adjust the traveling speeds of the pair of traveling devices 24a and 24b.
  • the creation deviation ⁇ dt indicates the amount of shift of the converted position Rt with respect to the straight target line 42, and is the intersection of the perpendicular line passing through the converted position Rt and the straight target line 42 and the straight target line 42 and the converted position Rt in plan view. Indicates the distance between.
  • the creation deviation ⁇ dt is positive on the left side in the Y direction and negative on the right side in the Y direction in the drawing.
  • the creation control unit 51 is also a functional element that sequentially stores the current position Pt in the internal storage device when the converted position Rt matches the stop position 43 arranged on the straight target line 42.
  • the creating unit 52 receives the plurality of current positions Pt stored in the internal storage device by the creating control unit 51, and creates the target line 40 as a trajectory connecting the plurality of input current positions Pt in the running order. Is an element.
  • the gate-type crane 20 travels over the plurality of storage lanes 13, it is desirable that the plurality of current positions Pt stored in the internal storage device be stored separately for each storage lane 13.
  • the communicator 33 receives an instruction to create the target line 40 from the upper system 18, and the creation thereof is performed.
  • This is a method of running the gate-shaped crane 20 based on the instruction to create the target line 40.
  • This control method is repeated every predetermined period t while the portal crane 20 is traveling, and ends when the traveling of the portal crane 20 is completed and the target line 40 is created.
  • an instruction to drive the gate crane 20 from one end to the other end of the storage lane 13 is set.
  • the position acquisition unit 34 acquires the current position Pt of the portal crane 20 (S310).
  • the parameter acquisition unit 37 acquires the inclination ⁇ t of the portal crane 20 (S320).
  • the converted position acquisition unit 50 acquires the converted position Rt based on the acquired current position Pt and inclination ⁇ t (S330).
  • the creation control unit 51 calculates the creation deviation ⁇ dt based on the acquired converted position Rt and the preset linear target line 42 (S340). Then, the creation control unit 51 determines whether or not the calculated creation deviation ⁇ dt is zero (S350). When the creation deviation ⁇ dt is determined to be zero (S350: YES), the creation control unit 51 maintains the running speed difference between the pair of running devices 24a and 24b at the current running speed difference via the inverter 29 (S360). ), return to the start.
  • the creation control unit 51 sets the creation deviation ⁇ dt to zero by setting the traveling speed difference between the pair of traveling devices 24a and 24b via the inverter 29.
  • the traveling speed difference is adjusted (S370), and the process proceeds to A in FIG.
  • the creation control unit 51 determines whether the acquired converted position Rt matches the preset stop position 43 (S410). When it is determined that the converted position Rt does not match the stop position 43 (S410: NO), the process returns to the start. On the other hand, if it is determined that the converted position Rt matches the stop position 43 (S410: YES), the creation control unit 51 stores the current position Pt at the time of matching in the internal storage device (S420). Next, the creation control unit 51 determines whether or not the instructed travel has ended (S430). When it is determined that the traveling has not ended (S430: NO), the process returns to the start. On the other hand, when it is determined that the traveling has ended (S430: YES), the process proceeds to the next step.
  • the creation unit 52 reads a plurality of current positions Pt stored in the internal storage device (S440). Next, the creation unit 52 arranges the plurality of current positions Pt on a predetermined plane or space (S450). This predetermined plane or space can be arbitrarily set, and for example, a plane parallel to the reference horizontal plane 47 and having a height set to the level of each antenna 31a to 31c is exemplified as the predetermined plane. Next, the creation unit 52 connects the plurality of arranged current positions Pt with line segments in the traveling order of the portal crane 20 to form a polygonal line, and creates the target line 40 (S460). Next, the creation unit 52 converts the plurality of current positions Pt into the target position 41 (S470). Next, the creation unit 52 stores the created target line 40 and target position 41 in the internal storage device (S480), and ends the processing.
  • a predetermined plane or space can be arbitrarily set, and for example, a plane parallel to the reference horizontal plane 47 and having a height set to the level of
  • the control system 30 of the fifth embodiment creates the target line 40 as the trajectory drawn by the current position Pt during traveling when the portal crane 20 is traveled based on the straight target line 42. .. Therefore, the target line 40 can reflect the inclination of the traveling gate crane 20 with respect to the horizontal plane. This enables highly accurate and high-speed traveling control of the portal crane 20 using the target line 40, and the portal crane 20 can be accurately and promptly aligned with the target position.
  • the target line 40 is a locus connecting the current position Pt whose converted position Rt is coincident with any one of the stop positions 43 arranged on the line of the straight target line 42 among the plurality of current positions Pt acquired during traveling.
  • the current position Pt when the converted position Rt coincides with the stop position 43 is the target position 41.
  • the control system 30 creates the travel control of either the first embodiment or the second embodiment, the correction control of either the third embodiment or the fourth embodiment, and the fifth embodiment. It may be configured to perform all the control with the control, or may be configured to perform only one of the controls.
  • the control system 30 mounted on each of the plurality of portal cranes 20 of the same type and the same type may be configured to perform control for correction and control for creation by any one control system 30.
  • All the gate-type cranes 20 provided in the container terminal 10 may be configured to be controlled by all of the control of traveling of the control system 30 installed in each, the control of correcting, and the control of creating.
  • all the gate-type cranes 20 are configured to be controlled by two controls, that is, a control for causing each control system 30 to travel and a control for correcting, and a part of the gate-type cranes 20 is controlled.
  • the model crane 20 may be configured to be controlled by the control created by the respective control system 30.
  • all of the portal cranes 20 are configured to be controlled by the control of traveling of the respective control systems 30, and some of the portal cranes 20 are controlled by the control to be corrected by the respective control systems 30 and the control to be created. It may be configured to be performed.
  • the gate-type crane 20 controlled by the correction control and the creation control of the work control system 30 stands by at a place other than the storage lane 13 during loading and unloading and is controlled by the creation control or the correction control. Only occasionally, it may be arranged in the storage lane 13.
  • the target line 40 described above may be set only according to the inclination of the road surface 48 with respect to the horizontal plane among the inclinations of the portal crane 20. That is, the target line 40 is the slope in the Y direction (around the X axis) of the slope of the road surface 48 on which the portal crane 20 travels with respect to the straight target line 42 that is a straight line that extends in the traveling direction of the portal crane 20 on the horizontal plane. It may be configured by a line that bends depending on the angle. For example, the target line 40 may be set based on the known slope of the road surface 48 when the slope is known. Further, the target line 40 may have a plurality of target positions 41, and may be configured by a polygonal line that is bent with the position where the gradient of the road surface 48 changes before and after the target position 41 as an inflection point.
  • the control system 30 of the sixth embodiment is different from the above-described embodiments in that a plurality of target lines and position acquisition units are provided.
  • An external power feeding device 60 extending in the X direction and a communication device 61 extending in the X direction are installed beside one end in the Y direction of the gate crane 20 of this embodiment.
  • the external power supply device 60 is a device that supplies electric power to the gate crane 20 from the outside, and is exemplified by a bus bar (conductor) and a power supply cable.
  • the communication device 61 is a device that communicates with the control system 30 of the portal crane 20 from the outside, and examples thereof include a leaky coaxial cable and a power line capable of power line carrier communication.
  • the gate crane 20 has a current collecting device 62 that is a device for receiving electric power from the external power supply device 60.
  • Examples of the current collecting device 62 include a pantograph-type current collecting device that comes into contact with a bus bar to receive electric power and a cable reel that winds a power supply cable.
  • Both the external power supply device 60 and the communication device 61 may be arranged beside one end in the Y direction of the gate crane 20 in a plan view, and the current collecting device 62 may be installed at one end. preferable.
  • the control system 30 has antennas 31a, 31b, 31c, 31d. Further, the control device 32 has a main position acquisition unit 34A and a preliminary position acquisition unit 34B instead of the position acquisition unit 34 of the above-described embodiment, and has a main target line 40A and a preliminary target line 40B instead of the target line 40. And has a target setting unit 53 as an additional functional element.
  • the antenna 31d is an antenna of the Global Positioning Satellite System (GNSS) like each of the antennas 31a, 31b, 31c, and the longitude, latitude, and, based on information such as time received from a plurality of artificial satellites at a predetermined cycle t.
  • the position coordinate Pd including the altitude is acquired.
  • the antenna 31d is arranged apart from the antenna 31c at the other end of the structure 23 in the X direction in plan view.
  • each antenna 31a, 31b, 31c, 31d is configured to be able to acquire the longitude, latitude and height as spatial coordinates (three-dimensional coordinates) using the global positioning satellite system.
  • the four antennas 31a to 31d are arranged at the four corners of the rectangle, assuming that the structure 23 of the portal crane 20 has a substantially rectangular shape in plan view. By arranging the antennas 31a to 31d in this way, it is advantageous to acquire the tilt in the X direction and the tilt in the Y direction of the portal crane 20.
  • the main position acquisition unit 34A is, in a plan view, one of the ends of the gate crane 20 in the Y direction on the side where the current collecting device 62 is installed, or the side where the communication device 61 is arranged on the side. Is a functional element that acquires a predetermined position at the end of the as the main current position Ps. Specifically, the main position acquisition unit 34A determines that the position coordinates Pc and Pd acquired by the antennas 31c and 31d installed at one end in the Y direction of the portal crane 20 in a plan view at predetermined intervals t.
  • the main position acquisition unit 34A preferably calculates the main current position Ps as the midpoint of the position coordinates Pc and Pd.
  • the preliminary position acquisition unit 34B is, in plan view, one of the ends of the gate crane 20 in the Y direction on the side where the current collecting device 62 is installed, or the side where the communication device 61 is arranged on the side. Is a functional element that acquires a predetermined position at an end portion different from the end portion as the preliminary current position Pu. Specifically, the preliminary position acquisition unit 34B determines that the position coordinates Pa and Pb acquired by the antennas 31a and 31b installed at the other end of the gate-type crane 20 in the Y direction in plan view at predetermined intervals t.
  • the preliminary position acquisition unit 34B preferably calculates the preliminary current position Pu as the midpoint of the position coordinates Pa and Pb.
  • the main current position Ps indicates the position where the portal crane 20 currently exists in a plan view, and more specifically indicates the position where one end of the portal crane 20 in the Y direction currently exists.
  • the main current position Ps preferably indicates the position of the midpoint of the position coordinates Pc and Pd in plan view.
  • the preliminary current position Pu indicates the position where the portal crane 20 currently exists in a plan view, and more specifically indicates the position where the other end of the portal crane 20 in the Y direction currently exists.
  • the preliminary current position Pu preferably indicates the position of the midpoint of the position coordinates Pa and Pb in plan view.
  • the main target line 40A has the same configuration as the target line 40 in the above-described embodiment and the method of creating the main target line 40A is the same, except that the arrangement position is determined with respect to the target line 40.
  • the main target line 40A is arranged on one end side in the Y direction of the gate crane 20 in a plan view, extends in the X direction, and extends in the Y direction according to the inclination of the gate crane 20 in the Y direction. Composed of bending lines.
  • the preliminary target line 40B is a duplicate of the main target line 40A and is arranged in a Y direction away from the main target line 40A. Specifically, the preliminary target line 40B is arranged on the other end side in the Y direction of the gate crane 20 in a plan view, extends in the X direction, and corresponds to the inclination of the gate crane 20 in the Y direction.
  • the main target line 40A is formed by a line bent in the Y direction.
  • the target setting unit 53 receives the main current position Ps output from the main position acquisition unit 34A and the preliminary current position Pu output from the preliminary position acquisition unit 34B, and based on these inputs, the traveling control unit 35. Is a functional element that issues a command to set the current position and the target line used in. Specifically, the target setting unit 53 causes the traveling control unit 35 to switch to use the main current position Ps as the current position and the main target line 40A as the target line when the main current position Ps is input. When the main current position Ps is not input and the preliminary current position Pu is input, the target setting unit 53 causes the traveling control unit 35 to use the preliminary current position Pu as the current position and the preliminary target line 40B as the target line. Switch to use respectively.
  • the traveling control unit 35 sets the current position and the target line used for traveling control based on a command from the target setting unit 53, and based on the deviation between them, rotates the electric motors 28a and 28b via the inverter 29. It is a functional element that adjusts the traveling speeds of the pair of traveling devices 24a and 24b by adjusting the speeds Na and Nb. Specifically, the traveling control unit 35 adjusts the traveling speeds of the pair of traveling devices 24a and 24b based on the main current position Ps and the main traveling deviation ⁇ Ds of the main target line 40A, or the spare current position.
  • the traveling speed of each of the pair of traveling devices 24a and 24b is adjusted based on Pu and the deviation ⁇ Du for preliminary traveling of the preliminary target line 40B, or traveling is performed when both the main current position Ps and the preliminary current position Pu are not input.
  • the deviation ⁇ Ds for main traveling and the deviation ⁇ Du for preliminary traveling indicate the deviation amount of the current position with respect to the target line in a plan view, like the deviation ⁇ Dt for traveling described above.
  • the traveling control unit 35 specifies the posture of the gate crane 20 in a plan view, and the traveling of each of the pair of traveling devices 24a and 24b. It is also a functional element that corrects the speed. Specifically, the traveling control unit 35 calculates the attitude angle ⁇ su when the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du are different.
  • the posture angle ⁇ su is the amount of posture deviation of the portal crane 20 in a plan view, and is an angle formed by the normal line segment connecting the main current position Ps and the preliminary current position Pu and the X direction with reference to the X direction. is there.
  • the posture angle ⁇ su is not limited to the angle formed by the normal to the line segment connecting the main current position Ps and the preliminary current position Pu and the X direction.
  • the posture angle ⁇ su may be calculated as an angle formed by the line segment connecting the main current position Ps and the preliminary current position Pu and the Y direction when the Y direction is a reference in plan view.
  • the posture angle ⁇ su is a conversion table in which the posture angle ⁇ su corresponding to the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du is set, and the posture angle ⁇ su corresponding to the difference between the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du. It may be calculated using a conversion table in which is set.
  • the traveling of each of the pair of traveling devices 24a and 24b is performed based on the main traveling deviation ⁇ Ds.
  • the speed is adjusted.
  • the portal crane 20 at the right end in the figure is in a state where the main current position Ps cannot be acquired and only the preliminary current position Pu has been acquired. Therefore, the traveling speed of each of the pair of traveling devices 24a and 24b of the portal crane 20 is adjusted based on the deviation ⁇ Du for preliminary traveling.
  • the traveling speeds of the pair of traveling devices 24a and 24b are determined based on the main traveling deviation ⁇ Ds. Adjusted.
  • the posture angle ⁇ su of the portal crane 20 in a plan view of the portal crane 20 is specified, and the traveling speed difference is corrected so that the posture angle ⁇ su becomes zero.
  • the communication device 33 receives the cargo handling instruction from the host system 18, and causes the portal crane 20 to travel based on the cargo handling instruction. Is the way.
  • This control method is repeatedly performed at a predetermined cycle t while the portal crane 20 is traveling.
  • the control method of this indication shall set the position used as the stop target of the gate crane 20 at the time of a start, and shall end it when the gate crane 20 is stopped in the position used as the stop target. ..
  • each of the antennas 31a to 31d acquires the position coordinates Pa to Pd
  • the main position acquisition unit 34A determines the main current position Ps based on the position coordinates Pc and Pd
  • the preliminary position acquisition unit 34B determines the position coordinates Pa and Pb.
  • the preliminary current position Pu is acquired based on the above (S510).
  • the traveling control unit 35 calculates the main traveling deviation ⁇ Ds which is the difference between the main current position Ps and the main target line 40A and the preliminary traveling deviation ⁇ Du which is the difference between the preliminary current position Pu and the preliminary target line 40B. (S520).
  • step S510 when the main current position Ps cannot be acquired, the main traveling deviation ⁇ Ds is not calculated in this step, and when the preliminary current position Pu cannot be acquired, the preliminary traveling deviation ⁇ Du is not calculated in this step. I shall.
  • the target setting unit 53 determines whether or not the main current position Ps is acquired in step S510 (S530). When it is determined that the main current position Ps is acquired (S530: YES), the target setting unit 53 causes the traveling control unit 35 to set the current position to the main current position Ps, the target line to the main target line 40A, and the deviation to the main traveling position. A command for setting the deviation ⁇ Ds is issued (S540).
  • the target setting unit 53 determines whether or not the preliminary current position Pu has been acquired in step S510 (S550). When it is determined that the preliminary current position Pu has been acquired (S550: YES), the target setting unit 53 causes the traveling control unit 35 to set the current position to the preliminary current position Pu, the target line to the preliminary target line 40B, and the deviation for preliminary traveling. A command is issued to set the deviation ⁇ Du (S560).
  • the traveling control unit 35 stops the pair of traveling devices 24a and 24b via the inverter 29 (S570), and returns to the start.
  • the traveling control unit 35 determines whether the deviation is zero, as in the first embodiment (S130). When the deviation is determined to be zero (S130: YES), the traveling control unit 35 maintains the traveling speed difference between the pair of traveling devices 24a and 24b at the current traveling speed difference via the inverter 29 (S140), and starts. Return to. On the other hand, when determining that the deviation is not zero (S150: NO), the traveling control unit 35 adjusts the traveling speed difference between the pair of traveling devices 24a and 24b to the traveling speed difference that makes the deviation zero via the inverter 29. (S150), the process returns to the start.
  • the traveling control unit 35 calculates the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du. It is determined whether they are equal (S610).
  • an allowable range may be set when determining whether the deviation ⁇ Ds for main traveling and the deviation ⁇ Du for preliminary traveling are equal, and the deviation between the deviation ⁇ Ds for main traveling and the deviation ⁇ Du for preliminary traveling may be set. If the absolute value is less than or equal to a preset threshold value, it may be determined that the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du are equal.
  • the traveling control unit 35 maintains the current traveling speed difference (S620) and returns to the start.
  • the traveling control unit 35 calculates the posture angle ⁇ su (S630). Next, the traveling control unit 35 corrects and adjusts the current traveling speed difference to the traveling speed difference that makes the posture angle ⁇ su zero (S640), and returns to the start.
  • the control system 30 of the portal crane 20 includes the plurality of target lines of the main target line 40A and the spare target line 40B, and the plurality of main position acquisition units 34A and the spare position acquisition unit 34B. And a position acquisition unit. That is, even if the main position acquisition unit 34A cannot acquire the main current position Ps, if the preliminary position acquisition unit 34B can acquire the preliminary current position Pu, it is a deviation between the preliminary current position Pu and the preliminary target line 40B for preliminary traveling. Based on the deviation ⁇ Du, the gate-type crane 20 can be driven without stopping. This is advantageous for reducing the frequency of stopping the traveling, and it becomes possible to control the portal crane 20 to travel with high accuracy and high speed, and to align the portal crane 20 with the target position 41 accurately and quickly. can do.
  • the traveling speeds of the pair of traveling devices 24a and 24b are adjusted based on the deviation between the current position of the gate crane 20 and the target. Therefore, when the current position of the gate crane 20 cannot be grasped, it is necessary to stop the traveling in consideration of safety.
  • the number of artificial satellites supplemented by each of the antennas 31a to 31d is remarkably reduced, Examples include a situation in which an interference radio wave is received, a situation in which multiwave propagation (also called multipath) is affected, and a situation in which electrical noise is received from the gate crane 20.
  • a situation in which a correction signal cannot be received is also illustrated.
  • control system 30 of the sixth embodiment can continue the cargo handling work without stopping the traveling of the gate crane 20 if at least one of the main current position Ps and the spare current position Pu can be acquired. This is advantageous for reducing downtime.
  • the portal crane 20 of the sixth embodiment when power is supplied from the external power supply device 60 using the power collection device 62, or when communication is performed using the communication device 61, the portal crane 20 is temporarily operated. Even if the deviation between the current position and the target line is kept constant, the distance between the external power feeding device 60 and the current collecting device 62 and the distance to the communication device 61 change depending on the posture of the gate crane 20. This change in the interval or the distance increases the frequency of movement of the power collection device 62, increases the frequency of overloading the external power supply device 60 or the power collection device 62, or increases the frequency of communication interruption. It becomes a factor.
  • control system 30 of the sixth embodiment can acquire at least one of the main current position Ps and the spare current position Pu, the deviation from the target does not become excessive, and the distance between the external power supply device 60 and the current collecting device 62 is reduced.
  • the distance to the communication device 61 can be kept within a certain range. This is advantageous for improving the durability of the external power supply device 60 and the power collection device 62, and can reduce the frequency of inspection and replacement thereof. Further, it is advantageous to reduce the frequency of communication interruption, and downtime due to communication interruption can be reduced.
  • a predetermined position at the end portion in the Y direction on the side where the external power supply device 60 and the communication device 61 are arranged on the side is the main current position Ps.
  • the traveling of the gate crane 20 is controlled starting from the end in the Y direction on the side where the external power supply device 60 and the communication device 61 are arranged laterally, and thus the external power supply device 60 and the current collecting device are controlled. It is advantageous to keep the distance from the communication device 62 and the distance from the communication device 61 within a certain range.
  • the control system 30 of the present embodiment specifies the posture of the portal crane 20 in plan view when the main traveling deviation ⁇ Ds and the preliminary traveling deviation ⁇ Du are different. Therefore, the posture of the gate crane 20 can be corrected during traveling before the gate crane 20 stops at the desired target position 41. That is, the portal crane 20 can be run without changing the posture in plan view as much as possible. This eliminates the time difference between the stop timings of the pair of traveling devices 24a and 24b, which is advantageous for stopping the gate-shaped crane 20 without causing distortion, and sets the gate-shaped crane 20 to the desired target position 41. It can be stopped with high precision.
  • the external power feeding device 60 and the communication device 61 are arranged on the side of one end in the Y direction of the gate crane 20 .
  • a configuration in which only the external power supply device 60 is disposed on the side of the end portion of 1 or a configuration in which only the communication device 61 is disposed may be used.
  • the external power supply device 60 is arranged on the side of one end of the gate crane 20 in the Y direction and the communication device 61 is arranged on the side of the other end, by experiments or tests in advance, The end on the side where the deviation becomes large may be selectively set as the main current position Ps.
  • two target lines are described as an example, but the target line is not limited to two and may be three or more.
  • a center target line arranged in the middle of them may be provided.
  • the control system 30 of the sixth embodiment may set the target area 44 in the second embodiment on each of the main target line 40A and the preliminary target line 40B.
  • the control system 30 sets the second main target line and the second preliminary target line using the target regions 44, and the traveling control unit 35 sets the second main target line and the second preliminary target line in place of the main target line 40A and the preliminary target line 40B.
  • the main target line and the second preliminary target line may be used.
  • the control system 30 of the sixth embodiment may correct the main target line 40A and the preliminary target line 40B by the same method as the third embodiment or the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

クレーンを目標位置に精度よく迅速に位置合わせするクレーンの制御システム及び制御方法を提供する。門型クレーン20の現在位置Ptを逐次取得する位置取得部34と一対の走行装置24a、24bのそれぞれに接続された走行用制御部35とを備える制御システム30は、平面視で、X方向に延在し、走行中の門型クレーン20が傾いた状態ではY方向における傾きに応じてY方向に屈曲する目標線40を有し、その目標線40と位置取得部34が取得した門型クレーン20現在位置Ptとの走行用偏差ΔDtに基づいて、走行用制御部35により、一対の走行装置24a、24bのそれぞれの走行速度を調節して門型クレーン20を走行させる制御を行う構成である。

Description

クレーンの制御システム及び制御方法
 本開示は、クレーンの制御システム及び制御方法に関する。
 コンテナヤードで使用されているクレーンの走行制御においては、コンテナヤードの路面を基準として平面視で直線を成す直線目標線とクレーンの現在位置との偏差に基づいてクレーンを走行させる装置が提案されている(例えば、特許文献1参照)。この装置におけるクレーンの現在位置は、クレーンの構造体に設置されて全球測位衛星システムを利用する装置により所定の周期ごとに逐次取得されている。
日本国特開2004-284699号公報
 ところで、コンテナヤードには蔵置レーンごとや蔵置レーンのベイごとに異なった水勾配が設けられており、この水勾配に起因して鋼構造物であるクレーンが路面に対して傾く。クレーンが傾いた状態で構造体の上部に設置された全球測位衛星システムのアンテナで取得された現在位置を直線目標線に合わせると、クレーンの構造体の下部や走行装置の位置は直線目標線からずれて離間する。それ故、そのずれの修正が必要になり、位置合わせに余計な時間を要するという問題があった。
 この問題に関して、特許文献1に記載のクレーンでは、装置で取得した現在位置をクレーンの傾きを考慮して直線目標線が存在する路面を基準とした値に換算し、直線目標線と換算した値との偏差に基づいてクレーンの走行を制御することで、傾斜によるずれの影響を排除している。
 しかしながら、特許文献1に記載されたクレーンでは、クレーンの現在位置を取得するごとにクレーンの傾きを考慮して路面を基準とした値に演算する方式を用いている。それ故、周期的にその演算が行われることになり、演算の頻度が高くなっている。このように、クレーンの走行制御において演算の頻度が高くなると、演算処理に掛かる負荷が重くなることに加えて演算誤差を生じる確率が高まる。つまり、演算頻度の高さが、クレーンにおける高精度且つ高速な位置合わせを妨げる要因となっている。
 本開示の目的は、クレーンを目標位置に精度よく迅速に位置合わせするクレーンの制御システム及び制御方法を提供することである。
 上記の目的を達成する本発明のクレーンの制御システムは、構造体の上部に配置された桁部の延在方向に離間配置されて前記構造体の下端に取り付けられた一対の走行装置を有するクレーンの現在位置を逐次取得する位置取得部と、この位置取得部及び前記一対の走行装置のそれぞれに接続された走行用制御部とを備えるクレーンの制御システムにおいて、平面視で、前記クレーンの走行方向に延在し、走行中の前記クレーンが傾いた状態ではそのクレーンの傾きのうちの前記延在方向における傾きに応じてその延在方向に屈曲する目標線を有し、前記目標線と前記位置取得部が取得した現在位置との偏差に基づいて、前記走行用制御部により、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させる制御を行う構成にしたことを特徴とする。
 上記の目的を達成する本発明のクレーンの制御方法は、構造体の上部に配置された桁部の延在方向に離間配置されて前記構造体の下端に取り付けられた一対の走行装置を有するクレーンの現在位置を逐次取得し、取得したその現在位置に基づいて、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させるクレーンの制御方法において、前記クレーンの走行前に、平面視で、前記クレーンの走行方向に延在し、走行中の前記クレーンが傾いた場合にその傾きのうちの前記延在方向における傾きに応じてその延在方向に屈曲する目標線を設定し、前記クレーンの走行中に、設定した前記目標線と取得した前記現在位置との偏差に基づいて、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させることを特徴とする。
 本発明によれば、高精度且つ高速なクレーンを走行させる制御が可能になり、クレーンを目標位置に精度よく迅速に位置合わせすることができる。
図1は制御システムの第一実施形態を搭載したクレーンが走行するコンテナターミナルの平面図である。 図2は図1のクレーンを例示する斜視図である。 図3は図1の制御システムを例示するブロック図である。 図4は図3の目標線を例示する斜視図である。 図5はクレーンの制御方法の第一実施形態を例示するフロー図である。 図6は制御システムの第二実施形態を例示するブロック図である。 図7は図6の第二の目標線を例示する平面図である。 図8は図6の第二の目標線の他の例を例示する平面図である。 図9はクレーンの制御方法の第二実施形態を例示するフロー図である。 図10は制御システムの第三実施形態を搭載したクレーンを例示する斜視図である。 図11は図10の制御システムを例示するブロック図である。 図12はクレーンの制御方法の第三実施形態を例示するフロー図である。 図13は制御システムの第四実施形態を搭載したクレーンを例示する斜視図である。 図14は図13の制御システムを例示するブロック図である。 図15は図14の補正位置取得装置の計測結果を例示する説明図である。 図16は制御システムの第五実施形態を搭載したクレーンを例示する斜視図である。 図17は図16の制御システムを例示するブロック図である。 図18はクレーンの制御方法の第五実施形態を例示するフロー図の一部である。 図19は図18の「A」に続くフロー図である。 図20は制御システムの第六実施形態を搭載したクレーンを例示する斜視図である。 図21は図20の制御システムを例示するブロック図である。 図22は図21の主目標線および予備目標線を例示する平面図である。 図23はクレーンの制御方法の第六実施形態を例示するフロー図である。 図24はクレーンの制御方法の第六実施形態を例示する別のフロー図である。
 以下、クレーンの制御システム及び制御方法の実施形態について説明する。図中では、X方向を蔵置レーン13の長手方向とし、Y方向を蔵置レーン13の短手方向とし、Z方向を鉛直方向とする。なお、実施形態において、符号に用いる「t」、「u」は周期を示すものとする。本開示で、「直線」とは平面視で曲率がゼロ(但し、誤差と見做せる場合も含む)の線を示し、「曲線」とは直線以外の線であり、平面視で曲率がゼロよりも大きく、屈曲あるいは湾曲した線を示すものとし、「直線」と「曲線」とを異なる線として区別するものとする。つまり、本開示で、「折れ線」とは数の線分をその端点でつなぎ合わせてできる曲線として定義する。
 図1~図4に例示するように、第一実施形態の制御システム30は、コンテナターミナル10でコンテナCを荷役する門型クレーン20に対して目標線40に基づいて走行させる制御を行うシステムである。
 図1に例示するように、コンテナターミナル10は、X方向に隣接するコンテナ蔵置ヤード11と本船荷役エリア12とに区画される。コンテナ蔵置ヤード11は、多数のコンテナCが蔵置される複数の蔵置レーン13を備える。蔵置レーン13はX方向(実施形態において岸壁から船舶に向かう方向)に延在し、その長手方向がX方向に向けられて設置される。本船荷役エリア12は、岸壁に沿って敷設されるレールの上を走行する複数の岸壁クレーン14を備える。蔵置レーン13は、その長手方向がY方向に向けられて設置されてもよい。
 コンテナターミナル10は、コンテナ蔵置ヤード11及び本船荷役エリア12の間でコンテナCを運搬する構内シャシ15と、コンテナ蔵置ヤード11及び外部の間でコンテナCを運搬する外来シャシ16とが走行する。また、コンテナターミナル10は、複数の門型クレーン20が、蔵置レーン13をY方向に跨いだ状態で蔵置レーン13に沿ってX方向に走行する。
 コンテナターミナル10は、管理棟17が設置される。管理棟17には、上位システム18と通信機19とが設置されて、上位システム18から通信機19を介して荷役機器(14~16、20)に荷役作業の指示等が行われる。
 コンテナターミナル10は、荷役機器が上位システム18からの指示により自動的に荷役可能な自動化ターミナルや、遠隔操作用コントローラ等が管理棟17に設置されて荷役機器を遠隔から操作可能なターミナルが例示できる。また、コンテナターミナル10は、荷役機器に運転者が搭乗して直接操作するターミナルも例示できる。
 図2に例示するように、門型クレーン20は、吊具21と、桁部22と、構造体23と、一対の走行装置24a、24bとを有する。吊具21は、桁部22に沿ってY方向に横行可能に構成されたトロリ25から吊架したワイヤによりZ方向に昇降可能な装置である。桁部22は、トロリ25を介してこの吊具21を吊り下げ支持するとともに、Y方向に延在する部材である。構造体23は、桁部22を上部に支持する部材である。また、構造体23は、トロリ25及び脚部26a、26bを有し、平面視で、長手方向がY方向に、短手方向がX方向にそれぞれ向いている略長方形状を成している。脚部は、Z方向に延在する四本の脚体26aと、X方向に隣り合う脚体26aの下端どうしを連結する二本の水平梁26bとを有する。なお、Y方向に隣り合う脚体26aの上端どうしは、桁部22により連結される。一対の走行装置24a、24bは、平面視で桁部22の延在方向(Y方向)に離間して配置されて、構造体23の下端に取り付けられる装置である。
 一対の走行装置24a、24bのそれぞれは、水平梁26bの下端に配置されて、タイヤ27a、27bと、電動モータ28a、28bとを有し、電動モータ28a、28bが水平梁26bのどちらか一方に設置されたインバータ29に電気的に接続される。タイヤ27a、27bとしては、ゴムタイヤが例示される。電動モータ(回転駆動機)28a、28bは、一対の走行装置24a、24bの各々に対応して備わるとともに、対応するタイヤ27a、27bに連結される装置である。電動モータ28a、28bは、減速機を含むものとする。インバータ29は、電動モータ28a、28bの回転速度又は回転トルクを調節する装置である。なお、走行装置24a、24bには、駆動輪であるタイヤ27a、27bの他に、電動モータ28a、28bが連結されていない受動輪が含まれる場合がある。また、走行装置24a、24bのそれぞれが複数の電動モータを有してもよい。
 一対の走行装置24a、24bは、左右一対になっており、平面視で、構造体23のY方向の両端部に離間配置される。一対の走行装置24a、24bは、インバータ29により電動モータ28a、28bが左右独立して駆動することで、対応するタイヤ27a、27bが左右独立して転動する装置である。対応するタイヤ27a、27bが転動することで、門型クレーン20は構造体23の短手方向であり、蔵置レーン13の延在方向であるX方向に走行する。より詳細に、電動モータ28a、28bの回転速度又は回転トルクが等しい場合に一対の走行装置24a、24bのそれぞれの走行速度が等しくなり、門型クレーン20は向きを変えずに直進する。一方で、電動モータ28a、28bの回転速度又は回転トルクが異なる場合に一対の走行装置24a、24bに走行速度差が生じ、この走行速度差に応じて門型クレーン20は進む向きを変えて進む。本開示で、走行装置24a、24bの走行速度は走行装置24a、24bの単位時間当たりの位置の変化量を示すものとする。なお、電動モータ28a、28bを駆動する電力は、門型クレーン20に設置された図示しないバッテリ、又は発電機から供給される。あるいは、電力は、ケーブルやバスバーなどにより外部から供給される。
 図3に例示するように、制御システム30は、アンテナ31a、31bと、制御装置32とを備え、制御装置32が、走行装置24a、24bの電動モータ28a、28bの駆動を制御するインバータ29、アンテナ31a、31b、及び通信機33に電気的に接続されて構成される。
 各アンテナ31a、31bのそれぞれは、二つの全球測位衛星システム(GNSS)のアンテナであり、所定の周期tごとに複数の人工衛星から受信する時刻等の情報に基づき経度、緯度、及び高度からなる位置座標Pa、Pbを測位する。位置座標Pa、Pbを測位する方法としては、単独測位、相対測位、DGPS(ディファレンシャルGPS)測位、RTK(リアルタイムキネマティックGPS)測位が例示できる。
 各アンテナ31a、31bは、平面座標として経度と緯度とを取得可能な構成であればよい。各アンテナ31a、31bは、平面視で、桁部22の延在方向であるY方向に直交する方向で、構造体23の短手方向で門型クレーン20が走行する走行方向であるX方向の両端部に離間配置される。各アンテナ31a、31bは、門型クレーン20の脚体26aのZ方向中途部位や走行装置24a、24bの近傍の部位に設置してもよいが、脚体26aの上端や桁部22などの構造体23における上部に設置する方が人工衛星からの情報を受信する際の感度が向上するので望ましい。
 制御装置32は、各種情報処理を行う中央処理装置(CPU)、その各種情報処理を行うために用いられるプログラムや情報処理結果を読み書き可能な内部記憶装置、及び各種インターフェースなどから構成されるハードウェアである。
 制御装置32は、各機能要素として位置取得部34及び走行用制御部35を有し、その走行用制御部35が内部記憶装置に予め記憶された目標線40に基づいて門型クレーン20を走行させる制御を行う。各機能要素は、プログラムとして制御装置32の内部記憶装置に記憶されて、中央処理装置により読み出されて、適宜実行される。なお、各機能要素としては、プログラムの他にそれぞれが独立して機能する電気回路も例示される。また、各機能要素のそれぞれをプログラマブルロジックコントローラ(PLC)で構成し、制御装置32を複数のPLCの集合体としてもよい。
 位置取得部34は、各アンテナ31a、31bが所定の周期tごとに取得した位置座標Pa、Pbが入力されて、所定の周期tごとに門型クレーン20の現在位置Ptを取得し、算出した現在位置Ptを走行用制御部35に出力する機能要素である。位置取得部34は、位置座標Pa、Pbの中点として現在位置Ptを算出することが望ましい。なお、位置取得部34は、位置座標Pa、Pb及び門型クレーン20の構造寸法に基づいて、現在位置Ptを算出する機能要素としてもよい。
 現在位置Ptは、平面視で門型クレーン20が現在存在している位置(平面座標位置)を示す。現在位置Ptは、構造体23の上部に設置された各アンテナ31a、31bが取得した位置座標Pa、Pbが存在する平面(水平面に限定されない)における構造体23のY方向端部又はY方向の中央部の位置を示すことが好ましい。また、現在位置Ptは、平面視で構造体23のX方向の中心の位置を示すことが好ましく、平面視で位置座標Pa、Pbの中点の位置を示すことがより好ましい。現在位置Ptが構造体23のX方向の中心線上を示すことで、コンテナCのX方向の中心を門型クレーン20の制御の目標値とすることが可能になり、門型クレーン20の位置合わせには有利になる。なお、現在位置Ptが空間座標位置を示す場合に、その現在位置Ptの高さは構造体23の上面よりも上方の高さであることが好ましい。
 走行用制御部35は、位置取得部34から出力された現在位置Ptが入力されて、内部記憶装置に予め記憶された目標線40と現在位置Ptとの走行用偏差ΔDtに基づいて、インバータ29を介して電動モータ28a、28bの回転速度Na、Nbを調節して、一対の走行装置24a、24bのそれぞれの走行速度を調節する機能要素である。走行用偏差ΔDtは、目標線40に対する現在位置Ptのずれ量を示しており、平面視で現在位置Ptを通り目標線40と直交する垂線及び目標線40の交点と現在位置Ptとの間の距離を示す。走行用偏差ΔDtは、図中のY方向左側のずれを正として、Y方向右側のずれを負とする。
 図4に例示するように、目標線40は、制御装置32の内部記憶装置に予め記憶(設定)されて門型クレーン20を走行させる制御における目標値となる。目標線40は、蔵置レーン13ごとに設定されており、コンテナターミナル10において複数設定される。目標線40は、平面視で、X方向に延在し、走行中の門型クレーン20が水平面に対して傾いた場合に門型クレーン20のY方向における傾きに応じてY方向に屈曲する線で構成される。
 目標線40としては、複数の線分をその端点でつなぎ合わせて構成される折れ線が例示される。なお、目標線40は、走行中の門型クレーン20に水平面に対する傾きが生じない場合に平面視でX方向に向かう直線を成す。また、本開示で、走行中の門型クレーン20に生じる水平面に対する傾きは、コンテナ蔵置ヤード11の路面48に設けられた水勾配による傾きに加えて、経時的な劣化による傾きも含むものとする。この経時的な劣化としては、門型クレーン20のタイヤ27a、27bの劣化やコンテナ蔵置ヤード11の路面48の沈下が例示される。
 目標線40は、後述するようにX方向に延在して平面視で直線を成す直線目標線42を基準として、走行中の門型クレーン20のY方向における傾きに応じてその中途位置を屈曲させた線である。目標線40は、予め実験や試験により、直線目標線42を目標値として門型クレーン20を走行させた場合にその走行中に位置取得部34が取得した複数の現在位置Ptを走行順に結んだ軌跡で構成される。また、目標線40は、予めシミュレーションにより、門型クレーン20が直線目標線42を目標値として走行したと仮定した場合に位置取得部34が取得すると予測される複数の現在位置Ptを走行順に結んだ軌跡で構成されてもよい。
 例えば、コンテナ蔵置ヤード11の路面がY方向右側に向かって下方に傾いている所を走行中の門型クレーン20がY方向右側に傾いた場合に、平面視で目標線40は直線目標線42に対してY方向右側に位置し、その前後で屈曲している。また、コンテナ蔵置ヤード11の路面が水平である所を走行中の門型クレーン20が傾いていない場合に、平面視で目標線40は直線目標線42と重なり、X方向に向かって真っ直ぐである。また、コンテナ蔵置ヤード11の路面48がY方向左側に向かって下方に傾いている所を走行中の門型クレーン20がY方向左側に傾いた場合に、平面視で目標線40は直線目標線42に対してY方向左側に位置し、その前後で屈曲している。
 なお、目標線40及び直線目標線42のそれぞれはXY平面の座標情報を有すればよく、Z方向の座標情報を含まなくてもよい。目標線40及び直線目標線42がZ方向の座標情報を含む場合に、コンテナ蔵置ヤード11の路面48を高さの基準として、目標線40のZ方向の高さは各アンテナ31a、31bの高さにすることが好ましい。
 目標線40は、複数の目標位置41を有し、それらの目標位置41のうちの前後で門型クレーン20のY方向の傾きが変化する位置を変曲点として折り曲げられた折れ線で構成されることが望ましい。
 目標位置41は、目標線40の線上に複数配置されて、そのうちの一つが目標線40に基づいて走行する門型クレーン20の停車目標となる位置である。目標位置41は、後述するように直線目標線42における所定の距離ごとに配置された停止位置43に対応させた位置である。目標位置41は、対応する停止位置43に対して、平面視で、走行中の門型クレーン20のX方向における傾きに応じてX方向に前後した位置となり、Y方向における傾きに応じてY方向に左右した位置となる。
 停止位置43は、X方向に延在して平面視で直線を成す直線目標線42の線上に配置され、直線目標線42における所定の距離ごとに配置される位置であり、コンテナ蔵置ヤード11の路面を基準とした位置である。換言すると、停止位置43は、走行装置24a、24bを基準とした位置である。停止位置43は、直線目標線42が蔵置レーン13の長手方向であるX方向に向かう真っ直ぐな線である場合に、蔵置レーン13のX方向におけるコンテナCの配列位置を示すベイごとに設定されることが好ましく、さらに、ベイにおけるX方向の中心に設定されることがより好ましい。
 例えば、コンテナ蔵置ヤード11の路面48がX方向前側に向かって下方に傾いている所を走行中の門型クレーン20がX方向前側に傾いた場合に、平面視で目標位置41は対応する停止位置43に対してX方向前側に位置する。また、コンテナ蔵置ヤード11の路面48が水平である所を走行中の門型クレーン20が傾いていない場合に、平面視で目標位置41は停止位置43と重なる。また、コンテナ蔵置ヤード11の路面48がX方向後側に向かって下方に傾いている所を走行中の門型クレーン20がX方向後側に傾いた場合に、平面視で目標位置41は対応する停止位置43に対してX方向後側に位置する。また、コンテナ蔵置ヤード11の路面48がY方向右側に向かって下方に傾いている所を走行中の門型クレーン20がY方向右側に傾いた場合に、平面視で目標位置41は対応する停止位置43に対してY方向右側に位置する。また、コンテナ蔵置ヤード11の路面48がY方向左側に向かって下方に傾いている所を走行中の門型クレーン20がY方向左側に傾いた場合に、平面視で目標位置41は対応する停止位置43に対してY方向左側に位置する。
 なお、目標線40がZ方向の座標情報を含む場合に、目標位置41は門型クレーン20のX方向の傾きに応じてZ方向に上下する。この場合に、目標線40は3次元の折れ線となる。
 図5に例示するように、第一実施形態の門型クレーン20の制御方法は、上位システム18からの荷役指示を通信機33が受信し、その荷役指示に基づいて門型クレーン20を走行させる方法である。この制御方法は、門型クレーン20を走行させている間は所定の周期tごとに繰り返し行われる。なお、本開示の制御方法は、スタートの時点では門型クレーン20の停車目標となる位置が設定されるものとし、その停車目標となる位置に門型クレーン20を停車させると終了するものとする。
 スタートすると、各アンテナ31a、31bが位置座標Pa、Pbを取得して、位置取得部34が位置座標Pa、Pbに基づいて門型クレーン20の現在位置Ptを取得する(S110)。
 次いで、走行用制御部35が、位置取得部34が取得した現在位置Ptと予め設定された目標線40とに基づいて走行用偏差ΔDtを算出する(S120)。次いで、走行用制御部35が、算出した走行用偏差ΔDtがゼロか否かを判定する(S130)。走行用偏差ΔDtがゼロと判定すると(S130:YES)、走行用制御部35が、インバータ29を介して一対の走行装置24a、24bの走行速度差を現在の走行速度差に維持して(S140)、スタートへリターンする。一方、走行用偏差ΔDtがゼロでないと判定すると(S150:NO)、走行用制御部35が、インバータ29を介して一対の走行装置24a、24bの走行速度差を走行用偏差ΔDtをゼロにする走行速度差に調節して(S150)、スタートへリターンする。
 以上のように、第一実施形態の制御システム30は、コンテナ蔵置ヤード11の路面48を基準として平面視で直線を成す直線目標線42では無く、走行中の門型クレーン20のY方向の傾きが反映されて平面視で屈曲する目標線40に基づいて門型クレーン20の走行を制御する。それ故、この制御システム30によれば、走行中の門型クレーン20の傾きが反映された目標線40を走行させる制御の目標値とすることで、位置取得部34により取得した現在位置Ptを路面基準の値に換算する演算を省くことができる。これにより、走行させる制御における演算の頻度を低くするには有利になり、演算処理に掛かる負荷を軽くすることができることに加えて演算誤差が生じる確率を低くすることができる。これに伴って、高精度且つ高速な門型クレーン20の走行制御が可能になり、門型クレーン20を目標位置に精度よく迅速に位置合わせすることができる。
 また、制御システム30は、門型クレーン20の停車目標となる位置として、平面視で、対応する停止位置43に対して門型クレーン20の傾きに応じて前後左右にずれる目標位置41が設定される。それ故、走行させる制御により門型クレーン20の現在位置Ptを目標位置41に一致させて走行を停止することで、門型クレーン20の荷役作業における位置合わせには有利になる。
 現在位置Ptは、一つの全球測位衛星システムのアンテナが取得した位置座標に基づいて取得されてもよく、全球測位衛星システムに加えて上位システム18と送受信可能なアンテナを用いて取得されてもよい。
 図6に例示するように、第二実施形態の制御システム30は、第一実施形態に対して、制御装置32が、内部記憶装置に目標線40に対する目標領域44を有し、機能要素としてその目標領域44を用いて第二の目標線45を設定する設定部36を有し、走行用制御部35が目標線40の代わりに第二の目標線45を用いる点が異なる。
 設定部36は、予め内部記憶装置に記憶された目標線40及び目標領域44が入力されて、走行させる制御の開始地点P0から終了地点P1までの間の目標値として第二の目標線45を作成し、走行用制御部35に出力する機能要素である。
 図7及び図8に例示するように、目標領域44は、平面視で、目標線40からY方向の両方向のそれぞれに所定の幅Ba、Bbで広がり、Y方向における一方の限界端44aと他方の限界端44bとに囲まれた領域である。目標領域44は、目標線40と同様に、予め実験や試験あるいはシミュレーションにより、走行中の門型クレーン20が、蔵置レーン13に蔵置されたコンテナCやその蔵置レーン13に隣接する他の蔵置レーン13を跨いで走行中の他の門型クレーン20と衝突しない領域、及び、構内シャシ15や外来シャシ16が走行する蔵置レーン13に沿った走行路に侵入しない領域として設定される。
 幅Ba、Bbは、走行中の門型クレーン20の現在位置Ptが一方の限界端44aに至っても構造体23及び一対の走行装置24a、24bの衝突や侵入を回避可能な幅に設定される。なお、幅Ba、Bbは互いに異なる値に設定されてもよい。
 第二の目標線45は、走行させる制御の目標値であり、目標領域44に収まる範囲で、開始地点P0から終了地点P1までの間で目標線40をなぞった経路とは異なる経路に設定される。第二の目標線45の経路長は、開始地点P0から終了地点P1までの間で目標線40をなぞった経路の経路長よりも短いことが好ましく、目標領域44に収まる範囲で開始地点P0から終了地点P1までの間の最短距離がより好ましい。第二の目標線45としては、図7のスプライン曲線、図8の近似直線、あるいは開始地点P0から終了地点P1までの間で区切られた複数の区間ごとのスプライン曲線や近似直線の連続が例示される。なお、開始地点P0としては走行させる制御を開始する地点であり、走行させる制御を行う前の門型クレーン20の現在位置が例示され、終了地点P1としては上位システム18から受信した荷役指示で指示された停車目標となる位置が例示される。
 走行用制御部35は、位置取得部34から出力された現在位置Ptと、目標線40の代わりに設定部36で設定された第二の目標線45とが入力されて、その第二の目標線45と現在位置Ptとの走行用偏差ΔDtに基づいて、インバータ29を介して電動モータ28a、28bの回転速度Na、Nbを調節して、一対の走行装置24a、24bのそれぞれの走行速度を調節する機能要素である。
 図9に例示するように、第二実施形態の門型クレーン20の制御方法は、上位システム18からの荷役指示を通信機33が受信し、その荷役指示に基づいて門型クレーン20を走行させる場合に、既述した制御方法における上記のステップS110を行う前に、設定部36が第二の目標線45を設定する(S100)。並びに、上記のステップS120で、走行用制御部35が設定された第二の目標線45を用いる。
 以上のように、第二実施形態の制御システム30は、第二の目標線45を用いることで、高精度且つ高速な門型クレーン20の走行制御が可能になり、門型クレーン20を目標位置に精度よく迅速に位置合わせすることができる。
 加えて、制御システム30は、走行させる制御の目標値として目標線40をなぞった経路では無く、円滑な走行が可能になる経路や停車目標とする位置により早く到着可能な経路を探索する。それ故、走行させる制御の目標値として滑らかに曲がった経路を用いることで、一対の走行装置24a、24bの速度差を緩やかに変化させるには有利になり、速度差の急激な変化に伴う門型クレーン20の揺れを抑制することができる。また、走行させる制御の目標値として目標線40をなぞった経路の経路長よりも短い経路を用いることで、門型クレーン20を停車目標とする位置により早く到着させるには有利になり、走行させる制御に要する時間を短縮することができる。
 なお、制御システム30は、状況に応じて、走行させる制御の目標値として目標領域44に収まる範囲で目標線40をなぞった経路の経路長よりも長い経路長の目標線を設定してもよい。
 図10及び図11に例示するように、第三実施形態の制御システム30は、アンテナ31cを備える点が異なる。また、制御装置32が、内部記憶装置に現在位置Ptが補正位置46に一致したときの基準値として門型クレーン20のY方向の傾き、すなわちX軸回りの角度の基準となる基準傾きθaを有し、機能要素としてパラメータ取得部37と補正部38とを有する点が異なる。この基準傾きθaは水平面に対する傾きである。
 アンテナ31cは、各アンテナ31a、31bと同様に全球測位衛星システム(GNSS)のアンテナであり、所定の周期tごとに複数の人工衛星から受信する時刻等の情報に基づき経度、緯度、及び高度からなる位置座標Pcを取得する。アンテナ31cは、平面視で、アンテナ31a又はアンテナ31bに対して構造体23のX方向の他端部に離間配置される。なお、この実施形態で、各アンテナ31a、31b、31cは、全球測位衛星システムを利用して空間座標(三次元座標)として経度と緯度と高さを取得可能に構成される。
 三つのアンテナ31a~31cは、門型クレーン20の構造体23の平面視における形状を略長方形と仮定した場合に、その長方形の四つの隅部のうちの三つの隅部に配置される。このように各アンテナ31a~31cが配置されることで、門型クレーン20のX方向の傾き及びY方向の傾きを取得するには有利になる。
 補正位置46は、目標線40の線上に少なくとも一つ配置される。補正位置46は、一つの目標線40の線上に複数配置されることが好ましく、目標線40の線上に複数配置された目標位置41で構成されることがより好ましい。補正位置46が目標位置41で構成されることで、走行させる制御により門型クレーン20が目標位置41を通過する又は目標位置41に停止するごとに補正する制御を行うことが可能になり、補正の頻度を増やすには有利になる。
 基準傾きθaは、初期値として補正位置46におけるコンテナ蔵置ヤード11の路面48の傾きのうちのY方向の傾きが設定され、現在位置Ptが補正位置46に一致したときの門型クレーン20の傾きのうちのY方向の左右の傾きを示す。本開示で、現在位置Ptが補正位置46に一致するときは、門型クレーン20が停止したときの現在位置Ptが補正位置46に加えて、門型クレーン20の走行中に現在位置Ptが補正位置46を通過するときも含む。
 パラメータ取得部37は、各アンテナ31a、31cが所定の周期tごとに取得した位置座標Pa、Pcが入力されて、所定の周期tごとにパラメータとして門型クレーン20の水平面に対する傾きθtを算出し、算出した傾きθtを補正部38に出力する機能要素である。本開示で、パラメータとは門型クレーン20のY方向の傾きにより変化する値を示し、具体的に傾きθtが例示される。
 補正部38は、パラメータ取得部37が取得したパラメータとして傾きθtが入力されて、入力された傾きθtと内部記憶装置に予め記憶された基準値である基準傾きθaとの補正用偏差Δθtに基づいて、目標線40を補正する機能要素である。
 補正用偏差Δθtは基準傾きθaから傾きθtを減算した値であり、図中のY方向左側への傾きを正とし、Y方向右側への傾きを負とする。例えば、補正用偏差Δθtが負の場合に門型クレーン20は経年劣化を起因としたY方向右側への傾きが生じており、現在位置Ptが補正位置46に一致したときに門型クレーン20の構造体23の下方部位や走行装置24bが蔵置レーン13の側方に寄った状態となる。また、補正用偏差Δθtが正の場合に門型クレーン20は経年劣化を起因としたY方向左側への傾きが生じており、現在位置Ptが補正位置46に一致したときに門型クレーン20の構造体23の下方左側部位や走行装置24aが蔵置レーン13の側方に寄った状態となる。
 補正部38は、補正用偏差Δθtが正の場合にその補正用偏差Δθtがゼロになるように平面視で目標線40をY方向左側に平行にずらして補正する。また、補正部38は、補正用偏差Δθtが負の場合にその補正用偏差Δθtがゼロになるように平面視で目標線40をY方向右側に平行にずらして補正する。
 図12に例示するように、第三実施形態の制御システム30による門型クレーン20の制御方法は、門型クレーン20の走行中に繰り返し行われる方法である。また、門型クレーン20が停止した場合にも行われる方法である。
 スタートすると、各アンテナ31a、31b、31cが位置座標Pa、Pb、Pcを取得して、位置取得部34が位置座標Pa、Pbに基づいて門型クレーン20の現在位置Ptを取得する(S210)。次いで、パラメータ取得部37が位置座標Pa、Pcに基づいてパラメータとして門型クレーン20の現在のY方向の傾きθtを取得する(S220)。
 次いで、補正部38が、位置取得部34が取得した現在位置Ptが補正位置46と一致するか否かを判定する(S230)。現在位置Ptが補正位置46と一致しないと判定すると(S230:NO)、スタートへリターンする。一方、現在位置Ptが補正位置46と一致すると判定すると(S230:YES)、補正部38が、パラメータ取得部37が取得したパラメータである傾きθtと予め設定された基準値である基準傾きθaとに基づいて補正用偏差Δθtを算出する(S240)。
 次いで、補正部38が、算出した補正用偏差Δθtがゼロか否かを判定する(S250)。補正用偏差Δθtがゼロと判定すると(S250:YES)、スタートへリターンする。一方、一方、補正用偏差Δθtがゼロでないと判定すると(S250:NO)、補正部38が、補正用偏差Δθtをゼロにするように目標線40を補正して(S260)、スタートへリターンする。
 以上のように、第三実施形態の門型クレーン20の制御システム30は、現在の門型クレーン20の傾きθtが基準傾きθaからずれた場合に、そのずれを反映させるように目標線40を補正する。これにより、補正された目標線40を門型クレーン20の経年劣化やコンテナ蔵置ヤード11の路面48の経年劣化に対応させることができ、高精度且つ高速な門型クレーン20の走行制御が可能になり、門型クレーン20を目標位置に精度よく迅速に位置合わせすることができる。
 また、制御システム30は、補正する際に基準傾きθaを補正せずに、制御システム30が有する目標線40のみを補正する。これにより、各門型クレーン20で異なる状況に応じて走行させる制御を行うことが可能になる。なお、一つの蔵置レーン13を複数の門型クレーン20が走行した際に、それらの複数の門型クレーン20の制御システム30の全てで同様の補正がなされた場合に、コンテナ蔵置ヤード11の路面が経年劣化したと見做して基準傾きθaを補正してもよい。
 図13~図15に例示するように、第四実施形態の制御システム30は、アンテナ31aの代わりに補正位置取得装置39aと補正対象体39bとを有する点が異なる。また、制御装置32が、内部記憶装置に現在位置Ptが補正位置46に一致したときの基準値として補正対象体39bの基準位置Qaを有し、パラメータ取得部37がパラメータとして補正対象体39bの位置座標Qtを取得し、補正部38がその位置座標Qtとその基準位置Qaとの補正用偏差ΔQtに基づいて目標線40を補正する点が異なる。
 補正位置取得装置39aは、門型クレーン20の構造体23又は走行装置24bに設置されて、所定の周期tごとに補正位置取得装置39aから補正対象体39bまでの距離を計測する装置である。補正位置取得装置39aとしては、一次元、二次元、あるいは三次元のライダセンサが例示される。
 補正対象体39bは、目標線40に沿って少なくとも一つ設置され、その設置位置として門型クレーン20の現在位置Ptが補正位置46に一致したときに補正位置取得装置39aにより計測可能な位置が例示される。補正対象体39bは、補正位置取得装置39aが所定の周期tごとに計測した複数の距離により、門型クレーン20に対して対向する側方部位(Y方向左側部位)の断面形状が特定可能なものが好ましく、その側方部位の断面形状がX方向の両端の間に少なくとも一つの角を有する形状であることがより好ましい。本開示で、門型クレーン20に対して対向する側方部位とは、補正位置取得装置39aにより距離が計測可能な部位である。また、X方向の両端の間に少なくとも一つの角を有する形状は、三角形状や階段状の形状、あるいは多角形状(但し、矩形状を除く)が例示される。なお、その角がY方向左側に向かって突出したものに限定されずに、その角がY方向右側に向かって窪んだものでもよい。このように、補正対象体39bの側方部位の水平断面形状がX方向の両端の間に少なくとも一つの角を有する形状に形成されることで、補正位置取得装置39aにより特定した断面形状からその角の平面座標を特定することが可能となり、その特定した角の平面座標を補正対象体39bの位置座標Qtが特定可能となる。
 基準位置Qaは、初期値として門型クレーン20の現在位置Ptが補正位置46に一致した状態で予め補正位置取得装置39aにより計測された補正対象体39bの位置座標が設定される。なお、基準位置Qaは、補正位置46におけるコンテナ蔵置ヤード11の路面の傾きのうちのY方向の傾きに基づいて算出された算出値を用いてもよい。
 パラメータ取得部37は、補正位置取得装置39aが所定の周期tごとに取得した複数の距離が入力されて、パラメータとして補正対象体39bの位置座標Qtを算出し、算出した位置座標Qtを補正部38に出力する機能要素である。本開示で、パラメータとは門型クレーン20のY方向の傾きにより変化する値を示し、具体的に補正対象体39bの位置座標Qtが例示される。
 補正部38は、パラメータ取得部37が取得した位置座標Qtが入力されて、入力された位置座標Qtと内部記憶装置に予め記憶された基準値である基準位置Qaとの補正用偏差ΔQtに基づいて、目標線40を補正する機能要素である。
 補正用偏差ΔQtは基準位置Qaから位置座標Qtを減算した値であり、図中のY方向左側への離間距離を正とし、Y方向右側への離間距離を負とする。例えば、補正用偏差ΔQtが負の場合に門型クレーン20は経年劣化を起因としたY方向右側への傾きが生じており、現在位置Ptが補正位置46に一致したときに門型クレーン20の構造体23の下方部位や走行装置24bが蔵置レーン13の側方に寄った状態となる。また、補正用偏差ΔQtが正の場合に門型クレーン20は経年劣化を起因としたY方向左側への傾きが生じており、現在位置Ptが補正位置46に一致したときに門型クレーン20の構造体23の下方左側部位や走行装置24aが蔵置レーン13の側方に寄った状態となる。
 補正部38は、補正用偏差ΔQtが正の場合にその補正用偏差ΔQtがゼロになるように平面視で目標線40をY方向左側に平行にずらして補正する。また、補正部38は、補正用偏差ΔQtが負の場合にその補正用偏差ΔQtがゼロになるように平面視で目標線40をY方向右側に平行にずらして補正する。
 この第四実施形態の制御システム30による門型クレーン20の制御方法は、図12に例示するフロー図における傾きθtを位置座標Qtとし、補正用偏差Δθtを補正用偏差ΔQtとすればよく、同様の工程で行われる方法である。
 以上のように、第四実施形態の門型クレーン20の制御システム30は、取得された補正対象体39bの位置座標Qtが基準位置Qaからずれた場合に、そのずれを反映させるように目標線40を補正する。これにより、高精度且つ高速な門型クレーン20の走行制御が可能になり、門型クレーン20を目標位置に精度よく迅速に位置合わせすることができる。
 第三実施形態及び第四実施形態の制御システム30は、Y方向のずれを補正する方法と同様の方法により、門型クレーン20のX方向の傾きに応じて目標位置41の目標線40の線上の位置を補正するように構成されてもよい。例えば、門型クレーン20の現在位置Ptが補正位置46に一致した場合に門型クレーン20がX方向前側により傾いた場合に、平面視で目標位置41は対応する停止位置43に対してX方向前側の位置に補正される。このように、平面視で目標線40のY方向の補正とともにX方向の目標位置41の補正を行うことで、門型クレーン20の走行を停止したときの位置合わせに有利になる。
 第三実施形態及び第四実施形態の制御システム30は、パラメータ取得部37が各アンテナ31a、31cが取得した位置座標Pa、Pcに基づいて門型クレーン20の傾きθtを算出する構成としたが、この構成に限定されない。例えば、アンテナ31c及びパラメータ取得部37に代えて門型クレーン20の傾きθtを直接的に計測する傾斜計を備えてもよい。なお、傾斜計は門型クレーン20の桁部22の上に設置されることが望ましい。
 図16及び図17に例示するように、第五実施形態の制御システム30は、既述した実施形態に対して目標線40を作成する制御を行う点が異なる。制御システム30は、制御装置32が、各機能要素として換算位置取得部50、作成用制御部51、及び、作成部52を有し、その作成用制御部51が内部記憶装置に予め記憶された直線目標線42に基づいて門型クレーン20を走行させる制御を行った後に目標線40を作成する制御を行う。
 換算位置取得部50は、位置取得部34が取得した現在位置Ptとパラメータ取得部37が取得した傾きθtとが入力されて、所定の周期tごとに門型クレーン20の換算位置Rtを取得し、取得した換算位置Rtを作成用制御部51に出力する機能要素である。換算位置取得部50は、位置座標Pa、Pbの中点として現在位置Ptを算出することが望ましい。なお、位置取得部34は、位置座標Pa、Pb及び門型クレーン20の構造寸法に基づいて、現在位置Ptを算出する機能要素としてもよい。
 換算位置Rtは、直線目標線42が存在する水平面である基準水平面47において、平面視で門型クレーン20が現在存在している位置(平面座標)として構造体23のY方向端部又はY方向の中央部の位置であることが好ましい。換算位置Rtは、直線目標線42及び基準水平面47の空間位置座標を既知として、基準水平面47を基準とした現在位置Ptの高さと傾きθtを用いた三角関数により算出された距離分、現在位置PtをY方向にずらした位置である。
 例えば、コンテナ蔵置ヤード11の路面48がY方向左側に向かって下方に傾いている所を走行中の門型クレーン20がY方向左側に傾いた場合に、平面視で換算位置Rtは現在位置PtよりもY方向右側に位置する。また、コンテナ蔵置ヤード11の路面48が水平である所を走行中の門型クレーン20が傾いていない場合に、平面視で換算位置Rtは現在位置Ptと重なる。また、コンテナ蔵置ヤード11の路面48がY方向右側に向かって下方に傾いている所を走行中の門型クレーン20がY方向右側に傾いた場合に、平面視で換算位置Rtは現在位置PtよりもY方向左側に位置する。
 基準水平面47は、コンテナ蔵置ヤード11において水勾配が形成されていない路面48に設定されることが望ましい。また、基準水平面47は、コンテナ蔵置ヤード11における路面48の高さの平均値を高さとする水平面に設定されてもよい。
 作成用制御部51は、換算位置取得部50から出力された換算位置Rtが入力されて、内部記憶装置に予め記憶された直線目標線42と換算位置Rtとの偏差である作成用偏差Δdtに基づいて、インバータ29を介して電動モータ28a、28bの回転速度Na、Nbを調節して、一対の走行装置24a、24bのそれぞれの走行速度を調節する機能要素である。作成用偏差Δdtは直線目標線42に対する換算位置Rtのずれ量を示しており、平面視で換算位置Rtを通り直線目標線42と直交する垂線及び直線目標線42の交点と換算位置Rtとの間の距離を示す。作成用偏差Δdtは、図中のY方向左側のずれを正として、Y方向右側のずれを負とする。また、作成用制御部51は、換算位置Rtが直線目標線42の線上に配置された停止位置43と一致したときの現在位置Ptを内部記憶装置に順次記憶させる機能要素でもある。
 作成部52は、作成用制御部51が内部記憶装置に記憶させた複数の現在位置Ptが入力されて、入力された複数の現在位置Ptを走行順に結んだ軌跡として目標線40を作成する機能要素である。なお、門型クレーン20が複数の蔵置レーン13に渡って走行する場合に、内部記憶装置に記憶された複数の現在位置Ptを、蔵置レーン13ごとに区分して記憶させることが望ましい。
 図18及び図19に例示するように、第五実施形態の制御システム30による門型クレーン20の制御方法は、上位システム18からの目標線40の作成指示を通信機33が受信し、その作成指示に基づいて門型クレーン20を走行させて目標線40を作成する方法である。この制御方法は、門型クレーン20を走行させている間は所定の周期tごとに繰り返し行われ、門型クレーン20の走行が終了して目標線40を作成すると終了する。なお、この制御方法は、スタートの時点では門型クレーン20を蔵置レーン13の一端から他端まで走行させる指示が設定されるものとする。
 図18に例示するように、スタートすると、位置取得部34が門型クレーン20の現在位置Ptを取得する(S310)。次いで、パラメータ取得部37が門型クレーン20の傾きθtを取得する(S320)。次いで、換算位置取得部50が、取得した現在位置Pt及び傾きθtに基づいて換算位置Rtを取得する(S330)。
 次いで、作成用制御部51が、取得した換算位置Rtと予め設定された直線目標線42とに基づいて作成用偏差Δdtを算出する(S340)。次いで、作成用制御部51が、算出した作成用偏差Δdtがゼロか否かを判定する(S350)。作成用偏差Δdtがゼロと判定すると(S350:YES)、作成用制御部51が、インバータ29を介して一対の走行装置24a、24bの走行速度差を現在の走行速度差に維持して(S360)、スタートへリターンする。一方、作成用偏差Δdtがゼロでないと判定すると(S350:NO)、作成用制御部51が、インバータ29を介して一対の走行装置24a、24bの走行速度差を作成用偏差Δdtをゼロにする走行速度差に調節して(S370)、図19のAへ進む。
 図19に例示するように、次いで、作成用制御部51が、取得した換算位置Rtが予め設定された停止位置43と一致したか否かを判定する(S410)。換算位置Rtが停止位置43と一致しないと判定すると(S410:NO)、スタートへリターンする。一方、換算位置Rtが停止位置43に一致したと判定すると(S410:YES)、作成用制御部51が、一致したときの現在位置Ptを内部記憶装置に記憶させる(S420)。次いで、作成用制御部51が、指示された走行が終了したか否かを判定する(S430)。走行が終了していないと判定すると(S430:NO)、スタートへリターンする。一方、走行が終了したと判定すると(S430:YES)、次のステップへ進む。
 作成部52が、内部記憶装置に記憶させた複数の現在位置Ptを読み込む(S440)。次いで、作成部52が、複数の現在位置Ptを所定の平面又は空間に配置する(S450)。この所定の平面又は空間は任意に設定可能であり、例えば、所定の平面として基準水平面47に平行で且つ高さが各アンテナ31a~31cのレベルに設定した平面が例示される。次いで、作成部52が、配置された複数の現在位置Ptを門型クレーン20の走行順に線分で結んで折れ線を形成して、目標線40を作成する(S460)。次いで、作成部52が、複数の現在位置Ptを目標位置41に変換する(S470)。次いで、作成部52が、作成した目標線40及び目標位置41を内部記憶装置に記憶して(S480)、終了する。
 以上のように、第五実施形態の制御システム30は、門型クレーン20を直線目標線42に基づいて走行させた場合に、その走行中に現在位置Ptが描く軌跡として目標線40を作成する。それ故、目標線40に走行中の門型クレーン20の水平面に対する傾きを反映させることができる。これにより、その目標線40を用いて高精度且つ高速な門型クレーン20の走行制御が可能になり、門型クレーン20を目標位置に精度よく迅速に位置合わせすることができる。
 目標線40は、走行中に取得した複数の現在位置Ptのうち、その換算位置Rtが直線目標線42の線上に配置されたいずれかの停止位置43と一致した現在位置Ptを結んだ軌跡とすることが好ましい。ここでいう、換算位置Rtが停止位置43と一致したときの現在位置Ptは、目標位置41となる。
 制御システム30は、第一実施形態又は第二実施形態のいずれか一方の走行させる制御と、第三実施形態又は第四実施形態のいずれか一方の補正する制御と、第五実施形態の作成する制御との全ての制御を行うよう構成されてもよく、いずれかの制御のみを行うように構成されてもよい。同種同型の複数の門型クレーン20のそれぞれに搭載される制御システム30は、いずれか一つの制御システム30が補正する制御と作成する制御とを行うように構成されればよい。
 コンテナターミナル10に設けられる全ての門型クレーン20は、それぞれに搭載された制御システム30の走行させる制御と補正する制御と作成する制御の全ての制御により制御されるように構成されてもよい。また、全ての門型クレーン20は、それぞれの制御システム30の走行させる制御と補正する制御との二つの制御により制御されるように構成され、全ての門型クレーン20のうちの一部の門型クレーン20がそれぞれの制御システム30の作成する制御により制御されるように構成されてもよい。さらに、全ての門型クレーン20がそれぞれの制御システム30の走行させる制御により制御されるように構成され、一部の門型クレーン20がそれぞれの制御システム30の補正する制御と作成する制御により制御されるように構成されてもよい。
 コンテナターミナル10には、制御システム30の補正する制御と作成する制御との制御により制御される門型クレーン20を少なくとも一台設ければよく、各蔵置レーン13に一台ずつ設けられることが望ましい。なお、作制御システム30の補正する制御と作成する制御との制御により制御される門型クレーン20が、荷役時に蔵置レーン13以外の場所に待機し、作成する制御あるいは補正する制御により制御されるときにのみ、蔵置レーン13に配置されてもよい。
 既述した目標線40は門型クレーン20の傾きのうち、水平面に対する路面48の傾きにのみに応じて設定されてもよい。つまり、目標線40は、水平面において門型クレーン20の走行方向に向かう直線である直線目標線42に対して門型クレーン20が走行する路面48の傾きのうちのY方向の傾き(X軸回りの角度)に応じて屈曲する線で構成されてもよい。例えば、目標線40は路面48の勾配が既知の場合にその既知の勾配に基づいて設定されてもよい。また、目標線40は複数の目標位置41を有し、それらの目標位置41のうちの前後で路面48の勾配が変化する位置を変曲点として折り曲げられた折れ線で構成されてもよい。
 図20~図22に例示するように、第六実施形態の制御システム30は、既述した実施形態に対して目標線と位置取得部が複数である点が異なる。この実施形態の門型クレーン20のY方向の一方の端部の側方にはX方向に延在する外部給電装置60と、X方向に延在する通信装置61とが設置される。外部給電装置60は外部から門型クレーン20に電力を供給する装置であり、バスバー(導電体)や給電ケーブルが例示される。通信装置61は外部から門型クレーン20の制御システム30に通信する装置であり、漏洩同軸ケーブルや電力線搬送通信が可能な電力線が例示される。門型クレーン20は外部給電装置60から電力を受け取るための装置である集電用装置62を有する。集電用装置62としてはバスバーに接触して電力を受電するパンタグラフ式の集電装置や給電ケーブルを巻き取るケーブルリールが例示される。平面視で門型クレーン20のY方向の一方の端部の側方に外部給電装置60と通信装置61との両方が配置され、集電用装置62が一方の端部に設置されることが好ましい。
 制御システム30はアンテナ31a、31b、31c、31dを有する。また、制御装置32は、既述した実施形態の位置取得部34に代えて主位置取得部34Aおよび予備位置取得部34Bを有し、目標線40に代えて主目標線40Aおよび予備目標線40Bを有し、追加機能要素として目標設定部53を有する。
 アンテナ31dは、各アンテナ31a、31b、31cと同様に全球測位衛星システム(GNSS)のアンテナであり、所定の周期tごとに複数の人工衛星から受信する時刻等の情報に基づき経度、緯度、及び高度からなる位置座標Pdを取得する。アンテナ31dは、平面視で、アンテナ31cに対して構造体23のX方向の他端部に離間配置される。なお、この実施形態で、各アンテナ31a、31b、31c、31dは、全球測位衛星システムを利用して空間座標(三次元座標)として経度と緯度と高さを取得可能に構成される。
 四つのアンテナ31a~31dは、門型クレーン20の構造体23の平面視における形状を略長方形と仮定した場合に、その長方形の四つの隅部に配置される。このように各アンテナ31a~31dが配置されることで、門型クレーン20のX方向の傾き及びY方向の傾きを取得するには有利になる。
 主位置取得部34Aは、平面視で門型クレーン20のY方向の端部のうちの集電用装置62が設置された側の端部、または、側方に通信装置61が配置された側の端部の所定の位置を主現在位置Psとして取得する機能要素である。具体的に、主位置取得部34Aは、平面視で門型クレーン20のY方向の一方の端部に設置された各アンテナ31c、31dが所定の周期tごとに取得した位置座標Pc、Pdが入力されて、所定の周期tごとに門型クレーン20の主現在位置Psを取得し、その主現在位置Psを走行用制御部35と目標設定部53とに出力する機能要素である。主位置取得部34Aは、位置座標Pc、Pdの中点として主現在位置Psを算出することが望ましい。
 予備位置取得部34Bは、平面視で門型クレーン20のY方向の端部のうちの集電用装置62が設置された側の端部、または、側方に通信装置61が配置された側の端部とは異なる端部の所定の位置を予備現在位置Puとして取得する機能要素である。具体的に、予備位置取得部34Bは、平面視で門型クレーン20のY方向の他方の端部に設置された各アンテナ31a、31bが所定の周期tごとに取得した位置座標Pa、Pbが入力されて、所定の周期tごとに門型クレーン20の予備現在位置Puを取得し、その予備現在位置Puを走行用制御部35と目標設定部53とに出力する機能要素である。予備位置取得部34Bは、位置座標Pa、Pbの中点として予備現在位置Puを算出することが望ましい。
 主現在位置Psは、平面視で門型クレーン20が現在存在している位置を示し、より詳細に門型クレーン20のY方向の一方の端部が現在存在している位置を示す。主現在位置Psは、平面視で位置座標Pc、Pdの中点の位置を示すことが好ましい。予備現在位置Puは、平面視で門型クレーン20が現在存在している位置を示し、より詳細に門型クレーン20のY方向の他方の端部が現在存在している位置を示す。予備現在位置Puは、平面視で位置座標Pa、Pbの中点の位置を示すことが好ましい。
 主目標線40Aは、既述した実施形態の目標線40と同等の構成でその作成方法も同様であるが、目標線40に対して配置位置が決まっている点が異なる。主目標線40Aは、平面視で、門型クレーン20のY方向の一方の端部の側に配置され、X方向に延在し、門型クレーン20のY方向における傾きに応じてY方向に屈曲する線で構成される。
 予備目標線40Bは、主目標線40Aを複製して、主目標線40AからY方向に離間配置される。具体的に、予備目標線40Bは、平面視で、門型クレーン20のY方向の他方の端部の側に配置され、X方向に延在し、門型クレーン20のY方向における傾きに応じて主目標線40Aと同等にY方向に屈曲する線で構成される。
 目標設定部53は、主位置取得部34Aから出力された主現在位置Psと予備位置取得部34Bから出力された予備現在位置Puとが入力されて、それらの入力に基づいて走行用制御部35で用いる現在位置と目標線とを設定するように指令を出す機能要素である。具体的に、目標設定部53は、主現在位置Psが入力された場合に走行用制御部35に現在位置として主現在位置Psを、目標線として主目標線40Aをそれぞれ用いるように切り換えさせる。また、目標設定部53は、主現在位置Psが入力されない、かつ、予備現在位置Puが入力された場合に走行用制御部35に現在位置として予備現在位置Puを、目標線として予備目標線40Bをそれぞれ用いるように切り換えさせる。
 走行用制御部35は、目標設定部53からの指令に基づいて走行制御に用いる現在位置と目標線とを設定し、それらの偏差に基づいて、インバータ29を介して電動モータ28a、28bの回転速度Na、Nbを調節して、一対の走行装置24a、24bのそれぞれの走行速度を調節する機能要素である。具体的に、走行用制御部35は、主現在位置Psおよび主目標線40Aの主走行用偏差ΔDsに基づいて一対の走行装置24a、24bのそれぞれの走行速度を調節する、あるいは、予備現在位置Puおよび予備目標線40Bの予備走行用偏差ΔDuに基づいて一対の走行装置24a、24bのそれぞれの走行速度を調節する、あるいは、主現在位置Psおよび予備現在位置Puの両方が入力されない場合に走行を停止する。主走行用偏差ΔDsおよび予備走行用偏差ΔDuは上述した走行用偏差ΔDtと同様に平面視において目標線に対する現在位置のずれ量を示している。
 また、走行用制御部35は、主走行用偏差ΔDsと予備走行用偏差ΔDuとが異なる場合に、平面視における門型クレーン20の姿勢を特定し、一対の走行装置24a、24bのそれぞれの走行速度を補正する機能要素でもある。具体的に、走行用制御部35は主走行用偏差ΔDsと予備走行用偏差ΔDuとが異なる場合に姿勢角θsuを算出する。姿勢角θsuは平面視における門型クレーン20の姿勢ずれ量であり、X方向を基準とした場合に主現在位置Psおよび予備現在位置Puを結ぶ線分の法線とX方向とのなす角である。姿勢角θsuは主現在位置Psおよび予備現在位置Puを結ぶ線分の法線とX方向とのなす角に限定されない。例えば、姿勢角θsuは平面視においてY方向を基準とした場合に主現在位置Psおよび予備現在位置Puを結ぶ線分とY方向とのなす角として算出されてもよい。また、姿勢角θsuは主走行用偏差ΔDsおよび予備走行用偏差ΔDuに応じた姿勢角θsuが設定された換算表や、主走行用偏差ΔDsおよび予備走行用偏差ΔDuの差分に応じた姿勢角θsuが設定された換算表を用いて算出されてもよい。
 図22に例示するように、図中の左端の門型クレーン20は主現在位置Psが取得された状態であるため、主走行用偏差ΔDsに基づいて一対の走行装置24a、24bのそれぞれの走行速度が調節される。図中の右端の門型クレーン20は主現在位置Psが取得できず、予備現在位置Puのみが取得された状態である。それ故、この門型クレーン20は予備走行用偏差ΔDuに基づいて一対の走行装置24a、24bのそれぞれの走行速度が調節される。図中の中央の門型クレーン20は主走行用偏差ΔDsと予備走行用偏差ΔDuとが異なる状態であるため、主走行用偏差ΔDsに基づいて一対の走行装置24a、24bのそれぞれの走行速度が調節される。また、この門型クレーン20は平面視における門型クレーン20の姿勢角θsuが特定され、その姿勢角θsuをゼロにするように走行速度差が補正される。
 図23に例示するように、第六実施形態の門型クレーン20の制御方法は、上位システム18からの荷役指示を通信機33が受信し、その荷役指示に基づいて門型クレーン20を走行させる方法である。この制御方法は、門型クレーン20を走行させている間は所定の周期tごとに繰り返し行われる。なお、本開示の制御方法は、スタートの時点では門型クレーン20の停車目標となる位置が設定されるものとし、その停車目標となる位置に門型クレーン20を停車させると終了するものとする。
 スタートすると、各アンテナ31a~31dが位置座標Pa~Pdを取得して、主位置取得部34Aが位置座標Pc、Pdに基づいて主現在位置Psを、予備位置取得部34Bが位置座標Pa、Pbに基づいて予備現在位置Pu取得する(S510)。
 次いで、走行用制御部35が、主現在位置Psおよび主目標線40Aの差分である主走行用偏差ΔDsと予備現在位置Puおよび予備目標線40Bの差分である予備走行用偏差ΔDuとを算出する(S520)。なお、ステップS510において、主現在位置Psが取得できない場合にこのステップにおいて主走行用偏差ΔDsは算出されず、また、予備現在位置Puが取得できない場合にこのステップにおいて予備走行用偏差ΔDuは算出されないものとする。
 次いで、目標設定部53がステップS510において主現在位置Psを取得したか否かを判定する(S530)。主現在位置Psを取得したと判定すると(S530:YES)、目標設定部53が走行用制御部35に現在位置を主現在位置Psに、目標線を主目標線40Aに、偏差を主走行用偏差ΔDsに設定させる指令を出す(S540)。
 一方、主現在位置Psを取得できないと判定すると(S530:NO)、目標設定部53がステップS510において予備現在位置Puを取得したか否かを判定する(S550)。予備現在位置Puを取得したと判定すると(S550:YES)、目標設定部53が走行用制御部35に現在位置を予備現在位置Puに、目標線を予備目標線40Bに、偏差を予備走行用偏差ΔDuに設定させる指令を出す(S560)。
 一方、予備現在位置Puを取得できないと判定すると(S550:NO)、走行用制御部35がインバータ29を介して一対の走行装置24a、24bを停止させて(S570)、スタートへリターンする。
 主現在位置Psまたは予備現在位置Puのどちらかを取得した場合に、第一実施形態と同様に、走行用制御部35が、偏差がゼロか否かを判定する(S130)。偏差がゼロと判定すると(S130:YES)、走行用制御部35が、インバータ29を介して一対の走行装置24a、24bの走行速度差を現在の走行速度差に維持して(S140)、スタートへリターンする。一方、偏差がゼロでないと判定すると(S150:NO)、走行用制御部35が、インバータ29を介して一対の走行装置24a、24bの走行速度差を偏差をゼロにする走行速度差に調節して(S150)、スタートへリターンする。
 図24に例示するように、図23のステップS520で主走行用偏差ΔDsおよび予備走行用偏差ΔDuが算出されると、走行用制御部35は主走行用偏差ΔDsと予備走行用偏差ΔDuとが等しいか否かを判定する(S610)。このステップS610では主走行用偏差ΔDsと予備走行用偏差ΔDuとが等しいか否かを判定する際に許容範囲を設定してもよく、主走行用偏差ΔDsと予備走行用偏差ΔDuとの偏差の絶対値が予め設定した閾値以下であれば主走行用偏差ΔDsと予備走行用偏差ΔDuとが等しいと判定してもよい。主走行用偏差ΔDsと予備走行用偏差ΔDuとが等しいと判定すると(S610:YES)、走行用制御部35は現在の走行速度差に維持して(S620)、スタートへリターンする。
 一方、主走行用偏差ΔDsと予備走行用偏差ΔDuとが等しくないと判定すると(S610:NO)、走行用制御部35は姿勢角θsuを算出する(S630)。次いで、走行用制御部35は現在の走行速度差を姿勢角θsuをゼロにする走行速度差に補正して調節して(S640)、スタートへリターンする。
 以上のように、第六実施形態の門型クレーン20の制御システム30は、主目標線40Aおよび予備目標線40Bの複数の目標線と、主位置取得部34Aおよび予備位置取得部34Bの複数の位置取得部とを有する。つまり、主位置取得部34Aが主現在位置Psを取得できない場合でも予備位置取得部34Bが予備現在位置Puを取得できる場合に、予備現在位置Puと予備目標線40Bとの偏差である予備走行用偏差ΔDuに基づいて門型クレーン20の走行を停止させることなく走行させることができる。これにより、走行を停止する頻度を低減するには有利になり、高精度且つ高速に門型クレーン20を走行させる制御が可能になり、門型クレーン20を目標位置41に精度よく迅速に位置合わせすることができる。
 門型クレーン20の走行制御においては、門型クレーン20の現在位置と目標との偏差に基づいて一対の走行装置24a、24bのそれぞれの走行速度を調節している。それ故、門型クレーン20の現在位置が把握できない場合に、安全を考慮して走行を停止させる必要がある。門型クレーン20の現在位置が把握できない状況、つまり、主現在位置Psや予備現在位置Puを取得できない状況としては、各アンテナ31a~31dのそれぞれが補足する人工衛星の数が著しく減少した状況、妨害電波を受けた状況、多重波伝播(マルチパスともいう)の影響を受けた状況、門型クレーン20から電気的ノイズを受けた状況が例示される。また、RTK測位の場合に、補正信号を受信できない状況も例示される。
 これに関して、第六実施形態の制御システム30は主現在位置Psまたは予備現在位置Puの少なくとも一方が取得できれば、門型クレーン20の走行を停止させることなく、荷役作業を継続することができる。これにより、ダウンタイムを削減するには有利になる。
 第六実施形態の門型クレーン20のように、外部給電装置60から集電用装置62を用いて給電する場合に、あるいは、通信装置61を用いて通信する場合に、仮に門型クレーン20の現在位置と目標線との偏差を一定に保ったとしても外部給電装置60と集電用装置62との間隔や通信装置61までの距離は、門型クレーン20の姿勢により変化する。この間隔や距離の変化は集電用装置62の可動頻度が高くなる、あるいは、外部給電装置60や集電用装置62への過負荷の頻度が高くなる、あるいは、通信途絶の頻度が高くなる要因となる。
 これに関して、第六実施形態の制御システム30は主現在位置Psまたは予備現在位置Puの少なくとも一方が取得できれば、目標に対するズレが過大にならず、外部給電装置60と集電用装置62との間隔や通信装置61までの距離を一定の範囲に収めることができる。これにより、外部給電装置60や集電用装置62の耐久性の向上には有利になり、それらの点検や交換の頻度を低減することができる。また、通信途絶の頻度の低減には有利になり、通信途絶によるダウンタイムを削減することができる。
 また、本実施形態の制御システム30は外部給電装置60や通信装置61が側方に配置された側のY方向の端部の所定の位置を主現在位置Psとすることが望ましい。これにより、外部給電装置60や通信装置61が側方に配置された側のY方向の端部を起点に門型クレーン20の走行が制御されることで、外部給電装置60と集電用装置62との間隔や通信装置61との距離を一定の範囲に収めるには有利になる。
 例えば、門型クレーン20を所望の目標位置41に停止させる直前に、姿勢角θsuをゼロにするように停止させようとすると、一対の走行装置24a、24bの一方を停止させて、他方を駆動させる場合が生じる。このような一対の走行装置24a、24bの停止タイミングの時間差は門型クレーン20の歪みが生じるおそれがある。門型クレーン20に歪みが生じた状態では、門型クレーン20の停止時に各アンテナ31a~31dを用いて取得する現在位置と目標位置41とが一致したとしても、実際には歪みによりずれた状態で停止していることになる。
 これに関して、本実施形態の制御システム30は主走行用偏差ΔDsと予備走行用偏差ΔDuとが異なる場合に、平面視における門型クレーン20の姿勢を特定する。それ故、門型クレーン20が所望の目標位置41に停止する直前よりも前の走行中に、門型クレーン20の姿勢を正すことができる。つまり、門型クレーン20を平面視における姿勢を極力変化させずに走行させることができる。これにより、一対の走行装置24a、24bの停止タイミングの時間差が無くなることで、門型クレーン20に歪みを発生させずに停止させるには有利になり、門型クレーン20を所望の目標位置41に高精度の停止させることができる。
 第六実施形態では、門型クレーン20のY方向の一方の端部の側方に外部給電装置60と通信装置61とが配置された例を説明したが、門型クレーン20のY方向の一方の端部の側方に外部給電装置60のみが配置される構成や、通信装置61のみが配置される構成でもよい。また、門型クレーン20のY方向の一方の端部の側方に外部給電装置60が配置され、他方の端部の側方に通信装置61が配置される場合に、予め実験や試験により、ズレが大きくなる側の端部を選択的に主現在位置Psに設定してもよい。
 第六実施形態では、主目標線40Aと予備目標線40Bとの二つの目標線を例に説明したが、目標線は二つに限定されずに三つ以上でもよい。例えば、主目標線40A、予備目標線40Bの他にそれらの真ん中に配置された中心目標線を設けてもよい。
 第六実施形態では、主現在位置Psを二つのアンテナ31c、31dを用いて取得し、予備現在位置Puを二つのアンテナ31a、31bを用いて取得する例を説明したが、主現在位置Psをアンテナ31cのみを用いて取得し、予備現在位置Puをアンテナ31aのみを用いて取得してもよい。
 第六実施形態の制御システム30は、主目標線40Aと予備目標線40Bとのそれぞれに第二実施形態における目標領域44を設定してもよい。制御システム30は、それらの目標領域44を用いて第二の主目標線や第二の予備目標線を設定し、走行用制御部35が主目標線40Aおよび予備目標線40Bの代わりに第二の主目標線および第二の予備目標線を用いてもよい。また、第六実施形態の制御システム30は、第三実施形態または第四実施形態と同様の方法で主目標線40Aと予備目標線40Bとを補正してもよい。
20 門型クレーン
22 桁部
23 構造体
24a、24b 走行装置
30 制御システム
34 位置取得部
34A 主位置取得部
34B 予備位置取得部
35 制御部
40 目標線
40A 主目標線
40B 予備目標線
Pt 現在位置
Ps 主現在位置
Pu 予備現在位置
ΔDt 走行用偏差
ΔDs 主走行用偏差
ΔDu 予備走行用偏差

Claims (17)

  1.  構造体の上部に配置された桁部の延在方向に離間配置されて前記構造体の下端に取り付けられた一対の走行装置を有するクレーンの現在位置を逐次取得する位置取得部と、この位置取得部及び前記一対の走行装置のそれぞれに接続された走行用制御部とを備えるクレーンの制御システムにおいて、
     平面視で、前記クレーンの走行方向に延在し、走行中の前記クレーンが傾いた状態ではそのクレーンの傾きのうちの前記延在方向における傾きに応じて前記延在方向に屈曲する目標線を有し、
     前記目標線と前記位置取得部が取得した現在位置との走行用偏差に基づいて、前記走行用制御部により、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させる制御を行う構成にしたことを特徴とするクレーンの制御システム。
  2.  前記位置取得部は前記現在位置として主現在位置を逐次取得する主位置取得部および前記現在位置として予備現在位置を逐次取得する予備位置取得部とからなり、
     前記目標線は主目標線と予備目標線とからなり、
     前記主位置取得部が前記主現在位置を取得した場合に、前記主目標線と前記主現在位置との主走行用偏差に基づいて、前記走行用制御部により、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させる制御を行い、
     前記主位置取得部が前記主現在位置を取得できない場合に、前記予備目標線と前記予備位置取得部が取得した前記予備現在位置との予備走行用偏差に基づいて、前記走行用制御部により、前記一対の走行装置のそれぞれの走行速度を調節した前記クレーンを走行させる制御を行う構成にした請求項1に記載のクレーンの制御システム。
  3.  平面視で、前記クレーンの前記延在方向の一方の端部に前記クレーンに対して外部から電力を供給する外部給電装置に接続される集電用装置が配置され、または、前記クレーンの前記延在方向の一方の端部の側方に前記クレーンと通信する通信装置が配置され、前記主現在位置が前記一方の端部に存在し、前記予備現在位置が前記延在方向の他方の端部に存在する請求項2に記載のクレーンの制御システム。
  4.  前記主位置取得部が前記主現在位置を取得できない、かつ、前記予備位置取得部が前記予備現在位置を取得できない場合に、前記走行用制御部により、前記一対の走行装置のそれぞれを停止して前記クレーンを停止させる制御を行う構成にした請求項2または3に記載のクレーンの制御システム。
  5.  前記主走行用偏差と前記予備走行用偏差とが異なる場合に、前記走行用制御部により、前記クレーンの平面視における姿勢を特定する構成にした請求項2~4のいずれか1項に記載のクレーンの制御システム。
  6.  前記目標線は、前記クレーンの傾きのうちの前記クレーンが走行する路面の水平面に対する傾きに応じて屈曲する線で構成される請求項1~5のいずれか1項に記載のクレーンの制御システム。
  7.  前記目標線は、その線上に複数の目標位置を有し、平面視でそれらの目標位置のうちの前後で前記クレーンの傾きが変化する位置を変曲点として折り曲がった折れ線で構成される請求項1~6のいずれか1項に記載のクレーンの制御システム。
  8.  前記目標線は、前記走行方向に延在して平面視で直線状を成す直線目標線と前記位置取得部が取得した現在位置をその直線目標線が存在する基準水平面における位置に換算した換算位置との作成用偏差に基づいて、前記クレーン又はそのクレーンと同種同型の他のクレーンのうちのいずれか一方のクレーンを走行させたときに、その走行中に取得した複数の現在位置を結んだ軌跡である請求項1~7のいずれか1項に記載のクレーンの制御システム。
  9.  前記直線目標線は、その線上における所定の距離ごとに複数の停止位置を有し、
     前記目標線は、前記走行中に取得した複数の現在位置のうちの前記換算位置と前記停止位置とが一致する現在位置を結んだ軌跡である請求項8に記載のクレーンの制御システム。
  10.  前記構造体は、複数のコンテナが蔵置された蔵置レーンを前記延在方向に跨いでおり、
     前記直線目標線は、前記蔵置レーンの長手方向に向かって直進する線であり、
     前記停止位置は、前記蔵置レーンの長手方向におけるコンテナの配列位置であるベイごとに設定される請求項9に記載のクレーンの制御システム。
  11.  前記目標線は、その線上に複数の目標位置を有し、前記目標位置は、平面視で、前記停止位置に対して走行中の前記クレーンの傾きのうちの前記走行方向における傾きに応じてその走行方向に前後し、前記延在方向における傾きに応じてその延在方向に左右する位置に配置される請求項9または10に記載のクレーンの制御システム。
  12.  前記目標線から前記延在方向の両方向のそれぞれに所定の幅で広がる目標領域を有し、
     前記走行させる制御は、前記目標線に代えて第二の目標線を用いる制御であり、
     前記走行用制御部により、前記目標領域に収まる範囲で、前記走行させる制御における制御の開始地点から終了地点までの間で前記目標線をなぞった経路とは異なる経路の前記第二の目標線を設定する制御を行う構成にした請求項1~11のいずれか1項に記載のクレーンの制御システム。
  13.  前記クレーンの前記延在方向の傾きにより変化するパラメータを取得するパラメータ取得部と、このパラメータ取得部及び前記位置取得部に接続される補正部と、前記現在位置が前記目標線の線上に配置された補正位置に一致したときの基準値と、を有し、
     前記現在位置が前記補正位置に一致した場合に、前記パラメータ取得部が取得したパラメータと前記基準値との補正用偏差に基づいて、前記補正部により、前記目標線を補正する制御を行う構成にした請求項1~12のいずれか1項に記載のクレーンの制御システム。
  14.  構造体の上部に配置された桁部の延在方向に離間配置されて前記構造体の下端に取り付けられた一対の走行装置を有するクレーンの現在位置を逐次取得し、取得したその現在位置に基づいて、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させるクレーンの制御方法において、
     前記クレーンの走行前に、平面視で、前記クレーンの走行方向に延在し、走行中の前記クレーンが傾いた場合にその傾きのうちの前記延在方向における傾きに応じて前記延在方向に屈曲する目標線を設定し、
     前記クレーンの走行中に、設定した前記目標線と取得した前記現在位置との走行用偏差に基づいて、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させることを特徴とするクレーンの制御方法。
  15.  前記クレーン又はそのクレーンと同種同型の他のクレーンのうちのいずれか一方を、前記走行方向に延在して平面視で直線状を成す直線目標線と取得した前記現在位置をその直線目標線が存在する基準水平面における位置に換算した換算位置との作成用偏差に基づいて走行させるとともに、走行中に取得した複数の前記現在位置を記憶し、
     記憶した前記複数の現在位置を結んだ軌跡から前記目標線を作成する請求項14に記載のクレーンの制御方法。
  16.  前記現在位置として主現在位置および予備現在位置を逐次取得し、
     前記目標線として主目標線および予備目標線を設定し、
     前記クレーンの走行中に、前記主現在位置を取得した場合に、設定した前記主目標線と取得した前記主現在位置との主走行用偏差に基づいて、前記一対の走行装置のそれぞれの走行速度を調節して前記クレーンを走行させ、前記主現在位置を取得できない場合に、絶亭した前記予備目標線と取得した前記予備現在位置との予備走行用偏差に基づいて、前記一対の走行装置のそれぞれの走行速度を調節した前記クレーンを走行させる請求項14に記載のクレーンの制御方法。
  17.  前記クレーン又はそのクレーンと同種同型の他のクレーンのうちのいずれか一方を、前記走行方向に延在して平面視で直線状を成す直線目標線と取得した前記主現在位置をその直線目標線が存在する基準水平面における位置に換算した換算位置との作成用偏差に基づいて走行させるとともに、走行中に取得した複数の前記主現在位置を記憶し、
     記憶した複数の前記主現在位置を結んだ軌跡から前記目標線を作成し、作成した前記主目標線を複製した前記予備目標線を作成し、平面視で、前記主目標線を前記クレーンの前記延在方向の一方の端部の側に、前記予備目標線を他方の端部の側にそれぞれ配置する請求項16に記載のクレーンの制御方法。
PCT/JP2019/048276 2018-12-28 2019-12-10 クレーンの制御システム及び制御方法 WO2020137520A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/418,554 US20220073320A1 (en) 2018-12-28 2019-12-10 Crane control system and control method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018247465A JP6587734B1 (ja) 2018-12-28 2018-12-28 クレーンの制御システム及び制御方法
JP2018-247465 2018-12-28
JP2019-141500 2019-07-31
JP2019141500A JP7101146B2 (ja) 2019-07-31 2019-07-31 クレーンの制御システム及び制御方法

Publications (1)

Publication Number Publication Date
WO2020137520A1 true WO2020137520A1 (ja) 2020-07-02

Family

ID=71127168

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048276 WO2020137520A1 (ja) 2018-12-28 2019-12-10 クレーンの制御システム及び制御方法

Country Status (2)

Country Link
US (1) US20220073320A1 (ja)
WO (1) WO2020137520A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7259612B2 (ja) * 2019-07-18 2023-04-18 コベルコ建機株式会社 ガイダンスシステム
CN115353005B (zh) * 2022-08-16 2023-09-29 江苏苏港智能装备产业创新中心有限公司 基于起升重量的起重机恒功率起升速度控制方法和系统
US20240114395A1 (en) * 2022-10-04 2024-04-04 Buckeye Mountain, Inc. System and method for providing low latency high throughput communications between mobile cranes

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147688A (ja) * 1997-11-17 1999-06-02 Toyo Umpanki Co Ltd 荷役装置
JP2002104770A (ja) * 2000-10-02 2002-04-10 Tcm Corp 荷役装置
JP2003034490A (ja) * 2001-07-18 2003-02-07 Mitsubishi Heavy Ind Ltd クレーン及びクレーンの制御方法
JP2003146580A (ja) * 2001-11-08 2003-05-21 Mitsui Eng & Shipbuild Co Ltd 無軌道式走行体の直進走行制御装置及び直進走行制御方法
JP2003155191A (ja) * 2001-11-20 2003-05-27 Tcm Corp 荷役装置
JP2004284699A (ja) * 2003-03-19 2004-10-14 Mitsubishi Heavy Ind Ltd ヤードクレーン
JP2005067753A (ja) * 2003-08-25 2005-03-17 Mitsubishi Heavy Ind Ltd トランスファークレーン

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3785061B2 (ja) * 2000-10-27 2006-06-14 三菱重工業株式会社 荷役クレーンにおけるコンテナ位置検知方法及び装置並びにコンテナ着床、段積制御方法
JP4193928B2 (ja) * 2002-03-12 2008-12-10 三井造船株式会社 自走式門型クレーンの走行制御システム
US7032763B1 (en) * 2002-11-18 2006-04-25 Mi-Jack Products, Inc. System and method for automatically guiding a gantry crane
US20050242052A1 (en) * 2004-04-30 2005-11-03 O'connor Michael L Method and apparatus for gantry crane sway determination and positioning
WO2014207315A1 (en) * 2013-06-27 2014-12-31 Konecranes Plc Mobile crane
FI10466U1 (fi) * 2014-04-04 2014-04-28 Konecranes Oyj Liikkuva nosturi
JP6285838B2 (ja) * 2014-09-29 2018-02-28 日立建機株式会社 作業車両の移動制御装置及び作業車両
JP5890556B1 (ja) * 2015-03-27 2016-03-22 三井造船株式会社 クレーンおよびクレーンの制御方法
DE102015008038A1 (de) * 2015-06-23 2016-12-29 Liebherr-Components Biberach Gmbh Kran sowie Verfahren zu dessen Steuerung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11147688A (ja) * 1997-11-17 1999-06-02 Toyo Umpanki Co Ltd 荷役装置
JP2002104770A (ja) * 2000-10-02 2002-04-10 Tcm Corp 荷役装置
JP2003034490A (ja) * 2001-07-18 2003-02-07 Mitsubishi Heavy Ind Ltd クレーン及びクレーンの制御方法
JP2003146580A (ja) * 2001-11-08 2003-05-21 Mitsui Eng & Shipbuild Co Ltd 無軌道式走行体の直進走行制御装置及び直進走行制御方法
JP2003155191A (ja) * 2001-11-20 2003-05-27 Tcm Corp 荷役装置
JP2004284699A (ja) * 2003-03-19 2004-10-14 Mitsubishi Heavy Ind Ltd ヤードクレーン
JP2005067753A (ja) * 2003-08-25 2005-03-17 Mitsubishi Heavy Ind Ltd トランスファークレーン

Also Published As

Publication number Publication date
US20220073320A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
WO2020137520A1 (ja) クレーンの制御システム及び制御方法
JP6756450B2 (ja) クレーンの制御システム及び制御方法
CN110147103B (zh) 自动驾驶集装箱卡车在码头岸桥区域的车道定位方法
WO2018167366A1 (en) Monitoring container transfer device on lowering container onto transport platform or lifting away from transport platform
JP7101146B2 (ja) クレーンの制御システム及び制御方法
EP4335783A1 (en) Three-dimensional warehouse storage article inspection method and system
JP6587734B1 (ja) クレーンの制御システム及び制御方法
CN111984003A (zh) 一种基于离线地图算法的无轨道自适应导航方法及系统
US11414280B2 (en) Crane control system and crane control method
JP7090053B2 (ja) クレーンの制御システム及び制御方法
US20240043247A1 (en) High-precision positioning system for underground monorail hoist in coal mine and positioning method thereof
JP3317159B2 (ja) 無人搬送車
JP4193928B2 (ja) 自走式門型クレーンの走行制御システム
JP6729856B2 (ja) 荷役機器の制御システム及び制御方法
JP6923264B2 (ja) クレーンの制御システム
JP7090054B2 (ja) クレーンの制御システム及び制御方法
CN110989596A (zh) 对桩控制方法、装置、智能机器人及存储介质
US20220332554A1 (en) Control method for mobile object, mobile object, and computer-readable storage medium
JPS61139807A (ja) 無人走行車の走行制御装置
CN116136176B (zh) 掘进设备的控制方法、控制装置和掘进设备
CN114993252B (zh) 扫描仪调平方法、装置、设备、扫描系统及起重机
JP7031807B2 (ja) クレーンの制御システム及び制御方法
JP2018104185A (ja) コンテナヤードおよびその制御方法
JP2024047796A (ja) クレーンおよびその制御方法
CN115979209A (zh) 一种高程测量系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902605

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902605

Country of ref document: EP

Kind code of ref document: A1