WO2020137289A1 - 導電性ペースト、電子部品、及び積層セラミックコンデンサ - Google Patents

導電性ペースト、電子部品、及び積層セラミックコンデンサ Download PDF

Info

Publication number
WO2020137289A1
WO2020137289A1 PCT/JP2019/045824 JP2019045824W WO2020137289A1 WO 2020137289 A1 WO2020137289 A1 WO 2020137289A1 JP 2019045824 W JP2019045824 W JP 2019045824W WO 2020137289 A1 WO2020137289 A1 WO 2020137289A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive paste
dispersant
mass
acid
less
Prior art date
Application number
PCT/JP2019/045824
Other languages
English (en)
French (fr)
Inventor
剛 川島
祐伺 舘
勝彦 高木
純平 山田
武範 久下
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020217012061A priority Critical patent/KR20210110285A/ko
Priority to JP2020562938A priority patent/JP7405098B2/ja
Priority to CN201980085792.8A priority patent/CN113227233B/zh
Publication of WO2020137289A1 publication Critical patent/WO2020137289A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • C08L101/06Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups containing oxygen atoms
    • C08L101/08Carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a conductive paste, an electronic component, and a monolithic ceramic capacitor.
  • a monolithic ceramic capacitor has a structure in which a plurality of dielectric layers and a plurality of internal electrode layers are alternately laminated. By thinning these dielectric layers and internal electrode layers, downsizing and high capacity can be achieved. Can be planned.
  • the monolithic ceramic capacitor is manufactured, for example, as follows. First, a conductive paste for internal electrodes is printed (applied) in a predetermined electrode pattern on the surface of a dielectric green sheet containing a dielectric powder such as barium titanate (BaTiO 3 ) and a binder resin, and dried. To form a dry film. Next, the dry films and the dielectric green sheets are laminated so as to be alternately superposed, and heat-pressed to be integrated to form a pressure-bonded body. This pressure-bonded body is cut, and after the organic binder treatment is performed in an oxidizing atmosphere or an inert atmosphere, firing is performed to obtain a fired chip (laminated body). Next, the external electrode paste is applied to both ends of the fired chip (multilayer body), and after firing, nickel plating or the like is applied to the surfaces of the external electrodes to obtain a multilayer ceramic capacitor.
  • a conductive paste for internal electrodes is printed (applied) in a predetermined electrode pattern on the surface of a dielectric green
  • a screen printing method As a printing method used when printing a conductive paste on a dielectric green sheet, a screen printing method has been generally used in the past, but due to demands for downsizing of electronic devices, thinning, and improvement in productivity. It is required to print finer electrode patterns with high productivity.
  • a gravure is a continuous printing method in which the conductive paste is filled in the recesses provided in the plate making and the conductive paste is transferred from the plate making by pressing it against the surface to be printed.
  • Printing methods have been proposed.
  • the gravure printing method has high printing speed and excellent productivity.
  • a conductive paste used for forming the internal conductor film in a multilayer ceramic electronic component including a plurality of ceramic layers and an internal conductor film extending along a specific interface between the ceramic layers by gravure printing.
  • the viscosity ⁇ 0.1 at a shear rate of 0.1 (s ⁇ 1 ) is 1 Pa ⁇ s or more, and the viscosity at a shear rate of 0.02 (s ⁇ 1 ).
  • a conductive paste, which is a thixotropic fluid, in which ⁇ 0.02 satisfies the condition represented by a specific formula is described.
  • a conductive paste used for forming by gravure printing as in Patent Document 1 is used.
  • the conductive paste contains metal powder in an amount of 30 to 70% by weight and a conductive component in an amount of 1 to 10% by weight.
  • a thixotropic fluid containing a resin component, 0.05 to 5% by weight of a dispersant, and a balance of a solvent component, and having a viscosity at a shear rate of 0.1 (s ⁇ 1 ) of 1 Pa ⁇ s or more,
  • a conductive paste is described in which the viscosity change rate at a shear rate of 10 (s -1 ) is 50% or more based on the viscosity at a shear rate of 0.1 (s -1 ).
  • these conductive pastes are thixotropic fluids having a viscosity of 1 Pa ⁇ s or more at a shear rate of 0.1 (s ⁇ 1 ) and are stable at high speed in gravure printing. It is said that continuous printability can be obtained and a monolithic ceramic electronic component such as a monolithic ceramic capacitor can be manufactured with good production efficiency.
  • an organic paste (B) the degree of polymerization is 10,000 to 50,000 or less polyvinyl butyral and the weight average molecular weight is 10,000 to 100,000 ethyl cellulose, and the organic solvent (C) is propylene glycol monobutyl ether.
  • conductive paste for gravure printing which comprises a composition containing a polycarboxylic acid polymer or a salt of polycarboxylic acid as an inhibitor, is described. According to Patent Document 3, this conductive paste has a viscosity suitable for gravure printing, improves uniformity and stability of the paste, and has good dryness.
  • conductive powder tends to have a smaller particle size.
  • the particle size of the conductive powder is small, the specific surface area of the particle surface becomes large, so the surface activity of the conductive powder (metal powder) becomes high, and the dispersibility of the conductive paste may decrease, which is higher.
  • a conductive paste having dispersibility There is a demand for a conductive paste having dispersibility.
  • the conductive paste when the conductive paste is printed by using the gravure printing method, a paste viscosity lower than that of the screen printing method is required, so that the conductive powder having a relatively large specific gravity settles and the dispersibility of the paste is reduced. It is possible.
  • the dispersibility of the paste is improved by removing the lumps in the conductive paste using a filter, but the lumps are removed. Since the manufacturing process is required, the manufacturing process tends to be complicated.
  • an object of the present invention is to provide a conductive paste having excellent paste dispersibility and productivity and having a paste viscosity suitable for gravure printing.
  • a first aspect of the present invention is a conductive paste containing a conductive powder, a ceramic powder, a dispersant, a binder resin and an organic solvent, wherein the dispersant is a first acid dispersant and a second acid dispersant.
  • the first acid-based dispersant includes a dispersant, has an average molecular weight of more than 500 and 2,000 or less, and has at least one branched chain composed of a hydrocarbon group with respect to the main chain.
  • a conductive paste in which the system dispersant has a carboxyl group other than the first acid dispersant, the binder resin contains an acetal resin, and the organic solvent contains a glycol ether solvent.
  • the first acid dispersant is preferably an acid dispersant having a carboxyl group, and more preferably a hydrocarbon graft copolymer having a polycarboxylic acid as a main chain.
  • the second acid dispersant preferably has a molecular weight of 5000 or less and contains an alkyl group having 10 to 20 carbon atoms or an alkenyl group having 10 to 20 carbon atoms.
  • the first acid dispersant is contained in an amount of 0.2 parts by mass or more and 2 parts by mass or less based on 100 parts by mass of the conductive powder, and the second acid dispersant is 100 parts by mass of the conductive powder. On the other hand, it is preferably contained in an amount of 0.01 part by mass or more and 2 parts by mass or less.
  • the conductive powder preferably contains at least one metal powder selected from Ni, Pd, Pt, Au, Ag, Cu and alloys thereof. Further, the conductive powder preferably has an average particle size of 0.05 ⁇ m or more and 1.0 ⁇ m or less. Further, the ceramic powder preferably contains a perovskite type oxide. Further, the ceramic powder preferably has an average particle diameter of 0.01 ⁇ m or more and 0.5 ⁇ m or less. Further, the binder resin preferably contains a butyral resin. Further, it is preferable that the conductive paste is for an internal electrode of a laminated ceramic component.
  • the conductive paste has a viscosity of 0.8 Pa ⁇ S or less at a shear rate of 100 sec ⁇ 1 and a viscosity of 0.18 Pa ⁇ S or less at a shear rate of 10,000 sec ⁇ 1 .
  • an electronic component formed using the above conductive paste is provided.
  • a laminated ceramic capacitor having at least a laminated body in which a dielectric layer and an internal electrode layer are laminated, and the internal electrode layer is formed by using the above conductive paste.
  • the conductive paste of the present invention has excellent paste dispersibility and productivity. Further, the conductive paste of the present invention has a viscosity suitable for gravure printing. In addition, the electrode pattern of an electronic component such as a laminated ceramic capacitor formed by using the conductive paste of the present invention has excellent printability of the conductive paste even when forming a thinned electrode, and has a uniform thickness.
  • FIG. 1A is a perspective view showing a monolithic ceramic capacitor according to an embodiment
  • FIG. 1B is a sectional view thereof.
  • the conductive paste of this embodiment contains conductive powder, ceramic powder, a dispersant, a binder resin, and an organic solvent.
  • conductive powder conductive powder, ceramic powder, a dispersant, a binder resin, and an organic solvent.
  • the conductive powder is not particularly limited, and metal powder can be used, and for example, one or more kinds of powder selected from Ni, Pd, Pt, Au, Ag, Cu, and alloys thereof can be used. Among these, from the viewpoint of conductivity, corrosion resistance, and cost, it is preferable to use Ni or its alloy powder (hereinafter sometimes referred to as “Ni powder”).
  • Ni powder Ni or its alloy powder
  • the Ni alloy for example, an alloy of Ni and at least one element selected from the group consisting of Mn, Cr, Co, Al, Fe, Cu, Zn, Ag, Au, Pt and Pd may be used. it can.
  • the Ni content in the Ni alloy is, for example, 50 mass% or more, preferably 80 mass% or more.
  • the Ni powder may contain about several hundred ppm of the element S in order to suppress rapid gas generation due to partial thermal decomposition of the binder resin during the debinding process.
  • the average particle size of the conductive powder is preferably 0.05 ⁇ m or more and 1.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less.
  • the average particle size of the conductive powder is within the above range, it can be suitably used as a paste for internal electrodes of a thinned multilayer ceramic capacitor (multilayer ceramic component).
  • the smoothness of the dry film and the dry film density are improves.
  • the average particle size is a value obtained by observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with a SEM at a magnification of 10,000 times. It is the average value of the number.
  • the content of the conductive powder is preferably 30% by mass or more and less than 70% by mass, more preferably 40% by mass or more and 60% by mass or less, based on the total amount of the conductive paste.
  • the conductivity and dispersibility are excellent.
  • the ceramic powder is not particularly limited, and for example, in the case of a conductive paste for internal electrodes of a laminated ceramic capacitor, a known ceramic powder is appropriately selected according to the type of the laminated ceramic capacitor to be applied.
  • the ceramic powder include a perovskite type oxide containing Ba and Ti, and preferably barium titanate (BaTiO 3 ).
  • a ceramic powder containing barium titanate as a main component and an oxide as an auxiliary component may be used.
  • the oxide include one or more kinds of oxides selected from Mn, Cr, Si, Ca, Ba, Mg, V, W, Ta, Nb and rare earth elements.
  • the ceramic powder for example, a ceramic powder of a perovskite-type oxide ferroelectric in which Ba atom or Ti atom of barium titanate (BaTiO 3 ) is replaced with another atom, for example, Sn, Pb, Zr or the like is used. May be.
  • the ceramic powder When used as a conductive paste for internal electrodes, the ceramic powder may have the same composition as the dielectric ceramic powder forming the dielectric green sheet of the laminated ceramic capacitor (electronic component). This suppresses the occurrence of cracks due to shrinkage mismatch at the interface between the dielectric layer and the internal electrode layer in the sintering process.
  • a ceramic powder include ZnO, ferrite, PZT, BaO, Al 2 O 3 , Bi 2 O 3 , and R (rare earth element) 2 O 3 in addition to the above-described perovskite-type oxide containing Ba and Ti. , TiO 2 , Nd 2 O 3 and other oxides.
  • the ceramic powder may be used alone or in combination of two or more.
  • the average particle size of the ceramic powder is, for example, 0.01 ⁇ m or more and 0.5 ⁇ m or less, and preferably 0.01 ⁇ m or more and 0.3 ⁇ m or less.
  • the average particle size is a value obtained by observation with a scanning electron microscope (SEM), and is obtained by measuring the particle size of each of a plurality of particles from an image observed with an SEM at a magnification of 50,000. It is the average value of the number.
  • SEM scanning electron microscope
  • the content of the ceramic powder is preferably 1 part by mass or more and 30 parts by mass or less, and more preferably 3 parts by mass or more and 30 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the content of the ceramic powder is preferably 1% by mass or more and 20% by mass or less, more preferably 3% by mass or more and 20% by mass or less, based on the total amount of the conductive paste.
  • the binder resin contains an acetal resin.
  • acetal resin butyral resin such as polyvinyl butyral is preferable.
  • the binder resin may contain, for example, 20% by mass or more, 30% by mass or more of the acetal-based resin based on the entire binder resin, or may be composed of only the acetal-based resin. Further, even if the content of the acetal resin is less than 40% by mass with respect to the entire binder resin, it is possible to have a low paste viscosity and a sufficient adhesive strength.
  • the content of the acetal resin is preferably 1 part by mass or more and 10 parts by mass or less, and more preferably 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the binder resin may include other resins below the acetal resin.
  • the other resin is not particularly limited, and a known resin can be used.
  • the other resin include, for example, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, cellulose resins such as nitrocellulose, acrylic resins, and the like. Among them, from the viewpoint of solubility in solvents, combustion decomposability, etc., ethyl cellulose is used. preferable.
  • the molecular weight of the binder resin is, for example, about 20,000 to 200,000.
  • the content of the binder resin is preferably 1 part by mass or more and 10 parts by mass or less, more preferably 1 part by mass or more and 8 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the content of the binder resin is preferably 0.5% by mass or more and 10% by mass or less, more preferably 0.5% by mass or more and 6% by mass or less, based on the total amount of the conductive paste.
  • the conductivity and dispersibility are excellent.
  • Organic solvent includes a glycol ether solvent.
  • glycol ether solvent examples include (di)ethylene glycol ethers such as diethylene glycol mono-2-ethylhexyl ether, ethylene glycol mono-2-ethylhexyl ether, diethylene glycol monohexyl ether, ethylene glycol monohexyl ether, and propylene glycol.
  • examples thereof include propylene glycol monoalkyl ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether (PNB).
  • propylene glycol monoalkyl ethers are preferable, and propylene glycol monobutyl ether (PNB) is more preferable.
  • the organic solvent contains a glycol ether-based solvent, it has excellent compatibility with the above-mentioned binder resin and excellent drying property.
  • the organic solvent may include, for example, a glycol ether solvent in an amount of 25% by mass or more, or 50% by mass or more, or may be composed of only the glycol ether solvent, based on the entire organic solvent.
  • the glycol ether solvent may be used alone or in combination of two or more.
  • the organic solvent may further include an acetate solvent.
  • the acetate solvent include dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate, isobornyl isobutyrate, ethylene glycol monobutyl ether acetate and dipropylene glycol methyl ether.
  • glycol ether acetates such as acetate, 3-methoxy-3-methylbutyl acetate and 1-methoxypropyl-2-acetate.
  • the organic solvent includes an acetate solvent, for example, at least one acetate solvent selected from dihydroterpinyl acetate, isobornyl acetate, isobornyl propionate, isobornyl butyrate and isobornyl isobutyrate.
  • the solvent (A) may be included. Among these, isobornyl acetate is more preferable.
  • the acetate solvent is contained in the organic solvent in an amount of 0% by mass or more and 80% by mass or less, preferably 10% by mass or more and 60% by mass or less, and more preferably 20% by mass or more and 40% by mass or less. ..
  • the organic solvent contains an acetate solvent
  • the above-mentioned acetate solvent (A) and at least one acetate solvent (B) selected from ethylene glycol monobutyl ether acetate and dipropylene glycol methyl ether acetate. May be included.
  • the viscosity of the conductive paste can be easily adjusted, and the drying speed of the conductive paste can be increased.
  • the organic solvent is preferably 50% by mass or more and 90% by mass or less of the acetate solvent (A) with respect to the entire acetate solvent. It is contained, and more preferably 60 mass% or more and 80 mass% or less.
  • the acetate solvent (B) is preferably contained in an amount of 10% by mass or more and 50% by mass or less, and more preferably 20% by mass or more and 40% by mass or less, based on 100% by mass of the whole acetate solvent. ..
  • the organic solvent may include other organic solvent other than the glycol ether solvent and the acetate solvent.
  • the other organic solvent is not particularly limited, and a known organic solvent capable of dissolving the binder resin can be used.
  • organic solvents for example, ethyl acetate, propyl acetate, isobutyl acetate, acetic ester solvents such as butyl acetate, methyl ethyl ketone, ketone solvents such as methyl isobutyl ketone, terpineol, terpene solvents such as dihydroterpineol, tridecane
  • Examples include aliphatic hydrocarbon solvents such as nonane and cyclohexane. Among them, the aliphatic hydrocarbon solvent is preferable, and mineral spirit is more preferable among the aliphatic hydrocarbon solvents.
  • 1 type may be used for another organic solvent and 2 or more types may be used for it.
  • the organic solvent may include, for example, a glycol ether solvent as the main solvent and an aliphatic hydrocarbon solvent as the auxiliary solvent.
  • the glycol ether solvent is preferably contained in an amount of 30 parts by mass or more and 50 parts by mass or less, more preferably 40 parts by mass or more and 50 parts by mass or less, and 100 parts by mass of the conductive powder. Is preferably 20 parts by mass or more and 80 parts by mass or less, more preferably 20 parts by mass or more and 40 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the aliphatic hydrocarbon solvent is contained in an amount of 25 parts by mass or more based on 100 parts by mass of the conductive powder, the conductive paste can have excellent dispersibility.
  • the content of the organic solvent is preferably 50 parts by mass or more and 130 parts by mass or less, more preferably 60 parts by mass or more and 90 parts by mass or less with respect to 100 parts by mass of the conductive powder.
  • the conductivity and dispersibility are excellent.
  • the content of the organic solvent is preferably 20% by mass or more and 50% by mass or less, and more preferably 25% by mass or more and 45% by mass or less, based on the total amount of the conductive paste.
  • the conductivity and dispersibility are excellent.
  • the present inventors As a result of studying various dispersants for the dispersant used in the conductive paste, the present inventors have found that the average molecular weight is more than 500 and not more than 2000, and a branched chain composed of a hydrocarbon group is added to the main chain. By using a dispersant containing a first acid dispersant having one or more and a second acid dispersant having a carboxyl group other than the first acid dispersant, it is contained in the conductive paste. It was found that the powder material (conductive powder or ceramic powder) has excellent dispersibility and the dry film surface has excellent smoothness.
  • the first acid dispersant has a branch consisting of a hydrocarbon group, steric hindrance is effectively formed and aggregation of the powder material is suppressed.
  • the second acid dispersant has a carboxyl group, it is considered that the carboxyl group can more effectively disperse the first acid dispersant.
  • the molecular weight of the first acid-based dispersant is not bound by the above theory (reason).
  • the dispersant according to this embodiment will be described in more detail.
  • the first acid dispersant has at least one branched chain composed of a hydrocarbon group in the main chain, and preferably has a plurality of branched chains.
  • the first acid dispersant preferably has a carboxyl group, and more preferably a hydrocarbon graft copolymer having a polycarboxylic acid as a main chain.
  • the polycarboxylic acid preferably has an ester structure.
  • the hydrocarbon group preferably has a chain structure.
  • the hydrocarbon group may be an alkyl group.
  • the alkyl group may be composed of only carbon and hydrogen, or a part of hydrogen constituting the alkyl group may be replaced with a substituent.
  • the molecular weight of the first acid dispersant is greater than 500 and 2000 or less, and may be 1000 or more and 2000 or less. When the molecular weight is in the above range, the dispersibility of the conductive powder or the ceramic powder is excellent, and the density and smoothness of the dry film surface are excellent. In the present specification, when the molecular weight of the dispersant has a certain degree of distribution, the molecular weight of the dispersant indicates the weight average molecular weight.
  • the first acid-based dispersant for example, a commercially available product that satisfies the above characteristics can be selected and used. Further, the acid-based dispersant may be manufactured so as to satisfy the above properties by using a conventionally known manufacturing method.
  • the first acid dispersant is preferably contained in an amount of 0.2 parts by mass or more and 2 parts by mass or less based on 100 parts by mass of the conductive powder.
  • the content of the acid-based dispersant is in the above range, the dispersibility of the conductive powder or the ceramic powder and the smoothness of the dried electrode surface after coating are excellent, and the viscosity of the conductive paste is adjusted to an appropriate range. It is also possible to suppress sheet attack and defective peeling of the green sheet. Further, the conductive paste according to the present embodiment can have high dispersibility even when the content of the acid-based dispersant is 1 part by mass or less.
  • the second acid dispersant is an acid dispersant having a carboxyl group.
  • the second acid dispersant preferably has a molecular weight of 5000 or less, more preferably 1000 or less, still more preferably 500 or less.
  • the second acid dispersant is, for example, an acid dispersant having a hydrocarbon group.
  • the hydrocarbon group preferably contains an alkyl group having 10 to 20 carbon atoms or an alkenyl group having 10 to 20 carbon atoms.
  • Examples of the second acid dispersant include acid dispersants such as higher fatty acids and amino acids.
  • the second dispersant may be used alone or in combination of two or more.
  • the higher fatty acid may be an unsaturated carboxylic acid or a saturated carboxylic acid, and is not particularly limited, but carbon such as stearic acid, oleic acid, behenic acid, myristic acid, palmitic acid, linoleic acid, lauric acid, and linolenic acid may be used. Examples include the number 11 or more. Of these, oleic acid or stearic acid is preferable.
  • the second acid dispersant other than the higher fatty acid is not particularly limited, and is represented by an alkylmonoamine salt type represented by a monoalkylamine salt and an N-alkyl(C14-C18) propylenediamine dioleate.
  • Alkyldiamine salt type alkyltrimethylammonium salt type represented by alkyltrimethylammonium chloride, alkyldimethylbenzylammonium salt type represented by coconut alkyldimethylbenzylammonium chloride, alkyldipolyoxyethylenemethylammonium chloride represented by 4 Primary ammonium salt type, alkylpyridinium salt type, tertiary amine type represented by dimethylstearylamine, polyoxyethylenealkylamine type represented by polyoxypropylene/polyoxyethylenealkylamine, N, N', N'- Examples thereof include surfactants selected from the oxyethylene addition type of diamine represented by tris(2-hydroxyethyl)-N-alkyl(C14-18)1,3-diaminopropane. Among these, alkyl monoamine salts Molds are preferred.
  • alkyl monoamine salt type oleoyl sarcosine, lauriloyl sarcosine, stearic acid amide and the like are preferable.
  • the second acid dispersant is preferably contained in an amount of 0.01 part by mass or more and 2 parts by mass or less based on 100 parts by mass of the conductive powder.
  • the content of the second acid-based dispersant may be 1 part by mass or less, 0.1 part by mass or less, and 0.05 part by mass. It may be the following.
  • the second acid dispersant is, for example, about 1 part by mass or more and 500 parts by mass or less, preferably 50 parts by mass or more and 300 parts by mass or less, more preferably 100 parts by mass of the first acid dispersant. Can be contained in an amount of 50 parts by mass or more and 200 parts by mass, and more preferably 50 parts by mass or more and 150 parts by mass. When the second acid dispersant is contained in the above range, the dry film density and surface roughness tend to be good.
  • the conductive paste may contain only the first acid-based dispersant and the second acid-based dispersant as the dispersant, or a dispersant other than the above-mentioned acid-based dispersant may be added to the effect of the present invention. You may include in the range which does not inhibit.
  • a dispersant other than the above for example, a higher fatty acid, an acid dispersant containing a polymer surfactant, a base dispersant, an amphoteric surfactant, and a polymer dispersant may be contained. It is more preferable to contain a system dispersant. These dispersants may be used alone or in combination of two or more.
  • the content (total content) of the entire dispersant including the first and second acid dispersants is 0.01 parts by mass or more and 3 parts by mass or less with respect to 100 parts by mass of the conductive powder. It is preferably 0.23 parts by mass or more and 3 parts by mass or less.
  • the conductive paste according to the present embodiment may have a total dispersant content (total content) of 2 parts by mass or less, or 1 part by mass or less. Even if the content of the entire dispersant is in the above range, high dispersibility can be obtained.
  • the total content of the acid-based dispersant is preferably 3% by mass or less based on the total amount of the conductive paste.
  • the upper limit of the total content of the dispersant is preferably 2% by mass or less, more preferably 1% by mass or less.
  • the lower limit of the total content of the dispersant is not particularly limited, but is, for example, 0.01% by mass or more, preferably 0.05% by mass or more.
  • the conductive paste of the present embodiment may contain other components than the above components, if necessary.
  • other components for example, conventionally known additives such as antifoaming agents, plasticizers, thickeners, etc. can be used.
  • the method for producing the conductive paste of this embodiment is not particularly limited, and a conventionally known method can be used.
  • the conductive paste can be produced, for example, by stirring and kneading the above components with a three-roll mill, a ball mill, a mixer or the like. At that time, if the dispersant is applied to the surface of the conductive powder in advance, the conductive powder is sufficiently loosened without agglomeration, and the dispersant is spread over the surface, so that a uniform conductive paste is easily obtained.
  • the conductive paste may be prepared by stirring and kneading.
  • the viscosity of the conductive paste at a shear rate of 100 sec ⁇ 1 is preferably 0.8 Pa ⁇ S or less, 0.5 Pa ⁇ S or less, or 0.4 Pa ⁇ S or less, 0 It may be less than or equal to 3 Pa ⁇ S, or less than or equal to 0.25 Pa ⁇ S.
  • the viscosity at a shear rate of 100 sec ⁇ 1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If it exceeds the above range, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity of the conductive paste of the present embodiment at a shear rate of 100 sec ⁇ 1 is not particularly limited, but is, for example, 0.1 Pa ⁇ S or more.
  • the viscosity of the conductive paste at a shear rate of 10,000 sec ⁇ 1 is preferably 0.18 Pa ⁇ S or less, and 0.14 Pa.s or less. It may be less than a.
  • the viscosity at a shear rate of 10,000 sec ⁇ 1 is in the above range, it can be suitably used as a conductive paste for gravure printing. If the amount exceeds the above range, the viscosity may be too high to be suitable for gravure printing.
  • the lower limit of the viscosity at a shear rate of 10,000 sec ⁇ 1 is not particularly limited, but is, for example, 0.05 Pa ⁇ S or more.
  • the dry film density (DFD) of the dry film obtained by printing the conductive paste and then drying is preferably more than 5.0 g/cm 3 , and may be 5.2 g/cm 3 or more. , may be greater than 5.2 g / cm 3, may be 5.3 g / cm 3 or more.
  • the upper limit of the dry film density is not particularly limited, and does not exceed the true density of metallic nickel of 9.8 g/cm 3, and may be 6.5 g/cm 3 or less, for example.
  • the arithmetic mean roughness Sa is 0.2 ⁇ m or less when a conductive paste is printed and dried in air at 120° C. for 1 hour to form a dry film of 20 mm square and a film thickness of 1 to 3 ⁇ m. Preferably, it may be 0.16 ⁇ m or less.
  • the lower limit of the arithmetic average roughness Sa is not particularly limited, and it is preferable that the surface is flat, and a value exceeding 0 and a smaller value are more preferable.
  • the arithmetic mean roughness Sa is measured based on the standard of ISO 25178.
  • the conductive paste can be suitably used for electronic parts such as laminated ceramic capacitors.
  • the monolithic ceramic capacitor has a dielectric layer formed using a dielectric green sheet and an internal electrode layer formed using a conductive paste.
  • the dielectric ceramic powder contained in the dielectric green sheet and the ceramic powder contained in the conductive paste have the same composition.
  • the thickness of the dielectric green sheet is, for example, 3 ⁇ m or less, sheet attack and defective peeling of the green sheet are suppressed.
  • the monolithic ceramic capacitor 1 includes a laminate 10 in which dielectric layers 12 and internal electrode layers 11 are alternately laminated, and external electrodes 20.
  • a method for manufacturing a laminated ceramic capacitor using the conductive paste will be described.
  • a conductive paste is printed on a dielectric green sheet, dried to form a dry film, and a plurality of dielectric green sheets having the dry film on the upper surface are laminated by pressure bonding and then fired.
  • a monolithic ceramic fired body (multilayer body 10) that is to be the main body of the ceramic capacitor is produced by the integration.
  • the multilayer ceramic capacitor 1 is manufactured by forming a pair of external electrodes 20 on both ends of the multilayer body 10. The details will be described below.
  • a dielectric green sheet that is an unfired ceramic sheet.
  • the dielectric green sheet for example, a dielectric layer paste obtained by adding an organic binder such as polyvinyl butyral and a solvent such as terpineol to a raw material powder of a predetermined ceramic such as barium titanate, a PET film or the like. And the like, in which the solvent is removed by coating the support film in a sheet form and drying.
  • the thickness of the dielectric layer formed of the dielectric green sheet is not particularly limited, but is preferably 0.05 ⁇ m or more and 3 ⁇ m or less from the viewpoint of demand for miniaturization of the monolithic ceramic capacitor 1.
  • the thickness of the conductive paste (dry film) after printing is preferably 1 ⁇ m or less after drying from the viewpoint of a request for thinning the internal electrode layers 11.
  • the dielectric green sheet is peeled off from the support film, and the dielectric green sheet and the conductive paste (dry film) formed on one surface of the dielectric green sheet are laminated so as to be alternately arranged, and then heated and pressed.
  • a laminated body pressure bonded body
  • a configuration may be adopted in which protective dielectric green sheets not coated with a conductive paste are further arranged on both surfaces of the laminated body.
  • the laminated body is cut into a predetermined size to form a green chip, the green chip is subjected to a binder removal treatment, and is fired in a reducing atmosphere to manufacture a laminated ceramic fired body (laminated body 10).
  • the atmosphere for the binder removal processing is preferably the atmosphere or N 2 gas atmosphere.
  • the temperature at which the binder removal treatment is performed is, for example, 200° C. or higher and 400° C. or lower. Further, it is preferable that the holding time at the above-mentioned temperature at the time of performing the binder removal treatment is 0.5 hours or more and 24 hours or less.
  • the firing is performed in a reducing atmosphere in order to suppress the oxidation of the metal used for the internal electrode layer 11, and the temperature for firing the laminate 10 is, for example, 1000° C. or higher and 1350° C. or lower,
  • the holding time of the temperature when firing is, for example, 0.5 hours or more and 8 hours or less.
  • the organic binder in the dielectric green sheet is completely removed, and the ceramic raw material powder is fired to form the ceramic dielectric layer 12. Further, the organic vehicle in the dried film is removed, and nickel powder or an alloy powder containing nickel as a main component is sintered or melted and integrated to form the internal electrode layer 11, and the dielectric layer 12 and the internal electrode.
  • a laminated ceramic fired body (laminated body 10) in which a plurality of layers 11 are alternately laminated is formed. From the viewpoint of taking oxygen into the dielectric layer 12 to improve reliability and suppressing reoxidation of the internal electrode layers 11, the laminated ceramic fired body (laminated body 10) after firing is annealed. You may give a process.
  • the monolithic ceramic capacitor 1 is manufactured by providing a pair of external electrodes 20 on the produced monolithic ceramic fired body (multilayer body 10 ).
  • the external electrode 20 includes an external electrode layer 21 and a plated layer 22.
  • the outer electrode layer 21 is electrically connected to the inner electrode layer 11.
  • a material of the external electrode 20 for example, copper, nickel, or an alloy thereof can be preferably used.
  • Electronic components other than the monolithic ceramic capacitor can be used as the electronic component.
  • the produced conductive paste was placed on a PET film and extended to a length of about 100 mm with an applicator having a width of 50 mm and a gap of 125 ⁇ m.
  • the obtained PET film was dried at 120° C. for 40 minutes to form a dry film, and then the dry film was cut into four 2.54 cm (1 inch) squares, and the PET film was peeled off to obtain 4 films each.
  • the thickness and weight of each dry film were measured to calculate the dry film density (average value).
  • the prepared conductive paste was printed on a 2.54 cm (1 inch) square heat-resistant tempered glass and dried in the atmosphere at 120° C. for 1 hour to prepare a 20 mm square dry film having a thickness of 1 to 3 ⁇ m. ..
  • the surface roughness Sa (arithmetic mean roughness) of the produced dry film was measured using a device that measures based on the standard of ISO 25178.
  • the arithmetic mean roughness Sa is a parameter obtained by expanding the arithmetic mean roughness Ra (arithmetic mean height of line) on the surface.
  • Ceramic powder Barium titanate (BaTiO 3 ; SEM average particle size 0.10 ⁇ m) was used as the ceramic powder.
  • Binder resin Polyvinyl butyral resin (PVB) and ethyl cellulose (EC) were used as the binder resin.
  • Dispersant As the first acid-based dispersant (A), a hydrocarbon-based graft copolymer having a polycarboxylic acid as a main chain (having a branched chain of a hydrocarbon) and an acid-based dispersion having an average molecular weight of 1500 The agent was used. (2) Oleoyl sarcosine (C 21 H 39 NO 3 ) was used as the second acid dispersant (B). (3) For comparison, a phosphoric acid-based dispersant (C) used in a conventional conductive paste (molecular weight: 1400, no branched chain composed of hydrocarbon) was used.
  • organic solvent Propylene glycol monobutyl ether (PNB), mineral spirits (MA), and terpineol (TPO) were used as the organic solvent.
  • PNB Propylene glycol monobutyl ether
  • MA mineral spirits
  • TPO terpineol
  • Example 1 25 parts by mass of ceramic powder, 0.2 parts by mass of the first acid-based dispersant (A) as a dispersant, and 2 parts of the second acid-based dispersant (B) with respect to 100 parts by mass of the Ni powder as the conductive powder.
  • 1.0 parts by mass, 2 parts by mass of PVB and 4 parts by mass of EC as a binder resin, and 41 parts by mass of PNB and 27 parts by mass of MA as an organic solvent were mixed to prepare a conductive paste.
  • the viscosity of the produced conductive paste, the dry film density of the paste, and the surface roughness were evaluated by the above methods.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 2 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that the content of the first acid dispersant (A) was 0.74 parts by mass. The content of the dispersant and the like in the conductive paste is shown in Table 1 and the conductive
  • Example 3 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that the content of the first acid dispersant (A) was 2.0 parts by mass.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 4 A conductive paste was prepared and evaluated in the same manner as in Example 2 except that the content of the second acid dispersant (B) was 0.01 part by mass.
  • Table 1 shows the content of the dispersant and the like in the conductive paste, and Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 5 A conductive paste was prepared and evaluated in the same manner as in Example 2 except that the content of the second acid dispersant (B) was changed to 2.0 parts by mass.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 6 Same as Example 1 except that the content of the first acid dispersant (A) was 0.6 parts by mass and the content of the second acid dispersant (B) was 1.2 parts by mass.
  • a conductive paste was prepared and evaluated.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 1 A conductive paste was prepared and evaluated in the same manner as in Example 1 except that 0.8 part by mass of a phosphoric acid-based dispersant was used as the dispersant. Table 1 shows the content of the dispersant and the like in the conductive paste, and Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • Example 2 A conductive paste was prepared and evaluated in the same manner as in Example 2 except that 68 parts by mass of TPO was used as the main solvent and no auxiliary solvent was used.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • [Comparative Example 3] A conductive paste was prepared and evaluated in the same manner as in Example 2 except that 6 parts by mass of EC was used as the binder resin and PVB was not used.
  • Table 1 shows the content of the dispersant and the like in the conductive paste
  • Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • a conductive paste was prepared and evaluated in the same manner as in Example 2 except that the second acid dispersant (B) was not used as the dispersant.
  • Table 1 shows the content of the dispersant and the like in the conductive paste, and Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • the first acid-based dispersant (A) was not used, and the content of the second acid-based dispersant (B) was 0.8 parts by mass, except that the electroconductivity was the same.
  • a paste was prepared and evaluated. Table 1 shows the content of the dispersant and the like in the conductive paste, and Table 2 shows the evaluation results of the viscosity of the conductive paste, the dry film density, and the surface roughness.
  • the conductive paste of the example has a viscosity of 0.20 to 0.23 Pa ⁇ s at a shear rate of 100 sec ⁇ 1 and a viscosity of 0.11 to 0.14 Pa ⁇ s at a shear rate of 10000 sec ⁇ 1 , It showed a stable low value at any shear rate, and was shown to have a viscosity suitable for gravure printing. Further, the conductive pastes of Examples showed high dry film densities of 5.1 to 5.4 g/cm 3 , and surface roughness of the dry films of 0.13 to 0.16 ⁇ m. It was confirmed that it has excellent properties.
  • the conductive paste of Comparative Example 1 containing no phosphoric acid-based dispersant without containing the film-first acid-based dispersant had a higher viscosity than that of the Example when produced under the same conditions.
  • the dry film density could not be made sufficiently high, and the surface roughness was high as compared with the examples.
  • the conductive paste of Comparative Example 2 which uses TPO as the main solvent, which is generally used, has a very high viscosity, is not suitable for gravure paste, and has a high surface roughness as compared with the Examples.
  • the conductive paste of Comparative Example 3 in which the binder resin did not contain an acetal resin had a high viscosity, and the dry film density could not be sufficiently increased.
  • the conductive pastes of the examples of the present invention containing both the first acid-based dispersant (A) and the second acid-based dispersant (B) are the same as those of the comparative example and the reference example. It is clear that the dry film density is higher, the surface roughness is lower, and the dispersibility of the conductive paste is further improved when compared with the conductive paste. Further, the viscosity of the conductive paste is also lower than the conductive pastes of the comparative example and the reference example of the present invention containing both dispersants, and is more suitable for gravure printing. I understand.
  • the conductive paste of the present invention has a viscosity suitable for gravure printing, a high dry film density after coating, a very smooth dry film surface, and excellent dispersibility. Therefore, the conductive paste of the present invention can be suitably used as a raw material for the internal electrodes of a monolithic ceramic capacitor, which is a chip component of electronic devices such as mobile phones and digital devices, which are becoming smaller, and particularly for gravure printing. Can be suitably used as the conductive paste.

Abstract

分散性に優れた導電性ペースト等を提供する。 導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、分散剤は、第1の酸系分散剤及び第2の酸系分散剤を含み、第1の酸系分散剤は、平均分子量が500を超え2000以下であり、かつ、主鎖に対して炭化水素基からなる分岐鎖を1つ以上有し、第2の酸系分散剤は、第1の酸系分散剤以外で、カルボキシル基を有し、バインダー樹脂は、アセタール系樹脂を含み、有機溶剤は、グリコールエーテル系溶剤を含む、導電性ペースト。

Description

導電性ペースト、電子部品、及び積層セラミックコンデンサ
 本発明は、導電性ペースト、電子部品、及び積層セラミックコンデンサに関する。
 携帯電話やデジタル機器などの電子機器の小型化および高性能化に伴い、積層セラミックコンデンサなどを含む電子部品についても小型化および高容量化が望まれている。積層セラミックコンデンサは、複数の誘電体層と複数の内部電極層とが交互に積層した構造を有し、これらの誘電体層及び内部電極層を薄膜化することにより、小型化及び高容量化を図ることができる。
 積層セラミックコンデンサは、例えば、次のように製造される。まず、チタン酸バリウム(BaTiO)などの誘電体粉末及びバインダー樹脂を含有する誘電体グリーンシートの表面上に、内部電極用の導電性ペーストを所定の電極パターンで印刷(塗布)し、乾燥して、乾燥膜を形成する。次に、乾燥膜と誘電体グリーンシートとが交互に重なるように積層し、加熱圧着して一体化し、圧着体を形成する。この圧着体を切断し、酸化性雰囲気または不活性雰囲気中にて脱有機バインダー処理を行った後、焼成を行い、焼成チップ(積層体)を得る。次いで、焼成チップ(積層体)の両端部に外部電極用ペーストを塗布し、焼成後、外部電極表面にニッケルメッキなどを施して、積層セラミックコンデンサが得られる。
 導電性ペーストを誘電体グリーンシートに印刷する際に用いられる印刷法としては、従来、スクリーン印刷法が一般的に用いられてきたが、電子デバイスの小型化、薄膜化や生産性向上の要求から、より微細な電極パターンを生産性高く印刷することが求められている。
 導電性ペーストの印刷法の一つとして、製版に設けられた凹部に導電性ペーストを充填し、これを被印刷面に押し当てることでその製版から導電性ペーストを転写する連続印刷法であるグラビア印刷法が提案されている。グラビア印刷法は印刷速度が速く、生産性に優れる。グラビア印刷法を用いる場合、導電性ペースト中のバインダー樹脂、分散剤、溶剤等を適宜選択して、粘度等の特性をグラビア印刷に適した範囲に調整する必要がある。
 例えば、特許文献1では、複数のセラミック層および前記セラミック層間の特定の界面に沿って延びる内部導体膜を備える積層セラミック電子部品における前記内部導体膜をグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%のエトキシ基含有率が49.6%以上のエチルセルロース樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度η0.1が1Pa・s以上であり、かつずり速度0.02(s-1)での粘度η0.02が特定の式で表わされる条件を満たす、チキソトロピー流体である、導電性ペーストが記載されている。
 また、特許文献2では、上記特許文献1と同様にグラビア印刷によって形成するために用いられる導電性ペーストであって、金属粉末を含む30~70重量%の固形成分と、1~10重量%の樹脂成分と、0.05~5重量%の分散剤と、残部としての溶剤成分とを含み、ずり速度0.1(s-1)での粘度が1Pa・s以上のチキソトロピー流体であって、ずり速度0.1(s-1)での粘度を基準としたときに、ずり速度10(s-1)での粘度変化率が50%以上である、導電性ペーストが記載されている。
 上記特許文献1、2によれば、これらの導電性ペーストは、ずり速度0.1(s-1)での粘度が1Pa・s以上であるチキソトロピー流体であり、グラビア印刷において高速での安定した連続印刷性が得られ、良好な生産効率をもって、積層セラミックコンデンサのような積層セラミック電子部品を製造することができるとされている。
 また、特許文献3には、導電性粉末(A)、有機樹脂(B)、及び有機溶剤(C)、添加剤(D)、及び誘電体粉末(E)を含む積層セラミックコンデンサ内部電極用導電性ペーストであって、有機樹脂(B)は、重合度が10000以上50000以下のポリビニルブチラールと、重量平均分子量が10000以上100000以下のエチルセルロースからなり、有機溶剤(C)は、プロピレングリコールモノブチルエーテル、もしくはプロピレングリコールモノブチルエーテルとプロピレングリコールメチルエーテルアセテートの混合溶剤、又はプロピレングリコールモノブチルエーテルとミネラルスピリットの混合溶剤のいずれかからなり、添加剤(D)は、分離抑制剤と分散剤からなり、該分離抑制剤としてポリカルボン酸ポリマーもしくはポリカルボン酸の塩を含む組成物からなるグラビア印刷用導電性ペーストが記載されている。特許文献3によれば、この導電性ペーストは、グラビア印刷に適した粘度を有し、ペーストの均一性・安定性が向上し、かつ、乾燥性がよいとされている。
特開2003-187638号公報 特開2003-242835号公報 特開2012-174797号公報
 近年の内部電極層の薄膜化に伴い、導電性粉末も小粒径化する傾向がある。導電性粉末の粒径が小さい場合、その粒子表面の比表面積が大きくなるため、導電性粉末(金属粉末)の表面活性が高くなり、導電性ペーストの分散性が低下する場合があり、より高い分散性を有する導電性ペーストが求められている。
 また、導電性ペーストを、グラビア印刷法を用いて印刷する場合、スクリーン印刷法よりも低いペースト粘度が要求されるため、比較的比重の大きい導電性粉末が沈降し、ペーストの分散性が低下することが考えられる。なお、上記特許文献1、2に記載される導電性ペーストでは、フィルタを用いて、導電性ペースト中の塊状物を除去することにより、ペーストの分散性を改善させているが、塊状物を除去する工程が必要となるため、製造工程が煩雑となりやすい。
 本発明は、このような状況に鑑み、ペーストの分散性及び生産性に優れ、かつ、グラビア印刷に適したペースト粘度を有する導電性ペーストを提供することを目的とする。
 本発明の第1の態様では、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、分散剤は、第1の酸系分散剤及び第2の酸系分散剤を含み、第1の酸系分散剤は、平均分子量が500を超え2000以下であり、かつ、主鎖に対して炭化水素基からなる分岐鎖を1つ以上有し、第2の酸系分散剤は、第1の酸系分散剤以外で、カルボキシル基を有し、バインダー樹脂は、アセタール系樹脂を含み、有機溶剤は、グリコールエーテル系溶剤を含む、導電性ペーストが提供される。
 また、第1の酸系分散剤はカルボキシル基を有する酸系分散剤であることが好ましく、ポリカルボン酸を主鎖とする炭化水素系グラフト共重合体であることがより好ましい。また、第2の酸系分散剤は、分子量が5000以下であり、かつ、炭素数10以上20以下のアルキル基又は炭素数10以上20以下のアルケニル基を含むことが好ましい。また、第1の酸系分散剤は、導電性粉末100質量部に対して、0.2質量部以上2質量部以下含有され、第2の酸系分散剤は、前記導電性粉末100質量部に対して、0.01質量部以上2質量部以下含有されることが好ましい。また、導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含有することが好ましい。また、導電性粉末は、平均粒径が0.05μm以上1.0μm以下であることが好ましい。また、セラミック粉末は、ペロブスカイト型酸化物を含むことが好ましい。また、セラミック粉末は、平均粒径が0.01μm以上0.5μm以下であることが好ましい。また、バインダー樹脂は、ブチラール系樹脂を含むことが好ましい。また、上記導電性ペーストは、積層セラミック部品の内部電極用であることが好ましい。また、上記導電性ペーストは、ずり速度100sec-1での粘度が0.8Pa・S以下であり、ずり速度10000sec-1での粘度が0.18Pa・S以下であることが好ましい。
 本発明の第2の態様では、上記導電性ペーストを用いて形成される電子部品が提供される。
 本発明の第3の態様では、誘電体層と内部電極層とを積層した積層体を少なくとも有し、内部電極層は、上記導電性ペーストを用いて形成される積層セラミックコンデンサが提供される。
 本発明の導電性ペーストは、ペーストの分散性及び生産性に優れる。また、本発明の導電性ペーストは、グラビア印刷に適した粘度を有する。また、本発明の導電性ペーストを用いて形成される積層セラミックコンデンサなどの電子部品の電極パターンは、薄膜化した電極を形成する際も導電性ペーストの印刷性に優れ、均一な厚みを有する。
図1Aは、実施形態に係る積層セラミックコンデンサを示す斜視図であり、図1Bは、その断面図である。
[導電性ペースト]
 本実施形態の導電性ペーストは、導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む。以下、各成分について詳細に説明する。
(導電性粉末)
 導電性粉末は、特に限定されず、金属粉末を用いることができ、例えば、Ni、Pd、Pt、Au、Ag、Cu、およびこれらの合金から選ばれる1種以上の粉末を用いることができる。これらの中でも、導電性、耐食性及びコストの観点から、Ni、またはその合金の粉末(以下、「Ni粉末」と称する場合がある)を用いることが好ましい。Ni合金としては、例えば、Mn、Cr、Co、Al、Fe、Cu、Zn、Ag、Au、PtおよびPdからなる群より選択される少なくとも1種以上の元素とNiとの合金が用いることができる。Ni合金におけるNiの含有量は、例えば、50質量%以上、好ましくは80質量%以上である。また、Ni粉末は、脱バインダー処理の際、バインダー樹脂の部分的な熱分解による急激なガス発生を抑制するために、数百ppm程度の元素Sを含んでもよい。
 導電性粉末の平均粒径は、好ましくは0.05μm以上1.0μm以下であり、より好ましくは0.1μm以上0.5μm以下である。導電性粉末の平均粒径が上記範囲である場合、薄膜化した積層セラミックコンデンサ(積層セラミック部品)の内部電極用ペーストとして好適に用いることができ、例えば、乾燥膜の平滑性及び乾燥膜密度が向上する。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率10,000倍にて観察した画像から、複数の粒子一つ一つの粒径を測定して、得られる個数平均値である。
 導電性粉末の含有量は、導電性ペースト全量に対して、好ましくは30質量%以上70質量%未満であり、より好ましくは40質量%以上60質量%以下である。導電性粉末の含有量が上記範囲である場合、導電性及び分散性に優れる。
(セラミック粉末)
 セラミック粉末としては、特に限定されず、例えば、積層セラミックコンデンサの内部電極用の導電性ペーストである場合、適用する積層セラミックコンデンサの種類により適宜、公知のセラミック粉末が選択される。セラミック粉末としては、例えば、Ba及びTiを含むペロブスカイト型酸化物が挙げられ、好ましくはチタン酸バリウム(BaTiO)である。
 セラミック粉末としては、チタン酸バリウムを主成分とし、酸化物を副成分として含むセラミック粉末を用いてもよい。酸化物としては、Mn、Cr、Si、Ca、Ba、Mg、V、W、Ta、Nbおよび希土類元素から選ばれる1種類以上の酸化物が挙げられる。
 また、セラミック粉末としては、例えば、チタン酸バリウム(BaTiO)のBa原子やTi原子を他の原子、例えば、Sn、Pb、Zrなどで置換したペロブスカイト型酸化物強誘電体のセラミック粉末を用いてもよい。
 内部電極用の導電性ペーストとして用いる場合、セラミック粉末は、積層セラミックコンデンサ(電子部品)の誘電体グリーンシートを構成する誘電体セラミック粉末と同一組成の粉末を用いてもよい。これにより、焼結工程における誘電体層と内部電極層との界面での収縮のミスマッチによるクラックの発生が抑制される。このようなセラミック粉末としては、上記のBa及びTiを含むペロブスカイト型酸化物以外に、例えば、ZnO、フェライト、PZT、BaO、Al、Bi、R(希土類元素)、TiO、Ndなどの酸化物が挙げられる。なお、セラミック粉末は、1種類を用いてもよく、2種類以上を用いてもよい。
 セラミック粉末の平均粒径は、例えば、0.01μm以上0.5μm以下であり、好ましくは0.01μm以上0.3μm以下の範囲である。セラミック粉末の平均粒径が上記範囲であることにより、内部電極用ペーストとして用いた場合、十分に細く薄い均一な内部電極を形成することができる。平均粒径は、走査型電子顕微鏡(SEM)による観察から求められる値であり、SEMで倍率50,000倍にて観察した映像から、複数の粒子一つ一つの粒径を測定して、得られる個数平均値である。
 セラミック粉末の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上30質量部以下であり、より好ましくは3質量部以上30質量部以下である。
 セラミック粉末の含有量は、導電性ペースト全量に対して、好ましくは1質量%以上20質量%以下であり、より好ましくは3質量%以上20質量%以下である。
(バインダー樹脂)
 バインダー樹脂は、アセタール系樹脂を含む。アセタール系樹脂としては、ポリビニルブチラールなどのブチラール系樹脂が好ましい。バインダー樹脂がアセタール系樹脂を含む場合、グラビア印刷に適した粘度に調整することができ、かつ、グリーンシートとの接着強度をより向上させることができる。バインダー樹脂は、例えば、バインダー樹脂全体に対して、アセタール系樹脂を20質量%以上含んでもよく、30質量%以上含んでもよく、アセタール系樹脂のみからなってもよい。また、アセタール系樹脂の含有量が、バインダー樹脂全体に対して40質量%未満であっても、低いペースト粘度と、十分な接着強度を有することができる。
 アセタール系樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは1質量部以上8質量部以下である。
 また、バインダー樹脂は、アセタール系樹脂以下の他の樹脂を含んでもよい。他の樹脂としては、特に限定されず、公知の樹脂を用いることができる。他の樹脂としては、例えば、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、ニトロセルロースなどのセルロース系樹脂、アクリル系樹脂などが挙げられ、中でも、溶剤への溶解性、燃焼分解性の観点などから、エチルセルロースが好ましい。また、バインダー樹脂の分子量は、例えば、20000~200000程度である。
 バインダー樹脂の含有量は、導電性粉末100質量部に対して、好ましくは1質量部以上10質量部以下であり、より好ましくは1質量部以上8質量部以下である。
 バインダー樹脂の含有量は、導電性ペースト全量に対して、好ましくは0.5質量%以上10質量%以下であり、より好ましくは0.5質量%以上6質量%以下である。バインダー樹脂の含有量が上記範囲である場合、導電性及び分散性に優れる。
(有機溶剤)
 有機溶剤は、グリコールエーテル系溶剤を含む。
 グリコールエーテル系溶剤としては、例えば、ジエチレングリコールモノ-2-エチルヘキシルエーテル、エチレングリコールモノ-2-エチルヘキシルエーテル、ジエチレングリコールモノヘキシルエーテル、エチレングリコールモノヘキシルエーテルなどの(ジ)エチレングリコールエーテル類、及び、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル(PNB)などのプロピレングリコールモノアルキルエーテル類などが挙げられる。中でも、プロピレングリコールモノアルキルエーテル類が好ましく、プロピレングリコールモノブチルエーテル(PNB)がより好ましい。有機溶剤がグリコールエーテル系溶剤を含む場合、上述したバインダー樹脂との相溶性に優れ、かつ、乾燥性に優れる。
 有機溶剤は、例えば、有機溶剤全体に対し、グリコールエーテル系溶剤を25質量%以上含んでもよく、50質量%以上含んでもよく、グリコールエーテル系溶剤のみからなってもよい。また、グリコールエーテル系溶剤は、1種単独で用いてもよく、2種以上を併用してもよい。
 有機溶剤は、さらにアセテート系溶剤を含んでもよい。アセテート系溶剤としては、例えば、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート、イソボルニルイソブチレートや、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテート、3-メトキシー3-メチルブチルアセテート、1-メトキシプロピル-2-アセテートなどのグリコールエーテルアセテート類などが挙げられる。
 有機溶剤がアセテート系溶剤を含む場合、例えば、ジヒドロターピニルアセテート、イソボルニルアセテート、イソボルニルプロピネート、イソボルニルブチレート及びイソボルニルイソブチレートから選ばれる少なくとも1種のアセテート系溶剤(A)を含んでもよい。これらの中でもイソボルニルアセテートがより好ましい。アセテート系溶剤は、有機溶剤全体に対して、0質量%以上80質量%以下含有され、好ましくは10質量%以上60質量%以下含有され、より好ましくは20質量%以上40質量%以下含有される。
 また、有機溶剤がアセテート系溶剤を含む場合、例えば、上記のアセテート系溶剤(A)と、エチレングリコールモノブチルエーテルアセテート、ジプロピレングリコールメチルエーテルアセテートから選ばれる少なくとも1種のアセテート系溶剤(B)とを含んでもよい。このような混合溶剤を用いる場合、容易に導電性ペーストの粘度調整を行うことができ、導電性ペーストの乾燥スピードを速くすることができる。
 アセテート系溶剤(A)とアセテート系溶剤(B)とを含む混合液の場合、有機溶剤は、アセテート系溶剤全体に対して、アセテート系溶剤(A)を好ましくは50質量%以上90質量%以下含有し、より好ましくは60質量%以上80質量%以下含有する。上記混合液の場合、アセテート系溶剤全体100質量%に対して、アセテート系溶剤(B)を好ましくは10質量%以上50質量%以下含有し、より好ましくは20質量%以上40質量%以下含有する。
 また、有機溶剤は、グリコールエーテル系溶剤およびアセテート系溶剤以外の他の有機溶剤を含んでもよい。他の有機溶剤としては、特に限定されず、上記バインダー樹脂を溶解することができる公知の有機溶剤を用いることができる。他の有機溶剤としては、例えば、酢酸エチル、酢酸プロピル、酢酸イソブチル、酢酸ブチルなどの酢酸エステル系溶剤、メチルエチルケトン、メチルイソブチルケトンなどのケトン系溶剤、ターピネオール、ジヒドロターピネオールなどのテルペン系溶剤、トリデカン、ノナン、シクロヘキサンなどの脂肪族系炭化水素溶剤などが挙げられる。中でも、脂肪族系炭化水素溶剤が好ましく、脂肪族系炭化水素溶剤のうちミネラルスピリットがより好ましい。なお、他の有機溶剤は、1種類を用いてもよく、2種類以上を用いてもよい。
 有機溶剤は、例えば、主溶剤としてグリコールエーテル系溶剤を含み、副溶剤として脂肪族系炭化水素溶剤を含むことができる。この場合、グリコールエーテル系溶剤は、導電性粉末100質量部に対して、好ましくは30質量部以上50質量部以下、より好ましくは40質量部以上50質量部以下含まれ、脂肪族系炭化水素溶剤は、導電性粉末100質量部に対して、好ましくは20質量部以上80質量部以下、より好ましくは20質量部以上40質量部以下含まれる。また、脂肪族系炭化水素溶剤が、導電性粉末100質量に対して、25質量部以上含まれる場合でも、導電性ペーストは分散性に優れることができる。
 有機溶剤の含有量は、導電性粉末100質量部に対して、好ましくは50質量部以上130質量部以下であり、より好ましくは60質量部以上90質量部以下である。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。
 有機溶剤の含有量は、導電性ペースト全量に対して、20質量%以上50質量%以下が好ましく、25質量%以上45質量%以下がより好ましい。有機溶剤の含有量が上記範囲である場合、導電性及び分散性に優れる。
(分散剤)
 本発明者らは、導電性ペーストに用いる分散剤について、種々の分散剤を検討した結果、平均分子量が500を超え2000以下であり、かつ、主鎖に対して炭化水素基からなる分岐鎖を1つ以上有する第1の酸系分散剤と、第1の酸系分散剤以外でカルボキシル基を有する第2の酸系分散剤とを含有する分散剤を用いることにより、導電性ペーストに含有される粉末材料(導電性粉末やセラミック粉末)の分散性に優れ、かつ、乾燥膜表面の平滑性に優れることを見出した。
 本効果が奏される理由の詳細は明らかでないが、第1の酸系分散剤が炭化水素基からなる分岐を有することにより、効果的に立体障害を形成して、粉末材料の凝集を抑制するとともに、第2の酸系分散剤がカルボキシル基を有することにより、このカルボキシル基が第1の酸系分散剤をより効果的に分散させることができると考えられる。また、第1の酸系分散剤の分子量を特定の大きさとするよることにより、導電性ペーストの用途に応じた好適な粘度で維持できるものと考えられる。なお、本発明は上記の理論(理由)によって拘束されない。以下、本実施形態に係る分散剤について、さらに詳細に説明する。
 第1の酸系分散剤は、主鎖に対して炭化水素基からなる分岐鎖を1つ以上有し、好ましくは複数有する。また、第1の酸系分散剤は、カルボキシル基を有することが好ましく、ポリカルボン酸を主鎖とする炭化水素系グラフト共重合体であることがより好ましい。また、ポリカルボン酸はエステル構造を有することが好ましい。また、炭化水素基は、鎖状構造を有することが好ましい。また、炭化水素基は、アルキル基であってもよい。また、アルキル基は、炭素及び水素のみで構成されてもよく、アルキル基を構成する水素の一部が置換基で置換されてもよい。
 第1の酸系分散剤の分子量は、500より大きく2000以下であり、1000以上2000以下であってもよい。分子量が上記範囲である場合、導電性粉末やセラミック粉末の分散性に優れ、乾燥膜表面の密度、及び、平滑性に優れる。なお、本明細書において、分散剤の分子量がある程度の分布を有する場合、分散剤の分子量は、重量平均分子量を示す。
 第1の酸系分散剤は、例えば、市販の製品から、上記特性を満たすものを選択して用いることができる。また、酸系分散剤は、従来公知の製造方法を用いて、上記特性を満たすように製造してもよい。
 第1の酸系分散剤は、導電性粉末100質量部に対して、好ましくは0.2質量部以上2質量部以下含有される。酸系分散剤の含有量が上記範囲である場合、導電性粉末やセラミック粉末の分散性や、塗布後の乾燥電極表面の平滑性に優れ、かつ、導電性ペーストの粘度を適切な範囲に調整することができ、また、シートアタックやグリーンシートの剥離不良を抑制することができる。また、本実施形態に係る導電性ペーストは、酸系分散剤の含有量が1質量部以下であっても、高い分散性を有することができる。
 第2の酸系分散剤は、カルボキシル基を有する酸系分散剤である。第2の酸系分散剤は、好ましくは分子量が5000以下であり、より好ましくは分子量が1000以下であり、さらに好ましくは分子量が500以下である。第2の酸系分散剤は、例えば、炭化水素基を有する酸系分散剤である。炭化水素基としては、炭素数10以上20以下のアルキル基又は炭素数10以上20以下のアルケニル基を含むことが好ましい。第2の酸系分散剤が、上記のような構造を有する場合、第1の酸系分散剤を添加したことによる効果を更に向上させ、導電性ペーストを形成した時の分散性をより向上させることができる。
 第2の酸系分散剤としては、例えば、高級脂肪酸、アミノ酸等の酸系分散剤などが挙げられる。なお、第2の分散剤は、1種または2種以上組み合わせて用いてもよい。
 高級脂肪酸としては、不飽和カルボン酸でも飽和カルボン酸でもよく、特に限定されるものではないが、ステアリン酸、オレイン酸、ベヘン酸、ミリスチン酸、パルミチン酸、リノール酸、ラウリン酸、リノレン酸など炭素数11以上のものが挙げられる。中でも、オレイン酸、またはステアリン酸が好ましい。
 高級脂肪酸以外の第2の酸系分散剤としては、特に限定されず、モノアルキルアミン塩に代表されるアルキルモノアミン塩型、N-アルキル(C14~C18)プロピレンジアミンジオレイン酸塩に代表されるアルキルジアミン塩型、アルキルトリメチルアンモニウムクロライドに代表されるアルキルトリメチルアンモニウム塩型、ヤシアルキルジメチルベンジルアンモニウムクロライドに代表されるアルキルジメチルベンジルアンモニウム塩型、アルキル・ジポリオキシエチレンメチルアンモニウムクロライドに代表される4級アンモニウム塩型、アルキルピリジニウム塩型、ジメチルステアリルアミンに代表される3級アミン型、ポリオキシプロピレン・ポリオキシエチレンアルキルアミンに代表されるポリオキシエチレンアルキルアミン型、N、N’、N’-トリス(2-ヒドロキシエチル)-N-アルキル(C14~18)1,3-ジアミノプロパンに代表されるジアミンのオキシエチレン付加型から選択される界面活性剤等が挙げられ、これらの中でもアルキルモノアミン塩型が好ましい。
 アルキルモノアミン塩型としては、オレオイルザルコシン、ラウリロイルザルコシン、ステアリン酸アミドなどが好ましい。
 第2の酸系分散剤は、導電性粉末100質量部に対して、好ましくは0.01質量部以上2質量部以下含有される。第1の酸系分散剤と併せて、第2の酸系分散剤を上記範囲で含む場合、導電性ペースト中の導電性粉末やセラミック粉末の分散性により優れ、塗布後の乾燥電極表面の平滑性により優れ、かつ、導電性ペーストの粘度を適切な範囲に調整することができ、また、シートアタックやグリーンシートの剥離不良を抑制することができる。また、本実施形態に係る導電性ペーストは、第2の酸系分散剤の含有量が1質量部以下であってもよく、0.1質量部以下であってもよく、0.05質量部以下であってもよい。
 また、第2の酸系分散剤は、例えば、第1の酸系分散剤100質量部に対して、1質量部以上500質量部以下程度、好ましくは50質量部以上300質量部以下、より好ましくは50質量部以上200質量部、さらに好ましくは50質量部以上150質量部含有されることができる。第2の酸系分散剤を上記範囲で含有する場合、乾燥膜密度や表面粗さが良好になる傾向がある。
 なお、導電性ペーストは、分散剤として、第1の酸系分散剤と第2の酸系分散剤のみを含んでもよいし、上記の酸系分散剤以外の分散剤を、本発明の効果を阻害しない範囲で含んでもよい。上記以外の分散剤としては、例えば、高級脂肪酸、高分子界面活性剤などを含む酸系分散剤、塩基系分散剤、両性界面活性剤、及び高分子系分散剤などなどを含んでもよく、塩基系分散剤を含有させるのがより好ましい。また、これらの分散剤は、1種または2種以上組み合わせて用いてもよい。
 また、第1及び第2酸系分散剤を含む、分散剤全体の含有量(総含有量)が、前記導電性粉末100質量部に対して、0.01質量部以上3質量部以下であることが好ましく、0.23質量部以上3質量部以下であることがより好ましい。また、本実施形態に係る導電性ペーストは、分散剤全体の含有量(総含有量)が2質量部以下であってもよく、1質量部以下であってもよい。分散剤全体の含有量が上記範囲であっても、高い分散性を有することができる。
 また、酸系分散剤の総含有量は、導電性ペースト全量に対して、好ましくは3質量%以下含有される。分散剤の総含有量の上限は、好ましくは、2質量%以下であり、より好ましくは1質量%以下である。分散剤の総含有量の下限は、特に限定されないが、例えば、0.01質量%以上であり、好ましくは0.05質量%以上である。分散剤の総含有量が上記範囲である場合、導電性ペーストの粘度を適切な範囲に調整することができ、また、シートアタックやグリーンシートの剥離不良を抑制することができる。
(その他の成分)
 本実施形態の導電性ペーストは、必要に応じて、上記の成分以外のその他の成分を含んでもよい。その他の成分としては、例えば、消泡剤、可塑剤、増粘剤などの従来公知の添加物を用いることができる。
(導電性ペースト)
 本実施形態の導電性ペーストの製造方法は、特に限定されず、従来公知の方法を用いることができる。導電性ペーストは、例えば、上記の各成分を、3本ロールミル、ボールミル、ミキサーなどで攪拌・混練することにより製造することができる。その際、導電性粉末表面に予め分散剤を塗布すると、導電性粉末が凝集することなく十分にほぐれて、その表面に分散剤が行きわたるようになり、均一な導電性ペーストを得やすい。また、予め、バインダー樹脂を有機溶剤の一部に溶解させて、有機ビヒクルを作製した後、ペースト調整用の有機溶剤へ、導電性粉末、セラミック粉末、分散剤、及び、有機ビヒクルを添加した後、攪拌・混練し、導電性ペーストを作製してもよい。
 導電性ペーストは、ずり速度100sec-1の粘度が、好ましくは0.8Pa・S以下であり、0.5Pa・S以下であってもよく、0.4Pa・S以下であってもよく、0.3Pa・S以下であってもよく、0.25Pa・S以下であってもよい。ずり速度100sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えると粘度が高すぎてグラビア印刷用として適さない場合がある。本実施形態の導電性ペーストのずり速度100sec-1の粘度の下限は、特に限定されないが、例えば、0.1Pa・S以上である。
 また、導電性ペーストは、ずり速度10000sec-1の粘度が、好ましくは0.18Pa・S以下であり、0.14Pa.a未満であってもよい。ずり速度10000sec-1の粘度が上記範囲である場合、グラビア印刷用の導電性ペーストとして好適に用いることができる。上記範囲を超えた場合も、粘度が高すぎてグラビア印刷用として適さない場合がある。ずり速度10000sec-1の粘度の下限は、特に限定されないが、例えば、0.05Pa・S以上である。
 また、導電性ペーストを印刷した後、乾燥して得られる乾燥膜の乾燥膜密度(DFD)は、5.0g/cmを超えるのが好ましく、5.2g/cm以上であってもよく、5.2g/cmを超えてもよく、5.3g/cm以上であってもよい。乾燥膜密度の上限は、特に限定されず、金属ニッケルの真密度9.8g/cmを超えることはなく、例えば、6.5g/cm以下であってもよい。
 また、導電性ペーストを印刷し、大気中120℃で1時間乾燥させることにより、20mm角、膜厚1~3μmの乾燥膜を作製した際の算術平均粗さSaは、0.2μm以下であることが好ましく、0.16μm以下であってもよい。一方、算術平均粗さSaの下限は、特に限定されず、表面が平らであるのが好ましく、0を超える値であって小さい値であるほど好ましい。なお、算術平均粗さSaは、ISO 25178の規格に基づいて計測する。
 導電性ペーストは、積層セラミックコンデンサなどの電子部品に好適に用いることができる。積層セラミックコンデンサは、誘電体グリーンシートを用いて形成される誘電体層及び導電性ペーストを用いて形成される内部電極層を有する。
 積層セラミックコンデンサは、誘電体グリーンシートに含まれる誘電体セラミック粉末と導電性ペーストに含まれるセラミック粉末とが同一組成の粉末であることが好ましい。本実施形態の導電性ペーストを用いて製造される積層セラミックデバイスは、誘電体グリーンシートの厚さが、例えば3μm以下である場合でも、シートアタックやグリーンシートの剥離不良が抑制される。
[電子部品]
 以下、本発明の電子部品等の実施形態について、図面を参照しながら説明する。図面においては、適宜、模式的に表現することや、縮尺を変更して表現することがある。また、部材の位置や方向などを、適宜、図1などに示すXYZ直交座標系を参照して説明する。このXYZ直交座標系において、X方向およびY方向は水平方向であり、Z方向は鉛直方向(上下方向)である。
 図1A及び図1Bは、実施形態に係る電子部品の一例である、積層セラミックコンデンサ1を示す図である。積層セラミックコンデンサ1は、誘電体層12及び内部電極層11を交互に積層した積層体10と外部電極20とを備える。
 以下、上記導電性ペーストを使用した積層セラミックコンデンサの製造方法について説明する。まず、誘電体グリーンシート上に、導電性ペーストを印刷して、乾燥し乾燥膜を形成し、この乾燥膜を上面に有する複数の誘電体グリーンシートを、圧着により積層させた後、焼成して一体化することにより、セラミックコンデンサ本体となる積層セラミック焼成体(積層体10)を作製する。その後、積層体10の両端部に一対の外部電極20を形成することにより積層セラミックコンデンサ1が製造される。以下に、より詳細に説明する。
 まず、未焼成のセラミックシートである誘電体グリーンシート(セラミックグリーンシート)を用意する。この誘電体グリーンシートとしては、例えば、チタン酸バリウム等の所定のセラミックの原料粉末に、ポリビニルブチラール等の有機バインダーとターピネオール等の溶剤とを加えて得た誘電体層用ペーストを、PETフィルム等の支持フィルム上にシート状に塗布し、乾燥させて溶剤を除去したもの等が挙げられる。なお、誘電体グリーンシートからなる誘電体層の厚みは、特に限定されないが、積層セラミックコンデンサ1の小型化の要請の観点から、0.05μm以上3μm以下が好ましい。
 次いで、この誘電体グリーンシートの片面に、グラビア印刷法を用いて、上述の導電性ペーストを印刷して塗布し、乾燥させて乾燥膜を形成したものを複数枚、用意する。なお、印刷後の導電性ペースト(乾燥膜)の厚みは、内部電極層11の薄層化の要請の観点から、乾燥後1μm以下とすることが好ましい。
 次いで、支持フィルムから、誘電体グリーンシートを剥離するとともに、誘電体グリーンシートとその片面に形成された導電性ペースト(乾燥膜)とが交互に配置されるように積層した後、加熱・加圧処理により積層体(圧着体)を得る。なお、積層体の両面に、導電性ペーストを塗布していない保護用の誘電体グリーンシートを更に配置する構成としてもよい。
 次いで、積層体を所定サイズに切断してグリーンチップを形成した後、当該グリーンチップに対して脱バインダー処理を施し、還元雰囲気下において焼成することにより、積層セラミック焼成体(積層体10)を製造する。なお、脱バインダー処理における雰囲気は、大気またはNガス雰囲気にすることが好ましい。脱バインダー処理を行う際の温度は、例えば200℃以上400℃以下である。また、脱バインダー処理を行う際の、上記温度の保持時間を0.5時間以上24時間以下とすることが好ましい。また、焼成は、内部電極層11に用いる金属の酸化を抑制するために還元雰囲気で行われ、また、積層体10の焼成を行う際の温度は、例えば、1000℃以上1350℃以下であり、焼成を行う際の、温度の保持時間は、例えば、0.5時間以上8時間以下である。
 グリーンチップの焼成を行うことにより、誘電体グリーンシート中の有機バインダーが完全に除去されるとともに、セラミックの原料粉末が焼成されて、セラミック製の誘電体層12が形成される。また乾燥膜中の有機ビヒクルが除去されるとともに、ニッケル粉末またはニッケルを主成分とする合金粉末が焼結もしくは溶融、一体化されて、内部電極層11が形成され、誘電体層12と内部電極層11とが複数枚、交互に積層された積層セラミック焼成体(積層体10)が形成される。なお、酸素を誘電体層12の内部に取り込んで信頼性を高めるとともに、内部電極層11の再酸化を抑制するとの観点から、焼成後の積層セラミック焼成体(積層体10)に対して、アニール処理を施してもよい。
 そして、作製した積層セラミック焼成体(積層体10)に対して、一対の外部電極20を設けることにより、積層セラミックコンデンサ1が製造される。例えば、外部電極20は、外部電極層21及びメッキ層22を備える。外部電極層21は、内部電極層11と電気的に接続する。なお、外部電極20の材料としては、例えば、銅やニッケル、またはこれらの合金が好適に使用できる。なお、電子部品は、積層セラミックコンデンサ以外の電子部品を用いることもできる。
 以下、本発明を実施例と比較例に基づき詳細に説明するが、本発明は実施例によって何ら限定されるものではない。
[評価方法]
(導電性ペーストの粘度)
 導電性ペーストの製造後の粘度を、レオメーターを用いて、ずり速度100sec-1、10000sec-1の条件で測定した。
(乾燥膜密度)
 作製した導電性ペーストをPETフィルム上に載せ、幅50mm、隙間125μmのアプリケータで長さ約100mmに延ばした。得られたPETフィルムを120℃、40分乾燥させて、乾燥膜を形成した後、この乾燥膜を2.54cm(1インチ)角に4枚切断し、PETフィルムをはがした上で各4枚の乾燥膜の厚み、重量を測定して、乾燥膜密度(平均値)を算出した。
(表面粗さ)
 2.54cm(1インチ)角の耐熱強化ガラス上に、作製した導電性ペーストを印刷し、大気中120℃で1時間乾燥させることにより、20mm角、膜厚1~3μmの乾燥膜を作製した。作製した乾燥膜の表面粗さSa(算術平均粗さ)を、ISO 25178の規格に基づいて計測する装置を用いて測定した。なお、算術平均粗さSaは、算術平均粗さRa(線の算術平均高さ)を面に拡張したパラメータである。
[使用材料]
(導電性粉末)
 導電性粉末としては、Ni粉末(SEM平均粒径0.3μm)を使用した。
(セラミック粉末)
 セラミック粉末としては、チタン酸バリウム(BaTiO;SEM平均粒径0.10μm)を使用した。
(バインダー樹脂)
 バインダー樹脂としては、ポリビニルブチラール樹脂(PVB)、エチルセルロース(EC)を使用した。
(分散剤)
 (1)第1の酸系分散剤(A)として、ポリカルボン酸を主鎖とする炭化水素系グラフト共重合体(炭化水素からなる分岐鎖を有する)で平均分子量が1500である酸系分散剤を用いた。
 (2)第2の酸系分散剤(B)として、オレオイルザルコシン(C2139NO)を用いた。
 (3)比較用に、従来の導電性ペーストに使用されているリン酸系分散剤(C)(分子量:1400、炭化水素からなる分岐鎖なし)を用いた。
(有機溶剤)
 有機溶剤としては、プロピレングリコールモノブチルエーテル(PNB)、ミネラルスピリット(MA)、ターピネオール(TPO)を使用した。
[実施例1]
 導電性粉末であるNi粉末100質量部に対して、セラミック粉末25質量部と、分散剤として第1の酸系分散剤(A)0.2質量部、第2の酸系分散剤(B)1.0質量部と、バインダー樹脂として、PVB2質量部およびEC4質量部と、有機溶剤としてPNB41質量部およびMA27質量部と、を混合して導電性ペーストを作製した。作製した導電性ペーストの粘度及びペーストの乾燥膜密度、表面粗さを上記方法で評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[実施例2]
 第1の酸系分散剤(A)の含有量を0.74質量部とした以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電[実施例3]
 第1の酸系分散剤(A)の含有量を2.0質量部とした以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[実施例4]
 第2の酸系分散剤(B)の含有量を0.01質量部とした以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[実施例5]
 第2の酸系分散剤(B)の含有量を2.0質量部とした以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[実施例6]
 第1の酸系分散剤(A)の含有量を0.6質量部、第2の酸系分散剤(B)の含有量を1.2質量部とした以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[比較例1]
 分散剤として、リン酸系分散剤を0.8質量部用いた以外は、実施例1と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[比較例2]
 主溶剤として、TPOを68質量部用い、副溶剤を用いなかった以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[比較例3]
 バインダー樹脂として、ECを6質量部用い、PVBを用いなかった以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[参考例1]
 分散剤として、第2の酸系分散剤(B)を用いなかった以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
[参考例2]
 分散剤として、第1の酸系分散剤(A)を用いず、第2の酸系分散剤(B)の含有量を0.8質量部とした以外は、実施例2と同様に導電性ペーストを作製して、評価した。導電性ペーストの分散剤等の含有量を表1に、導電性ペーストの粘度、及び、乾燥膜密度、表面粗さの評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
(評価結果)
 実施例の導電性ペーストは、ずり速度が100sec-1での粘度が0.20~0.23Pa・s、ずり速度が10000sec-1での粘度が0.11~0.14Pa・sであり、いずれのずり速度でも安定して低い値を示し、グラビア印刷に適した粘度を有することが示された。また、実施例の導電性ペーストは、乾燥膜密度が5.1~5.4g/cmと高い値を示し、かつ、乾燥膜の表面粗さが0.13~0.16μmであり、分散性に優れることが確認された。
 また、実施例1~3の導電性ペーストを比較した場合、第1の酸系分散剤(A)の含有量の増加に伴い、乾燥膜密度が向上し、表面粗さがより平滑になることが分かる。ただし、実施例3の乾燥膜密度や表面粗さの値は、ほぼ飽和した値である。実施例2、4、5より、第2の酸系分散剤の含有量を増やすことでも、乾燥膜密度や表面粗さを向上させることができることが分かる。また、実施例1,4と実施例6の導電性ペーストなどの比較から、第1の酸系分散剤(A)と第2の酸系分散剤(B)との配合比に大きく差があるより、配合比が近い方が乾燥膜密度や表面粗さが良好な傾向がある。
 これに対し、膜第1の酸系分散剤を含有せず、リン酸系分散剤を用いた比較例1の導電性ペーストは、同様の条件で製造した場合、実施例よりも粘度が高くなり、乾燥膜密度も十分高くできず、表面粗さも実施例と比較して高かった。
 また、一般的に多く用いられているTPOを主溶剤とした比較例2の導電性ペーストは、粘度が非常に高くなり、グラビアペースト向きではなく、表面粗さも実施例と比較すると高かった。また、バインダー樹脂にアセタール系樹脂を含有しない比較例3の導電性ペーストは、粘度が高めで、乾燥膜密度を十分高くすることができなかった。
 また、分散剤として第1の酸系分散剤(A)を単独で含む参考例1の導電性ペースト、又は、第2の分散剤(B)を単独で含む参考例2の導電性ペーストでは、リン酸系分散剤を用いた比較例1よりは、乾燥膜密度が高く、かつ、表面粗さも低く、分散性が向上することが示された。
 以上のことから、第1の酸系分散剤(A)、及び、第2の酸系分散剤(B)を両方含む本発明の実施例の導電性ペーストは、比較例、及び、参考例の導電性ペーストと比較した場合、乾燥膜密度がより高く、かつ、表面粗さもより低下し、導電性ペーストの分散性がより向上することが明らかである。また、導電性ペーストの粘度も、両方の分散剤を含む本発明の実施例の導電性ペーストの方が、比較例、及び、参考例の導電性ペーストよりも低く、グラビア印刷用により適していることが分かる。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、上述の実施形態などで引用した全ての文献の開示を援用して本文の記載の一部とする。
 本発明の導電性ペーストは、グラビア印刷に適した粘度を有し、かつ、塗布後の乾燥膜密度が高く、乾燥膜表面平滑性に非常に優れ、分散性に優れる。よって、本発明の導電性ペーストは、特に携帯電話やデジタル機器などの小型化が進む電子機器のチップ部品である積層セラミックコンデンサの内部電極用の原料として好適に用いることができ、特にグラビア印刷用の導電性ペーストとして好適に用いることができる。
 なお、本発明の技術範囲は、上述の実施形態などで説明した態様に限定されるものではない。上述の実施形態などで説明した要件の1つ以上は、省略されることがある。また、上述の実施形態などで説明した要件は、適宜組み合わせることができる。また、法令で許容される限りにおいて、日本特許出願である特願2018-241705、及び本明細書で引用した全ての文献の内容を援用して本文の記載の一部とする。
1    積層セラミックコンデンサ
10   セラミック積層体
11   内部電極層
12   誘電体層
20   外部電極
21   外部電極層
22   メッキ層
 

Claims (14)

  1.  導電性粉末、セラミック粉末、分散剤、バインダー樹脂及び有機溶剤を含む導電性ペーストであって、
     前記分散剤は、第1の酸系分散剤及び第2の酸系分散剤を含み、
     前記第1の酸系分散剤は、平均分子量が500を超え2000以下であり、かつ、主鎖に対して炭化水素基からなる分岐鎖を1つ以上有し、
     前記第2の酸系分散剤は、前記第1の酸系分散剤以外で、カルボキシル基を有し、
     前記バインダー樹脂は、アセタール系樹脂を含み、
     前記有機溶剤は、グリコールエーテル系溶剤を含む、
    導電性ペースト。
  2.  前記第1の酸系分散剤は、カルボキシル基を有する、請求項1に記載の導電性ペースト。
  3.  前記第1の酸系分散剤は、ポリカルボン酸を主鎖とする炭化水素系グラフト共重合体である、請求項1又は2に記載の導電性ペースト。
  4.  前記第2の酸系分散剤は、分子量が5000以下であり、かつ、炭素数10以上20以下のアルキル基又は炭素数10以上20以下のアルケニル基を含む、請求項1~3のいずれか一項に記載の導電性ペースト。
  5.  前記第1の酸系分散剤は、前記導電性粉末100質量部に対して、0.2質量部以上2質量部以下含有され、前記第2の酸系分散剤は、前記導電性粉末100質量部に対して、0.01質量部以上2質量部以下含有される、請求項1~4のいずれか一項に記載の導電性ペースト。
  6.  前記導電性粉末は、Ni、Pd、Pt、Au、Ag、Cu及びこれらの合金から選ばれる少なくとも1種の金属粉末を含む、請求項1~5のいずれか一項に記載の導電性ペースト。
  7.  前記導電性粉末は、平均粒径が0.05μm以上1.0μm以下である、請求項1~6のいずれか一項に記載の導電性ペースト。
  8.  前記セラミック粉末は、ペロブスカイト型酸化物を含む、請求項1~7のいずれか一項に記載の導電性ペースト。
  9.  前記セラミック粉末は、平均粒径が0.01μm以上0.5μm以下である、請求項1~8のいずれか一項に記載の導電性ペースト。
  10.  前記バインダー樹脂が、ブチラール系樹脂を含む、請求項1~9のいずれか一項に記載の導電性ペースト。
  11.  ずり速度100sec-1での粘度が0.8Pa・S以下であり、ずり速度10000sec-1での粘度が0.18Pa・S以下である、請求項1~10のいずれか一項に記載の導電性ペースト。
  12.  積層セラミック部品の内部電極用である、請求項1~11のいずれか一項に記載の導電性ペースト。
  13.  請求項1~11のいずれか一項に記載の導電性ペーストを用いて形成される電子部品。
  14.  誘電体層と内部電極とを積層した積層体を少なくとも有し、
     前記内部電極は、請求項12に記載の導電性ペーストを用いて形成さる積層セラミックコンデンサ。
PCT/JP2019/045824 2018-12-25 2019-11-22 導電性ペースト、電子部品、及び積層セラミックコンデンサ WO2020137289A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217012061A KR20210110285A (ko) 2018-12-25 2019-11-22 도전성 페이스트, 전자 부품, 및 적층 세라믹 콘덴서
JP2020562938A JP7405098B2 (ja) 2018-12-25 2019-11-22 導電性ペースト、電子部品、及び積層セラミックコンデンサ
CN201980085792.8A CN113227233B (zh) 2018-12-25 2019-11-22 导电性浆料、电子部件以及叠层陶瓷电容器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018241705 2018-12-25
JP2018-241705 2018-12-25

Publications (1)

Publication Number Publication Date
WO2020137289A1 true WO2020137289A1 (ja) 2020-07-02

Family

ID=71126231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045824 WO2020137289A1 (ja) 2018-12-25 2019-11-22 導電性ペースト、電子部品、及び積層セラミックコンデンサ

Country Status (5)

Country Link
JP (1) JP7405098B2 (ja)
KR (1) KR20210110285A (ja)
CN (1) CN113227233B (ja)
TW (1) TW202034353A (ja)
WO (1) WO2020137289A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168446A1 (ja) * 2021-02-02 2022-08-11 株式会社村田製作所 無機粒子含有ペースト、無機粒子含有膜、及び積層体
WO2024062857A1 (ja) * 2022-09-21 2024-03-28 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174797A (ja) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd 積層セラミックコンデンサ内部電極に用いられるグラビア印刷用導電性ペースト
JP2016147261A (ja) * 2015-02-06 2016-08-18 日油株式会社 非水系分散剤および非水系分散体組成物
WO2018061891A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 分散液、組成物、膜、膜の製造方法および分散剤

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4389431B2 (ja) 2001-12-13 2009-12-24 株式会社村田製作所 グラビア印刷用導電性ペーストおよびその製造方法、ならびに積層セラミック電子部品
JP2003187638A (ja) 2001-12-20 2003-07-04 Murata Mfg Co Ltd グラビア印刷用導電性ペーストおよびその製造方法、ならびに積層セラミック電子部品
KR20090125393A (ko) 2008-06-02 2009-12-07 주식회사 동진쎄미켐 흑색 도전성 페이스트 조성물, 이를 포함하는 전자파차폐용 필터 및 표시 장치
JP5833969B2 (ja) * 2012-04-27 2015-12-16 富士フイルム株式会社 感放射線性組成物、遮光膜および固体撮像素子
JP2015133317A (ja) * 2013-12-10 2015-07-23 Dowaエレクトロニクス株式会社 導電性ペーストおよびそれを用いた導電膜の製造方法
JP6277751B2 (ja) * 2014-02-04 2018-02-14 大日本印刷株式会社 銅粒子分散ペースト、及び導電性基板の製造方法
JP6361356B2 (ja) 2014-07-30 2018-07-25 住友金属鉱山株式会社 積層セラミックコンデンサ内部電極用ペースト、及び積層セラミックコンデンサ
JP6314728B2 (ja) 2014-07-30 2018-04-25 住友金属鉱山株式会社 導電性ペーストの製造方法及びこれにより得られる導電性ペースト
JP6939015B2 (ja) * 2017-03-29 2021-09-22 住友金属鉱山株式会社 積層セラミックコンデンサ内部電極用のグラビア印刷用導電性ペースト
JP6719539B2 (ja) 2018-12-13 2020-07-08 株式会社ノリタケカンパニーリミテド 導電性ペースト

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012174797A (ja) * 2011-02-18 2012-09-10 Sumitomo Metal Mining Co Ltd 積層セラミックコンデンサ内部電極に用いられるグラビア印刷用導電性ペースト
JP2016147261A (ja) * 2015-02-06 2016-08-18 日油株式会社 非水系分散剤および非水系分散体組成物
WO2018061891A1 (ja) * 2016-09-27 2018-04-05 富士フイルム株式会社 分散液、組成物、膜、膜の製造方法および分散剤

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022168446A1 (ja) * 2021-02-02 2022-08-11 株式会社村田製作所 無機粒子含有ペースト、無機粒子含有膜、及び積層体
WO2024062857A1 (ja) * 2022-09-21 2024-03-28 住友金属鉱山株式会社 導電性ペースト、電子部品及び積層セラミックコンデンサ

Also Published As

Publication number Publication date
KR20210110285A (ko) 2021-09-07
CN113227233A (zh) 2021-08-06
JP7405098B2 (ja) 2023-12-26
TW202034353A (zh) 2020-09-16
JPWO2020137289A1 (ja) 2021-11-04
CN113227233B (zh) 2023-12-12

Similar Documents

Publication Publication Date Title
WO2020137290A1 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
WO2020067363A1 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
JP7279643B2 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
TWI801445B (zh) 導電性漿料、電子零件以及層積陶瓷電容器
JP2024032861A (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
WO2020137289A1 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
JP7279642B2 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
CN111066098B (zh) 导电性浆料、电子部件以及叠层陶瓷电容器
JP7206671B2 (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
TW201939522A (zh) 導電性漿料、電子零件以及層積陶瓷電容器
TW202111020A (zh) 凹版印刷用導電性漿料、電子零件、及積層陶瓷電容器
WO2019043674A2 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ
WO2022255467A1 (ja) グラビア印刷用導電性ペースト、電子部品、及び積層セラミックコンデンサ
WO2019043672A2 (ja) 導電性ペースト、電子部品及び積層セラミックコンデンサ
WO2019043673A2 (ja) 導電性ペースト、電子部品、及び積層セラミックコンデンサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562938

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19905602

Country of ref document: EP

Kind code of ref document: A1