WO2020134360A1 - 空气调节设备的控制方法、装置和空气调节设备 - Google Patents

空气调节设备的控制方法、装置和空气调节设备 Download PDF

Info

Publication number
WO2020134360A1
WO2020134360A1 PCT/CN2019/110871 CN2019110871W WO2020134360A1 WO 2020134360 A1 WO2020134360 A1 WO 2020134360A1 CN 2019110871 W CN2019110871 W CN 2019110871W WO 2020134360 A1 WO2020134360 A1 WO 2020134360A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioning
cold
value
compensation
heat
Prior art date
Application number
PCT/CN2019/110871
Other languages
English (en)
French (fr)
Inventor
郑伟锐
梁文潮
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021529069A priority Critical patent/JP7220787B2/ja
Publication of WO2020134360A1 publication Critical patent/WO2020134360A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present application relates to the technical field of home appliance equipment control, and in particular to a control method and apparatus for air conditioning equipment and air conditioning equipment.
  • air conditioning equipment for example, air conditioners
  • products that can intelligently regulate air are more and more popular.
  • the size of the heat and cold sense values reflect the degree of heat and coldness of the heat source.
  • the air conditioning equipment is controlled according to the heat and cold sense values.
  • the home environment is generally more complicated, and the air conditioning is adjusted according to the heat and cold sense values.
  • the accuracy of the adjustment is low, which greatly affects the user experience.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • this application proposes a control method for air conditioning equipment, which compensates for the detected cold and heat sense values through compensation information, improves the accuracy of the cold and heat sense values, and avoids the occurrence of other heat sources in the environment.
  • the air conditioning equipment continuously adjusts the environmental parameters to a value range that is not suitable for the human body, which improves the accuracy of the automatic adjustment of the air conditioning equipment.
  • This application proposes a control device for air conditioning equipment.
  • This application proposes an air conditioning device.
  • This application proposes a computer-readable storage medium.
  • An embodiment of the present application provides a method for controlling air conditioning equipment, including:
  • the compensation information correct the detected cold and heat sense value; wherein, the compensation information is used to reduce the adjustment efficiency of the air conditioning equipment;
  • control device for air conditioning equipment including:
  • the detection module is used to determine the thermal sense value of the heat source according to the environmental parameter detection result of the current environment
  • a correction module configured to correct the detected cold and heat sense value according to the compensation information; wherein, the compensation information is used to reduce the adjustment efficiency of the air conditioning equipment;
  • the control module is used to reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cooling and heating sense value.
  • An embodiment of another aspect of the present application provides an air-conditioning apparatus, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the implementation is as described above The control method described in one aspect.
  • An embodiment of another aspect of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the control method as described in the foregoing aspect is implemented.
  • the environmental parameter detection results of the current environment determine the heat and cold sense values of the heat source, and correct the detected cold and heat sense values according to the compensation information.
  • the compensation information is used to reduce the adjustment efficiency of the air conditioning equipment.
  • control the cooling capacity or heating capacity of air conditioning equipment correct the detected cold and heat sense value through compensation information, improve the accuracy of the cold and heat sense value, and avoid other heat sources present in the environment.
  • the air conditioning equipment continuously adjusts the environmental parameters to a value range that is not suitable for the human body, and improves the accuracy of the automatic adjustment of the air conditioning equipment.
  • FIG. 1 is a schematic flowchart of a method for controlling an air-conditioning device provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another method for controlling an air-conditioning device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the ambient temperature distribution before correction provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a control device of an air conditioning device according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for controlling an air-conditioning device according to an embodiment of the present application.
  • the method includes the following steps:
  • Step 101 Determine the heat and cold sense value of the heat source according to the detection result of the environment parameters of the current environment.
  • the heat source is an object in the current environment, such as a human body, a teapot, etc., which is detected by environmental parameters.
  • the parameters obtained by the air conditioning device itself are detected, for example, by the array type of the air conditioning device
  • the value of the cold and heat sense value reflects the degree of heat and coldness of the heat source, that is, the larger the cold and heat sense value, the higher the temperature of the heat source, that is, the hotter, the smaller the cold and heat sense value, the lower the temperature of the heat source, that is The colder.
  • the maximum cold and heat sense value of the multiple heat sources is used as the detected cold and heat sense value, or the multiple cold and heat sense values are used Take the average value, and use the average cold and heat sense value as the detected cold and heat sense value.
  • the user's cold and heat sensation value is related to the user's personal physique and exercise intensity.
  • real-time collection and labeling can be performed according to the user's personal situation, etc.
  • Big data establishes a model of the reference temperature of the user's body surface and the user's hot and cold sense values (in this example, a large number of user cold and heat sense values, user's body surface temperature and the area of the air deflector of the air conditioning equipment, the performance of the motor and other hardware are collected Parameters, based on a large amount of collected experimental data to establish a model of the user's body surface reference temperature and the user's hot and cold sense value.
  • the cold and hot sense model can also be combined with various user physiological parameter settings, etc., where the cold
  • the unit is W/m2
  • K is the heat dissipation generated by conduction
  • the unit is W/m2.
  • Esk is the heat dissipation caused by the evaporation of skin moisture.
  • the unit is W/m2, Eres is the heat dissipation caused by the evaporation of exhaled water, and the unit is W/m2Cres is the heat dissipation flow generated by exhaled convection, and the unit is W/m2), which is used to calculate Table reference temperature corresponding to the user's hot and cold sense value
  • the expression formula of the cooling and heating model introduced in this embodiment is only an example, and those skilled in the art can select a suitable cooling and heating model according to the actual situation, for example, by increasing or decreasing the cooling
  • the parameters in the expression formula of the thermal model to meet the needs of the actual situation will not be repeated here.
  • Step 102 according to the compensation information, correct the detected cold and hot sense values.
  • the compensation information includes a compensation coefficient and/or a compensation value, where the compensation information is used to reduce the adjustment efficiency of the air conditioning equipment.
  • the compensation value corresponding to the ambient temperature information is added to the detected cold and heat sense value, and the compensation coefficient corresponding to the operation information is multiplied by the added cold and heat sense value to obtain the corrected cold and heat sense value,
  • the compensation information compensates the cold and hot sense values, which improves the accuracy of the cold and hot sense values.
  • the compensation value corresponding to the ambient temperature information and the compensation coefficient corresponding to the operation information are preset. As a possible implementation, it may be determined in advance according to the operation mode of the air conditioner through a large amount of experimental data. This is not limited in the embodiments.
  • the compensation information determined according to the cold and heat sense values to compensate for the operating parameters of the air-conditioning equipment can prevent the air-conditioning equipment from continuously operating at a higher adjustment efficiency. While ensuring the effect of adjusting the environment without affecting the user experience, the energy consumption is reduced. At the same time, after the air conditioning equipment has been running for a period of time, for example, after the adjusted environmental parameters meet the environmental parameters corresponding to the hot and cold sense values, the user can already obtain a more comfortable environmental experience, so reducing the efficiency of the adjustment at this time Will affect the user experience.
  • Step 103 Reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cold and heat sense value.
  • the air guide bar swing speed is reduced, or, according to the corrected hot and cold sense value, the air speed of the air conditioning device is reduced, or, according to the corrected The cooling and heating sense value, lower the set temperature of the air conditioning equipment in the heating operation mode, and increase the set temperature of the air conditioning equipment in the cooling operation mode, which improves the accuracy of the automatic control of the air conditioning equipment to the user Bring a comfortable experience.
  • the cooling capacity or the heating capacity may be specifically adjusted by the air supply volume.
  • the cooling capacity or heating capacity of the air conditioning equipment can be determined by the following formula:
  • Q 0 represents the cooling capacity or heating capacity
  • i C and i D represent the air enthalpy before and after the evaporator
  • G represents the air supply volume.
  • i C and i D can be adjusted by increasing or decreasing the compressor power.
  • the cooling capacity or heating capacity of the air conditioning equipment at the corresponding air supply angle needs to be increased according to the ambient temperature distribution, it can be done by increasing the air supply amount while the value of (i C -i D ) remains unchanged. G, to increase the cooling capacity or heating capacity of air conditioning equipment.
  • the air supply volume can be reduced by reducing the air supply amount while the value of (i C -i D ) remains unchanged. G, to reduce the cooling capacity or heating capacity of air conditioning equipment.
  • control methods such as adjusting the wind speed, adjusting the speed of the air guide bar and the duration of the suspension can be specifically used, and several control methods can also be combined to improve the adjustment efficiency of the cooling capacity or the heating capacity. .
  • several possible implementations will be described separately.
  • the air speed of the air supply may be adjusted according to the corresponding control parameter.
  • the greater the maximum value of the temperature difference in the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, thus the cooling capacity corresponding to the air supply angle
  • the greater the heating capacity the smaller the maximum value of the temperature difference in the air supply position.
  • the corresponding air speed of the air supply is smaller, thereby supplying air
  • the cooling capacity or heating capacity corresponding to the angle is smaller.
  • the swing speed of the air guide bar is adjusted according to the corresponding control parameter.
  • the larger the maximum value of the temperature difference at the air supply position the smaller the swing speed of the air guide bar when the air guide bar of the air conditioning device swings to the corresponding air supply angle, thus the cooling corresponding to the air supply angle.
  • the greater the amount or heating capacity, and the smaller the maximum value of the temperature difference in the air supply position the greater the swing speed of the air guide bar when the air guide bar swings to the corresponding air supply angle, so that the The cooling capacity or heating capacity corresponding to the air supply angle is smaller.
  • the pause swing time of the air guide bar is adjusted according to the corresponding control parameter.
  • the greater the maximum value of the temperature difference at the air supply position the longer the suspension of the air guide bar swings when the air guide bar swings to the corresponding air supply angle, so that the air supply angle corresponds to
  • the greater the cooling capacity or heating capacity, and the smaller the maximum value of the temperature difference in the air supply position the smaller the suspension swing time of the air guide bar when the air guide bar swings to the corresponding air supply angle, Therefore, the smaller the cooling capacity or the heating capacity corresponding to the blowing angle.
  • the air speed of the air supply and the swing speed of the air guide bar are adjusted according to the corresponding control parameters.
  • the greater the maximum value of the temperature difference in the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, and the greater the swing speed of the air guide bar
  • the smaller the cooling capacity or heating capacity corresponding to the air supply angle the smaller the maximum value of the temperature difference at the air supply position.
  • the air speed of the air supply and the suspension swing time of the air guide bar are adjusted according to the corresponding control parameters.
  • the greater the maximum value of the temperature difference of the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, and the duration of the suspension of the air guide bar
  • the cold and hot sense values of the heat source are determined according to the detection result of the current environmental parameters, and the detected cold and hot sense values are corrected according to the compensation information, and the corrected cold and hot Sensing value, reduce the cooling capacity or heating capacity of the air-conditioning equipment, correct the detected cold and heat sensing value through the compensation information, improve the accuracy of the cold and heat sensing value, on the one hand avoid other heat sources present in the environment, Causes the air conditioning equipment to continuously adjust the environmental parameters to a value range that is not suitable for the human body, improving the accuracy of the automatic adjustment of the air conditioning equipment.
  • FIG. 2 is a schematic flowchart of another method for controlling an air-conditioning device according to an embodiment of the present application.
  • the method may include the following steps:
  • step 201 according to the detection result of the environmental parameters of the current environment, the cold and hot sense value of the heat source is determined.
  • the air conditioning device is an air conditioner
  • the air conditioning operation mode is a cooling mode as an example for illustration.
  • FIG. 3 is a schematic diagram of the ambient temperature distribution before correction provided by an embodiment of the present application.
  • the air conditioner is in the cooling mode
  • the environment is detected by the array infrared thermopile sensor, and the corresponding different temperature distributions in the environment temperature distribution diagram are detected, as shown in FIG. 3.
  • Identify the area with the highest temperature in the temperature distribution diagram as the heat source area that is, area A corresponding to the dashed rectangular frame indicated by the arrow in FIG. 3, and determine the temperature of the heat source according to the heat source area.
  • the highest temperature in the heat source area can be determined
  • the value is the temperature value of the heat source, or the average value of the temperature values in the heat source area is taken as the temperature value of the heat source, and the cold and heat of the heat source is determined according to the correspondence between the preset temperature value of the heat source and the cold and heat sense value Sense value.
  • Step 202 Obtain the ambient temperature distribution, and determine the ambient temperature information according to the ambient temperature distribution.
  • the ambient temperature information includes the background area temperature, and/or the surface temperature.
  • the temperature of the background area is determined by the temperature of the area other than the heat source area in the ambient temperature distribution.
  • the average temperature of the background area is used as the background area temperature, that is, Average the temperature values of the areas other than the area A corresponding to the heat source indicated by the arrow in the environmental temperature distribution diagram shown in FIG. 3 as the background area temperature, and determine that the background area temperature is within the set first temperature range In which, the first temperature range is preset, indicating the corresponding relationship between the first temperature range and the compensation value.
  • Table 1 shows the relationship between the interval of the first temperature range and the corresponding compensation value in the cooling mode.
  • the first temperature range includes different intervals, and different intervals correspond to different compensation values. According to the determined background area temperature, the interval of the first temperature range belongs to, that is, the corresponding compensation value is determined .
  • the surface temperature is detected according to the surface temperature detection sensor, where the surface temperature sensor can be a sensor installed on the ground, or a temperature sensor installed on the air conditioner, such as a single-point thermopile sensor, which determines the surface according to the detection value of the sensor Temperature, and determine that the surface temperature is within the set second temperature range, where the second temperature range is also preset, indicating the corresponding relationship between the second temperature range and the compensation value, the first temperature range and the second temperature range There is no difference in size.
  • the surface temperature sensor can be a sensor installed on the ground, or a temperature sensor installed on the air conditioner, such as a single-point thermopile sensor, which determines the surface according to the detection value of the sensor Temperature, and determine that the surface temperature is within the set second temperature range, where the second temperature range is also preset, indicating the corresponding relationship between the second temperature range and the compensation value, the first temperature range and the second temperature range There is no difference in size.
  • Table 2 shows the relationship between the interval of the second temperature range and the corresponding compensation value in the cooling mode.
  • the ambient temperature in the background area and the compensation value are in a positive relationship, that is, the ambient temperature in the background area increases, and the corresponding compensation value also increases.
  • the increase in the compensation value may be a fixed ratio or a fixed value in a manner that increases with the increase of the ambient temperature of the background area. For example, when the ambient temperature of the background area is 23 degrees Celsius, the compensation value is -1, and When the ambient temperature of the background area is 25 degrees Celsius, the compensation value is -0.5, and when the ambient temperature of the background area is 26 degrees Celsius, the compensation value is 0, that is, the compensation value is a fixed increase of +0.5 as the ambient temperature of the background area increases Increased.
  • the increase in the compensation value may also be increased in an unfixed proportion or in an indefinite value with the increase in the ambient temperature of the background area.
  • the compensation value is -1, and when the ambient temperature of the background area is 25 degrees Celsius, the compensation value is -0.5, and when the ambient temperature of the background area is 26 degrees Celsius, the compensation value is -0.1, that is, the increase of the compensation value is not a fixed ratio
  • the way of increasing the unfixed value increases with the increase of the ambient temperature of the background area.
  • the surface temperature and the compensation value corresponding to the surface temperature are also in a positive relationship. The principle is the same as the ambient temperature in the background area, and will not be repeated here.
  • Step 203 Determine the corresponding compensation information in the operation mode of the air-conditioning device according to the device operation information and/or the ambient temperature information of the air-conditioning device.
  • the compensation information includes a compensation coefficient and/or a compensation value
  • the compensation value is determined by the ambient temperature information
  • the compensation coefficient is determined by the equipment operation information.
  • the device operation information includes the operating duration of the air conditioning device in the operating mode, and the operating duration may be obtained according to the operating parameters in the air conditioning device.
  • Table 3 shows the relationship between the interval of the duration range to which the running duration X belongs in the cooling mode and the corresponding compensation coefficient, where the compensation coefficient is a value less than 1.
  • Table 3 shows that the corresponding compensation factor can be determined according to the operating time of the air conditioning device in the operating mode. For example, when the operating time is 15 minutes, the corresponding compensation factor is 0.8.
  • the compensation coefficient in an inverse relationship with the running time, that is, as the running time increases, the corresponding compensation coefficient decreases.
  • the compensation coefficient The decrease can be a fixed proportion of the inverse relationship that decreases with the increase of the running time. For example, when the running time is 10 minutes, the compensation coefficient is 0.8, and when the running time is 40 minutes, the compensation coefficient is 0.7, and when running When the duration is 60 minutes, the compensation coefficient is 0.62, that is, the compensation coefficient is reduced by a fixed ratio of 7/8 with the increase of the operating time.
  • the reduction of the compensation coefficient can also be reduced in an inverse relationship with an indefinite ratio with the increase of the running time.
  • the compensation factor when the running time is 10 minutes, the compensation factor is 0.8, and the running time When it is 40 minutes, the compensation factor is 0.7, and when the operation time is 60 minutes, the operation time is 0.6, that is, the compensation factor is reduced with an increase of the operation time at an unfixed ratio.
  • the running time and the compensation coefficient are in a positive relationship, and the compensation coefficient can be a value greater than 1, the principle is the same, and will not be repeated here.
  • the compensation value is determined according to the running time, and the compensation value is used to compensate the cold and heat sense value, in the cooling mode, the compensation value is inversely related to the running time, while in the heating mode, the compensation value It has a positive relationship with the running time.
  • the environmental temperature information includes the surface temperature and/or the background area temperature in the space where the air conditioning equipment is located except for the heat source area, where the compensation value corresponding to the background area temperature is positively related to the background area temperature, and the compensation value corresponding to the surface temperature is The surface temperature also has a positive relationship. According to the correspondence relationship between the temperature and the compensation value shown in Table 1 and Table 2, the compensation value corresponding to the surface temperature and the compensation value corresponding to the background temperature can be determined.
  • the first temperature range corresponding to the background area temperature is ⁇ 24°C, and the corresponding compensation value is -0.5.
  • Step 204 according to the compensation information, correct the detected cold and hot sense values.
  • the currently detected hot and cold sense value is recorded as M, for example, M value is 3.
  • the compensation value corresponding to the ambient temperature information is added to the detected hot and cold sense value to obtain the corrected cold and heat sense value, for example, the background area in the ambient temperature information
  • the compensation value corresponding to the temperature is -0.5
  • the compensation value corresponding to the surface temperature is -0.5
  • the compensation value determined by the surface temperature is used to correct the cold and hot sense value because the higher surface temperature will cause discomfort to the user's feet and legs. For example, in the case of floor heating, the ground When the temperature is high, it will cause discomfort to the user's legs.
  • the correction of the cold and heat sense value can be achieved, so that the automatic adjustment of the air conditioning equipment can reduce the surface temperature and realize the automatic adjustment of the ambient temperature. So as to achieve a comfortable body sense and improve user satisfaction.
  • the compensation coefficient corresponding to the device operation information is multiplied by the detected cold and heat sense value to obtain the corrected cold and heat sense value, for example, the current device operation
  • the duration is 20 minutes
  • the corresponding compensation coefficient is 0.8
  • the compensation information is ambient temperature information and equipment operating information
  • the operating time of the air conditioning equipment is short, for example, 5 minutes, 10 minutes
  • the background temperature and the surface temperature in the environmental temperature information are basically unchanged.
  • you can only consider The change of the running time compensates the cold and hot sense value, but this embodiment does not limit it
  • the air conditioning equipment may be shut down for a short period of time, for example, user operation (may be misoperation), voltage instability leads to power failure or short power suspension, etc.
  • the power-off time can be detected every time the power is turned on. If the power-off time is short, the current operation time will be corrected by a correction factor based on the previous operation time. For example, the power-off time is 5 Minutes, you can combine the last run time with the correction factor of 0.9 to incorporate this run time. If the power-off time is 15 minutes, you can multiply the last run time by the correction factor of 0.8 to incorporate this run time.
  • Step 205 Reduce the cooling capacity or heating capacity of the air-conditioning equipment according to the corrected cold and heat sense value.
  • the air guide bar swing speed is reduced, or, according to the corrected hot and cold sense value, the air speed of the air conditioning device is reduced, or, according to the corrected The cooling and heating sense value, lower the set temperature of the air conditioning equipment in the heating operation mode, and increase the set temperature of the air conditioning equipment in the cooling operation mode, which improves the accuracy of the automatic control of the air conditioning equipment to the user Bring a comfortable experience.
  • the adjustment of the supply air speed of the air conditioner will be described as an example based on the corrected cold and heat sense value, where the corrected cold and heat sense value range is [-3, 3], and the cold and heat sense value
  • the range is divided into different sections, and different sections correspond to different supply air speed adjustment coefficients.
  • Table 4 is a correspondence table between the corrected cooling and heating sense value M in the cooling mode and the supply air speed adjustment coefficients.
  • the thermal value of the heat source corresponding to the area A indicated by the arrow in FIG. 3 is recorded as M.
  • the M value is 1 and the ambient temperature is 31 degrees, then the temperature range corresponding to the background temperature
  • the compensation value corresponding to ⁇ 30°C is 1, and the M value obtained after compensating the M value is 2, as shown in Table 4, the corresponding wind speed is 1.4v.
  • FIG. 4 As an embodiment of the present application Provided schematic diagram of the corrected ambient temperature distribution.
  • the area B corresponding to the dotted rectangular frame indicated by the arrow is the adjusted heat source area, and the part outside the heat source area is the background area. Comparing Figures 3 and 4 can be seen that according to the correction After the cold and heat sense values are controlled by the air conditioning equipment, the temperature distribution obtained tends to be stable, that is, the purpose of automatic air conditioning is achieved, making the ambient temperature more comfortable.
  • controlling the swing speed of the air guide bar of the air conditioning device according to the corrected cold and heat sense values and controlling the set temperature of the air conditioning device have the same implementation principle, which will not be repeated in this embodiment.
  • the air conditioning device is operated in the cooling mode as an example for description, while in the heating mode, the compensation information is determined, and the compensation information is used to correct the cold and heat sense values. , which will not be repeated in this embodiment.
  • the operating information and/or ambient temperature information of the air-conditioning apparatus is obtained, the compensation coefficient corresponding to the operating duration is determined according to the operating information, and the compensation value corresponding to the temperature of the background area is determined according to the ambient temperature information , And the compensation value corresponding to the surface temperature, so as to determine the corresponding compensation information in the operating mode of the air conditioning equipment, which improves the accuracy of the compensation information, and corrects the sensed cold and heat sense value through the compensation information, which improves the corrected value.
  • the accuracy of the hot and cold sense values which in turn improves the accuracy of the automatic adjustment of the air conditioning equipment, bringing a comfortable experience.
  • the present application also proposes a control device for air conditioning equipment.
  • FIG. 5 is a schematic structural diagram of a control device of an air conditioning device according to an embodiment of the present application.
  • the device includes a detection module 51, a correction module 52 and a control module 53.
  • the detection module 51 is used to determine the cold and hot sense value of the heat source according to the detection result of the environmental parameters of the current environment.
  • the correction module 52 is configured to correct the detected cold and heat sense value according to the compensation information, wherein the compensation information is used to reduce the adjustment efficiency of the air-conditioning device.
  • the control module 53 is used to reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cooling and heating sense value.
  • the apparatus further includes: a first determination module and a second determination module.
  • the first determination module is configured to determine the corresponding compensation information in the operation mode of the air conditioning device according to the device operation information and/or the ambient temperature information of the air conditioning device; the compensation information includes a compensation coefficient and/or a compensation value.
  • the second determination module obtains the ambient temperature distribution; according to the ambient temperature distribution, determines that the background area temperature is within a set first temperature range; wherein, the ambient temperature distribution is detected by an array infrared thermopile sensor ; And/or, determining that the surface temperature is within the set second temperature range.
  • the device operation information includes the operated duration of the air-conditioning device in the operating mode; wherein, in the cooling mode, the compensation coefficient corresponding to the operated duration and the operated duration There is a reverse relationship between each other; in the heating mode, the compensation coefficient corresponding to the run time is positively related to the run time; the compensation coefficient is multiplied by the detected cold and heat sense value to obtain the The corrected hot and cold sense value.
  • the ambient temperature information includes the surface temperature and/or the background area temperature in the space where the air conditioning device is located except for the heat source area; wherein, the compensation value corresponding to the background area temperature and the background The area temperature is in a positive relationship; the compensation value corresponding to the surface temperature is in a positive relationship with the surface temperature; the compensation value is added to the detected cold and heat sense value to obtain the corrected cold and heat sense value.
  • the above correction module 52 is specifically used for:
  • the above detection module 51 is specifically used for:
  • the ambient temperature distribution is obtained by array infrared thermopile sensor detection; according to the ambient temperature distribution and the operation mode of the air conditioning equipment, the cold and heat sense value of the heat source is determined.
  • control module 53 is specifically used for:
  • the set temperature of the air conditioning device is lowered in the heating operation mode, and the set temperature of the air conditioning device is increased in the cooling operation mode.
  • the operating information and/or the ambient temperature information of the air-conditioning apparatus is acquired, the compensation coefficient corresponding to the operating duration is determined according to the operating information, and the compensation value corresponding to the temperature of the background area is determined according to the ambient temperature information , And the compensation value corresponding to the surface temperature, so as to determine the corresponding compensation information in the operating mode of the air-conditioning equipment, which improves the accuracy of the compensation information, and corrects the detected cold and heat sense value through the compensation information, improving the corrected
  • the accuracy of the cold and heat sense value avoids the presence of other heat sources in the environment, causing the air conditioning equipment to continuously adjust the environmental parameters to a value range that is not suitable for the human body, and improves the accuracy of the automatic adjustment of the air conditioning equipment.
  • the present application also proposes an air-conditioning device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the implementation The control method of the air conditioning device as described in the foregoing method embodiment.
  • the present application also proposes a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the control method of the air-conditioning apparatus described in the foregoing method embodiments is implemented.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may include at least one of the features explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise specifically limited.
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for implementing custom logic functions or steps of a process , And the scope of the preferred embodiment of the present application includes additional implementations, in which the order may not be shown or discussed, including performing the functions in a substantially simultaneous manner or in reverse order according to the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware as in another embodiment, it can be implemented using any one or a combination of the following techniques known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, dedicated integrated circuits with appropriate combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units are integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空气调节设备的控制方法、装置和空气调节设备,涉及家电设备控制技术领域,其中,方法包括:根据当前环境的环境参数检测结果,确定热源的冷热感值,根据补偿信息,对检测得到的冷热感值进行校正,其中,补偿信息用于降低空气调节设备的调节效率,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,通过补偿信息对检测得到的冷热感值进行校正,提高了冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。

Description

空气调节设备的控制方法、装置和空气调节设备
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司和美的集团股份有限公司于2018年12月25日提交的、申请名称为“空气调节设备的控制方法、装置和空气调节设备”的、中国专利申请号“201811593841.2”的优先权。
技术领域
本申请涉及家电设备控制技术领域,尤其涉及一种空气调节设备的控制方法、装置和空气调节设备。
背景技术
随着电子技术的发展和人们生活水平的提高,空气调节设备(例如,空调)的普及率越来越高,而可以对空气进行智能调节的产品越来越受到人们的青睐。
相关技术中,冷热感值的大小反映热源的冷热程度,通常采用根据冷热感值对空气调节设备进行控制,但是,实际检测中家居环境一般较复杂,根据冷热感值进行空调调节时,无法将环境调节到人体感觉舒适的状态,调节的准确性较低,从而极大影响了用户体验。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种空气调节设备的控制方法,通过补偿信息对检测得到的冷热感值进行校正,提高了冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
本申请提出一种空气调节设备的控制装置。
本申请提出一种空气调节设备。
本申请提出一种计算机可读存储介质。
本申请一方面实施例提出了一种空气调节设备的控制方法,包括:
根据当前环境的环境参数检测结果,确定热源的冷热感值;
根据补偿信息,对检测得到的冷热感值进行校正;其中,所述补偿信息用于降低所述空气调节设备的调节效率;
根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
本申请又一方面实施例提出了一种空气调节设备的控制装置,包括:
检测模块,用于根据当前环境的环境参数检测结果,确定热源的冷热感值;
校正模块,用于根据补偿信息,对检测得到的冷热感值进行校正;其中,所述补偿信息用于降低所述空气调节设备的调节效率;
控制模块,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
本申请又一方面实施例提出了一种空气调节设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述一方面所述的控制方法。
本申请又一方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如前述一方面所述的控制方法。
本申请实施例所提供的技术方案可以包含如下的有益效果:
根据当前环境的环境参数检测结果,确定热源的冷热感值,根据补偿信息,对检测得到的冷热感值进行校正,其中,补偿信息用于降低空气调节设备的调节效率,根据校正后的冷热感值,控制空气调节设备的制冷量或制热量,通过补偿信息对检测得到的冷热感值进行校正,提高了冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种空气调节设备的控制方法的流程示意图;
图2为本申请实施例所提供的另一种空气调节设备的控制方法的流程示意图;
图3为本申请实施例提供的校正前的环境温度分布示意图;
图4为本申请实施例提供的校正后的环境温度分布示意图;以及
图5为本申请实施例提供的一种空气调节设备的控制装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空气调节设备的控制方法、装置和空气调节设备。
图1为本申请实施例所提供的一种空气调节设备的控制方法的流程示意图。
如图1所示,该方法包括以下步骤:
步骤101,根据当前环境的环境参数检测结果,确定热源的冷热感值。
其中,热源是当前环境中的物体,例如人体、茶壶等,进行环境参数检测得到的,作为一种可能的实现方式,通过空气调节设备自身检测得到的参数,例如,通过空气调节设备的阵列式红外热电堆传感器检测得到的环境温度分布,根据环境温度分布以及空气调节设备的运行模式,确定热源的冷热感值;作为另一种可能的实现方式,还可以根据空气调节设备自身检测到的参数,结合其他空气设备,例如,加湿器或除湿机检测到的湿度等参数,确定热源的冷热感值。其中,冷热感值的大小反映热源的冷热程度,也就是说,冷热感值越大代表热源的温度越高,即越热,冷热感值越小代表热源的温度越低,即越冷。
可选的,若检测到的热源为多个,则将多个热源的冷热感值中的最大冷热感值作为检测得到的冷热感值,或者是将多个热源的冷热感值取平均值,将平均的冷热感值作为检测得到的冷热感值。
在一种场景下,当热源即为用户时,用户的冷热感值与用户的个人体质和运动激烈程度有关,在实际操作时,可以根据用户的个人情况进行实时采集标注等,也可以根据大数据建立用户体表参考温度和用户冷热感值的模型(在本示例中,采集大量用户冷热感值、用户体表温度和空气调节设备的导风板的面积、电机的性能等硬件参数,根据采集的大量实验数据建立用户体表参考温度和用户冷热感值的模型,作为一种可能的实现方式,冷热感模型还可结合多种用户生理参数设置等,其中,该冷热感模型的表达公式可以为M=F(H),其中,M为冷热感模型,H=R+C+K+Esk+Eres+Cres,其中,R为人体辐射产生的热量,单位为W/m2,C为人体与环境中的气流对流产生的热量单位为W/m2,K为传导产生的散热量,单位为W/m2,Esk为因皮肤的水份蒸发而产生的散热量,单位为W/m2,Eres为因为呼气水份蒸发而产生的散热量,单位为W/m2Cres为呼气对流产生的散热流量,单位为W/m2),根据该模型用于计算与用户体表参考温度对应的用户冷热感值。
需要说明的是,本实施例中所介绍的冷热感模型的表达公式仅仅是一个示例,本领域所属的技术人员能够根据实际情况,选择合适的冷热感模型,例如通过增加或者减少上述冷热感模型的表达公式中的参数,以满足实际情况的需要,在此就不再赘述了。
步骤102,根据补偿信息,对检测得到的冷热感值进行校正。
其中,补偿信息包括补偿系数和/或补偿值,其中,补偿信息用于降低空气调节设备的调节效率。
具体地,将环境温度信息对应的补偿值与检测得到的冷热感值相加,将运行信息对应的补偿系数与相加得到的冷热感值相乘,得到校正后的冷热感值,通过补偿信息对冷热感值进 行补偿,提高了冷热感值的准确度。
其中,环境温度信息对应的补偿值,和运行信息对应的补偿系数是预先设定好的,作为一种可能的实现方式,可以是根据空调的运行模式,预先通过大量的实验数据确定的,本实施例中对此不作限定。
需要说明的是,即使环境中没有人体之外的其他热源,根据冷热感值确定的补偿信息对空气调节设备的运行参数进行补偿,也能够避免空气调节设备持续以较高的调节效率运行,在保证了对环境的调节效果,同时也不影响用户体验的情况下,降低了能耗。同时,在空气调节设备运行经过一段时间后,例如调节后的环境参数满足冷热感值对应的环境参数后,用户已经能够获得较为舒适的环境体验,所以,此时降低调节的效率,也不会影响用户体验。
步骤103,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
具体地,根据校正后的冷热感值,减小空气调节设备的导风条摆动速度,或者,根据校正后的冷热感值,减小空气调节设备的送风风速,或者,根据校正后的冷热感值,在制热的运行模式下调低空气调节设备的设定温度,在制冷的运行模式下调高空气调节设备的设定温度,提高了空气调节设备自动控制的准确度,给用户带来舒适体验。
本申请实施例中,制冷量或制热量具体可以是通过送风量调整的。
举例而言,当空气调节设备为空调时,空气调节设备的制冷量或者制热量可以通过下式确定:
Q 0=(i C-i D)·G(kJ/h);(1)
其中,Q 0表示制冷量或制热量,i C和i D分别表示蒸发器前后的空气焓值,G表示送风量。i C和i D可以通过增加或者减少压缩机的功率进行调整。
因此,当根据环境温度分布,确定空气调节设备在对应送风角度的制冷量或制热量需要增加时,可以通过在(i C-i D)值保持不变的情况下,通过增加送风量G,来增加空气调节设备的制冷量或者制热量。而当根据环境温度分布,确定空气调节设备在对应送风角度的制冷量或制热量需减小时,可以通过在(i C-i D)值保持不变的情况下,通过减小送风量G,来减小空气调节设备的制冷量或者制热量。
为了实现对送风量进行调整,可以具体采用调整风速、调整导风条摆动速度和暂停摆动时长等多种控制手段,而且还可以将几种控制手段结合,提高制冷量或制热量的调整效率。下面将对几种可能的实现方式分别进行说明。
作为第一种可能的实现方式,可以在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,从而送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至 对应的送风角度时,相应的送风的风速越小,从而送风角度对应的制冷量或制热量越小。
作为第二种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整导风条的摆动速度。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,导风条的摆动速度越小,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,导风条的摆动速度越大,从而该送风角度对应的制冷量或制热量越小。
作为第三种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整导风条的暂停摆动时长。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,导风条的暂停摆动时长越大,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,导风条的暂停摆动时长越小,从而该送风角度对应的制冷量或制热量越小。
作为第四种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速和导风条的摆动速度。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,且导风条的摆动速度越小,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越小,且导风条的摆动速度越大,从而该送风角度对应的制冷量或制热量越小。
作为第五种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速和导风条的暂停摆动时长。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,且导风条的暂停摆动时长越大,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越小,且导风条的暂停摆动时长越小,从而该送风角度对应的制冷量或制热量越小。
本实施例的空气调节设备的控制方法中,根据当前环境的环境参数检测结果,确定热源的冷热感值,根据补偿信息,对检测得到的冷热感值进行校正,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,通过补偿信息对检测得到的冷热感值进行校正,提高了冷热感值的准确度,一方面避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性,另一方面,即使环境中没有人体之外的其他热源时,根据冷热感值确定的空气调节参数进行补偿,也能够避免空气调节设备持续以较高的调节效率运行,在保证了对环境的调节效果同时又不 影响用户体验的情况下,降低了能耗。
基于上一实施例,本实施例提供了另一种空气调节设备的控制方法,图2为本申请实施例所提供的另一种空气调节设备的控制方法的流程示意图。
如图2所示,该方法可以包括以下步骤:
步骤201,根据当前环境的环境参数检测结果,确定热源的冷热感值。
本实施例中,以空气调节设备为空调,空调运行模式为制冷模式为例进行说明,图3为本申请实施例提供的校正前的环境温度分布示意图,由于物体一直向外辐射红外能量,在空调处于制冷模式下时,通过阵列式红外热电堆传感器对环境进行检测,检测得到环境温度分布图中对应的不同的温度分布,如图3中所示。将温度分布图中温度最高的区域识别为热源区域,即图3中,箭头指示的虚线矩形框对应的A区域,根据热源区域确定热源的温度,本实施例中可将热源区域中最高的温度值作为热源的温度值,或者,是将热源区域中的温度值求取平均值作为热源的温度值,根据预先设定的热源的温度值与冷热感值的对应关系,确定热源的冷热感值。
步骤202,获取环境温度分布,根据环境温度分布,确定环境温度信息。
其中,环境温度信息包含背景区域温度,和/或,地表温度。
具体地,背景区域的温度是由环境温度分布中除热源区域以外的区域的温度确定的,作为一种可能的实现方式,将背景区域的温度求取平均值作为背景区域温度,也就是说,将图3所示的环境温度分布图中,除去箭头指示的热源对应的A区域以外的区域的温度值求取平均值,作为背景区域温度,并确定背景区域温度处于设定的第一温度范围内,其中,第一温度范围是预先设定的,指示了第一温度范围与补偿值的对应关系。
表1为制冷模式下,第一温度范围的区间与对应的补偿值的关系。
第一温度范围的区间(℃) 补偿值
20≤X<24 -1
24≤X<26 -0.5
26≤X<28 +0
28≤X<30 +0.5
30≤X +1
表1
从表1中可以看出,第一温度范围包含不同的区间,不同的区间对应不同的补偿值,根据确定的背景区域温度,确定属于的第一温度范围的区间,即确定了对应的补偿值。
地表温度是根据地表温度检测传感器检测得到的,其中,地表温度传感器可以为设置在地面的传感器,或者是安装在空调上的温度传感器,例如为单点热电堆传感器,根据传感器的检测值确定地表温度,并确定地表温度处于设定的第二温度范围内,其中,第二温度范围也是预先设定的,指示了第二温度范围与补偿值的对应关系,第一温度范围和第二温度范围没有范围大小之分。
表2为制冷模式下,第二温度范围的区间与对应的补偿值的关系。
第二温度范围的区间(℃) 补偿值
20≤X<24 -1
24≤X<26 -0.5
26≤X<28 +0
28≤X<30 +0.5
30≤X +1
表2
从表2中可以看出,不同的地表温度,对应不同的第二温度范围的区间,即对应了不同的补偿值,其中,第一温度范围的区间对应的补偿值,与第二温度范围的区间对应的补偿值可以相同,也可以不同,本实施中仅为举例说明,并不进行限定。
需要说明的是,在制冷和制热的运行模式下,背景区域的环境温度与补偿值之间为正向关系,也就是说背景区域的环境温度增加,对应的补偿值也增加,作为一种可能的实现方式,补偿值的增加可以是以固定比例或固定值的增加方式随背景区域的环境温度的增加而增加,例如,背景区域的环境温度为23摄氏度时,补偿值为-1,而背景区域的环境温度为25摄氏度时,补偿值为-0.5,而背景区域的环境温度为26摄氏度时,补偿值为0,即补偿值是以固定增加+0.5随背景区域的环境温度的增加而增加的。作为另一种可能的实现方式,补偿值的增加也可以是以不固定比例或不固定值的增加方式随背景区域的环境温度的增加而增加,例如,背景区域的环境温度为23摄氏度时,补偿值为-1,而背景区域的环境温度为25摄氏度时,补偿值为-0.5,而背景区域的环境温度为26摄氏度时,补偿值为-0.1,即补偿值的增加是以不固定比例或不固定值的增加方式随背景区域的环境温度的增加而增加。同时,在制冷 和制热的运行模式下,地表温度与地表温度对应的补偿值之间也为正向关系,其原理和背景区域的环境温度相同,此处不再赘述。
步骤203,根据空气调节设备的设备运行信息和/或环境温度信息,确定空气调节设备的运行模式下对应的补偿信息。
其中,补偿信息包括补偿系数和/或补偿值,补偿值是由环境温度信息确定的,补偿系数是由设备运行信息确定的。
具体地,设备运行信息包括空气调节设备在运行模式下的已运行时长,已运行时长可以根据空气调节设备中的运行参数中获取。
表3为制冷模式下,已运行时长X所属的时长范围的区间与对应的补偿系数的关系,其中,补偿系数为小于1的值。
Figure PCTCN2019110871-appb-000001
表3
表3示出了,根据空气调节设备在运行模式下的已运行时长,可以确定对应的补偿系数,例如,运行时长为15分钟时,对应的补偿系数为0.8。
需要说明的是,在制冷模式下,补偿系数与已运行时长之间为反向关系,也就是说随着运行时长增加,对应的补偿系数是降低的,作为一种可能的实现方式,补偿系数的降低可以是以固定比例的反向关系随已运行时长的增加而降低,例如,运行时长为10分钟时,补偿系数为0.8,而运行时长为40分钟时,补偿系数为0.7,而当运行时长为60分钟时,补偿系数为0.62,即补偿系数是以固定比例7/8随运行时长的增加而降低的。作为另一种可能的实现方式,补偿系数的降低也可以是以不固定比例的反向关系随已运行时长的增加而降低,例如,运行时长为10分钟时,补偿系数为0.8,而运行时长为40分钟时,补偿系数为0.7,而当运行时长为60分钟时,运行时长为0.6,即补偿系数是以不固定比例随运行时长的增加而 降低的。而在制热模式下,运行时长和补偿系数为正向关系,补偿系数可以为大于1的值,其原理相同,此处不在赘述。
还需要说明的是,如果根据运行时长确定补偿值,利用补偿值对冷热感值进行补偿时,在制冷模式下,补偿值与运行时长为反向关系,而在制热模式下,补偿值与运行时长为正向关系。
环境温度信息包括地表温度和/或空气调节设备所处空间中除热源区域以外的背景区域温度,其中,背景区域温度对应的补偿值与背景区域温度为正向关系,地表温度对应的补偿值与地表温度也为正向关系。根据表1和表2示出的温度和补偿值的对应关系,可以确定地表温度对应的补偿值,背景区域温度对应的补偿值。
根据表1所示,若当前的背景区域温度为25.9,则背景区域温度对应的第一温度范围为≥24℃,对应的补偿值为-0.5。
根据表2所示,若当前的地表温度为24.1,则地表温度对应的第二温度范围为≥24℃,对应的补偿值为-0.5。
步骤204,根据补偿信息,对检测得到的冷热感值进行校正。
本申请实施例中,当前检测得到的冷热感值记为M,例如,M值为3。
在一种场景下,若补偿信息为环境温度信息,将环境温度信息对应的补偿值与检测得到的冷热感值相加得到校正后的冷热感值,例如,环境温度信息中的背景区域温度对应的补偿值为-0.5,地表温度对应的补偿值为-0.5,则将背景区域温度对应的补偿值以及地表温度对应的补偿值均和冷热感值M相加,即3-0.5-0.5=2,得到校正后的冷热感值为2。
需要说明的是,利用地表温度确定的补偿值对冷热感值进行校正,是因为地表温度较高时,会引起用户足部和腿部的不适,例如,在地暖制热的场景下,地面温度较高时,会引起用户腿部不适,通过测量地表温度确定补偿值,可以实现对冷热感值的校正,从而通过空气调节设备的自动调节,降低地表温度,实现环境温度的自动调节,从而达到舒适的体感,提高了用户的满意度。
在另一种可能的场景下,若补偿信息为设备运行信息,将设备运行信息对应的补偿系数与检测得到的冷热感值相乘得到校正后的冷热感值,例如,当前设备的运行时长为20分钟,对应的补偿系数为0.8,则将补偿系数与检测得到的冷热感值相乘,即3*0.8=2.4,即校正后的冷热感值为2.4。
在又一种可能的场景下,若补偿信息为环境温度信息和设备的运行信息,则将环境温度信息对应的补偿值与检测得到的冷热感值相加,再将运行信息对应的补偿系数与相加得到的冷热感值相乘,得到校正后的冷热感值,即(3-0.5-0.5)*0.9=1.8。需要说明的是,在该场景下,空气调节设备的运行时间较短时,例如,5分钟,10分钟,环境温度信息中的背景温 度和地表温度基本是不变的,为了简化,可以只考虑运行时间的改变对冷热感值的补偿,但是本实施例中对此并不进行限
需要说明的是,在实际应用中,可能会出现空气调节设备短时间关机的情况,例如,用户的操作(可能是误操作)、电压不稳导致跳电或短暂停电等等。针对此类情况,可以在每次开机时检测断电时间,若断电时间较短,则本次运行时长会在上一次运行时长基础上乘以一个校正系数进行校正,例如,断电时间为5分钟,则可以将上一次运行时长乘以校正系数0.9结合到本次运行时长中,若断电时间为15分钟,则可以将上一次运行时长乘以校正系数0.8结合到本次运行时长中,若断电时间较长,如超过30分钟,因断电时间较久,则不进行本次运行时长的校正,通过将上一次运行时长乘以校正系数实现了当空气调节设备有短暂的停止运行时,可以对恢复运行后的本次运行时长进行校正,以提高本次运行时长统计的准确性,从而提高对冷热感值补偿的准确性。步骤205,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
具体地,根据校正后的冷热感值,减小空气调节设备的导风条摆动速度,或者,根据校正后的冷热感值,减小空气调节设备的送风风速,或者,根据校正后的冷热感值,在制热的运行模式下调低空气调节设备的设定温度,在制冷的运行模式下调高空气调节设备的设定温度,提高了空气调节设备自动控制的准确度,给用户带来舒适体验。
本实施例中,以根据校正后的冷热感值,对空调的送风风速调整为例进行说明,其中,校正后的冷热感值范围为[-3,3],将冷热感值的范围划分为不同的区间,不同的区间对应不同的送风风速调节系数,表4为制冷模式下校正后的冷热感值M的区间与送风风速的调节系数的对应表。
校正后的冷热感值M的区间 送风风速调节系数
0.5≤M<1 0.6
1≤M<1.5 0.8
1.5≤M<2 1
2≤M<2.5 1.4
2.5≤M 1.5
表4
例如,在制冷模式下,图3中箭头指示的A区域对应的热源的冷热感值记为M,开始 运行时,M值为1,环境温度为31度,则背景区域温度对应的温度范围为≥30℃对应的补偿值为1,对M值进行补偿后得到的M值为2,如表4所示,对应的风速为1.4v,运行一段时间后,M值为1,当前的背景区域温度为25.9,则背景区域温度对应的温度范围为≥24℃,对应的补偿值为-0.5,则冷热感值进行补偿后,为1-0.5=0.5,当M值为0.5时对应的风速则降为0.6v,对风速进行降低后,运行预设时间,通过校正后的冷热感值进行空气调节设备的调节后,再次测量获取当前的环境温度分布,图4为本申请实施例提供的校正后的环境温度分布示意图,箭头指示的虚线矩形框对应的B区域即为调整后的热源区域,热源区域以外的部分则为背景区域,对比图3和图4可以看出,根据校正后的冷热感值进行空气调节设备的控制后,获取得到的温度分布趋向于平稳,即达到了对空气自动调节的目的,使得环境温度更加舒适。
还需要说明的是,本申请实施例的上述所有表中的数值部分仅仅是举例,本领域所属的技术人员能够根据实际情况对数值进行调整,例如,进行增大或者减小,范围区间分布也不一定采用本实施例介绍的划分情况。
需要理解的是,根据校正后的冷热感值,控制空气调节设备的导风条摆动速度,和控制空气调节设备的设定温度,实现原理相同,本实施例中不再赘述。
需要说明的是,本实施例中是以空气调节设备运行在制冷模式下为例进行说明的,而在制热模式下,确定补偿信息,并利用补偿信息对冷热感值进行校正的原理相同,本实施例中不再赘述。
本申请实施例的空气调节设备的控制方法中,获取空气调节设备的运行信息和/或环境温度信息,根据运行信息确定运行时长对应的补偿系数,根据环境温度信息确定背景区域温度对应的补偿值,以及地表温度对应的补偿值,从而确定空气调节设备的运行模式下对应的补偿信息,提高了补偿信息的准确度,通过补偿信息对检测得到的冷热感值进行校正,提高了校正后的冷热感值的准确度,进而提高了空气调节设备自动调节的准确度,带来舒适体验。
为了实现上述实施例,本申请还提出一种空气调节设备的控制装置。
图5为本申请实施例提供的一种空气调节设备的控制装置的结构示意图。
如图5所示,该装置包括:检测模块51、校正模块52和控制模块53。
检测模块51,用于根据当前环境的环境参数检测结果,确定热源的冷热感值。
校正模块52,用于根据补偿信息,对检测得到的冷热感值进行校正,其中,所述补偿信息用于降低所述空气调节设备的调节效率。
控制模块53,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
进一步地,在本申请实施例的一种可能的实现方式中,该装置还包括:第一确定模块和第二确定模块。
第一确定模块,用于根据空气调节设备的设备运行信息和/或环境温度信息,确定所述空气调节设备的运行模式下对应的补偿信息;所述补偿信息包括补偿系数和/或补偿值。
第二确定模块,获取环境温度分布;根据所述环境温度分布,确定所述背景区域温度处于设定的第一温度范围内;其中,所述环境温度分布是通过阵列式红外热电堆传感器检测得到的;和/或,确定所述地表温度处于所述设定的第二温度范围内。
作为一种可能的实现方式,设备运行信息包括所述空气调节设备在所述运行模式下的已运行时长;其中,所述在制冷模式下,已运行时长对应的补偿系数与所述已运行时长之间为反向关系;在制热模式下,已运行时长对应的补偿系数与所述已运行时长之间为正向关系;所述补偿系数与检测得到的冷热感值相乘得到所述校正后的冷热感值。
作为一种可能的实现方式,环境温度信息包括地表温度和/或所述空气调节设备所处空间中除热源区域以外的背景区域温度;其中,所述背景区域温度对应的补偿值与所述背景区域温度为正向关系;所述地表温度对应的补偿值与所述地表温度为正向关系;所述补偿值与检测得到的冷热感值相加得到所述校正后的冷热感值。
作为一种可能的实现方式,上述校正模块52,具体用于:
将所述环境温度信息对应的补偿值与检测得到的冷热感值相加;将所述运行信息对应的补偿系数与相加得到的冷热感值相乘,得到所述校正后的冷热感值。
作为一种可能的实现方式,上述检测模块51,具体用于:
通过阵列式红外热电堆传感器检测得到环境温度分布;根据所述环境温度分布以及所述空气调节设备的运行模式,确定热源的冷热感值。
作为一种可能的实现方式,上述控制模块53,具体用于:
根据校正后的冷热感值,减小所述空气调节设备的导风条摆动速度;
或者,根据校正后的冷热感值,减小所述空气调节设备的送风风速;
或者,根据校正后的冷热感值,在制热的运行模式下调低所述空气调节设备的设定温度,在制冷的运行模式下调高所述空气调节设备的设定温度。。
需要说明的是,前述对空气调节设备的控制方法实施例的解释说明也适用于该实施例的空气调节设备的控制装置,此处不再赘述。
本申请实施例的空气调节设备的控制装置中,获取空气调节设备的运行信息和/或环境温度信息,根据运行信息确定运行时长对应的补偿系数,根据环境温度信息确定背景区域温度对应的补偿值,以及地表温度对应的补偿值,从而确定空气调节设备的运行模式下对应的补偿信息,提高了补偿信息的准确度,通过补偿信息对检测得到的冷热感值进行校正,提高了校正后的冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
为了实现上述实施例,本申请还提出了一种空气调节设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述方法实施例所述的空气调节设备的控制方法。
为了实现上述实施例,本申请还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如前述方法实施例所述的空气调节设备的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以 其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种空气调节设备的控制方法,其特征在于,所述方法包括以下步骤:
    根据当前环境的环境参数检测结果,确定热源的冷热感值;
    根据补偿信息,对检测得到的冷热感值进行校正;其中,所述补偿信息用于降低所述空气调节设备的调节效率;
    根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据补偿信息,对检测得到的冷热感值进行校正之前,还包括:
    根据空气调节设备的设备运行信息和/或环境温度信息,确定所述空气调节设备的运行模式下对应的补偿信息;所述补偿信息包括补偿系数和/或补偿值。
  3. 根据权利要求2所述的控制方法,其特征在于,
    所述设备运行信息包括所述空气调节设备在所述运行模式下的已运行时长;
    其中,所述在制冷模式下,已运行时长对应的补偿系数与所述已运行时长之间为反向关系;在制热模式下,已运行时长对应的补偿系数与所述已运行时长之间为正向关系;所述补偿系数与检测得到的冷热感值相乘得到所述校正后的冷热感值。
  4. 根据权利要求2所述的控制方法,其特征在于,
    所述环境温度信息包括地表温度和/或所述空气调节设备所处空间中除热源区域以外的背景区域温度;
    其中,所述背景区域温度对应的补偿值与所述背景区域温度为正向关系;
    所述地表温度对应的补偿值与所述地表温度为正向关系;
    所述补偿值与检测得到的冷热感值相加得到所述校正后的冷热感值。
  5. 根据权利要求4所述的控制方法,其特征在于,所述根据补偿信息,对检测得到的冷热感值进行校正之前,还包括:
    获取环境温度分布;根据所述环境温度分布,确定所述背景区域温度处于设定的第一温度范围内;其中,所述环境温度分布是通过阵列式红外热电堆传感器检测得到的;
    和/或,确定所述地表温度处于所述设定的第二温度范围内。
  6. 根据权利要求2所述的控制方法,其特征在于,所述根据补偿信息,对检测得到的冷热感值进行校正,包括:
    将所述环境温度信息对应的补偿值与检测得到的冷热感值相加;
    将所述运行信息对应的补偿系数与相加得到的冷热感值相乘,得到所述校正后的冷热感值。
  7. 根据权利要求1-6任一项所述的控制方法,其特征在于,所述根据当前环境的环境 参数检测结果,确定热源的冷热感值,包括:
    通过阵列式红外热电堆传感器检测得到环境温度分布;
    根据所述环境温度分布以及所述空气调节设备的运行模式,确定热源的冷热感值。
  8. 根据权利要求1-6任一项所述的控制方法,其特征在于,所述根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,包括:
    根据校正后的冷热感值,减小所述空气调节设备的导风条摆动速度;
    或者,根据校正后的冷热感值,减小所述空气调节设备的送风风速;
    或者,根据校正后的冷热感值,在制热的运行模式下调低所述空气调节设备的设定温度,在制冷的运行模式下调高所述空气调节设备的设定温度。
  9. 一种空气调节设备的控制装置,其特征在于,所述方法包括以下步骤:
    检测模块,用于根据当前环境的环境参数检测结果,确定热源的冷热感值;
    校正模块,用于根据补偿信息,对检测得到的冷热感值进行校正;其中,所述补偿信息用于降低所述空气调节设备的调节效率;
    控制模块,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
  10. 一种空气调节设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-8中任一所述的控制方法。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的控制方法。
PCT/CN2019/110871 2018-12-25 2019-10-12 空气调节设备的控制方法、装置和空气调节设备 WO2020134360A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529069A JP7220787B2 (ja) 2018-12-25 2019-10-12 空気調和機器の制御方法、制御装置及び空気調和機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811593841.2 2018-12-25
CN201811593841.2A CN109668265B (zh) 2018-12-25 2018-12-25 空气调节设备的控制方法、装置和空气调节设备

Publications (1)

Publication Number Publication Date
WO2020134360A1 true WO2020134360A1 (zh) 2020-07-02

Family

ID=66147221

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/110871 WO2020134360A1 (zh) 2018-12-25 2019-10-12 空气调节设备的控制方法、装置和空气调节设备

Country Status (3)

Country Link
JP (1) JP7220787B2 (zh)
CN (1) CN109668265B (zh)
WO (1) WO2020134360A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115789883A (zh) * 2022-12-02 2023-03-14 珠海格力电器股份有限公司 一种空调温度补偿值的确定方法和装置
CN113670478B (zh) * 2021-07-09 2024-04-30 广州市倍尔康医疗器械有限公司 基于测温仪的温度数据的修正方法、系统、装置及介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724220A (zh) * 2018-12-25 2019-05-07 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109668265B (zh) * 2018-12-25 2020-10-30 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN111412621B (zh) * 2020-03-31 2022-04-01 广东美的制冷设备有限公司 儿童空调及其运行控制方法、计算机存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145033A (ja) * 2007-12-13 2009-07-02 Shijin Kogyo Sakushinkai 空調システムで所在環境の快適性を制御する方法
WO2014171314A1 (ja) * 2013-04-15 2014-10-23 三菱電機株式会社 空調システム制御装置
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN108006906A (zh) * 2017-11-03 2018-05-08 特灵空调系统(中国)有限公司 空调温度控制方法、温度控制装置及空调
CN108317692A (zh) * 2018-01-26 2018-07-24 青岛海尔空调器有限总公司 基于穿衣补偿的温冷感空调器控制方法和空调器
CN109668267A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109668265A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189410B2 (ja) * 1992-09-02 2001-07-16 三菱電機株式会社 冷暖房装置
JP5491891B2 (ja) 2009-05-11 2014-05-14 パナソニック株式会社 機器マネージメント装置およびプログラム
JP5627562B2 (ja) 2011-12-09 2014-11-19 三菱電機株式会社 空気調和システム
TWI512247B (zh) * 2012-12-20 2015-12-11 Ind Tech Res Inst 舒適度調控系統、其使用者端設備及其系統端設備
JP2015111019A (ja) 2013-12-06 2015-06-18 株式会社東芝 空調システム、空調機器制御装置、制御方法、およびプログラム
JP2017058062A (ja) 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 空気調和機
CN105371434B (zh) * 2015-11-30 2017-04-12 珠海格力电器股份有限公司 空调运行控制方法及系统
WO2018183710A1 (en) * 2017-03-31 2018-10-04 Honeywell International Inc. Providing a comfort dashboard
CN108195032B (zh) * 2017-12-28 2020-05-22 广东美的制冷设备有限公司 空调器控制方法、装置及计算机可读存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009145033A (ja) * 2007-12-13 2009-07-02 Shijin Kogyo Sakushinkai 空調システムで所在環境の快適性を制御する方法
WO2014171314A1 (ja) * 2013-04-15 2014-10-23 三菱電機株式会社 空調システム制御装置
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN108006906A (zh) * 2017-11-03 2018-05-08 特灵空调系统(中国)有限公司 空调温度控制方法、温度控制装置及空调
CN108317692A (zh) * 2018-01-26 2018-07-24 青岛海尔空调器有限总公司 基于穿衣补偿的温冷感空调器控制方法和空调器
CN109668267A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109668265A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670478B (zh) * 2021-07-09 2024-04-30 广州市倍尔康医疗器械有限公司 基于测温仪的温度数据的修正方法、系统、装置及介质
CN115789883A (zh) * 2022-12-02 2023-03-14 珠海格力电器股份有限公司 一种空调温度补偿值的确定方法和装置

Also Published As

Publication number Publication date
JP2022509162A (ja) 2022-01-20
CN109668265B (zh) 2020-10-30
CN109668265A (zh) 2019-04-23
JP7220787B2 (ja) 2023-02-10

Similar Documents

Publication Publication Date Title
WO2020134360A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020134124A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN110715415B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN108361926B (zh) 一种基于温冷感的空调器控制方法和空调器
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
WO2018166372A1 (zh) 空调器控制方法
WO2020000838A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN109668267B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN107143984A (zh) 空调及其睡眠控制模式实现方法和实现装置以及实现系统
WO2019034127A1 (zh) 基于人体舒适度的空调器控制方法及空调器
CN108317692B (zh) 基于穿衣补偿的温冷感空调器控制方法和空调器
CN109668264B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000836A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
WO2020164227A1 (zh) 用于空调器的控制方法
CN114562790B (zh) 制热模式新风控制方法及其装置、空调器及可读存储介质
WO2020052149A1 (zh) 室内机、其变风量控制方法、空调器、计算机设备及存储介质
CN103759391B (zh) 一种恒温恒湿空调系统及提高室内温湿度精度的控制方法
WO2022127108A1 (zh) 空调器及其温湿度调控方法、计算机可读存储介质
CN109724221B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018196577A1 (zh) 一种空调器制热控制方法
WO2020000553A1 (zh) 空气调节设备及其控制方法和装置
CN108302691A (zh) 空调控制方法及空调器
WO2019144939A1 (zh) 一种基于温冷感的空调器控制方法和空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529069

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902858

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19902858

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19902858

Country of ref document: EP

Kind code of ref document: A1