WO2018166372A1 - 空调器控制方法 - Google Patents

空调器控制方法 Download PDF

Info

Publication number
WO2018166372A1
WO2018166372A1 PCT/CN2018/078041 CN2018078041W WO2018166372A1 WO 2018166372 A1 WO2018166372 A1 WO 2018166372A1 CN 2018078041 W CN2018078041 W CN 2018078041W WO 2018166372 A1 WO2018166372 A1 WO 2018166372A1
Authority
WO
WIPO (PCT)
Prior art keywords
ambient temperature
current
parameter
operating parameters
air conditioner
Prior art date
Application number
PCT/CN2018/078041
Other languages
English (en)
French (fr)
Inventor
肖克强
徐贝贝
郭丽
任德亮
刘聚科
程永甫
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Priority to EP18767638.2A priority Critical patent/EP3561405B1/en
Priority to US16/475,010 priority patent/US20190316797A1/en
Publication of WO2018166372A1 publication Critical patent/WO2018166372A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/56Remote control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2130/00Control inputs relating to environmental factors not covered by group F24F2110/00
    • F24F2130/10Weather information or forecasts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2614HVAC, heating, ventillation, climate control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention belongs to the field of air conditioning technology, and more particularly to a method of controlling an air conditioner.
  • air conditioners have certain deficiencies in the use process. For example, in the opening and adjusting phases, they are too dependent on human effects. When the use environment changes, it often needs to be adjusted several times to meet the requirements of users. This process is relatively complicated, and it takes time and effort in the adjustment process, and the user experience is poor.
  • the existing partial air conditioner adopts the following automatic control method: during the operation of the air conditioner, the indoor temperature, the outdoor temperature and the target parameters of the air conditioner are acquired at intervals to generate operation mode information and store .
  • the air conditioner is turned on again, detecting the indoor temperature and the outdoor temperature, and selecting the current operation mode information from the operation mode information according to the detected indoor temperature and the outdoor temperature, and according to the target applicable to the current operation mode information.
  • the parameters control the air conditioner.
  • the control method of the air conditioner of the embodiment of the invention makes it unnecessary for the user to perform complicated key operation every time the power is turned on, thereby greatly improving the intelligent use experience of the air conditioner.
  • this control method is only a complete copy of the user's previous operational behavior, regardless of whether the previous operational behavior is appropriate. Therefore, there is still a defect in the use comfort in the actual application process.
  • An object of the present invention is to provide an air conditioner control method which improves the accuracy of air conditioner control and the comfort of use.
  • An air conditioner control method comprising:
  • the continuous running time of the air conditioner is started, the number of operating parameter adjustments of the current powering, and the ambient temperature of the current powering are adjusted according to the known continuous running time and the allowable operating parameters. Corresponding relationship of the number of times selects the number of times of the allowable operation parameter adjustment of the current power-on corresponding to the continuous running time of the current power-on;
  • the target operation parameter of the last adjustment in the current power-on process is determined to be the ambient temperature of the current startup.
  • the optimal operating parameters corresponding to the ambient temperature of the current booting and the ambient temperature of the current booting are stored as historical ambient temperature and one-to-one corresponding optimal operating parameters;
  • the current operating parameter corresponding to the current ambient temperature is selected from the known historical ambient temperature and the one-to-one corresponding optimal operating parameter, and specifically includes:
  • the optimal operating parameter corresponding to the historical ambient temperature closest to the current ambient temperature is used as the optimal operating parameter corresponding to the current ambient temperature as the current operating parameter.
  • the plurality of the optimal operating parameters are The operating parameters with different information take the average value of the parameter information, and combine the averaged operating parameter with the operating parameters having the same parameter information among the plurality of optimal operating parameters into the current operating parameter.
  • the historical ambient temperature closest to the current ambient temperature is plural, selecting an optimal one corresponding to the historical ambient temperature of the current ambient temperature in the same season or the same month from the plurality of the closest historical ambient temperatures
  • the operating parameters are used as the current operating parameters.
  • the optimal operating parameters corresponding to the plurality of the current ambient temperatures in the same season or the same month are respectively obtained.
  • operating parameters of the plurality of optimal operating parameters having different parameter information are taken as an average value of the parameter information, and the running parameter of the averaged operating parameter and the operating parameter of the plurality of the optimal operating parameters are combined Into the current operating parameters.
  • the most corresponding to the historical ambient temperature of the air conditioner having the same position information as the air conditioner is selected from the plurality of the closest historical ambient temperatures.
  • the excellent operating parameters are used as the current operating parameters.
  • the optimal operating parameters corresponding to the historical ambient temperature of the air conditioners having the same position information are respectively obtained, And operating parameters that are different from the parameter information in the plurality of optimal operating parameters are taken as an average value of the parameter information, and the running parameter that is averaged and the operating parameters that are the same in the plurality of the optimal operating parameters are combined into The current operating parameter.
  • the location information includes one or more of the same area information, the same-type information, and the same installation location information.
  • the ambient temperature is an indoor ambient temperature and/or an outdoor ambient temperature
  • the operating parameters include one or more of a target temperature, a fan speed, an air deflector angle, and an operating mode.
  • the method as described above further includes:
  • the air conditioner is controlled by using the preset default operating parameter as the current operating parameter.
  • the present invention determines the number of operation parameter adjustments during the continuous running time of the current power-on each time the air conditioner is turned off, only when the adjustment times satisfy the set conditions. Determine the optimal operating parameters, and store the optimal operating parameters and the ambient temperature of the current startup, as the historical ambient temperature and the optimal operating parameters, and obtain the current ambient temperature from the historical ambient temperature and the optimal operating parameters at the next startup.
  • the optimal operating parameters automatically control the operation of the air conditioner, so that the user does not need to perform complicated key operation every time the power is turned on, thereby greatly improving the intelligent control of the air conditioner; and, since the adjustment times only satisfy the set conditions, the determination is made.
  • the optimal operating parameters and the optimal operating parameters are the operating parameters that the user feels more comfortable at this ambient temperature. Therefore, the control of the air conditioner is more accurate, and the result of the control makes the use comfort more efficient and effective. It avoids the improper operation parameters of the air conditioner set by the user's misoperation and causes the automatic control of the subsequent air conditioner. Inappropriate control.
  • Figure 1 is a flow chart showing an embodiment of an air conditioner control method based on the present invention.
  • FIG. 1 there is shown a flow chart of an embodiment of an air conditioner control method based on the present invention.
  • the method for controlling an air conditioner of this embodiment includes the following steps:
  • Step 11 Obtain the current ambient temperature when the air conditioner is turned on, and select a current operating parameter corresponding to the current ambient temperature from the known historical ambient temperature and the one-to-one corresponding optimal operating parameters.
  • the historical ambient temperature and the one-to-one corresponding optimal operating parameters are known and are operational parameters that are appropriate for the user at such ambient temperatures and are habitual.
  • the air conditioner can communicate with the cloud server to transmit the current ambient temperature to the cloud server; and the cloud server can transmit the selected current operating parameter to the air conditioner. Controller in the controller.
  • the historical ambient temperature and the one-to-one corresponding optimal operating parameters are obtained by the following process:
  • the continuous running time of this power-on refers to the duration of the air conditioner from the time when the power-on signal is received to the time when the power-off signal is received, which can be obtained by the timer of the air conditioner.
  • the number of times the operating parameter adjustment of the power-on is the number of times the air conditioner operating parameters are modified during the continuous running time of the power-on, and the counter can be set to record the number of times the operating parameters are modified.
  • the air conditioner operating parameters include one or more of a target temperature, a fan speed, an air deflector angle, an operating mode (such as a cooling mode, a heating mode, a dehumidification mode, etc.).
  • the ambient temperature of this startup is the indoor ambient temperature of the indoor unit where the air conditioner indoor unit is located and/or the outdoor outdoor temperature of the outdoor unit of the air conditioner outdoor unit. Moreover, the ambient temperature of this startup is the average of the ambient temperature during the continuous operation of the startup.
  • the air conditioner shutdown signal is received, the continuous running time of the power-on, the number of operating parameter adjustments of the current power-on, and the ambient temperature of the current power-on can be obtained.
  • the correspondence between the known continuous running time and the number of allowed operating parameter adjustment times is selected; and then, the operating parameters of the current power-on are selected.
  • the number of adjustments is compared with the number of allowed operating parameter adjustments for this power-on.
  • the basic principle is that the longer the continuous running time, the more the number of operating parameter adjustments are allowed.
  • the target operating parameter is determined as the optimal operating parameter corresponding to the ambient temperature of the current startup.
  • the optimal operating parameters corresponding to the ambient temperature of the startup and the ambient temperature of the current startup are stored as historical ambient temperature and one-to-one corresponding optimal operating parameters.
  • the number of running parameter adjustments in this power-on process is 0, that is, the running parameters are run with the running parameters at the time of power-on, and are not modified, the running parameters at the time of power-on are used as the target of the last adjustment. parameter.
  • the current ambient temperature of the air conditioner is first obtained, and then the current operating parameters of the air conditioner can be determined according to the current ambient temperature and the saved historical ambient temperature and the one-to-one corresponding optimal operating parameters.
  • the current operating temperature is compared with the historical ambient temperature, and the optimal operating parameter corresponding to the historical ambient temperature closest to the current ambient temperature is used as the optimal operating parameter corresponding to the current ambient temperature as the current running. parameter.
  • Step 12 Control the air conditioner according to the current operating parameters.
  • the air conditioner is controlled by using the preset default operating parameter as the current operating parameter.
  • the air conditioner is controlled by the method of the embodiment, and the historical temperature of the reference and the acquisition of the one-to-one corresponding optimal operating parameter have the screening process as described in step 11, only when the number of adjustments meets the set condition. Determining the optimal operating parameters, the optimal operating parameters are the operating parameters that the user feels more comfortable at this ambient temperature. Therefore, the control of the air conditioner is more accurate, and the result of the control makes the use comfort higher. The improper control of the automatic control of the subsequent air conditioner caused by the improper operation parameters of the air conditioner set by the user's misoperation is effectively avoided.
  • the processing may be performed in the following different manners:
  • Processing method 1 If the historical ambient temperature closest to the current ambient temperature is multiple, respectively obtain the optimal operating parameters corresponding to the plurality of closest historical ambient temperatures, the parameter information of the plurality of optimal operating parameters is not The same operating parameter takes the average value of the parameter information, and combines the averaged operating parameter with the operating parameter with the same parameter information among the plurality of optimal operating parameters into the current operating parameter. Specifically, if the historical ambient temperature closest to the current ambient temperature is three, the operating parameters include the target temperature, the fan speed, and the operating mode. In the optimal operating parameters corresponding to the three closest historical ambient temperatures, the values of the target temperatures are not exactly the same, and the values of the fan speed and the operating mode are the same. Then, the three target temperatures are averaged as the current target temperature, and the fan speed and operating mode remain unchanged as the current fan speed and current operating mode.
  • Treatment mode 2 If the historical ambient temperature closest to the current ambient temperature is multiple, select the optimal operating parameters corresponding to the historical ambient temperature of the current ambient temperature in the same season or the same month from the plurality of closest historical ambient temperatures. As the current operating parameters. When the history is acquired, the time of the season or month corresponding to the historical ambient temperature is also recorded; similarly, the current season or month time is also read when the air conditioner is turned on next time. The optimal operating parameters corresponding to the ambient temperature of the same season or the same month are selected, so that the control of the air conditioner is more accurate and the air conditioning is more comfortable.
  • the optimal operation parameter is that the running parameter of the plurality of optimal operating parameters having different parameter information is taken as an average value of the parameter information, and the operating parameter after the averaging is combined with the operating parameter with the same parameter information of the plurality of optimal operating parameters.
  • Current running parameters are also adopted: respectively obtaining the most corresponding ones of the current ambient temperatures of the same season or the same month.
  • Treatment mode 3 If the historical ambient temperature closest to the current ambient temperature is multiple, the optimal operation corresponding to the historical ambient temperature of the air conditioner having the same position information as the air conditioner is selected from the plurality of closest historical ambient temperatures.
  • the parameter is the current running parameter.
  • the location information mentioned here includes one or more of the same area information, the same type of information (one room, two rooms, three rooms, etc.), and the same installation location information (living room, sunrise bedroom, back sun bedroom, etc.).
  • the position information of the air conditioner is also recorded at the same time; similarly, the position information of the current air conditioner is also read when the air conditioner is turned on next time.
  • the optimal operating parameters corresponding to the ambient temperature of the same position information are selected, so that the control of the air conditioner is more accurate and the air conditioning is more comfortable.
  • the historical ambient temperature of the air conditioner having the same position information as that of the air conditioner is plural, it is also processed in such a manner that an optimal operation corresponding to the historical ambient temperature of the air conditioner having the same plurality of position information is respectively obtained.
  • the parameter takes the average value of the parameter information in which the parameter information of the plurality of optimal operating parameters is different, and combines the running parameter with the average value and the running parameter with the same parameter information of the plurality of optimal operating parameters into the current running. parameter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调器控制方法,包括:获取空调器开机时的当前环境温度,从历史环境温度和一一对应的最优运行参数中选取当前运行参数;根据所述当前运行参数控制所述空调器;所述历史环境温度和一一对应的最优运行参数采用下述过程获取:在每次接收到空调器关机信号时,获取空调器本次开机的持续运行时间、本次开机的运行参数调整次数以及本次开机的环境温度,选取与所述本次开机的持续运行时间所对应的本次开机的允许运行参数调整次数;若所述本次开机的运行参数调整次数不大于所述本次开机的允许运行参数调整次数,确定并存储历史环境温度和一一对应的最优运行参数。该控制方法,能提高空调器控制的准确性和使用的舒适性。

Description

空调器控制方法 技术领域
本发明属于空气调节技术领域,具体地说,是涉及空调器的控制方法。
背景技术
随着空调器的普遍应用和智能技术的不断发展,空调器的智能控制成为空调器发展的必然趋势。
目前,空调器在使用过程都存在一定的不足,比如在开启和调节阶段都过多依赖人为作用,当使用环境变化时往往需要经过多次调节才能达到用户所需的要求。此过程相对比较复杂,而且在调节过程中费时费力,用户体验差。
为解决上述技术问题,现有部分空调器采用如下的自动控制方法:在空调器运行过程中,每隔一段时间获取室内温度、室外温度和空调器的目标参数,以生成运行模式信息并进行存储。当空调器再次开机时,检测室内温度和室外温度,并根据检测到的室内温度和室外温度从运行模式信息中选取适用于当前的运行模式信息,并根据适用于当前的运行模式信息中的目标参数控制空调器。本发明实施例的空调器的控制方法使得用户无需在每次开机时进行复杂的按键操作,从而大大提升了空调器的智能化使用体验。但是这种控制方法只是对用户之前操作行为的完全复制,而不考虑之前的操作行为是否恰当,因此,在实际应用过程中仍存在着使用舒适性差的缺陷。
技术问题
本发明的目的是提供一种空调器控制方法,提高空调器控制的准确性和使用的舒适性。
技术解决方案
为实现上述发明目的,本发明采用下述技术方案予以实现:
一种空调器控制方法,所述方法包括:
获取空调器开机时的当前环境温度,从已知的历史环境温度和一一对应的最优运行参数中选取与所述当前环境温度相对应的当前运行参数;
根据所述当前运行参数控制所述空调器;
所述历史环境温度和一一对应的最优运行参数采用下述过程获取:
在每次接收到空调器关机信号时,获取空调器本次开机的持续运行时间、本次开机的运行参数调整次数以及本次开机的环境温度,根据已知的持续运行时间与允许运行参数调整次数的对应关系选取与所述本次开机的持续运行时间所对应的本次开机的允许运行参数调整次数;
若所述本次开机的运行参数调整次数不大于所述本次开机的允许运行参数调整次数,将本次开机过程中的最后一次调整的目标运行参数确定为与所述本次开机的环境温度相对应的最优运行参数,将所述本次开机的环境温度和所述本次开机的环境温度相对应的最优运行参数存储为历史环境温度和一一对应的最优运行参数;
若所述本次开机的运行参数调整次数大于所述本次开机的允许运行参数调整次数,放弃本次开机的最优运行参数的确定。
如上所述的控制方法,所述从已知的历史环境温度和一一对应的最优运行参数中选取与所述当前环境温度相对应的当前运行参数,具体包括:
将所述当前环境温度与所述历史环境温度进行比较;
将与所述当前环境温度最接近的历史环境温度所对应的最优运行参数作为所述当前环境温度相对应的最优运行参数,作为所述当前运行参数。
如上所述的控制方法,所述方法还包括:
若与所述当前环境温度最接近的历史环境温度为多个,分别获取与多个所述最接近的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
如上所述的控制方法,所述方法还包括:
若与所述当前环境温度最接近的历史环境温度为多个,从多个所述最接近的历史环境温度中选取与所述当前环境温度同季节或同月份的历史环境温度所对应的最优运行参数作为所述当前运行参数。
优选的,若与所述当前环境温度同季节或同月份的历史环境温度为多个,分别获取与多个所述当前环境温度同季节或同月份的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
如上所述的控制方法,所述方法还包括:
若与所述当前环境温度最接近的历史环境温度为多个,从多个所述最接近的历史环境温度中选取与所述空调器的位置信息相同的空调器的历史环境温度所对应的最优运行参数作为所述当前运行参数。
优选的,若与所述空调器的位置信息相同的空调器的历史环境温度为多个,分别获取与多个所述位置信息相同的空调器的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
如上所述的控制方法,所述位置信息包括同地区信息、同户型信息、同安装位置信息中的一种或多种。
如上所述的控制方法,所述环境温度为室内环境温度和/或室外环境温度;所述运行参数包括目标温度、风机转速、导风板角度、运行模式中的一种或多种。
如上所述的方法,还包括:
若在空调器开机后未能获取的所述历史环境温度和一一对应的最优运行参数,则以预置的默认运行参数作为所述当前运行参数控制所述空调器。
有益效果
与现有技术相比,本发明的优点和积极效果是:本发明在每次空调器关机时,判断在本次开机的持续运行时间内运行参数调整次数,仅在调整次数满足设定条件时确定最优运行参数,并存储最优运行参数和本次开机的环境温度,作为历史环境温度和最优运行参数,下次开机时从历史环境温度和最优运行参数中获取与当前环境温度对应的最优运行参数自动控制空调器运行,使得用户无需在每次开机时进行复杂的按键操作,从而大大提升了空调器的智能化控制;并且,由于仅在调整次数满足设定条件时才确定最优运行参数,能够做到最优运行参数是在这种环境温度下用户感觉更为舒适的运行参数,因此,空调器的控制更为准确,控制的结果会使得使用舒适性更高,有效避免了因用户误操作而设定的空调器运行参数不恰当而对后续空调器的自动控制造成的不适宜控制。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
图1是基于本发明空调器控制方法一个实施例的流程图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
请参见图1,该图所示为基于本发明空调器控制方法一个实施例的流程图。
如图1所示,该实施例对空调器的控制方法包括如下步骤:
步骤11:获取空调器开机时的当前环境温度,从已知的历史环境温度和一一对应的最优运行参数中选取与当前环境温度相对应的当前运行参数。
具体来说,历史环境温度和一一对应的最优运行参数是已知的,是反映在这种环境温度下对用户而言是合适的、且为习惯性的运行参数。并且,优选的,存储在服务器中,如云服务器中,空调器能够通过与云服务器的通讯进行交互,将当前环境温度传输至云服务器;而云服务器能将选取出的当前运行参数传输至空调器的控制器中。而且,历史环境温度和一一对应的最优运行参数采用下述过程获取:
在每次接收到空调器关机信号时,获取空调器本次开机的持续运行时间、本次开机的运行参数调整次数以及本次开机的环境温度。其中,这里所说的空调器,包括与云服务器预先绑定的、参与数据记录的所有空调器。本次开机的持续运行时间,是指本次空调器从接收到开机信号开机至接收到关机信号的持续时间,可以通过空调器中的计时器计时来获取。本次开机的运行参数调整次数是指在本次开机的持续运行时间内空调器运行参数被修改的次数,可以通过设置计数器来记录运行参数被修改的次数。空调器运行参数包括目标温度、风机转速、导风板角度、运行模式(如制冷模式、制热模式、除湿模式等)中的一种或多种。本次开机的环境温度为空调器室内机所处室内的室内环境温度和/或空调器室外机所处室外的室外环境温度。而且,本次开机的环境温度为本次开机持续运行时间内环境温度的平均值。在每次接收到空调器关机信号时,均能够获取到本次开机的持续运行时间、本次开机的运行参数调整次数以及本次开机的环境温度。
然后,根据已知的持续运行时间与允许运行参数调整次数的对应关系选取与本次开机的持续运行时间所对应的本次开机的允许运行参数调整次数;再然后,将本次开机的运行参数调整次数与本次开机的允许运行参数调整次数作比较。其中,持续运行时间与允许运行参数调整次数的对应关系是已知的、预先存储的一种对应关系,譬如:持续运行时间T≤1h,对应的允许运行参数调整次数N=0;1h<持续运行时间T≤2h,对应的允许运行参数调整次数N≤1;2h<持续运行时间T≤3h,对应的允许运行参数调整次数N≤2,以此类推。基本原则是,持续运行时间越长,允许运行参数调整次数越多。
若本次开机的运行参数调整次数不大于本次开机的允许运行参数调整次数,认为本次开机的运行参数是合适的,且是最优的,则将本次开机过程中的最后一次调整的目标运行参数确定为与本次开机的环境温度相对应的最优运行参数。并将本次开机的环境温度和本次开机的环境温度相对应的最优运行参数存储为历史环境温度和一一对应的最优运行参数。作为特例,如果在本次开机过程中运行参数调整次数为0,也即运行参数以开机时的运行参数运行、并未被修改,则以本次开机时的运行参数作为最后一次调整的目标运行参数。
而如果本次开机的运行参数调整次数大于本次开机的允许运行参数调整次数,也即在本次开机过程中运行参数被多次的修改,认为本次开机过程中的所有运行参数均是不适宜的、不恰当的,则放弃本次开机的最优运行参数的确定,舍弃记录本次开机过程中的运行参数,而不让其参与到对后续运行参数的学习和推荐过程。
在空调器开机时,首先获取空调器的当前环境温度,然后,可以根据当前环境温度和已经保存的历史环境温度和一一对应的最优运行参数确定出空调器的当前运行参数。作为优选实施例,是将当前环境温度与历史环境温度进行比较,将与当前环境温度最接近的历史环境温度所对应的最优运行参数作为当前环境温度相对应的最优运行参数,作为当前运行参数。
步骤12:根据当前运行参数控制空调器。
直接根据步骤11确定的当前运行参数控制空调器,无需在每次开机时进行复杂的按键操作,从而大大提升了空调器的智能化控制。
在其他一些实施例中,如果在空调器开机后未能获取的历史环境温度和一一对应的最优运行参数,则以预置的默认运行参数作为当前运行参数,对空调器进行控制。
采用该实施例的方法对空调器进行控制,所参考的历史环境温度和一一对应的最优运行参数的获取存在如步骤11所描述的筛选的过程,仅在调整次数满足设定条件时才确定最优运行参数,能够做到最优运行参数是在这种环境温度下用户感觉更为舒适的运行参数,因此,空调器的控制更为准确,控制的结果会使得使用舒适性更高,有效避免了因用户误操作而设定的空调器运行参数不恰当而对后续空调器的自动控制造成的不适宜控制。
在其他一些实施例中,如果与当前环境温度最接近的历史环境温度为多个,可以采用如下不同的方式进行处理:
处理方式一:若与当前环境温度最接近的历史环境温度为多个,分别获取与多个最接近的历史环境温度一一对应的最优运行参数,将多个最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个最优运行参数中参数信息相同的运行参数组合成当前运行参数。具体来说,如果与当前环境温度最接近的历史环境温度为三个,运行参数包括有目标温度、风机转速和运行模式。在最接近的三个历史环境温度所对应的最优运行参数中,目标温度的数值不完全相同,而风机转速的数值和运行模式均相同。那么,将三个目标温度取平均值,作为当前目标温度,风机转速和运行模式保持不变,作为当前风机转速和当前运行模式。
处理方式二:若与当前环境温度最接近的历史环境温度为多个,从多个最接近的历史环境温度中选取与当前环境温度同季节或同月份的历史环境温度所对应的最优运行参数作为当前运行参数。在获取历史记录时,还同时记录历史环境温度所对应的季节或月份的时间;同样的,在下次空调器开机时,也会读取当前的季节或月份的时间。选用同季节或同月份的环境温度所对应的最优运行参数,使得空调器的控制更加准确,空气调节更加舒适。
并且,如果与当前环境温度同季节或同月份的历史环境温度也为多个,也采取下述方式处理:分别获取与多个当前环境温度同季节或同月份的历史环境温度一一对应的最优运行参数,将多个最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个最优运行参数中参数信息相同的运行参数组合成当前运行参数。
处理方式三:若与当前环境温度最接近的历史环境温度为多个,从多个最接近的历史环境温度中选取与空调器的位置信息相同的空调器的历史环境温度所对应的最优运行参数作为当前运行参数。这里所说的位置信息,包括同地区信息、同户型信息(一室、两室、三室等)、同安装位置信息(客厅、朝阳卧室、背阳卧室等)中的一种或多种。在获取历史记录时,还同时记录空调器的位置信息;同样的,在下次空调器开机时,也会读取当前空调器的位置信息。选用同位置信息的环境温度所对应的最优运行参数,使得空调器的控制更加准确,空气调节更加舒适。
并且,如果与空调器的位置信息相同的空调器的历史环境温度为多个,也采取下述方式处理:分别获取与多个位置信息相同的空调器的历史环境温度一一对应的最优运行参数,将多个最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个最优运行参数中参数信息相同的运行参数组合成当前运行参数。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种空调器控制方法,其特征在于,所述方法包括:
    获取空调器开机时的当前环境温度,从已知的历史环境温度和一一对应的最优运行参数中选取与所述当前环境温度相对应的当前运行参数;
    根据所述当前运行参数控制所述空调器;
    所述历史环境温度和一一对应的最优运行参数采用下述过程获取:
    在每次接收到空调器关机信号时,获取空调器本次开机的持续运行时间、本次开机的运行参数调整次数以及本次开机的环境温度,根据已知的持续运行时间与允许运行参数调整次数的对应关系选取与所述本次开机的持续运行时间所对应的本次开机的允许运行参数调整次数;
    若所述本次开机的运行参数调整次数不大于所述本次开机的允许运行参数调整次数,将本次开机过程中的最后一次调整的目标运行参数确定为与所述本次开机的环境温度相对应的最优运行参数,将所述本次开机的环境温度和所述本次开机的环境温度相对应的最优运行参数存储为历史环境温度和一一对应的最优运行参数;
    若所述本次开机的运行参数调整次数大于所述本次开机的允许运行参数调整次数,放弃本次开机的最优运行参数的确定。
  2. 根据权利要求1所述的控制方法,其特征在于,所述从已知的历史环境温度和一一对应的最优运行参数中选取与所述当前环境温度相对应的当前运行参数,具体包括:
    将所述当前环境温度与所述历史环境温度进行比较;
    将与所述当前环境温度最接近的历史环境温度所对应的最优运行参数作为所述当前环境温度相对应的最优运行参数,作为所述当前运行参数。
  3. 根据权利要求2所述的控制方法,其特征在于,所述方法还包括:
    若与所述当前环境温度最接近的历史环境温度为多个,分别获取与多个所述最接近的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
  4. 根据权利要求2所述的控制方法,其特征在于,所述方法还包括:
    若与所述当前环境温度最接近的历史环境温度为多个,从多个所述最接近的历史环境温度中选取与所述当前环境温度同季节或同月份的历史环境温度所对应的最优运行参数作为所述当前运行参数。
  5. 根据权利要求4所述的控制方法,其特征在于,若与所述当前环境温度同季节或同月份的历史环境温度为多个,分别获取与多个所述当前环境温度同季节或同月份的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
  6. 根据权利要求2所述的控制方法,其特征在于,所述方法还包括:
    若与所述当前环境温度最接近的历史环境温度为多个,从多个所述最接近的历史环境温度中选取与所述空调器的位置信息相同的空调器的历史环境温度所对应的最优运行参数作为所述当前运行参数。
  7. 根据权利要求6所述的控制方法,其特征在于,若与所述空调器的位置信息相同的空调器的历史环境温度为多个,分别获取与多个所述位置信息相同的空调器的历史环境温度一一对应的最优运行参数,将多个所述最优运行参数中参数信息不相同的运行参数取参数信息的平均值,将取平均值后的运行参数和多个所述最优运行参数中参数信息相同的运行参数组合成所述当前运行参数。
  8. 根据权利要求6所述的控制方法,其特征在于,所述位置信息包括同地区信息、同户型信息、同安装位置信息中的一种或多种。
  9. 根据权利要求1至8中任一项所述的控制方法,其特征在于,所述环境温度为室内环境温度和/或室外环境温度;所述运行参数包括目标温度、风机转速、导风板角度、运行模式中的一种或多种。
  10. 根据权利要求1至8中任一项所述的控制方法,其特征在于,所述方法还包括:
    若在空调器开机后未能获取的所述历史环境温度和一一对应的最优运行参数,则以预置的默认运行参数作为所述当前运行参数控制所述空调器。
PCT/CN2018/078041 2017-03-17 2018-03-05 空调器控制方法 WO2018166372A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18767638.2A EP3561405B1 (en) 2017-03-17 2018-03-05 Air conditioner control method
US16/475,010 US20190316797A1 (en) 2017-03-17 2018-03-05 Air conditioner control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710160002.0 2017-03-17
CN201710160002 2017-03-17

Publications (1)

Publication Number Publication Date
WO2018166372A1 true WO2018166372A1 (zh) 2018-09-20

Family

ID=62527668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/078041 WO2018166372A1 (zh) 2017-03-17 2018-03-05 空调器控制方法

Country Status (4)

Country Link
US (1) US20190316797A1 (zh)
EP (1) EP3561405B1 (zh)
CN (1) CN108168034B (zh)
WO (1) WO2018166372A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983657A (zh) * 2021-10-12 2022-01-28 珠海格力电器股份有限公司 一种空调机组运行控制方法、系统、显示终端及空调机组
CN115264756A (zh) * 2022-07-13 2022-11-01 青岛海信日立空调系统有限公司 一种空调系统的应急处理方法及装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108870656A (zh) * 2018-07-17 2018-11-23 奥克斯空调股份有限公司 一种习惯运行状态参数设定方法、装置及遥控器
CN109282443B (zh) * 2018-09-05 2021-03-09 广东工业大学 一种多模式、低能耗的室内热调节方法
CN109595767A (zh) * 2018-11-15 2019-04-09 奥克斯空调股份有限公司 一种空调器的控制方法及空调器
CN109974248B (zh) * 2019-04-01 2020-08-11 珠海格力电器股份有限公司 空调器的控制方法和空调运行系统
CN109974222B (zh) * 2019-04-01 2020-06-16 珠海格力电器股份有限公司 改善空调机组的启动性能的空调控制方法及装置
CN110701757A (zh) * 2019-10-23 2020-01-17 广东美的制冷设备有限公司 运行控制方法、装置、空调器以及存储介质
CN110986307B (zh) * 2019-10-28 2022-10-28 海尔(深圳)研发有限责任公司 用于空调的控制方法及装置、空调
CN111140999A (zh) * 2020-02-10 2020-05-12 数方节能科技(烟台)有限公司 一种基于模糊控制的中央空调系统
CN111306733B (zh) * 2020-02-26 2021-06-11 杰马科技(中山)有限公司 空调温度控制方法、控制装置及空调
CN111536671A (zh) * 2020-06-04 2020-08-14 中国工商银行股份有限公司 空调系统运行控制方法和装置、电子设备和存储介质
CN112344519B (zh) * 2020-09-25 2022-06-07 国网浙江省电力有限公司绍兴供电公司 一种加热和制冷系统调试和节能控制方法
CN112539528B (zh) * 2020-11-19 2022-07-19 青岛海尔空调器有限总公司 用于空调除湿控制的方法、装置及空调
CN114526538A (zh) * 2020-11-23 2022-05-24 广东美的制冷设备有限公司 空调器及其控制方法和计算机可读存储介质
CN113294902B (zh) * 2021-05-31 2022-10-14 厦门科灿信息技术有限公司 空调的节能控制方法、节能控制装置及空调控制终端
CN113915744B (zh) * 2021-09-30 2022-09-20 西安木牛能源技术服务有限公司 空调冷温水系统冷热源侧水力平衡动态调控方法及装置
CN114322212A (zh) * 2021-12-28 2022-04-12 青岛海尔空调器有限总公司 空调器控制方法、装置、电子设备、存储介质及空调器
CN114279075B (zh) * 2021-12-29 2023-02-10 博锐尚格科技股份有限公司 一种冷站开机控制方法及装置
CN114543301B (zh) * 2022-01-24 2023-11-17 青岛海尔空调器有限总公司 一种空调器断电控制方法、装置、电子设备与存储介质
CN115479358B (zh) * 2022-09-14 2024-07-02 小米科技(武汉)有限公司 空调控制方法及装置、电子设备及存储介质
CN115789922A (zh) * 2022-12-15 2023-03-14 珠海格力电器股份有限公司 基于环境温度自动调节空调温度的方法及空调

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057908A (ja) * 2004-08-20 2006-03-02 Fujitsu General Ltd 空気調和機
CN102374605A (zh) * 2010-08-18 2012-03-14 肖安 一种中央空调水系统自动寻优节能技术及其系统
CN102563814A (zh) * 2012-02-08 2012-07-11 广东志高空调有限公司 基于云计算技术的云空调系统
CN102721159A (zh) * 2012-07-02 2012-10-10 广东美的环境电器制造有限公司 一种空气调节装置用的推拉式水箱机构
CN104864568A (zh) * 2015-05-28 2015-08-26 青岛海尔空调电子有限公司 空调睡眠模式控制方法及空调
CN104913440A (zh) * 2015-05-26 2015-09-16 青岛海尔空调器有限总公司 空调器舒适性控制方法
CN105890109A (zh) * 2016-03-31 2016-08-24 华南理工大学 一种房间空调器在线长效性能检测及优化运行方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120143383A1 (en) * 2007-02-02 2012-06-07 Inovus Solar, Inc. Energy-efficient utility system utilizing solar-power
JP5389618B2 (ja) * 2009-11-19 2014-01-15 三菱電機ビルテクノサービス株式会社 空気調和機の制御システム
US20140156084A1 (en) * 2011-06-10 2014-06-05 Aliphcom Data-capable band management in an integrated application and network communication data environment
CN103982982B (zh) * 2014-05-05 2016-10-19 美的集团股份有限公司 空调器的控制方法和空调器
US20150370272A1 (en) * 2014-06-23 2015-12-24 Google Inc. Intelligent configuration of a smart environment based on arrival time
TWM491192U (zh) * 2014-08-15 2014-12-01 Unity Digi Inc 基於雲端服務的環境控溫裝置
US9783024B2 (en) * 2015-03-09 2017-10-10 Bergstrom Inc. System and method for remotely managing climate control systems of a fleet of vehicles
CN105135592B (zh) * 2015-07-06 2019-07-09 Tcl集团股份有限公司 一种空调自适应调节方法及系统
CN106482282A (zh) * 2015-08-28 2017-03-08 广东美的制冷设备有限公司 空调器及其控制方法
CN105333580A (zh) * 2015-11-30 2016-02-17 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN105511516B (zh) * 2015-12-17 2017-07-14 意诺科技有限公司 一种控制温度的方法及装置
CN105864961A (zh) * 2016-03-31 2016-08-17 广东美的制冷设备有限公司 空调器的控制方法、控制装置和空调器
US10866584B2 (en) * 2016-05-09 2020-12-15 Strong Force Iot Portfolio 2016, Llc Methods and systems for data processing in an industrial internet of things data collection environment with large data sets
CN106322683B (zh) * 2016-09-13 2018-10-19 珠海格力电器股份有限公司 一种空调器的控制方法和控制系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006057908A (ja) * 2004-08-20 2006-03-02 Fujitsu General Ltd 空気調和機
CN102374605A (zh) * 2010-08-18 2012-03-14 肖安 一种中央空调水系统自动寻优节能技术及其系统
CN102563814A (zh) * 2012-02-08 2012-07-11 广东志高空调有限公司 基于云计算技术的云空调系统
CN102721159A (zh) * 2012-07-02 2012-10-10 广东美的环境电器制造有限公司 一种空气调节装置用的推拉式水箱机构
CN104913440A (zh) * 2015-05-26 2015-09-16 青岛海尔空调器有限总公司 空调器舒适性控制方法
CN104864568A (zh) * 2015-05-28 2015-08-26 青岛海尔空调电子有限公司 空调睡眠模式控制方法及空调
CN105890109A (zh) * 2016-03-31 2016-08-24 华南理工大学 一种房间空调器在线长效性能检测及优化运行方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113983657A (zh) * 2021-10-12 2022-01-28 珠海格力电器股份有限公司 一种空调机组运行控制方法、系统、显示终端及空调机组
CN115264756A (zh) * 2022-07-13 2022-11-01 青岛海信日立空调系统有限公司 一种空调系统的应急处理方法及装置
CN115264756B (zh) * 2022-07-13 2023-08-01 青岛海信日立空调系统有限公司 一种空调系统的应急处理方法及装置

Also Published As

Publication number Publication date
EP3561405A4 (en) 2020-01-01
EP3561405A1 (en) 2019-10-30
CN108168034B (zh) 2020-02-21
EP3561405B1 (en) 2021-11-24
CN108168034A (zh) 2018-06-15
US20190316797A1 (en) 2019-10-17

Similar Documents

Publication Publication Date Title
WO2018166372A1 (zh) 空调器控制方法
WO2019095561A1 (zh) 空调控制方法、装置及空调器
WO2018196578A1 (zh) 空调器制热运行控制方法
WO2018196580A1 (zh) 空调器制热运行控制方法和控制装置
CN110701753B (zh) 运行控制方法、装置、空调器以及存储介质
CN110701756A (zh) 运行控制方法、运行控制装置、空调器和存储介质
WO2018214704A1 (zh) 用于空调控制的方法及装置
CN110887180B (zh) 一种空调控制方法、装置、存储介质及空调
WO2021103541A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN112050446A (zh) 新风空调的控制方法
WO2018196577A1 (zh) 一种空调器制热控制方法
CN112050440B (zh) 新风空调的控制方法
CN112050441B (zh) 新风空调的净化控制方法
CN108036436B (zh) 空调器的除湿方法
WO2023197557A1 (zh) 多联机空调器及其控制方法和控制装置
CN115371198A (zh) 空调的调温方法、调温装置和空调系统
CN110701760B (zh) 调节方法、调节装置、空调器和计算机可读存储介质
CN111426024B (zh) 用于空调器的运行模式控制方法及空调器
CN112050447B (zh) 新风空调的控制方法
CN112050443B (zh) 新风空调的净化控制方法
CN112050439B (zh) 新风空调的控制方法
JP7350504B2 (ja) 空調システム
CN112050442B (zh) 新风空调的净化控制方法
CN112050390B (zh) 新风空调的控制方法
CN117267859B (zh) 空调器的控制方法、装置、空调器及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18767638

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018767638

Country of ref document: EP

Effective date: 20190726

NENP Non-entry into the national phase

Ref country code: DE