WO2018196577A1 - 一种空调器制热控制方法 - Google Patents
一种空调器制热控制方法 Download PDFInfo
- Publication number
- WO2018196577A1 WO2018196577A1 PCT/CN2018/082077 CN2018082077W WO2018196577A1 WO 2018196577 A1 WO2018196577 A1 WO 2018196577A1 CN 2018082077 W CN2018082077 W CN 2018082077W WO 2018196577 A1 WO2018196577 A1 WO 2018196577A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- frequency
- indoor
- target
- coil
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
Definitions
- the present invention relates to the field of air conditioning technology, and more particularly to the control of an air conditioner, and more particularly to an air conditioner heating control method.
- air conditioners are the main way to warm up in areas where there is no heating or in cold weather where heating is stopped.
- the compressor frequency is controlled according to the difference between the indoor temperature and the set indoor target temperature. If the compressor frequency obtained from the difference between the indoor temperature and the set indoor target temperature is not large enough, the indoor temperature rises slowly, and the indoor temperature is still low for a long time after the start-up, which cannot quickly make people feel comfortable, especially in When the room temperature is low, it is longer to wait for the indoor temperature to be comfortable.
- An object of the present invention is to provide a method for controlling the heating of an air conditioner, which solves the problem that the heating of the existing air conditioner is slow and the heating is uncomfortable.
- the heating control method provided by the present invention is implemented by the following technical solutions:
- An air conditioner heating control method comprising:
- the air conditioner is heated to obtain an indoor temperature, and the indoor temperature is compared with a first indoor temperature threshold;
- the invention sets the indoor temperature threshold, and when the indoor temperature is not greater than the indoor temperature threshold during the heating operation of the air conditioner, the fuzzy control is performed, and the room temperature PID operation is selected to determine The frequency and the larger frequency value determined based on the coil temperature of the indoor heat exchanger control the compressor, which can make the indoor temperature rise rapidly when the indoor temperature is low, and can make the air outlet temperature of the air conditioner not It will be too low, effectively solving the problem that the indoor temperature rises slowly and the lower temperature of the air blows out, which causes the heating body to feel uncomfortable, and improves the heating performance of the air conditioner.
- the target temperature of the coil is determined according to the current indoor temperature, and the target temperature of the coil is negatively correlated with the current indoor temperature. The lower the current indoor temperature is, the higher the target temperature of the coil is, and the faster the heating rate is when the indoor temperature is uncomfortable. And enhance the air temperature to further enhance user comfort.
- FIG. 1 is a flow chart showing an embodiment of an air conditioner heating control method based on the present invention
- Fig. 2 is a flow chart showing another embodiment of the air conditioner heating control method based on the present invention.
- FIG. 1 there is shown a flow chart of an embodiment of an air conditioner heating control method based on the present invention.
- Step 11 The air conditioner is heated to obtain the indoor temperature, and the indoor temperature is compared with the first indoor temperature threshold.
- the indoor temperature refers to the indoor temperature of the room in which the air conditioner is located in real time according to the set frequency when the air conditioner is turned on and the heating mode is operated.
- the indoor temperature can be obtained by using the prior art.
- the inlet air temperature is detected and acquired as a room temperature by a temperature sensor disposed at or near the air inlet of the air conditioner.
- the room temperature is then compared to a first temperature threshold.
- the first indoor temperature threshold is used as a threshold temperature for performing fuzzy control, and is a default temperature value preset in the control program when the air conditioner is shipped, or may be a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
- the preset first indoor temperature threshold or the recommended first indoor temperature threshold is 20 °C.
- Step 12 Perform fuzzy control when the indoor temperature is not greater than the first indoor temperature threshold.
- the fuzzy control specifically includes:
- the indoor temperature is the indoor temperature obtained in step 11
- the set indoor target temperature refers to the target temperature set by the user and desired in the indoor.
- the coil temperature of the indoor heat exchanger is obtained and compared with the target temperature of the coil. If the coil temperature is greater than the target temperature of the coil, the first target frequency obtained by the room temperature PID calculation is determined as the indoor unit frequency; if the coil temperature is not greater than the target temperature of the coil, the current operating frequency of the compressor is increased to obtain the second target The frequency is selected to determine the larger of the first target frequency and the second target frequency as the indoor unit frequency; then, the compressor of the air conditioner is controlled according to the indoor unit frequency.
- the coil temperature of the indoor heat exchanger is the coil temperature of the indoor heat exchanger obtained according to the set frequency.
- the coil temperature can be obtained by setting a temperature sensor on the heat exchanger coil.
- the coil target temperature is the coil temperature that can be achieved by the desired indoor heat exchanger, determined according to the indoor temperature obtained in step 11, and the coil target temperature is negatively correlated with the indoor temperature. That is, the lower the indoor temperature, the higher the target temperature of the coil; the higher the indoor temperature, the lower the target temperature of the coil.
- the adjustment of the indoor temperature is taken as the main control target.
- the first target frequency calculated according to the room temperature PID is determined as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
- the specific process of frequency control of the air conditioner compressor based on the indoor unit frequency refers to the prior art.
- the air outlet temperature of the air conditioner determined by the coil temperature is low, which is likely to cause air blow out due to low indoor temperature.
- the temperature is also low and an unfavorable air is sent out.
- the current operating frequency of the compressor is increased to obtain a second target frequency, and the second target frequency is compared with the first target frequency obtained by the room temperature PID operation, and the larger value is determined as the indoor unit frequency, according to The indoor unit frequency controls the compressor of the air conditioner.
- the specific process of frequency control of the air conditioner compressor based on the indoor unit frequency refers to the prior art.
- the current operating frequency of the compressor is raised to a second target frequency in order to increase the frequency so that the coil temperature approaches the coil target temperature.
- the air conditioner When the air conditioner is heated and controlled by the above process, if the indoor temperature is not greater than the first indoor temperature threshold, indicating that the current indoor temperature is low, the fuzzy control will be performed, and the frequency determined by the room temperature PID operation and the disk based on the indoor heat exchanger are selected.
- the larger frequency value in the frequency determined by the tube temperature controls the compressor, and when the indoor temperature and the coil temperature are both low, the compressor is operated at a high frequency, so that the indoor temperature rapidly rises to a suitable high temperature, and the air conditioner can be made
- the outlet air temperature is not too low, which effectively solves the problem that the indoor temperature rises slowly and the lower temperature of the air blows out, causing the heating body to feel uncomfortable.
- the larger frequency value can be obtained by the up-conversion based on the coil temperature determination.
- the high-frequency operation of the compressor is controlled, and the indoor temperature is raised to a suitable high temperature, which further improves the heating performance of the air conditioner.
- the target temperature of the coil is determined according to the indoor temperature, and the target temperature of the coil is negatively correlated with the indoor temperature. The lower the current indoor temperature is, the higher the target temperature of the coil is, and the faster the heating rate is raised and the temperature is raised when the indoor temperature is uncomfortable. Wind temperature further enhances user comfort.
- the coil target temperature is determined according to the indoor temperature, and specifically includes:
- the second difference a * first difference, obtain the second difference; a is a positive number not greater than 1;
- the sum of the recommended target temperature of the coil and the second difference is calculated, and the calculation result is determined as the actual coil target temperature for performing the disk temperature PID calculation.
- the indoor recommended temperature is a known, pre-stored temperature, generally a temperature obtained by a large number of theoretical research and experimental tests by the research and development personnel, taking into consideration the human body comfort and air conditioning energy saving, for example, 18 ° C .
- the coil recommended target temperature is also a known, pre-stored temperature. Generally, it is obtained by a large number of theoretical research and experimental tests by the research and development personnel.
- the indoor temperature is the indoor recommended temperature
- the temperature can be sent to the heat exchange air with appropriate temperature.
- a coil temperature for example, is 50 °C.
- the indoor recommended temperature and the recommended target temperature of the coil can also be modified by authorization, for example, by the after-sales personnel in the user's home by special instructions.
- a is a coefficient for calculating the second difference according to the first difference, and the value is also known and pre-stored, which is obtained by the researcher through a large number of theoretical research and experimental tests.
- a is a positive number less than 1, for example, a takes a value of 0.5. Then, when the indoor recommended temperature is 18 ° C, the indoor recommended coil target temperature is 50 ° C, and a is 0.5, if the actual indoor temperature is 16 ° C, the actual coil target temperature determined according to the above method is 51 ° C.
- the target temperature of the coil when the target temperature of the coil is determined according to the current indoor temperature, if the indoor temperature is lower than the indoor recommended temperature, it indicates that the current indoor temperature is too low, and the first difference between the indoor recommended temperature and the indoor temperature is a positive value.
- the second difference calculated according to the first difference is also a positive value; then, the actual coil target temperature calculated based on the sum of the recommended target temperature and the second difference of the coil will be greater than the recommended target temperature of the coil.
- the disk temperature control when the coil temperature is equal, since the coil target temperature is large, the compressor up-conversion operation process is also lengthened, the operation frequency is also increased, and the heating rate is fast.
- the outlet air temperature determined by the coil temperature is also high, so that the indoor temperature can quickly reach the required higher indoor temperature, and the outlet air temperature is also higher, which is beneficial to solve the problem that the indoor temperature rises slowly.
- the problem that the lower temperature of the air blows out and causes the heating body to be uncomfortable further improves the user's comfort.
- the indoor temperature is higher than the indoor recommended temperature, indicating that the current indoor temperature is not very low, the determined actual coil target temperature is less than the recommended target temperature of the coil, and the target frequency determined based on the actual coil target temperature is small, if based on the actual coil
- the target frequency determined by the target temperature controls the compressor operation, can meet the indoor temperature comfort requirements, and can reduce energy consumption.
- FIG. 2 there is shown a flow chart of another embodiment of the air conditioner heating control method based on the present invention.
- Step 21 The air conditioner is heated to obtain the indoor temperature, and the indoor temperature is compared with the first indoor temperature threshold.
- the indoor temperature refers to the indoor temperature of the room in which the air conditioner is located in real time according to the set frequency when the air conditioner is turned on and the heating mode is operated.
- the indoor temperature can be obtained by using the prior art.
- the inlet air temperature is detected and acquired as a room temperature by a temperature sensor disposed at or near the air inlet of the air conditioner.
- the room temperature is then compared to a first temperature threshold.
- the first indoor temperature threshold is a default temperature value preset in the control program when the air conditioner is shipped from the factory, or may be a temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
- the preset first indoor temperature threshold or the recommended first indoor temperature threshold is 20 °C.
- Step 22 Determine whether the indoor temperature is greater than the first indoor temperature threshold. If yes, go to step 26; otherwise, go to step 23.
- Step 23 Perform fuzzy control.
- step 22 determines that the indoor temperature is not greater than the first indoor temperature threshold, then the fuzzy control process is performed.
- the specific process and method of fuzzy control can be referred to the description of the embodiment of FIG. 1.
- Step 24 Acquire the indoor temperature, and compare the indoor temperature with the second indoor temperature threshold.
- the indoor temperature is still acquired in real time, and the acquired indoor temperature is compared with the second indoor temperature threshold.
- the second indoor temperature threshold is used as the threshold temperature for exiting the fuzzy control, similar to the first indoor temperature threshold, and the second indoor temperature threshold is also a default temperature value preset in the control program when the air conditioner is shipped from the factory, or may be A temperature value set by the air conditioner user. If it is set by the user, it is recommended that the air conditioner recommend a reference temperature value for the user's reference.
- the preset second indoor temperature threshold or the recommended second indoor temperature threshold is 25 °C.
- Step 25 Determine whether the indoor temperature is greater than the second indoor temperature threshold. If yes, go to step 26; otherwise, go to step 23.
- step 23 If the indoor temperature is not greater than the second indoor temperature threshold, then go to step 23 to continue the fuzzy control. If the indoor temperature is greater than the second indoor temperature threshold, the fuzzy control is to be exited, and the control of step 26 is performed. The purpose is to prevent the high frequency operation after the indoor temperature reaches a suitable second indoor temperature, thereby avoiding the compressor Down and stop.
- Step 26 Perform room temperature PID control.
- This step is selected for execution based on the judgment result of step 22 or step 25. Specifically, if it is determined in step 22 that the indoor temperature before entering the fuzzy control is greater than the first indoor temperature threshold, the blur control is not performed, but the room temperature PID control is performed. That is, if the indoor temperature is greater than the first indoor temperature threshold, indicating that the indoor temperature is not low, in this case, the coil temperature is not considered, and the conventional room temperature PID control is used to calculate the indoor temperature and the set indoor target temperature. The temperature difference is obtained, the indoor temperature difference is obtained, the room temperature PID calculation is performed according to the indoor temperature difference, the first target frequency is obtained, the first target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
- step 25 If it is determined in step 25 that the indoor temperature during the execution of the fuzzy control is greater than the second indoor temperature threshold, the fuzzy control will be exited and the room temperature PID control process will be transferred. That is, if the indoor temperature is greater than the second indoor temperature threshold during the fuzzy control process, in order to avoid the temperature shutdown, the coil temperature is no longer considered, and the normal room temperature PID control is used to calculate the indoor temperature and the set indoor target temperature. The temperature difference between the two is obtained, and the indoor temperature difference is obtained. The room temperature PID calculation is performed according to the indoor temperature difference to obtain the first target frequency, and the first target frequency is used as the indoor unit frequency, and the compressor of the air conditioner is controlled according to the indoor unit frequency.
- the second target frequency can be determined in a plurality of different manners.
- the second target frequency can be determined in the following manner:
- the coil temperature After obtaining the coil temperature, it is first determined whether the coil temperature is not higher than the coil target temperature for the first time after the air conditioner is turned on, and different processing is performed according to the judgment result. Specifically, if the coil temperature is not greater than the coil target temperature for the first time after the power-on, in order to raise the coil temperature as soon as possible, the set maximum heating frequency is determined as the second target frequency. The maximum heating frequency is the set maximum frequency during the heating operation of the air conditioner. If the coil temperature is not greater than the coil target temperature for the first time after starting, the current operating frequency of the compressor is increased to obtain a second target frequency between the current operating frequency and the heating maximum frequency.
- the coil temperature is not greater than the coil target temperature for the first time, indicating that the fuzzy control has been performed, the coil temperature is not too lower than the coil target temperature.
- the second target frequency does not need to rise to the maximum heating. The frequency, but a frequency value between the current operating frequency and the heating maximum frequency, can avoid the temperature shutdown caused by excessive frequency.
- the current operating frequency of the compressor is obtained, and the current operating frequency is increased by the set adjustment time every set time.
- the subsequent frequency is determined as the second target frequency.
- each time the current operating frequency is raised as the second target frequency it is first determined whether the difference between the set coil target temperature and the coil temperature is not less than the set overshoot temperature value; if yes, at the adjustment time After the arrival, the process of increasing the current operating frequency as the second target frequency is continued, otherwise, the second target frequency is kept unchanged.
- the current operating frequency is increased by the set adjustment frequency, and the increased frequency is determined as the second target frequency.
- the set adjustment frequency is a frequency value preset before the air conditioner leaves the factory, or a frequency value set by the user, for example, set to 5 Hz.
- the frequency value is used as a frequency adjustment step size to indicate the increase in the current operating frequency each time.
- the frequency reduction is performed by reducing the setting adjustment time once, and the stepwise adjustment is performed, and the increased frequency is used as the second target frequency. After the current operating frequency increases the adjustment frequency, it is first determined whether the difference between the coil target temperature and the coil temperature is greater than the overshoot temperature value.
- the overshoot temperature value is also a set temperature value, for example, set to 1 °C. If it is judged that the difference between the target coil temperature and the coil temperature is greater than the overshoot temperature value, it indicates that the coil temperature is much lower than the coil target temperature, and further upsizing is still required. Moreover, as described above, the up-conversion process is increased once for the adjustment time set by the interval.
- the adjustment time is also a pre-set value indicating the interval between frequency adjustments. For example, it can be set to 2 min. That is, after adjusting once, the adjusted frequency is used as the second target frequency.
- the second target frequency is kept unchanged until the fuzzy control is exited and the room temperature PID control or shutdown or adjustment time is entered. Arrivals. After the adjustment time arrives, read the current operating frequency of the compressor, and continue to increase the frequency according to the adjustment frequency based on the current operating frequency.
- the difference between the coil target temperature and the coil temperature is not greater than the overshoot temperature value, it indicates that the coil temperature has not reached the coil target temperature, but the difference from the coil target temperature is small, not greater than the overshoot temperature value. . At this time, the frequency is no longer raised subsequently. Thus, the determined second target frequency is maintained unchanged until the fuzzy control is exited and the room temperature PID control or shutdown is entered.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Air Conditioning Control Device (AREA)
Abstract
一种空调器制热控制方法,包括:空调器制热运行,获取室内温度,与第一室内温度阈值作比较;若室内温度不大于第一室内温度阈值,执行下述的模糊控制:根据室内温度与设定室内目标温度之间的温差,进行室温PID运算,获得第一目标频率;获取室内换热器的盘管温度,若盘管温度大于盘管目标温度,将第一目标频率确定为室内机频率;否则,将压缩机的当前运行频率升高获得第二目标频率,选取第一目标频率和第二目标频率中的较大值确定为室内机频率,控制空调器的压缩机;盘管目标温度根据室内温度确定,且满足盘管目标温度与室内温度负相关。该空调器制热控制方法可以解决现有空调器制热慢而导致制热不舒适的问题。
Description
本发明属于空气调节技术领域,具体地说,是涉及空调器的控制,更具体地说,是涉及空调器制热控制方法。
在寒冷的冬天,空调器是不具备供暖条件的地区或者停止供暖的寒冷天气里取暖的主要方式。
现有空调器在制热运行时,均是根据室内温度与设定的室内目标温度的差值进行压缩机频率控制。如果根据室内温度与设定的室内目标温度的差值得到的压缩机频率不够大,室内温度上升慢,在开机后很长时间内室内温度仍较低,不能快速使人感觉舒适,尤其是在室内温度较低的情况下,等待室内温度舒适的时间更长。
因此,解决空调器制热慢而导致不舒适的问题,是提高空调器性能的关键。
本发明的目的是提供一种空调器制热控制方法,解决现有空调器制热慢而导致制热不舒适的问题。
为实现上述发明目的,本发明提供的制热控制方法采用下述技术方案予以实现:
一种空调器制热控制方法,所述方法包括:
空调器制热运行,获取室内温度,将所述室内温度与第一室内温度阈值作比较;
若所述室内温度不大于所述第一室内温度阈值,执行下述的模糊控制:
计算所述室内温度与设定室内目标温度之间的温差,获得室内温差,根据所述室内温差进行室温PID运算,获得第一目标频率;获取室内换热器的盘管温度,并与盘管目标温度作比较;若所述盘管温度大于所述盘管目标温度,将所述第一目标频率确定为室内机频率;若所述盘管温度不大于所述盘管目标温度,将压缩机的当前运行频率升高获得第二目标频率,选取所述第一目标频率和所述第二目标频率中的较大值确定为室内机频率,根据所述室内机频率控制空调器的压缩机;所述盘管目标温度根据所述室内温度确定,且满足所述盘管目标温度与所述室内温度负相关。
与现有技术相比,本发明的优点和积极效果是:本发明通过设置室内温度阈值,在空调器制热运行时,如果室内温度不大于室内温度阈值,执行模糊控制,选取室温PID运算确定的频率和基于室内换热器的盘管温度确定的频率中的较大频率值控制压缩机,既能够在室内温度低的情况下使得室内温度快速上升,又能够使得空调器的出风温度不会过低,有效解决了室内温度上升缓慢及较低温度的出风吹出而引起制热体感不舒适的问题,提高了空调器制热运行性能。而且,盘管目标温度根据当前的室内温度来确定,且满足盘管目标温度与当前室内温度负相关,当前室内温度越低盘管目标温度越高,在室内温度不舒适的情况下加快升温速度和提升出风温度,进一步提高用户舒适性。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
图1是基于本发明空调器制热控制方法一个实施例的流程图;
图2是基于本发明空调器制热控制方法另一个实施例的流程图。
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
请参见图1,该图所示为基于本发明空调器制热控制方法一个实施例的流程图。
如图1所示,该实施例实现制热控制的具体过程如下:
步骤11:空调器制热运行,获取室内温度,将室内温度与第一室内温度阈值作比较。
具体来说,室内温度是指在空调器开机并运行制热模式时、按照设定采用频率实时获取的空调器所处房间的室内温度。该室内温度的获取可以采用现有技术来实现,例如,通过设置在空调进风口处或靠近空调进风口的位置的温度传感器检测和获取进风温度,作为室内温度。
然后,将室内温度与第一温度阈值作比较。其中,第一室内温度阈值作为是否执行模糊控制的阈值温度,是空调器出厂时预置在控制程序中的一个默认温度值,也可以是由空调器用户自行设定的一个温度值。如果是由用户自行设定,优选空调器推荐一个参考温度值,供用户参考。优选的,预置的第一室内温度阈值或推荐的第一室内温度阈值为20℃。
步骤12:在室内温度不大于第一室内温度阈值时,执行模糊控制。
其中,模糊控制具体包括:
计算室内温度与设定室内目标温度之间的温差,获得室内温差,根据室内温差进行室温PID运算,获得第一目标频率。其中,室内温度是步骤11所获取的室内温度,设定室内目标温度是指用户设定的、期望室内所达到的目标温度。而根据室内温差进行室温PID运算、获得对压缩机进行控制的目标频率的具体方法可以采用现有技术来实现,在此不作详细阐述和限定。
同时,获取室内换热器的盘管温度,并与盘管目标温度作比较。若盘管温度大于盘管目标温度,将室温PID运算获得的第一目标频率确定为室内机频率;若盘管温度不大于盘管目标温度,将压缩机的当前运行频率升高获得第二目标频率,选取第一目标频率和第二目标频率中的较大值确定为室内机频率;然后,根据室内机频率控制空调器的压缩机。
室内换热器的盘管温度是按照设定采用频率所获取的、室内机换热器的盘管温度。盘管温度的获取可以通过在换热器盘管上设置温度传感器检测获取。盘管目标温度是期望室内换热器所能达到的盘管温度,根据步骤11所获取的室内温度确定,且满足盘管目标温度与室内温度负相关。也即,室内温度越低,盘管目标温度越高;室内温度越高,盘管目标温度越低。
比较后,如果盘管温度大于盘管目标温度,表明盘管温度较高,则由盘管温度确定的空调器的出风温度不会过低,此时,将室内温度的调整作为主要控制目标,根据室温PID计算得到的第一目标频率确定为室内机频率,根据室内机频率控制空调器的压缩机。根据室内机频率对空调器压缩机进行频率控制的具体过程参考现有技术。
如果比较后,盘管温度不大于盘管目标温度,表明盘管温度不够高,则由盘管温度确定的空调器的出风温度偏低,容易造成因室内温度低的情况下空调器出风温度也低而送出不适宜的出风。此情况下,考虑提升盘管温度,同时,还需要兼顾室内温度调节的目的。因而,将压缩机的当前运行频率升高,获得第二目标频率,将该第二目标频率和室温PID运算获得的第一目标频率作比较,选取其中的较大值确定为室内机频率,根据室内机频率控制空调器的压缩机。根据室内机频率对空调器压缩机进行频率控制的具体过程参考现有技术。将压缩机当前运行频率升高至第二目标频率,目的是通过提升频率,使得盘管温度向盘管目标温度逼近。
采用上述过程对空调器进行制热控制时,如果室内温度不大于第一室内温度阈值,表明当前室内温度较低,将执行模糊控制,选取室温PID运算确定的频率和基于室内换热器的盘管温度确定的频率中的较大频率值控制压缩机,在室内温度和盘管温度均低的时候使得压缩机以高频运行,使得室内温度快速上升至较适宜的高温,又可以使得空调器的出风温度不会过低,有效解决了室内温度上升缓慢及较低温度的出风吹出而引起制热体感不舒适的问题。而且,通过采用模糊控制,即使在室内温度较低时因为用户误操作而设定了较低的室内目标温度的情况下,也能通过基于盘管温度判定后的升频得到较大频率值的情况下控制压缩机高频运行,而将室内温度提升至适宜的高温,进一步提升了空调器制热运行性能。此外,盘管目标温度根据室内温度来确定,且满足盘管目标温度与室内温度负相关,当前室内温度越低盘管目标温度越高,在室内温度不舒适的情况下加快升温速度和提升出风温度,进一步提高用户舒适性。
在其他一些实施例中,作为优选实施方式,盘管目标温度根据室内温度确定,具体包括:
获取室内推荐温度和盘管推荐目标温度;
计算室内推荐温度与室内温度的差值,作为第一差值;
根据公式:第二差值=a*第一差值,获取第二差值;a为不大于1的正数;
计算盘管推荐目标温度与第二差值之和,计算结果确定为执行盘温PID运算的实际盘管目标温度。
其中,室内推荐温度是已知的、预先存储的一个温度,一般地,为研发人员经大量理论研究和实验测试所获得的、兼顾人体舒适性和空调节能性的一个温度,譬如,为18℃。盘管推荐目标温度也是已知的、预先存储的一个温度,一般地,为研发人员经大量理论研究和实验测试所获得的、在室内温度为室内推荐温度时能够送出温度适宜的热交换空气的一个盘管温度,譬如,为50℃。当然,该室内推荐温度和该盘管推荐目标温度也可以通过授权而被修改,譬如,由售后人员在用户家中通过特殊指令进行修改。a作为根据第一差值计算第二差值的一个系数,其取值也是已知的、预先存储的,是研发人员经大量理论研究和实验测试所获得的。优选的,a为小于1的正数,譬如,a取值为0.5。那么,在室内推荐温度为18℃、室内推荐盘管目标温度为50℃、a为0.5的情况下,如果实际室内温度为16℃,则按照上述方法确定的实际盘管目标温度为51℃。
采用上述的方法,根据当前室内温度来确定盘管目标温度时,如果室内温度低于室内推荐温度,表明当前室内温度过低,室内推荐温度与室内温度之间的第一差值为正值,根据第一差值计算出来的第二差值也为正值;那么,根据盘管推荐目标温度和第二差值之和所计算出来的实际盘管目标温度将大于盘管推荐目标温度。那么,则根据实际盘管目标温度执行盘温控制时,在盘管温度相等的情况下,由于盘管目标温度大,压缩机升频运行过程也加长,运行频率也会增大,升温速度快,由盘管温度所决定的出风口的出风温度也高,从而可以使得室内温度能够快速地达到所要求的较高的室内温度,且出风温度也较高,有利于解决室内温度上升缓慢及较低温度的出风吹出而引起制热体感不舒适的问题,进一步提高了用户的舒适性。反之,如果室内温度高于室内推荐温度,表明当前室内温度不是很低,确定的实际盘管目标温度小于盘管推荐目标温度,基于实际盘管目标温度确定的目标频率小,如果基于实际盘管目标温度确定的目标频率控制压缩机运行,能够满足室内温度舒适性要求,且可以降低能耗。
请参见图2,该图所示为基于本发明空调器制热控制方法另一个实施例的流程图。
如图2所示,该实施例实现制热控制的具体过程如下:
步骤21:空调器制热运行,获取室内温度,将室内温度与第一室内温度阈值作比较。
具体来说,室内温度是指在空调器开机并运行制热模式时、按照设定采用频率实时获取的空调器所处房间的室内温度。该室内温度的获取可以采用现有技术来实现,例如,通过设置在空调进风口处或靠近空调进风口的位置的温度传感器检测和获取进风温度,作为室内温度。
然后,将室内温度与第一温度阈值作比较。其中,第一室内温度阈值是空调器出厂时预置在控制程序中的一个默认温度值,也可以是由空调器用户自行设定的一个温度值。如果是由用户自行设定,优选空调器推荐一个参考温度值,供用户参考。优选的,预置的第一室内温度阈值或推荐的第一室内温度阈值为20℃。
步骤22:判断室内温度是否大于第一室内温度阈值。若是,转至步骤26;否则,执行步骤23。
步骤23:执行模糊控制。
如果步骤22判定室内温度不大于第一室内温度阈值,则执行模糊控制过程。模糊控制的具体过程和方法可参考图1实施例的描述。
步骤24:获取室内温度,将室内温度与第二室内温度阈值作比较。
具体来说,在执行模糊控制的过程中,仍实时获取室内温度,并将所获取的室内温度与第二室内温度阈值作比较。其中,第二室内温度阈值作为是否退出模糊控制的阈值温度,与第一室内温度阈值类似的,第二室内温度阈值也是空调器出厂时预置在控制程序中的一个默认温度值,也可以是由空调器用户自行设定的一个温度值。如果是由用户自行设定,优选空调器推荐一个参考温度值,供用户参考。优选的,预置的第二室内温度阈值或推荐的第二室内温度阈值为25℃。
步骤25:判断室内温度是否大于第二室内温度阈值。若是,转至步骤26;否则,转至步骤23。
如果室内温度不大于第二室内温度阈值,则转至步骤23,继续执行模糊控制。而如果室内温度大于第二室内温度阈值,则要退出模糊控制,转至步骤26的控制,目的是在室内温度达到较为适宜的第二室内温度之后,不再强制高频运行,避免压缩机因达温而停机。
步骤26:执行室温PID控制。
该步骤根据步骤22或步骤25的判断结果选择执行。具体来说,如果步骤22中判定在进入模糊控制之前的室内温度大于第一室内温度阈值,则不执行模糊控制,而是执行室温PID控制。也即,如果室内温度大于第一室内温度阈值,表明室内温度不是较低,此情况下,不考虑盘管温度,而采用常规的室温PID控制,计算室内温度与设定室内目标温度之间的温差,获得室内温差,根据室内温差进行室温PID运算,获得第一目标频率,将第一目标频率作为室内机频率,根据室内机频率控制空调器的压缩机。如果步骤25中判定在执行模糊控制过程中的室内温度大于第二室内温度阈值,将退出模糊控制,且转入室温PID控制过程。也即,如果在模糊控制过程中室内温度大于了第二室内温度阈值,为避免达温停机,不再考虑盘管温度,而采用常规的室温PID控制,计算室内温度与设定室内目标温度之间的温差,获得室内温差,根据室内温差进行室温PID运算,获得第一目标频率,将第一目标频率作为室内机频率,根据室内机频率控制空调器的压缩机。
采用该图2实施例执行空调器制热控制的其他技术效果,可参考图1实施例的描述。
上述各实施例的模糊控制过程中,可以采用多种不同的方式确定第二目标频率。在一些优选实施例中,可以采用下述方式来确定第二目标频率:
在获取到盘管温度之后,首先判断盘管温度是否为空调器开机后首次不大于盘管目标温度,并根据判断结果执行不同的处理。具体来说,如果盘管温度是开机后首次不大于盘管目标温度,为尽快提升盘管温度,将设定的制热最大频率确定为第二目标频率。其中,制热最大频率为空调器制热运行过程中的设定的最大频率。而如果盘管温度是开机后非首次不大于盘管目标温度,则将压缩机当前运行频率升高,获得介于当前运行频率和制热最大频率之间的第二目标频率。如果盘管温度非首次不大于盘管目标温度,表明已经执行过模糊控制,则盘管温度不会太低于盘管目标温度,此情况下,第二目标频率不必要升高至制热最大频率,而是介于当前运行频率和制热最大频率之间的一个频率值即可,避免因频率过大导致达温停机。
并且,若盘管温度在空调器开机后非首次不大于盘管目标温度,则获取压缩机的当前运行频率,每隔设定的调整时间将当前运行频率升高设定的调整频率,升高后的频率确定为第二目标频率。而且,每次将当前运行频率升高调整频率作为第二目标频率后,先判断设定盘管目标温度与盘管温度的差值是否不小于设定的超调温度值;若是,在调整时间到达后继续执行将当前运行频率升高调整频率作为第二目标频率的过程,否则,保持第二目标频率不变。
具体而言,如果盘管温度为空调器开机后非首次不大于盘管目标温度,将当前运行频率升高设定的调整频率,升高后的频率确定为第二目标频率。其中,设定的调整频率为空调出厂前预先设定好的一个频率值,或者为用户自行设定的一个频率值,例如,设定为5Hz。该频率值作为一个频率调整步长,表示每次对当前运行频率的升高幅度。而且,对频率的降低采用每隔设定调整时间降低一次的方式,实现逐步调节,且升高后的频率作为第二目标频率。在当前运行频率升高调整频率之后,先判断盘管目标温度与盘管温度之差是否大于超调温度值。其中,超调温度值也是一个设定的温度值,例如,设定为1℃。如果判断设定盘管目标温度与盘管温度之差大于超调温度值,表明盘管温度远低于盘管目标温度,仍需要进一步升频。而且,如前所述,升频处理过程为间隔设定的调整时间升高一次。调整时间也是一个预先设定好的值,表示频率调整的间隔时间。例如,可以设定为2min。也即,在调整一次之后,先以调整后的频率作为第二目标频率,在调整时间未达到时,保持第二目标频率不变,直至退出模糊控制而进入到室温PID控制或关机或调整时间到达。在调整时间到达后,再读取压缩机当前运行频率,以当前运行频率为基础,继续按照调整频率进行升频。
而如果判定盘管目标温度与盘管温度之差不大于超调温度值,表明盘管温度虽还未到达盘管目标温度,但与盘管目标温度之差较小,不大于超调温度值。此时,则后续不再升高频率。因而,保持确定的第二目标频率不变,直至退出模糊控制而进入到室温PID控制或关机。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。
Claims (8)
- 一种空调器制热控制方法,其特征在于,所述方法包括:空调器制热运行,获取室内温度,将所述室内温度与第一室内温度阈值作比较;若所述室内温度不大于所述第一室内温度阈值,执行下述的模糊控制:计算所述室内温度与设定室内目标温度之间的温差,获得室内温差,根据所述室内温差进行室温PID运算,获得第一目标频率;获取室内换热器的盘管温度,并与盘管目标温度作比较;若所述盘管温度大于所述盘管目标温度,将所述第一目标频率确定为室内机频率;若所述盘管温度不大于所述盘管目标温度,将压缩机的当前运行频率升高获得第二目标频率,选取所述第一目标频率和所述第二目标频率中的较大值确定为室内机频率,根据所述室内机频率控制空调器的压缩机;所述盘管目标温度根据所述室内温度确定,且满足所述盘管目标温度与所述室内温度负相关。
- 根据权利要求1所述的控制方法,其特征在于,若所述室内温度大于所述第一室内温度阈值,执行下述的室温PID控制:将所述第一目标频率确定为所述室内机频率,根据所述室内机频率控制空调器的压缩机。
- 根据权利要求1所述的控制方法,其特征在于,若所述盘管温度在空调器开机后首次不大于所述盘管目标温度,所述第二目标频率为设定的制热最大频率;若所述盘管温度在空调器开机后非首次不大于所述盘管目标温度,所述第二目标频率介于所述当前运行频率和所述制热最大频率之间。
- 根据权利要求3所述的控制方法,其特征在于,若所述盘管温度在空调器开机后非首次不大于所述盘管目标温度,所述第二目标频率采用下述过程确定:获取压缩机的所述当前运行频率,每隔设定的调整时间将所述当前运行频率升高设定的调整频率,升高后的频率确定为所述第二目标频率。
- 根据权利要求4所述的控制方法,其特征在于,每次将所述当前运行频率升高所述调整频率作为所述第二目标频率后,先判断所述盘管目标温度与所述盘管温度的差值是否不小于设定的超调温度值;若是,在所述调整时间到达后继续执行将所述当前运行频率升高所述调整频率作为所述第二目标频率的过程,否则,保持所述第二目标频率不变。
- 根据权利要求1至5中任一项所述的控制方法,其特征在于,所述方法还包括:在执行所述模糊控制时,实时获取所述室内温度,并将所述室内温度与第二室内温度阈值作比较;所述第二室内温度阈值大于所述第一室内温度阈值;若所述室内温度大于所述第二室内温度阈值,退出所述模糊控制。
- 根据权利要求6所述的控制方法,其特征在于,所述方法还包括:在退出所述模糊控制之后,执行下述的室温PID控制:将所述第一目标频率确定为所述室内机频率,根据所述室内机频率控制空调器的压缩机。
- 根据权利要求1至5中任一项所述的控制方法,其特征在于,所述盘管目标温度根据所述室内温度确定,具体包括:获取室内推荐温度和盘管推荐目标温度;计算所述室内推荐温度与所述室内温度的差值,作为第一差值;根据公式:第二差值=a*第一差值,获取第二差值;a为不大于1的正数;计算所述盘管推荐目标温度与所述第二差值之和,计算结果确定为执行所述盘温PID运算的实际盘管目标温度。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710277885.3A CN107166635B (zh) | 2017-04-25 | 2017-04-25 | 一种空调器制热控制方法 |
CN201710277885.3 | 2017-04-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018196577A1 true WO2018196577A1 (zh) | 2018-11-01 |
Family
ID=59813439
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/082077 WO2018196577A1 (zh) | 2017-04-25 | 2018-04-06 | 一种空调器制热控制方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107166635B (zh) |
WO (1) | WO2018196577A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107166635B (zh) * | 2017-04-25 | 2020-03-31 | 青岛海尔空调器有限总公司 | 一种空调器制热控制方法 |
CN110057045B (zh) * | 2019-03-20 | 2021-10-29 | 青岛海尔空调器有限总公司 | 用于空调器的控制方法 |
CN112628970A (zh) * | 2020-12-25 | 2021-04-09 | 珠海格力电器股份有限公司 | 空调的控制方法、控制装置和空调系统 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734898A (zh) * | 2012-07-13 | 2012-10-17 | 海尔集团公司 | 提高空调器制热速度的控制方法及控制装置 |
CN104515334A (zh) * | 2013-09-30 | 2015-04-15 | 海尔集团公司 | 一种空调制热模式的频率控制方法 |
CN104697109A (zh) * | 2014-12-22 | 2015-06-10 | 青岛海尔空调器有限总公司 | 制冷控制方法、控制装置及变频空调 |
CN104764151A (zh) * | 2015-03-27 | 2015-07-08 | 武汉海尔电器股份有限公司 | 一种空调控制方法 |
CN104764150A (zh) * | 2015-03-27 | 2015-07-08 | 武汉海尔电器股份有限公司 | 空调控制方法 |
CN105042796A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 空调控制方法 |
CN105042797A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 一种壁挂式变频空调器控制方法 |
CN105042795A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 壁挂式变频空调器控制方法 |
CN105042798A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 一种控制空调器的方法 |
CN106500242A (zh) * | 2016-10-11 | 2017-03-15 | 青岛海尔空调器有限总公司 | 一种空调运行控制方法 |
CN107166635A (zh) * | 2017-04-25 | 2017-09-15 | 青岛海尔空调器有限总公司 | 一种空调器制热控制方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101813360B (zh) * | 2009-12-28 | 2012-07-04 | 宁波奥克斯空调有限公司 | 一种空调器电加热的控制方法及装置 |
CN104713196B (zh) * | 2014-12-22 | 2017-04-19 | 青岛海尔空调器有限总公司 | 变频空调制冷控制方法、控制装置及变频空调 |
-
2017
- 2017-04-25 CN CN201710277885.3A patent/CN107166635B/zh active Active
-
2018
- 2018-04-06 WO PCT/CN2018/082077 patent/WO2018196577A1/zh active Application Filing
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102734898A (zh) * | 2012-07-13 | 2012-10-17 | 海尔集团公司 | 提高空调器制热速度的控制方法及控制装置 |
CN104515334A (zh) * | 2013-09-30 | 2015-04-15 | 海尔集团公司 | 一种空调制热模式的频率控制方法 |
CN104697109A (zh) * | 2014-12-22 | 2015-06-10 | 青岛海尔空调器有限总公司 | 制冷控制方法、控制装置及变频空调 |
CN104764151A (zh) * | 2015-03-27 | 2015-07-08 | 武汉海尔电器股份有限公司 | 一种空调控制方法 |
CN104764150A (zh) * | 2015-03-27 | 2015-07-08 | 武汉海尔电器股份有限公司 | 空调控制方法 |
CN105042796A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 空调控制方法 |
CN105042797A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 一种壁挂式变频空调器控制方法 |
CN105042795A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 壁挂式变频空调器控制方法 |
CN105042798A (zh) * | 2015-08-31 | 2015-11-11 | 青岛海尔空调器有限总公司 | 一种控制空调器的方法 |
CN106500242A (zh) * | 2016-10-11 | 2017-03-15 | 青岛海尔空调器有限总公司 | 一种空调运行控制方法 |
CN107166635A (zh) * | 2017-04-25 | 2017-09-15 | 青岛海尔空调器有限总公司 | 一种空调器制热控制方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107166635A (zh) | 2017-09-15 |
CN107166635B (zh) | 2020-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018196578A1 (zh) | 空调器制热运行控制方法 | |
WO2018196580A1 (zh) | 空调器制热运行控制方法和控制装置 | |
US11181287B2 (en) | Control method for heating operation of air-conditioner based on coil temperature and indoor fan speed | |
EP3561406B1 (en) | Heating control method and device for air conditioner | |
WO2018166372A1 (zh) | 空调器控制方法 | |
CN107014036B (zh) | 制热控制方法、制热控制装置及空调器 | |
CN105444327B (zh) | 一种空调运行控制方法 | |
WO2020052368A1 (zh) | 空调器的控制方法及空调器 | |
WO2018196577A1 (zh) | 一种空调器制热控制方法 | |
CN105066365A (zh) | 空调射频遥控控制方法 | |
WO2020052150A1 (zh) | 一种空调自动控制方法和空调 | |
CN105202693A (zh) | 一种空调射频遥控控制方法 | |
JP5730689B2 (ja) | 空調運転制御システム | |
WO2018196579A1 (zh) | 制热控制方法、控制装置和空调器 | |
WO2018177079A1 (zh) | 空调器制热控制方法、控制装置及空调器 | |
WO2023005570A1 (zh) | 用于空调器的静音控制方法 | |
CN107084489B (zh) | 空调器制热控制方法 | |
CN107023939B (zh) | 空调器制热控制方法及控制装置 | |
CN107023941B (zh) | 空调器及其制热控制方法和控制装置 | |
CN107084487B (zh) | 空调器的制热控制方法和控制装置 | |
JP7199529B2 (ja) | 制御装置、空気環境調整システム、空気環境調整方法、プログラム、及び記録媒体 | |
CN107152752B (zh) | 空调器制热控制方法、控制装置 | |
CN107062526B (zh) | 空调舒适性控制方法 | |
CN105091244A (zh) | 一种空调蓝牙遥控控制方法 | |
EP4130590A1 (en) | Ventilation/air conditioning system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18791167 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18791167 Country of ref document: EP Kind code of ref document: A1 |