WO2023197557A1 - 多联机空调器及其控制方法和控制装置 - Google Patents

多联机空调器及其控制方法和控制装置 Download PDF

Info

Publication number
WO2023197557A1
WO2023197557A1 PCT/CN2022/126421 CN2022126421W WO2023197557A1 WO 2023197557 A1 WO2023197557 A1 WO 2023197557A1 CN 2022126421 W CN2022126421 W CN 2022126421W WO 2023197557 A1 WO2023197557 A1 WO 2023197557A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
time
indoor
preset
corrected
Prior art date
Application number
PCT/CN2022/126421
Other languages
English (en)
French (fr)
Inventor
何振华
张铮
高学伟
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2023197557A1 publication Critical patent/WO2023197557A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/20Feedback from users
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention belongs to the technical field of air conditioning, specifically relates to air conditioners, and more specifically, relates to multi-split air conditioners and control methods and control devices thereof.
  • Multi-split air conditioners usually include multiple indoor units.
  • the refrigerant pipelines of multiple indoor units are connected in parallel and share one or more outdoor units.
  • the indoor unit is usually equipped with a temperature detection device at its return air outlet. Based on the return air temperature detected by the temperature detection device, it is determined whether the indoor unit meets the temperature shutdown conditions. When an indoor unit meets the temperature shutdown conditions, the usual control scheme is to blow waste heat to the indoor unit, blow out the accumulated heat in the indoor unit, and then close the throttling component of the indoor unit.
  • the time for a multi-split air conditioner to blow off waste heat is usually a fixed value determined when the air conditioner leaves the factory.
  • Some multi-split air conditioners use a non-fixed value of waste heat blowing time, and use the indoor fan speed when entering the waste heat blowing state to determine the time for blowing waste heat.
  • An object of the present invention is to provide a control method and a control device for a multi-connected air conditioner, which adjusts the residual heat blowing time based on the corrected temperature, so that the residual heat blowing time adapts to the installation status of the indoor unit of the air conditioner, and improves the accuracy of the air conditioner control. and comfort of use, realizing the functions of smart air conditioners.
  • control method of the multi-connected air conditioner provided by the invention is realized by adopting the following technical solutions:
  • a control method for a multi-connected air conditioner includes:
  • the time when the corrected indoor temperature meets the preset correction conditions for the residual heat blowing time is used as the timing start time, and the timing starts;
  • the second detected temperature reflecting the temperature perceived by the human body in the room where the indoor unit is located, the second indoor temperature detected by the indoor unit and the internal coil temperature of the indoor unit are obtained in real time;
  • the time from the timing start time to when the difference between the second indoor temperature and the second detection temperature meets the first temperature difference condition and the inner coil temperature meets the preset plate temperature condition is determined as the first timing time
  • the time from the timing start time to when the difference between the second indoor temperature and the second detection temperature meets the second temperature difference condition and the inner coil temperature does not meet the preset plate temperature condition is determined. is the second timing time; the second timing time is greater than the first timing time;
  • the time from the timing start time to when the difference between the second indoor temperature and the second detection temperature meets the third temperature difference condition is determined as the third timing time; the third timing time is greater than the second timing time;
  • the third timing time is determined to be the corrected post-blowing residual heat time; otherwise, the first timing time is determined to be the corrected post-blowing residual heat time.
  • the corrected post-blow residual heat time is described above.
  • the method further includes:
  • the fan of the indoor unit is controlled to operate in the third Run at two preset speeds; the second preset speed is smaller than the first preset speed;
  • the fan of the indoor unit is controlled to stop. .
  • the method further includes:
  • the indoor unit is controlled to perform anti-cold wind control or the indoor unit is controlled to maintain its operating state.
  • the preset residual heat blowing time correction conditions include: the corrected indoor temperature is greater than the set temperature;
  • controlling the indoor unit to perform the anti-cold wind control or controlling the indoor unit to maintain the operating state includes:
  • the indoor unit When the corrected indoor temperature is equal to the set temperature, the indoor unit is controlled to maintain its operating state.
  • the process of determining the corrected after-blowing after-heat time is performed, including:
  • the process of determining the corrected post-blowing after-heat time is executed; otherwise, the described process of determining the corrected post-blowing after-heat time is not executed. process.
  • determining whether the reaching temperature shutdown signal meets the preset reaching temperature shutdown signal condition includes:
  • control method further includes:
  • the initial residual heat blowing time of the indoor unit is obtained.
  • control device of the multi-split air conditioner provided by the present invention adopts the following technical solutions:
  • a control device for a multi-connected air conditioner includes:
  • the first detection temperature acquisition unit is configured to acquire the first detection temperature that reflects the temperature perceived by the human body in the room where the indoor unit is located when receiving a temperature shutdown signal of the indoor unit;
  • a first indoor temperature acquisition unit configured to acquire the first indoor temperature detected by the indoor unit when receiving a temperature shutdown signal of the indoor unit
  • a corrected indoor temperature acquisition unit configured to correct the first indoor temperature according to the first detected temperature
  • the corrected indoor temperature judgment unit is used to judge whether the corrected indoor temperature meets the preset residual heat blowing time correction conditions
  • the second detection temperature acquisition unit is used to acquire the second detection temperature reflecting the human body perception temperature in the room where the indoor unit is located in real time in the process of timing from the time when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition. temperature;
  • a second indoor temperature acquisition unit configured to acquire the second indoor temperature detected by the indoor unit in real time during the process of timing from when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition;
  • An inner coil temperature acquisition unit configured to acquire the inner coil temperature of the indoor unit in real time during the process of timing from when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition;
  • the first timing time determination unit is used to count the time when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition as the timing start time until the difference between the second indoor temperature and the second detected temperature satisfies The time when the first temperature difference condition is met and the inner coil temperature meets the preset coil temperature condition is determined as the first timing time;
  • the second timing time determination unit is used to count the time when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition as the timing start time until the difference between the second indoor temperature and the second detected temperature satisfies The time when the second temperature difference condition is met and the inner coil temperature does not meet the preset plate temperature condition is determined as the second timing time; the second timing time is greater than the first timing time;
  • the third timing time determination unit is used to count the time when the corrected indoor temperature meets the preset residual heat blowing time correction condition as the timing start time until the difference between the second indoor temperature and the second detected temperature satisfies The time under the third temperature difference condition is determined as the third timing time; the third timing time is greater than the second timing time;
  • the corrected post-blowing residual heat time is used to determine that the third timing time is the corrected post-blowing residual heat time when the difference between the third timing time and the second timing time meets the preset time condition; otherwise, determine The first timing time is the corrected post-blow residual heat time.
  • Another object of the present invention is to provide a multi-split air conditioner, which includes an outdoor unit and a plurality of indoor units.
  • the multi-split air conditioner further includes the above-mentioned control device of the multi-split air conditioner.
  • Another object of the present invention is to provide an electronic device, including a processor, a memory and a computer program stored on the memory.
  • the processor is configured to execute the computer program to realize the control of the above-mentioned multi-connected air conditioner. method.
  • the multi-split air conditioner and its control method and control device provided by the present invention use the detected temperature that reflects the temperature perceived by the human body in the room to correct the indoor temperature, and use the corrected indoor temperature as a judgment parameter to determine whether to perform blowing residual heat time correction to determine whether to perform blowing.
  • Correction of the residual heat time when correcting the residual heat blowing time, the timing time is determined based on the temperature sensed by the human body in the room, the detection temperature of the indoor unit, and the internal coil temperature of the indoor unit, and the corrected residual heat blowing time is further determined based on the timing time, so that the residual heat blowing time is automatically It adapts to the installation status of the room where the indoor unit of the air conditioner is installed, the installation position of the indoor unit in the room, etc., improves the accuracy of the residual heat blowing time, and effectively solves the problem of inaccurate residual heat blowing time due to differences in the installation status of the indoor unit.
  • the resulting problems such as the indoor unit not starting when the temperature reaches the temperature and blowing cold air when the temperature reaches the temperature, improve the accuracy and comfort of using the air conditioner based on the residual heat blowing time, and realize the smart air conditioner function.
  • Figure 1 is a schematic flow chart of a first embodiment of a control method for a multi-connected air conditioner according to the present invention
  • Figure 2 is a schematic flow chart of the second embodiment of the control method of the multi-connected air conditioner of the present invention.
  • Figure 3 is a schematic structural diagram of an embodiment of a control device for a multi-split air conditioner according to the present invention
  • Figure 4 is a schematic structural diagram of an embodiment of the electronic device of the present invention.
  • the waste heat blowing time used in the control of existing multi-split air conditioners is based on the operating status of the multi-split air conditioner itself, without considering the structure of the room where the indoor unit is installed, the installation position and installation method of the indoor unit in the room, and other related factors.
  • the impact will cause the room temperature to drop after the indoor unit reaches the temperature and stops, and the indoor unit cannot be started normally again when the indoor unit should be started, or the problem of cold air blowing out when the indoor unit reaches the temperature and stops to blow out the residual heat.
  • the present invention creatively proposes to determine the timing time based on the temperature perceived by the human body in the room, the detected temperature of the indoor unit, and the internal coil temperature of the indoor unit, and determine and correct the residual heat blowing time based on the timing time, so that the residual heat blowing time can be adapted to the air conditioner.
  • the installation status of the indoor unit can be improved to improve the accuracy of air conditioner control and comfort, and realize the function of smart air conditioner.
  • Figure 1 shows a schematic flowchart of a first embodiment of a control method for a multi-split air conditioner according to the present invention. Specifically, it is a schematic flowchart of an embodiment of determining the residual heat blowing time during the heating operation of the indoor unit.
  • the multi-split air conditioner includes an outdoor unit and multiple indoor units, and the control method in this embodiment is directed to one of the indoor units.
  • control method of this embodiment is implemented using the following process.
  • Step 101 When receiving the indoor unit temperature shutdown signal, obtain the first detected temperature and the first indoor temperature.
  • a temperature detection device is provided at the return air outlet of the indoor unit to detect the return air temperature of the return air outlet, which is used as the indoor temperature detected by the indoor unit. After the detected temperature meets the temperature shutdown conditions, the indoor unit temperature shutdown signal is sent. When receiving the temperature shutdown signal of the indoor unit, the first detected temperature and the first indoor temperature will be obtained.
  • the first indoor temperature is the temperature detected by the temperature detection device installed in the indoor unit and reflects the indoor temperature.
  • the first detected temperature is the temperature that reflects the temperature perceived by the human body in the room where the indoor unit is located.
  • the temperature perceived by the human body is the temperature that the human body can directly feel. It is generally the temperature within the range of human activity in the room, such as the temperature in the middle and lower parts of the room.
  • the first detected temperature can be detected by a temperature detection device placed within the range of human activity in the room. This embodiment does not limit the acquisition method of the first detected temperature. For example, it can be detected and obtained through a built-in temperature detection device in the remote control of the indoor unit; or, it can be detected and obtained by setting up a temperature detection device at a certain height in the room, which is lower than the installation height of the indoor unit and generally lower than the normal height of the human body. , for example, the height position of 1-1.5m in the room; or, it can be detected and obtained through the temperature detection device installed on other electrical equipment placed on the floor of the room.
  • Step 102 Correct the first indoor temperature according to the first detected temperature to obtain the corrected indoor temperature.
  • the first indoor temperature is corrected through the first detected temperature, so that the corrected indoor temperature can overcome the influence of the human body temperature caused by the difference in the installation status of the indoor unit, thereby improving the judgment and execution of other controls based on the corrected indoor temperature. accuracy.
  • the correction method of correcting the first indoor temperature according to the first detected temperature is not limited in this embodiment. As long as the corrected indoor temperature can overcome the influence of the human body temperature caused by the difference in the installation status of the indoor unit, all correction methods belong to the present invention. protection scope.
  • Step 103 When the corrected indoor temperature satisfies the preset correction conditions for the residual heat blowing time, execute the process of determining the corrected residual heat blowing time.
  • the preset residual heat blowing time correction condition is used as a judgment condition for whether to perform the residual heat blowing time correction. It is a known condition and can be a fixed condition or a dynamically variable condition.
  • the preset correction condition for the residual heat blowing time is: the corrected indoor temperature is greater than the set temperature.
  • the set temperature is the current set temperature for the operation of the indoor unit, which is a known value.
  • the process of determining the corrected post-blow residual heat time is implemented using the following steps 104 to 106.
  • Step 104 Use the time when the preset residual heat blowing time correction conditions are met as the timing start time, and start timing; during the timing process, obtain the second detection temperature, the second indoor temperature and the inner coil temperature in real time.
  • the second detected temperature is similar to the first detected temperature. It reflects the temperature perceived by the human body in the room where the indoor unit is located.
  • the detection method is the same as the first detected temperature.
  • the second indoor temperature is similar to the first indoor temperature. It is a temperature detected by a temperature detection device provided in the indoor unit and reflects the indoor temperature.
  • the internal coil temperature is the coil temperature of the indoor unit heat exchanger, which can be detected and obtained through the coil temperature detection device on the indoor unit heat exchanger.
  • Step 105 Determine the first timing time, the second timing time and the third timing time.
  • the time from the start of timing to when the difference between the second indoor temperature and the second detected temperature meets the first temperature difference condition and the inner coil temperature meets the preset coil temperature condition is determined as the first timing time.
  • the time from the timing start time to when the difference between the second indoor temperature and the second detected temperature meets the second temperature difference condition and the inner coil temperature does not meet the preset coil temperature condition is determined as the second timing time.
  • the time from the timing start time to when the difference between the second indoor temperature and the second detection temperature meets the third temperature difference condition is determined as the third timing time.
  • the second timing time is greater than the first timing time
  • the third timing time is greater than the second timing time
  • each temperature difference condition and plate temperature condition can be determined.
  • the first temperature difference condition includes: the second indoor temperature is lower than the second detection temperature, and the difference between the two temperatures is not less than the first temperature difference threshold.
  • the first temperature difference threshold is 0.5°C, and when the second indoor temperature is at least 0.5°C lower than the second detection temperature, it is determined that the first temperature difference condition is met.
  • the preset disk temperature condition includes: the inner coil temperature is greater than a disk temperature threshold. In some other embodiments, the disk temperature threshold is 20°C. When the inner coil temperature is greater than 20°C, it is determined that the inner coil temperature meets the preset plate temperature conditions; if the inner coil temperature is less than or equal to 20°C, it is determined that the inner coil temperature is less than or equal to 20°C. The tube temperature does not meet the preset plate temperature conditions.
  • the second temperature difference condition includes: the second indoor temperature is higher than the second detection temperature, and the difference between the second indoor temperature and the second detection temperature is not less than the second temperature difference threshold.
  • the second temperature difference threshold is 0.3°C, and when the second indoor temperature is at least 0.3°C higher than the second detection temperature, it is determined that the second temperature difference condition is met.
  • the third temperature difference condition includes: the second indoor temperature is lower than the second detection temperature, and the difference between the two temperatures is not less than the third temperature difference threshold.
  • the third temperature difference threshold is 0.5°C, and when the second indoor temperature is at least 0.5°C lower than the second detection temperature, it is determined that the third temperature difference condition is met.
  • Step 106 When the difference between the third timing time and the second timing time meets the preset time condition, determine the third timing time as the corrected post-blow afterheat time; otherwise, determine the first timing time as the corrected post-blow afterheat time.
  • the preset time condition as a condition parameter for determining the corrected post-blow afterheat time, is a known condition and can be a fixed condition or a dynamically variable condition.
  • the preset time condition includes: the time difference is greater than a time difference threshold. In some other embodiments, the time difference threshold is 10S. Then, if the difference between the third timing time and the second timing time is greater than 10S, it is determined that the preset time condition is met.
  • the preset time conditions When the preset time conditions are met, it indicates that the heat exchange in the room where the indoor unit is located is uneven.
  • the longer third timing time is determined as the corrected post-blowing residual heat time, and the indoor unit is controlled to blow the residual heat for a longer time to avoid subsequent failure to reach the temperature. Startup problem. If the preset time conditions are not met, it means that the heat exchange in the room where the indoor unit is located is relatively uniform. Determine the shorter first timing time as the corrected post-blow residual heat time to avoid cold wind blowing and causing uncomfortable indoor temperature.
  • the control method of the multi-split air conditioner uses the detected temperature that reflects the temperature perceived by the human body in the room to correct the indoor temperature, and uses the corrected indoor temperature as a judgment parameter to determine whether to perform the correction of the residual heat blowing time to determine whether to perform the residual heat blowing time correction.
  • Correction When correcting the residual heat blowing time, the timing time is determined based on the temperature sensed by the human body in the room, the indoor unit detection temperature, and the indoor unit's internal coil temperature, and further the corrected residual heat blowing time is determined based on the timing time, so that the residual heat blowing time is adaptive to the air conditioner The installation status of the room where the indoor unit is installed, the installation position of the indoor unit in the room, etc.
  • control method of the multi-connected air conditioner further includes:
  • the fan of the indoor unit is controlled to run at the first preset speed, and the air guide plate of the indoor unit is also controlled to be in a non-blowing position, for example, a horizontal position;
  • the fan of the indoor unit is controlled to run at the second preset speed.
  • the second preset rotation speed is smaller than the first preset rotation speed.
  • the first preset rotation speed is the weak wind speed of the indoor unit, and the second preset rotation speed is the lowest rotation speed of the indoor unit.
  • the fan of the indoor unit is controlled to stop.
  • Figure 2 shows a schematic flowchart of a second embodiment of the control method of a multi-split air conditioner according to the present invention. Specifically, it is a schematic flowchart of one embodiment of determining the residual heat blowing time during the heating operation of the indoor unit.
  • the multi-split air conditioner includes an outdoor unit and multiple indoor units, and the control method in this embodiment is directed to one of the indoor units.
  • control method of this embodiment is implemented using the following process.
  • Step 201 When receiving the indoor unit temperature shutdown signal, obtain the first detected temperature and the first indoor temperature, and obtain the corrected indoor temperature.
  • Step 202 Determine whether the corrected indoor temperature meets the preset residual heat blowing time correction conditions. If yes, go to step 204; otherwise, go to step 203.
  • Step 203 Control the indoor unit to perform anti-cold wind control or control the indoor unit to maintain its operating status.
  • the residual heat blowing time correction process will not be executed, but the indoor unit will be controlled to perform anti-cold wind control or the indoor unit will be controlled to maintain its operating status.
  • the preset correction conditions for residual heat blowing time include: the indoor temperature after correction is greater than the set temperature. Then, if the corrected indoor temperature does not meet the preset correction conditions for blowing residual heat time, it means that the corrected indoor temperature is not greater than the set temperature. In this state, when the corrected indoor temperature is lower than the set temperature, the indoor unit is controlled to perform anti-cold wind control to increase the indoor unit coil temperature; when the corrected indoor temperature is equal to the set temperature, the indoor unit is controlled to maintain the operating state. That is, its current operating status remains unchanged.
  • Step 204 Determine whether there is a corrected post-blow residual heat time. If it exists, go to step 208; otherwise, go to step 205.
  • step 202 determines that the corrected indoor temperature meets the preset residual heat blowing time correction conditions, it is further determined whether there is a corrected residual heat blowing time for the indoor unit, and different controls are executed based on the judgment results.
  • Step 205 Determine whether the received Darwin shutdown signal meets the preset Darwin shutdown signal conditions. If yes, go to step 207; if not, go to step 206.
  • step 204 determines that there is no corrected post-blowing residual heat time for the indoor unit, it will further be determined whether the received Darwin shutdown signal meets the preset Darwin shutdown signal conditions.
  • the preset reaching temperature shutdown signal condition is used as a judgment condition for whether to execute the correction of the residual heat blowing time, and is a known condition.
  • the preset reaching temperature stop signal condition includes: receiving the reaching temperature shutdown signal for the second time after powering on the indoor unit.
  • Step 206 Obtain the initial residual heat blowing time.
  • step 205 determines that the received reaching temperature shutdown signal does not meet the preset reaching temperature shutdown signal conditions, the correction of the blowing afterheat time will not be performed, but the initial blowing afterheat time will be obtained, and the initial blowing afterheat time will be used to perform the blowing afterheat control.
  • the initial residual heat blowing time is a known time.
  • the preset temperature shutdown signal condition is that the indoor unit receives a temperature shutdown signal for the second time after powering on
  • the residual heat blowing time will not be corrected. Instead, the initial residual heat blowing time is used to control the residual heat blowing to avoid problems such as unstable operation of the air conditioner system caused by too short running time of the indoor unit and insufficiently uniform indoor room temperature caused by excessive startup of the indoor unit.
  • Step 207 Execute the process of determining the corrected post-blow residual heat time.
  • step 205 determines that the received reaching temperature shutdown signal meets the preset reaching temperature shutdown signal conditions, a process of determining the corrected post-blow residual heat time will be performed.
  • a process of determining the corrected post-blow residual heat time will be performed.
  • the determined corrected post-blow residual heat time is saved for direct call when the next temperature shutdown occurs.
  • Step 208 Obtain the corrected post-blow residual heat time.
  • step 204 is executed based on the judgment result of step 204. Specifically, if step 204 determines that there is a corrected post-blowing residual heat time of the indoor unit, the process of judging whether the Darwin shutdown signal meets the preset Darwin shutdown signal conditions and adjusting the corrected blowing after-heat time will no longer be performed. Directly call the existing corrected post-blowing residual heat time as the Darwen shutdown residual heat blowing time.
  • Figure 3 is a schematic structural diagram of an embodiment of a control device for a multi-split air conditioner according to the present invention. Specifically, it is a schematic structural diagram of an embodiment of determining the residual heat blowing time when the indoor machine is running for heating.
  • the multi-split air conditioner includes an outdoor unit and multiple indoor units, and the control device in this embodiment is directed to one of the indoor units.
  • control device of this embodiment includes structural units, functions of the structural units, and relationships between them, specifically as follows:
  • Controls include:
  • the first detected temperature acquisition unit 301 is configured to acquire the first detected temperature that reflects the temperature perceived by the human body in the room where the indoor unit is located, when receiving a temperature shutdown signal of the indoor unit.
  • the first indoor temperature acquisition unit 302 is configured to acquire the first indoor temperature detected by the indoor unit when the indoor unit reaches a temperature and stops the signal.
  • the corrected indoor temperature obtaining unit 303 is configured to correct the first indoor temperature obtained by the first indoor temperature obtaining unit 302 according to the first detected temperature obtained by the first detected temperature obtaining unit 301 .
  • the corrected indoor temperature judgment unit 304 is used to judge whether the corrected indoor temperature obtained by the corrected indoor temperature acquisition unit 303 meets the preset residual heat blowing time correction conditions.
  • the second detected temperature acquisition unit 305 is used to obtain real-time data reflecting the temperature perceived by the human body in the room where the indoor unit is located during the timing process starting from when the corrected indoor temperature judgment unit 304 determines that the corrected indoor temperature meets the preset residual heat blowing time correction conditions. Secondly detect the temperature.
  • the second indoor temperature acquisition unit 306 is configured to acquire the second indoor temperature detected by the indoor unit in real time during the timing process starting from when the corrected indoor temperature determination unit 304 determines that the corrected indoor temperature meets the preset residual heat blowing time correction conditions.
  • the inner coil temperature acquisition unit 307 is used to obtain the inner coil temperature of the indoor unit in real time during the timing process starting from when the corrected indoor temperature determination unit 304 determines that the corrected indoor temperature meets the preset residual heat blowing time correction conditions.
  • the first timing time determination unit 308 is used to count the time when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition as the timing start time until the difference between the second indoor temperature and the second detected temperature satisfies the first temperature difference condition. And the time when the inner coil temperature meets the preset coil temperature condition is determined as the first timing time.
  • the second timing time determination unit 309 is used to count the time when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition as the timing start time until the difference between the second indoor temperature and the second detected temperature satisfies the second temperature difference condition. And the time when the inner coil temperature does not meet the preset coil temperature condition is determined as the second timing time; the second timing time is greater than the first timing time.
  • the third timing time determination unit 310 is used to count from the moment when the corrected indoor temperature satisfies the preset residual heat blowing time correction condition as the timing start time to when the difference between the second indoor temperature and the second detected temperature satisfies the third temperature difference condition. The time is determined as the third timing time; the third timing time is greater than the second timing time.
  • the modified post-blow residual heat time determination unit 311 is configured to determine the third timing time when the difference between the third timing time determined by the third timing time determination unit 310 and the second timing time determined by the second timing time determination unit 309 meets the preset time condition.
  • the third timing time is the corrected post-blowing afterheat time; otherwise, the first timing time determined by the first timing time determination unit 308 is determined to be the corrected post-blowing afterheat time.
  • the control device with the above structure runs the corresponding software program, performs the corresponding function, and performs air conditioner control according to the control method embodiment of the multi-split air conditioner in the embodiment of Figure 1 and Figure 2 and the process of other embodiments, achieving the same results as in Figure 1
  • control devices of the above embodiments are applied in multi-split air conditioners, so that the residual heat blowing time can adapt to the installation status of the indoor unit of the air conditioner, improve the accuracy of air conditioner control and comfort of use, and realize the function of smart air conditioners.
  • FIG 4 shows a structural block diagram of an embodiment of the electronic device of the present invention.
  • the electronic device includes a processor 41, a memory 42 and a computer program 421 stored on the memory 42.
  • the processor 41 is configured to execute the computer program 421 to implement the multi-connected air conditioner of the embodiment in Figure 1, the embodiment in Figure 2 and other embodiments. control method, and achieve the technical effects of the corresponding embodiments.
  • the electronic equipment can be the main control board, controller, etc. of the multi-split air conditioner.

Abstract

一种多联机空调器控制方法,包括:在收到室内机达温停机信号时,获取第一检测温度和第一室内温度;根据所述第一检测温度对所述第一室内温度进行修正,获得修正后室内温度;将所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间,开始计时,根据预设条件分别获得第一计时时间、第二计时时间和第三计时时间;在所述第三计时时间和所述第二计时时间之差满足预设时间条件时,确定所述第三计时时间为所述修正后吹余热时间;否则,确定所述第一计时时间为所述修正后吹余热时间。

Description

多联机空调器及其控制方法和控制装置 技术领域
本发明属于空气调节技术领域,具体地说,是涉及空调器,更具体地说,是涉及多联机空调器及其控制方法和控制装置。
背景技术
多联机空调器通常包括有多个室内机,多个室内机的制冷剂管路并联,共用一个或多个室外机。对于多联机空调器,室内机通常在其回风口处设置有温度检测装置,根据该温度检测装置所检测的回风温度判断室内机是否满足达温停机条件。当有室内机满足达温停机条件后,通常的控制方案是对室内机吹余热,将室内机中积累的热量吹出,然后关闭将该室内机的节流部件。
现有技术中,多联机空调器吹余热的时间通常为空调器在出厂时即确定的固定值。部分多联机空调器采用非固定值的吹余热时间,利用进入吹余热状态时的室内风机转速确定吹余热时长。
但是,不管是采用固定值的吹余热时间,还是根据室内风机转速确定吹余热时长,其仅是从多联机空调器自身运行状态出发,未考虑室内机所安装的房间结构、室内机在房间中的安装位置、安装方式等相关因素的影响,导致在多联机空调器使用过程中,经常还会出现室内机达温停机后房间温度下降、应启动室内机但却不能再次正常启动的问题,或者会出现达温停机吹余热时吹出冷风的问题,均会造成房间温度不适宜,影响用户舒适度。
技术问题
本发明的一个目的在于提供一种多联机空调器的控制方法及控制装置,基于修正的温度调整吹余热时间,使得吹余热时间自适应空调器的室内机安装状态,提高空调器控制的准确性和使用舒适性,实现智能空调器功能。
技术解决方案
为实现上述发明目的,本发明提供的多联机空调器的控制方法采用下述技术方案予以实现:
一种多联机空调器的控制方法,所述控制方法包括:
在收到室内机达温停机信号时,获取反映所述室内机所在房间内人体感知温度的第一检测温度和所述室内机检测的第一室内温度;
根据所述第一检测温度对所述第一室内温度进行修正,获得修正后室内温度;
在所述修正后室内温度满足预设吹余热时间修正条件时,执行下述的确定修正后吹余热时间的过程:
将所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间,开始计时;
在计时过程中,实时获取反映所述室内机所在房间内人体感知温度的第二检测温度、所述室内机检测的第二室内温度和所述室内机的内盘管温度;
将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第一温差条件、且所述内盘管温度满足预设盘温条件时的时间,确定为第一计时时间;
将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第二温差条件、且所述内盘管温度不满足所述预设盘温条件时的时间,确定为第二计时时间;所述第二计时时间大于所述第一计时时间;
将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间;所述第三计时时间大于所述第二计时时间;
在所述第三计时时间和所述第二计时时间之差满足预设时间条件时,确定所述第三计时时间为所述修正后吹余热时间;否则,确定所述第一计时时间为所述修正后吹余热时间。
本申请的一些实施例中,所述方法还包括:
在所述修正后室内温度满足所述预设吹余热时间修正条件后,控制所述室内机的风机以第一预设转速运行;
在所述第二室内温度与所述第二检测温度之差满足所述第一温差条件、且所述内盘管温度满足所述预设盘温条件后,控制所述室内机的风机以第二预设转速运行;所述第二预设转速小于所述第一预设转速;
在所述第二室内温度与所述第二检测温度之差满足所述第二温差条件、且所述内盘管温度不满足所述预设盘温条件后,控制所述室内机的风机停止。
本申请的一些实施例中,所述方法还包括:
在所述修正后室内温度不满足所述预设吹余热时间修正条件时,控制所述室内机执行防冷风控制或者控制所述室内机运行状态保持。
本申请的一些实施例中,所述预设吹余热时间修正条件包括:所述修正后室内温度大于设定温度;
在所述修正后室内温度不满足所述预设吹余热时间修正条件时,控制所述室内机执行所述防冷风控制或者控制所述室内机运行状态保持,包括:
在所述修正后室内温度小于所述设定温度时,控制所述室内机执行所述防冷风控制;
在所述修正后室内温度等于所述设定温度时,控制所述室内机运行状态保持。
本申请的一些实施例中,在所述修正后室内温度满足预设吹余热时间修正条件时,执行所述的确定修正后吹余热时间的过程,包括:
在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断所述达温停机信号是否满足预设达温停机信号条件;
在所述达温停机信号满足所述预设达温停机信号条件时,执行所述的确定所述修正后吹余热时间的过程;否则,不执行所述的确定所述修正后吹余热时间的过程。
本申请的一些实施例中,在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断所述达温停机信号是否满足预设达温停机信号条件,包括:
在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断是否存在所述室内机的所述修正后吹余热时间;
在不存在所述室内机的所述修正后吹余热时间时,判断所述达温停机信号是否满足预设达温停机信号条件;否则,不判断所述达温停机信号是否满足预设达温停机信号条件。
本申请的一些实施例中,所述控制方法还包括:
在不存在所述室内机的所述修正后吹余热时间,且所述达温停机信号不满足所述预设达温停机信号条件时,获取所述室内机的初始吹余热时间。
为实现前述发明目的,本发明提供的多联机空调器的控制装置采用下述技术方案来实现:
一种多联机空调器的控制装置,所述控制装置包括:
第一检测温度获取单元,用于在收到室内机达温停机信号时,获取反映所述室内机所在房间内人体感知温度的第一检测温度;
第一室内温度获取单元,用于在收到所述室内机达温停机信号时,获取所述室内机检测的第一室内温度;
修正后室内温度获取单元,用于根据所述第一检测温度对所述第一室内温度进行修正;
修正后室内温度判断单元,用于判断所述修正后室内温度是否满足预设吹余热时间修正条件;
第二检测温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取反映所述室内机所在房间内人体感知温度的第二检测温度;
第二室内温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取所述室内机检测的第二室内温度;
内盘管温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取所述室内机的内盘管温度;
第一计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第一温差条件、且所述内盘管温度满足预设盘温条件时的时间,确定为第一计时时间;
第二计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第二温差条件、且所述内盘管温度不满足所述预设盘温条件时的时间,确定为第二计时时间;所述第二计时时间大于所述第一计时时间;
第三计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间;所述第三计时时间大于所述第二计时时间;
修正后吹余热时间,用于在所述第三计时时间和所述第二计时时间之差满足预设时间条件时,确定所述第三计时时间为所述修正后吹余热时间;否则,确定所述第一计时时间为所述修正后吹余热时间。
本发明的再一目的在于提供一种多联机空调器,包括室外机和多个室内机,所述多联机空调器还包括上述的多联机空调器的控制装置。
本发明的又一目的在于提供一种电子设备,包括处理器、存储器及存储在所述存储器上的计算机程序,所述处理器配置为执行所述计算机程序,实现上述的多联机空调器的控制方法。
有益效果
与现有技术相比,本发明的优点和积极效果是:
本发明提供的多联机空调器及其控制方法和控制装置,利用反映房间内人体感知温度的检测温度修正室内温度,将修正后室内温度作为是否执行吹余热时间修正的判断参量,决定是否执行吹余热时间的修正;在修正吹余热时间时,基于房间内人体感知温度与室内机检测温度以及室内机的内盘管温度确定计时时间,进一步根据计时时间确定修正吹余热时间,使得吹余热时间自适应空调器的室内机所安装的房间结构、室内机在房间中的安装位置等安装状态,提高了吹余热时间的准确性,有效解决了因室内机安装状态的差异造成吹余热时间不准确而产生的室内机达温不启动和达温吹冷风等的问题,提高了基于吹余热时间控制空调器的准确性和使用舒适性,实现了智能空调器功能。
结合附图阅读本发明的具体实施方式后,本发明的其他特点和优点将变得更加清楚。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明多联机空调器的控制方法第一个实施例的流程示意图;
图2是本发明多联机空调器的控制方法第二个实施例的流程示意图;
图3是本发明多联机空调器的控制装置一个实施例的结构示意图;
图4是本发明电子设备一个实施例的结构示意图。
本发明的最佳实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下将结合附图和实施例,对本发明作进一步详细说明。
需要说明的是,在本发明的描述中,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
还需要说明的是,本发明各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时,应当认为这种技术方案的结合不存在,也不在本发明要求的保护范围之内。
现有多联机空调器的控制中采用的吹余热时间是从多联机空调器自身运行状态出发,未考虑室内机所安装的房间结构、室内机在房间中的安装位置、安装方式等相关因素的影响,导致室内机达温停机后房间温度下降、应启动室内机但却不能再次正常启动的问题,或者会出现达温停机吹余热时吹出冷风的问题。针对此类问题,本发明创造性地提出基于房间内人体感知温度与室内机检测温度以及室内机的内盘管温度确定计时时间,根据计时时间确定修正吹余热时间,使得吹余热时间自适应空调器的室内机安装状态,提高空调器控制的准确性和使用舒适性,实现智能空调器功能。
图1示出了本发明多联机空调器的控制方法第一个实施例的流程示意图,具体来说,是确定室内机制热运行时的吹余热时间的一个实施例的流程示意图。其中,多联机空调器包括室外机和多个室内机,该实施例的控制方法是针对其中一个室内机而言。
如图1所示意,该实施例的控制方法采用下述过程实现。
步骤101:收到室内机达温停机信号时,获取第一检测温度和第一室内温度。
室内机的回风口处设置有温度检测装置,检测回风口的回风温度,用作室内机检测的室内温度。在该检测温度满足达温停机条件后,发出室内机达温停机信号。在收到该室内机达温停机信号时,将获取第一检测温度和第一室内温度。
其第一室内温度,为室内机中设置的温度检测装置所检测获取的、反映室内温度的温度。
第一检测温度为反映室内机所在房间内人体感知温度的温度。人体感知温度,为人体能够直接感受到的温度,一般为房间内人体活动范围的温度,如房间中下部的温度。第一检测温度可通过置于房间内人体活动范围内的温度检测装置检测,该实施例对第一检测温度的获取方式不作限定。例如,通过在室内机的遥控器内置温度检测装置检测获取;或者,通过在房间一定高度处设置温度检测装置检测获取,该一定高度为低于室内机安装高度且一般低于人体正常身高的高度,例如,房间内1-1.5m的高度位置;或者,通过在房间地面上放置的其他电器设备上设置的温度检测装置检测获取。
步骤102:根据第一检测温度对第一室内温度进行修正,获得修正后室内温度。
多联机空调器的室内机所安装的房间结构、室内机在房间中的安装位置、室内机的安装方式等的不同,会影响室内机回风口所检测的温度与房间内人体实际感受温度之间的差异。通过第一检测温度对第一室内温度进行修正,使得获得的修正后室内温度能够克服室内机安装状态的差异造成人体感受温度的影响,进而提高基于修正后室内温度进行其他控制的判断与执行的准确性。
根据第一检测温度修正第一室内温度的修正方式,该实施例不作限定,只要使得修正后室内温度能够克服室内机安装状态的差异造成人体感受温度的影响的所有修正方式,均属于本发明的保护范畴。
步骤103:在修正后室内温度满足预设吹余热时间修正条件时,执行确定修正后吹余热时间的过程。
预设吹余热时间修正条件作为对是否执行吹余热时间修正的判断条件,为已知的条件,可为固定不变的条件,也可为动态可变的条件。
在一些实施例中,预设吹余热时间修正条件为:修正后室内温度大于设定温度。设定温度为室内机的运行的当前设定温度,为已知值。
确定修正后吹余热时间的过程采用下述步骤104至步骤106来实现。
步骤104:将满足预设吹余热时间修正条件时的时刻作为计时开始时间,开始计时;在计时过程中,实时获取第二检测温度、第二室内温度和内盘管温度。
第二检测温度与第一检测温度类似,为反映室内机所在房间内人体感知温度的温度,检测手段同第一检测温度。
第二室内温度与第一室内温度类似,为室内机中设置的温度检测装置所检测获取的、反映室内温度的温度。
内盘管温度,为室内机换热器的盘管温度,可通过室内机换热器上的盘温检测装置检测取得。
步骤105:确定第一计时时间、第二计时时间和第三计时时间。
将从计时开始时间至第二室内温度与第二检测温度之差满足第一温差条件、且内盘管温度满足预设盘温条件时的时间,确定为第一计时时间。
将从计时开始时间至第二室内温度与第二检测温度之差满足第二温差条件、且内盘管温度不满足预设盘温条件时的时间,确定为第二计时时间。
将从计时开始时间至第二室内温度与第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间。
而且,第二计时时间大于第一计时时间,第三计时时间大于第二计时时间。
对于多联机空调器,室内机达温停机后,室内机所检测的室内温度经历先升高再降低的过程,内盘管温度则逐渐降低。可基于室内机的该特性,确定各温差条件及盘温条件。
在一些实施例中,第一温差条件包括:第二室内温度低于第二检测温度,且两个温度之差不小于第一温差阈值。在其他一些实施例中,第一温差阈值为0.5℃,则在第二室内温度低于第二检测温度至少0.5℃时,判定满足了第一温差条件。
在一些实施例中,预设盘温条件包括:内盘管温度大于盘温阈值。在其他一些实施例中,盘温阈值为20℃,则在内盘管温度大于20℃时,判定内盘管温度满足预设盘温条件;若内盘管温度小于等于20℃,判定内盘管温度不满足预设盘温条件。
在一些实施例中,第二温差条件包括:第二室内温度高于第二检测温度,且第二室内温度与第二检测温度之差不小于第二温差阈值。在其他一些实施例中,第二温差阈值为0.3℃,则在第二室内温度高于第二检测温度至少0.3℃时,判定满足了第二温差条件。
在一些实施例中,第三温差条件包括:第二室内温度低于第二检测温度,且两个温度之差不小于第三温差阈值。在其他一些实施例中,第三温差阈值为0.5℃,则在第二室内温度低于第二检测温度至少0.5℃时,判定满足了第三温差条件。
步骤106:在第三计时时间和第二计时时间之差满足预设时间条件时,确定第三计时时间为修正后吹余热时间;否则,确定第一计时时间为修正后吹余热时间。
预设时间条件作为确定修正后吹余热时间的条件参量,为已知的条件,可为固定不变的条件,也可为动态可变的条件。在一些实施例中,预设时间条件包括:时间之差大于时间差阈值。在其他一些实施例中,时间差阈值为10S。则,若第三计时时间和第二计时时间之差大于10S,判定满足了预设时间条件。
在满足了预设时间条件时,表明室内机所在的房间换热不均匀,确定较长的第三计时时间为修正后吹余热时间,控制室内机吹余热时间更长,避免出现后续达温不启动的问题。若不满足预设时间条件,表明室内机所在的房间换热较为均匀,确定较短的第一计时时间为修正后吹余热时间,避免出现吹冷风而造成室内温度不舒适。
该实施例提供的多联机空调器的控制方法,利用反映房间内人体感知温度的检测温度修正室内温度,将修正后室内温度作为是否执行吹余热时间修正的判断参量,决定是否执行吹余热时间的修正;在修正吹余热时间时,基于房间内人体感知温度与室内机检测温度以及室内机的内盘管温度确定计时时间,进一步根据计时时间确定修正吹余热时间,使得吹余热时间自适应空调器的室内机所安装的房间结构、室内机在房间中的安装位置等安装状态,提高了吹余热时间的准确性,有效解决了因室内机安装状态的差异造成吹余热时间不准确而产生的室内机达温不启动和达温吹冷风等的问题,提高了基于吹余热时间控制空调器的准确性和使用舒适性,实现了智能空调器功能。
在其他一些实施例中,多联机空调器的控制方法还包括:
在修正后室内温度满足预设吹余热时间修正条件后,控制室内机的风机以第一预设转速运行,还同时控制室内机的导风板处于非吹人位置,例如,为水平位置;在第二室内温度与第二检测温度之差满足第一温差条件、且内盘管温度满足预设盘温条件后,控制室内机的风机以第二预设转速运行。其中,第二预设转速小于第一预设转速。在一些实施例中,第一预设转速为室内机的微弱风转速,第二预设转速为室内机的最低转速。
在所第二室内温度与第二检测温度之差满足第二温差条件、且内盘管温度不满足预设盘温条件后,控制室内机的风机停止。
图2示出了本发明多联机空调器的控制方法第二个实施例的流程示意图,具体来说,是确定室内机制热运行时的吹余热时间的一个实施例的流程示意图。其中,多联机空调器包括室外机和多个室内机,该实施例的控制方法是针对其中一个室内机而言。
如图2所示意,该实施例的控制方法采用下述过程实现。
步骤201:收到室内机达温停机信号时,获取第一检测温度和第一室内温度,获得修正后室内温度。
修正后室内温度的获取方式,参见图1实施例相应过程的描述。
步骤202:判断修正后室内温度是否满足预设吹余热时间修正条件。若是,执行步骤204;否则,执行步骤203。
预设吹余热时间修正条件的设置及判断过程,参见图1实施例相应过程的描述。
步骤203:控制室内机执行防冷风控制或者控制室内机运行状态保持。
若修正后室内温度不满足预设吹余热时间修正条件,不执行吹余热时间修正过程,而是控制室内机执行防冷风控制或者控制室内机运行状态保持。
若预设吹余热时间修正条件包括:修正后室内温度大于设定温度。则,若修正后室内温度不满足预设吹余热时间修正条件,则为修正后室内温度不大于设定温度。此状态下,在修正后室内温度小于设定温度时,控制室内机执行防冷风控制,以升高室内机盘管温度;在修正后室内温度等于设定温度时,控制室内机运行状态保持,也即,保持其当前运行状态不变化。
步骤204:判断是否存在修正后吹余热时间。若存在,转至步骤208;否则,执行步骤205。
若步骤202判定修正后室内温度满足了预设吹余热时间修正条件,则进一步判断是否存在该室内机的修正后吹余热时间,并根据判断结果执行不同的控制。
步骤205:判断收到的达温停机信号是否满足预设达温停机信号条件。若是,执行步骤207;若否,执行步骤206。
若步骤204判定不存在该室内机的修正后吹余热时间,将进一步判断收到的达温停机信号是否满足预设达温停机信号条件。
预设达温停机信号条件作为是否执行修正吹余热时间的判断条件,为已知条件。在一些实施例中,预设达温停机信号条件包括:为室内机上电开机后第二次收到达温停机信号。
步骤206:获取初始吹余热时间。
若步骤205判定收到的达温停机信号不满足预设达温停机信号条件,则不执行吹余热时间的修正,而是获取初始吹余热时间,利用初始吹余热时间执行吹余热控制。初始吹余热时间为已知的时间。
在预设达温停机信号条件为室内机上电开机后第二次收到达温停机信号时,若判断当前为上电开机后第一次收到达温停机信号,则不进行吹余热时间的修正,而是利用初始吹余热时间进行吹余热控制,避免室内机运行时间过短、室内房间温度不够均匀而造成室内机的过快启动所带来的空调器系统运行不稳定等的问题。
步骤207:执行确定修正后吹余热时间的过程。
若步骤205判定收到的达温停机信号满足预设达温停机信号条件,将执行确定修正后吹余热时间的过程,具体确定过程参见图1实施例的相应描述。而且,保存所确定的修正后吹余热时间,以供下次达温停机时直接调用。
步骤208:获取修正后吹余热时间。
该步骤根据步骤204的判断结果而执行。具体的,若步骤204判定存在该室内机的修正后吹余热时间,则不再执行达温停机信号是否满足预设达温停机信号条件的判断以及修正吹余热时间的调整的过程,而是将直接调用已经存在的修正后吹余热时间作为达温停机吹余热时间。
在该实施例中,结合多联机空调器中的室内机在安装后安装状态确定,基本不会发生变化的特点,对于一个固定的室内机,只需执行一次吹余热时间自适应安装状态的调整过程即可,调整后的修正吹余热时间保存,供后续达温停机时自动调用。并且,并非在室内机上电后的第一个达温停机循环中立即执行吹余热时间的修正,而是采用第二个达温停机循环或者满足其他预设达温停机信号条件下再执行修正,避免吹余热时间修正不精确,造成空调器系统运行不稳定、房间温度不舒适等问题的发生。
图3所示为本发明多联机空调器的控制装置一个实施例的结构示意图。具体来说,是确定室内机制热运行时的吹余热时间的一个实施例的结构示意图。其中,多联机空调器包括室外机和多个室内机,该实施例的控制装置是针对其中一个室内机而言。
如图3所示意,该实施例的控制装置包括的结构单元、结构单元的功能及相互之间的关系,具体如下:
控制装置包括:
第一检测温度获取单元301,用于在收到室内机达温停机信号时,获取反映室内机所在房间内人体感知温度的第一检测温度。
第一室内温度获取单元302,用于在收到所述室内机达温停机信号时,获取室内机检测的第一室内温度。
修正后室内温度获取单元303,用于根据第一检测温度获取单元301获取的第一检测温度对第一室内温度获取单元302获取的第一室内温度进行修正。
修正后室内温度判断单元304,用于判断修正后室内温度获取单元303获取的修正后室内温度是否满足预设吹余热时间修正条件。
第二检测温度获取单元305,用于在从修正后室内温度判断单元304判定修正后室内温度满足预设吹余热时间修正条件开始计时的过程中,实时获取反映室内机所在房间内人体感知温度的第二检测温度。
第二室内温度获取单元306,用于在从修正后室内温度判断单元304判定修正后室内温度满足预设吹余热时间修正条件开始计时的过程中,实时获取室内机检测的第二室内温度。
内盘管温度获取单元307,用于在从修正后室内温度判断单元304判定修正后室内温度满足预设吹余热时间修正条件开始计时的过程中,实时获取室内机的内盘管温度。
第一计时时间确定单元308,用于将从修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至第二室内温度与第二检测温度之差满足第一温差条件、且内盘管温度满足预设盘温条件时的时间,确定为第一计时时间。
第二计时时间确定单元309,用于将从修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至第二室内温度与第二检测温度之差满足第二温差条件、且内盘管温度不满足预设盘温条件时的时间,确定为第二计时时间;第二计时时间大于第一计时时间。
第三计时时间确定单元310,用于将从修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至第二室内温度与第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间;第三计时时间大于第二计时时间。
修正后吹余热时间确定单元311,用于在第三计时时间确定单元310确定的第三计时时间和第二计时时间确定单元309确定的第二计时时间之差满足预设时间条件时,确定第三计时时间为修正后吹余热时间;否则,确定第一计时时间确定单元308确定的第一计时时间为修正后吹余热时间。
上述结构的控制装置,运行相应的软件程序,执行相应的功能,按照图1、图2实施例的多联机空调器的控制方法实施例及其他实施例的过程进行空调器控制,达到与图1实施例、图2实施例及其他实施例的相应技术效果。
上述各实施例的控制装置应用于多联机空调器中,使得吹余热时间自适应空调器的室内机安装状态,提高空调器控制的准确性和使用舒适性,实现智能空调器功能。
图4示出了本发明的电子设备一个实施例的结构框图。该电子设备包括处理器41、存储器42及存储在存储器42上的计算机程序421,处理器41配置为执行计算机程序421,实现图1实施例、图2实施例及其他实施例的多联机空调器的控制方法,并实现相应实施例的技术效果。电子设备可为多联机空调器的主控板、控制器等。
以上实施例仅用以说明本发明的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,对于本领域的普通技术人员来说,依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本发明所要求保护的技术方案的精神和范围。

Claims (10)

  1. 一种多联机空调器的控制方法,其特征在于,所述控制方法包括:
    在收到室内机达温停机信号时,获取反映所述室内机所在房间内人体感知温度的第一检测温度和所述室内机检测的第一室内温度;
    根据所述第一检测温度对所述第一室内温度进行修正,获得修正后室内温度;
    在所述修正后室内温度满足预设吹余热时间修正条件时,执行下述的确定修正后吹余热时间的过程:
    将所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间,开始计时;
    在计时过程中,实时获取反映所述室内机所在房间内人体感知温度的第二检测温度、所述室内机检测的第二室内温度和所述室内机的内盘管温度;
    将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第一温差条件、且所述内盘管温度满足预设盘温条件时的时间,确定为第一计时时间;
    将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第二温差条件、且所述内盘管温度不满足所述预设盘温条件时的时间,确定为第二计时时间;所述第二计时时间大于所述第一计时时间;
    将从所述计时开始时间至所述第二室内温度与所述第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间;所述第三计时时间大于所述第二计时时间;
    在所述第三计时时间和所述第二计时时间之差满足预设时间条件时,确定所述第三计时时间为所述修正后吹余热时间;否则,确定所述第一计时时间为所述修正后吹余热时间。
  2. 根据权利要求1所述的多联机空调器的控制方法,其特征在于,所述方法还包括:
    在所述修正后室内温度满足所述预设吹余热时间修正条件后,控制所述室内机的风机以第一预设转速运行;
    在所述第二室内温度与所述第二检测温度之差满足所述第一温差条件、且所述内盘管温度满足所述预设盘温条件后,控制所述室内机的风机以第二预设转速运行;所述第二预设转速小于所述第一预设转速;
    在所述第二室内温度与所述第二检测温度之差满足所述第二温差条件、且所述内盘管温度不满足所述预设盘温条件后,控制所述室内机的风机停止。
  3. 根据权利要求1所述的多联机空调器的控制方法,其特征在于,所述方法还包括:
    在所述修正后室内温度不满足所述预设吹余热时间修正条件时,控制所述室内机执行防冷风控制或者控制所述室内机运行状态保持。
  4. 根据权利要求3所述的多联机空调器的控制方法,其特征在于,
    所述预设吹余热时间修正条件包括:所述修正后室内温度大于设定温度;
    在所述修正后室内温度不满足所述预设吹余热时间修正条件时,控制所述室内机执行所述防冷风控制或者控制所述室内机运行状态保持,包括:
    在所述修正后室内温度小于所述设定温度时,控制所述室内机执行所述防冷风控制;
    在所述修正后室内温度等于所述设定温度时,控制所述室内机运行状态保持。
  5. 根据权利要求1至4中任一项所述的多联机空调器的控制方法,其特征在于,在所述修正后室内温度满足预设吹余热时间修正条件时,执行所述的确定修正后吹余热时间的过程,包括:
    在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断所述达温停机信号是否满足预设达温停机信号条件;
    在所述达温停机信号满足所述预设达温停机信号条件时,执行所述的确定所述修正后吹余热时间的过程;否则,不执行所述的确定所述修正后吹余热时间的过程。
  6. 根据权利要求5所述的多联机空调器的控制方法,其特征在于,在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断所述达温停机信号是否满足预设达温停机信号条件,包括:
    在所述修正后室内温度满足所述预设吹余热时间修正条件时,判断是否存在所述室内机的所述修正后吹余热时间;
    在不存在所述室内机的所述修正后吹余热时间时,判断所述达温停机信号是否满足预设达温停机信号条件;否则,不判断所述达温停机信号是否满足预设达温停机信号条件。
  7. 根据权利要求6所述的多联机空调器的控制方法,其特征在于,所述控制方法还包括:
    在不存在所述室内机的所述修正后吹余热时间,且所述达温停机信号不满足所述预设达温停机信号条件时,获取所述室内机的初始吹余热时间。
  8. 一种多联机空调器的控制装置,其特征在于,所述控制装置包括:
    第一检测温度获取单元,用于在收到室内机达温停机信号时,获取反映所述室内机所在房间内人体感知温度的第一检测温度;
    第一室内温度获取单元,用于在收到所述室内机达温停机信号时,获取所述室内机检测的第一室内温度;
    修正后室内温度获取单元,用于根据所述第一检测温度对所述第一室内温度进行修正;
    修正后室内温度判断单元,用于判断所述修正后室内温度是否满足预设吹余热时间修正条件;
    第二检测温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取反映所述室内机所在房间内人体感知温度的第二检测温度;
    第二室内温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取所述室内机检测的第二室内温度;
    内盘管温度获取单元,用于在从所述修正后室内温度满足所述预设吹余热时间修正条件开始计时的过程中,实时获取所述室内机的内盘管温度;
    第一计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第一温差条件、且所述内盘管温度满足预设盘温条件时的时间,确定为第一计时时间;
    第二计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第二温差条件、且所述内盘管温度不满足所述预设盘温条件时的时间,确定为第二计时时间;所述第二计时时间大于所述第一计时时间;
    第三计时时间确定单元,用于将从所述修正后室内温度满足预设吹余热时间修正条件时的时刻作为计时开始时间计时至所述第二室内温度与所述第二检测温度之差满足第三温差条件时的时间,确定为第三计时时间;所述第三计时时间大于所述第二计时时间;
    修正后吹余热时间确定单元,用于在所述第三计时时间和所述第二计时时间之差满足预设时间条件时,确定所述第三计时时间为所述修正后吹余热时间;否则,确定所述第一计时时间为所述修正后吹余热时间。
  9. 一种多联机空调器,包括室外机和多个室内机,其特征在于,所述多联机空调器还包括上述权利要求8所述的多联机空调器的控制装置。
  10. 一种电子设备,包括处理器、存储器及存储在所述存储器上的计算机程序,其特征在于,所述处理器配置为执行所述计算机程序,实现上述权利要求1至7中任一项所述的多联机空调器的控制方法。
PCT/CN2022/126421 2022-04-13 2022-10-20 多联机空调器及其控制方法和控制装置 WO2023197557A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210385055.3A CN114738924A (zh) 2022-04-13 2022-04-13 多联机空调器及其控制方法和控制装置
CN202210385055.3 2022-04-13

Publications (1)

Publication Number Publication Date
WO2023197557A1 true WO2023197557A1 (zh) 2023-10-19

Family

ID=82280995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/126421 WO2023197557A1 (zh) 2022-04-13 2022-10-20 多联机空调器及其控制方法和控制装置

Country Status (2)

Country Link
CN (1) CN114738924A (zh)
WO (1) WO2023197557A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114738924A (zh) * 2022-04-13 2022-07-12 青岛海尔空调器有限总公司 多联机空调器及其控制方法和控制装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028180A (ja) * 1998-07-13 2000-01-25 Funai Electric Co Ltd 空気調和機の室内送風制御装置
JP2007040554A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 空気調和機
CN105650823A (zh) * 2016-02-23 2016-06-08 青岛海尔空调电子有限公司 一种空调器吹余热控制方法
CN108731212A (zh) * 2018-06-20 2018-11-02 广东美的制冷设备有限公司 空调及其吹余热的控制方法和装置
CN112432335A (zh) * 2020-11-02 2021-03-02 青岛海尔空调器有限总公司 用于空调控制的方法及装置、空调
CN114738924A (zh) * 2022-04-13 2022-07-12 青岛海尔空调器有限总公司 多联机空调器及其控制方法和控制装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000028180A (ja) * 1998-07-13 2000-01-25 Funai Electric Co Ltd 空気調和機の室内送風制御装置
JP2007040554A (ja) * 2005-08-01 2007-02-15 Matsushita Electric Ind Co Ltd 空気調和機
CN105650823A (zh) * 2016-02-23 2016-06-08 青岛海尔空调电子有限公司 一种空调器吹余热控制方法
CN108731212A (zh) * 2018-06-20 2018-11-02 广东美的制冷设备有限公司 空调及其吹余热的控制方法和装置
CN112432335A (zh) * 2020-11-02 2021-03-02 青岛海尔空调器有限总公司 用于空调控制的方法及装置、空调
CN114738924A (zh) * 2022-04-13 2022-07-12 青岛海尔空调器有限总公司 多联机空调器及其控制方法和控制装置

Also Published As

Publication number Publication date
CN114738924A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
WO2018126755A1 (zh) 空调器控制方法及装置
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
WO2018166372A1 (zh) 空调器控制方法
WO2019042042A1 (zh) 一种空调的控制方法及装置
WO2020228549A1 (zh) 变频空调的控制方法
CN106839341B (zh) 一种空调静音控制方法
WO2019056966A1 (zh) 多联机运行状态控制方法、系统及热泵多联机
WO2018196580A1 (zh) 空调器制热运行控制方法和控制装置
CN107917512B (zh) 一种空调系统的控制方法、装置与空调器
CN108332351B (zh) 制冷控制方法及系统
CN107084479B (zh) 一种空调器制热运行控制方法
CN111503840A (zh) 控制空调室内风机转速的方法、存储介质和空调室内机
WO2023197557A1 (zh) 多联机空调器及其控制方法和控制装置
CN113551399A (zh) 一种空调新风量控制方法、装置及空调
CN112050446A (zh) 新风空调的控制方法
CN111442507B (zh) 空调器及其控制方法和装置
WO2023005570A1 (zh) 用于空调器的静音控制方法
CN110594982B (zh) 一种空调回风温度检测修正控制方法
CN107906682B (zh) 一种空调系统的控制方法、装置与空调器
CN112050441A (zh) 新风空调的净化控制方法
CN112050440A (zh) 新风空调的控制方法
CN111780222B (zh) 空调防热聚集控制方法、装置及空调器
CN115264778A (zh) 空调器控制方法、装置、电子设备及存储介质
CN112050439B (zh) 新风空调的控制方法
CN112050443B (zh) 新风空调的净化控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22937190

Country of ref document: EP

Kind code of ref document: A1