WO2019095561A1 - 空调控制方法、装置及空调器 - Google Patents

空调控制方法、装置及空调器 Download PDF

Info

Publication number
WO2019095561A1
WO2019095561A1 PCT/CN2018/074974 CN2018074974W WO2019095561A1 WO 2019095561 A1 WO2019095561 A1 WO 2019095561A1 CN 2018074974 W CN2018074974 W CN 2018074974W WO 2019095561 A1 WO2019095561 A1 WO 2019095561A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioning
air conditioner
operating environment
air
Prior art date
Application number
PCT/CN2018/074974
Other languages
English (en)
French (fr)
Inventor
连彩云
吴俊鸿
廖敏
于博
田雅颂
彭光前
车雯
翟振坤
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to EP18879558.7A priority Critical patent/EP3712532A4/en
Priority to US16/629,668 priority patent/US11333386B2/en
Publication of WO2019095561A1 publication Critical patent/WO2019095561A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/48Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/77Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by controlling the speed of ventilators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • F24F2110/12Temperature of the outside air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/20Humidity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of home appliance technology, and in particular to an air conditioning control method, device, and air conditioner.
  • air conditioning is already an essential home appliance.
  • the cooling or heating comfort of air conditioners is very important to the human body, especially the temperature drop or the speed of rise and the temperature of the wind, which can bring practical benefits to users and improve users. Comfort.
  • the temperature is generally manually adjusted according to experience. Since the indoor and outdoor environmental temperature changes greatly, different indoor and outdoor environmental temperatures require different air conditioning temperatures, only Through manual adjustment, the indoor temperature control accuracy is inaccurate and the user's poor comfort experience.
  • the corresponding cold and heat sensation value at the current set temperature is obtained, (the cold heat sensation value is determined by the radiant temperature in the room and the temperature value of the human body surface), and the set temperature of the air conditioner is adjusted according to the cold and heat sensation value.
  • the air conditioner set temperature is obtained according to the outdoor temperature and the set temperature, but since it only considers the outdoor temperature, ignoring the influence of indoor environmental parameters (for example, indoor humidity, indoor temperature) or the temperature difference between the indoor temperature and the target temperature will result in Inaccurate indoor temperature control accuracy and the temperature rise and fall rate can not meet the needs of users, resulting in poor user comfort experience with air conditioning.
  • indoor environmental parameters for example, indoor humidity, indoor temperature
  • the temperature difference between the indoor temperature and the target temperature will result in Inaccurate indoor temperature control accuracy and the temperature rise and fall rate can not meet the needs of users, resulting in poor user comfort experience with air conditioning.
  • the technical problem to be solved by the present invention is to control the temperature control accuracy of the air conditioner.
  • an embodiment of the present invention provides an air conditioning control method, including the steps of: obtaining an air conditioning operating environment parameter; determining an air conditioning target temperature and an internal fan speed according to an air conditioning operating environment parameter; The target temperature and the internal fan speed adjust the compressor frequency.
  • the indoor humidity and any one or any combination of the indoor temperature, the outdoor temperature, the set temperature, or the electrical parameters of the air conditioning system component.
  • determining the air conditioning target temperature according to the air conditioning operating environment parameter comprises: calculating a first temperature difference between the indoor temperature and the set temperature of the air conditioner; according to the indoor humidity, and the first temperature difference, the outdoor temperature, or the electrical parameter of the air conditioning system component One or any combination determines the temperature to be compensated; the air conditioning target temperature is obtained based on the temperature to be compensated and the set temperature.
  • the target temperature of the air conditioner is multiple; and obtaining the target temperature of the air conditioner based on the temperature to be compensated and the speed to be compensated includes: obtaining a cooling rate during the process of reaching the temperature of the last air conditioner target; and obtaining a current temperature to be compensated according to the cooling speed; The air conditioning target temperature and the current temperature to be compensated get the current air conditioning target temperature.
  • determining the target fan speed according to the air conditioning operating environment parameter comprises: calculating a first temperature difference between the indoor temperature and the preset temperature of the air conditioner; according to the indoor humidity, and the first temperature difference, the outdoor temperature, or the electrical parameter of the air conditioning system component Any or any combination of these determines the internal fan speed.
  • determining the target fan speed according to the air conditioning operating environment parameter comprises: calculating a first temperature difference between the indoor temperature and the preset temperature of the air conditioner; according to the indoor humidity, and the first temperature difference, the outdoor temperature, or the electrical parameter of the air conditioning system component
  • the speed to be compensated is determined by any one or any combination; the target speed of the inner fan is obtained according to the speed to be compensated and the preset speed.
  • the air conditioner before determining the air conditioner target temperature and the inner fan target speed according to the air conditioning operating environment parameter, the air conditioner enters the cool feeling mode according to the preset condition.
  • controlling the air conditioner to enter the cool feeling mode according to the preset condition comprises: obtaining a coolness control signal for characterizing the control air conditioner to enter the cool feeling mode; and controlling the air conditioner to enter the cool feeling mode according to the coolness control signal.
  • controlling the air conditioner to enter the cool feeling mode according to the coolness control signal includes: calculating a duration of obtaining the coolness control signal from the air conditioner startup time; determining whether the duration is greater than the first preset duration; and the length is less than the first preset duration When the air conditioner is controlled to operate in the initial coolness control mode; when the running time of the initial coolness control mode exceeds the second preset duration, the air conditioner is controlled to enter the cool mode.
  • controlling the air conditioner to operate in the initial coolness control mode comprises: determining an initial fan speed according to the air conditioner operating environment parameter; and controlling the compressor to operate at the highest frequency according to the inner fan initial speed and/or the air conditioner target temperature.
  • the air conditioner is controlled to enter the cool mode.
  • controlling the air conditioner to enter the cool feeling mode according to the preset condition includes: determining whether the outdoor temperature exceeds a first preset value; and calculating a second temperature difference between the indoor temperature and the air conditioner target temperature when the outdoor temperature exceeds the first preset value Determining whether the duration of the second temperature difference exceeds the second preset value exceeds a third preset duration; and when the duration of the second temperature difference exceeds the second preset value exceeds the third preset duration, controlling the air conditioner to enter a cool sense mode.
  • the method further includes: determining whether the exit condition of the exit cool mode is satisfied; and when the exit condition is met, controlling the air conditioner to exit the cool mode.
  • determining whether the exit condition of the exit cool mode is satisfied comprises: determining whether the second temperature difference is less than a third preset value; and when the second temperature difference is less than the third preset value, the exit condition is satisfied.
  • the air conditioning operating environment parameter further includes: an air outlet temperature and/or an inner tube temperature; determining whether the exit condition of the exit cooling mode is satisfied, including: determining whether the wind temperature is less than a fourth preset value; and when the air temperature is When it is less than the fourth preset value, the exit condition is satisfied; and/or, it is determined whether the inner tube temperature is less than the fifth preset value; when the indoor temperature is less than the fifth preset value, the exit condition is satisfied.
  • the method when the air outlet temperature is less than the fourth preset value and/or when the indoor temperature is less than the fifth preset value, includes: determining whether the duration of the wind temperature is less than the fourth preset value exceeds a fourth preset duration And when the duration of the outlet air temperature being less than the fourth preset value exceeds the fourth preset duration, the exit condition is satisfied; and/or determining whether the duration of the inner tube temperature is less than the fifth preset value exceeds the fifth preset duration; When the duration of the inner tube temperature being less than the fifth preset value exceeds the fifth preset duration, the exit condition is satisfied.
  • determining whether the exit condition of the exit cool mode is satisfied comprises: determining whether a stop signal for characterizing the control air conditioner exiting the cool mode is acquired; and when the stop signal is acquired, the exit condition is satisfied.
  • an embodiment of the present invention provides an air conditioning control apparatus, including: an acquiring unit configured to acquire an air conditioning operating environment parameter; and a determining unit configured to determine an air conditioning target temperature and an internal fan speed according to an air conditioning operating environment parameter; The unit is configured to adjust the compressor frequency based on the air conditioning operating environment parameter, the target temperature, and the internal fan speed.
  • an embodiment of the present invention provides an air conditioner including: an air conditioner body; a sensor configured to collect air conditioning operating environment parameters; and a controller configured to perform air conditioning control as described in any of the above first aspects method.
  • the air conditioner further includes: an instruction sending device, disposed on the air conditioner body or on the air conditioner remote controller, configured to trigger to send a cool sense control for characterizing the control and controlling the air conditioner to enter the cool feeling mode by using a single button or a combination button The signal and the stop signal used to characterize the control of the air conditioner exiting the cool mode.
  • an instruction sending device disposed on the air conditioner body or on the air conditioner remote controller, configured to trigger to send a cool sense control for characterizing the control and controlling the air conditioner to enter the cool feeling mode by using a single button or a combination button The signal and the stop signal used to characterize the control of the air conditioner exiting the cool mode.
  • an embodiment of the present invention provides a non-transitory storage medium, wherein the non-transitory computer readable storage medium stores computer instructions, and the computer instructions are configured to cause a computer to execute the air conditioner described in any one of the above first aspects. Control Method.
  • an embodiment of the present invention provides an air conditioning control method, including: acquiring a plurality of operating environment parameters of an air conditioner; determining an air conditioning target temperature and an internal fan target speed according to a plurality of air conditioning operating environment parameters; operating based on multiple air conditioners
  • the compressor parameters are adjusted by the environmental parameters, the target temperature, and the target fan speed.
  • the air conditioning control method, device and air conditioner provided by the embodiments of the present invention determine the air conditioning target temperature and the inner fan speed according to the air conditioning operating environment parameters by acquiring the air conditioning operating environment parameters, and adjusting the compression based on the air conditioning operating environment parameter, the target temperature, and the inner fan speed. Machine frequency.
  • all the parameters affecting the temperature control of the air conditioner can be taken into consideration, and the temperature control accuracy of the air conditioner can be improved.
  • the frequency of the air conditioner compressor is closed-loop controlled, which can control the temperature of the air conditioner to be more precise, ensuring high comfort and better user experience of the air conditioner.
  • FIG. 1 is a schematic flow chart of an air conditioning control method according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing a method for controlling a cooling mode of an air conditioner according to an embodiment of the present invention
  • FIG. 3 is a schematic view showing a method of entering an air conditioning mode of an air conditioner according to an embodiment of the present invention
  • FIG. 4 is a schematic view showing an air conditioning control device according to an embodiment of the present invention.
  • Figure 5 is a schematic view showing an air conditioner according to an embodiment of the present invention.
  • FIG. 6 is a schematic flow chart showing another air conditioning control method according to an embodiment of the present invention.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • connection or integral connection; may be mechanical connection or electrical connection; may be directly connected, may also be indirectly connected through an intermediate medium, or may be internal communication of two components, may be wireless connection, or may be wired connection.
  • An embodiment of the present invention provides a method for controlling an air conditioner.
  • an air conditioner enters a cool mode as an example.
  • the method includes the following steps:
  • the air conditioning operating environment parameter may include: indoor humidity, and any one or any combination of indoor temperature, outdoor temperature, set temperature, or air conditioning system component electrical parameters.
  • the indoor humidity can significantly affect the body's somatosensory temperature and the comfort of the airflow of the somatosensory air conditioner. In this embodiment, it is necessary to obtain the indoor humidity.
  • the electrical parameters of the air conditioning system components can be calculated from the compressor electrical parameters, the fan motor electrical parameters, and the AC parameters of the air conditioner.
  • the temperature can be set according to the inner ring temperature T inner ring and the set temperature T, and the user set temperature can be corrected to determine the target temperature of the air conditioning operation; and the inner ring temperature T inner ring and indoor can also be determined.
  • Humidity RH set temperature T set temperature, correct the user set temperature, determine the indoor target temperature of the air conditioner operation; also set the temperature and outdoor ring temperature according to the indoor ambient temperature T inner ring, set temperature T
  • the outer ring of T adjusts the temperature set by the user to determine the indoor target temperature of the air conditioner operation; in this embodiment, the air outlet temperature of the air conditioner is different, and the alternating current of the air conditioner and/or the phase current of the compressor are different.
  • the user set temperature may be corrected according to the compressor phase current, the indoor target temperature of the air conditioner operation is determined, and/or, the user set temperature is corrected according to the alternating current current of the air conditioner, and the air conditioner is determined.
  • the compressor frequency based on the air conditioning operating environment parameters, the target temperature, and the internal fan speed.
  • the target temperature and the internal fan speed can be closed-loop controlled, and the target temperature and the internal fan speed can be adjusted in real time according to the air conditioning operating environment parameters.
  • the internal fan speed may include real-time adjustment, or user setting. If the internal fan speed is adjusted in real time, the internal fan speed is continuously calculated and updated; if the user sets the speed, when entering the cool mode Once calculated, the indoor fan controls the air outlet speed according to the internal fan speed.
  • the outlet speed corresponds to the compressor frequency corresponding to the outlet air temperature
  • the wind speed and the temperature are adjusted, and the compressor frequency needs to be controlled according to the air conditioning operating environment parameter, the target temperature, and the internal fan speed.
  • the air conditioning operating environment parameters change, the frequency is closed-loop controlled, and the compressor frequency is adjusted in real time according to the air conditioning operating environment parameters to adjust the target temperature and the internal fan speed.
  • the air conditioning target temperature and the inner fan speed are determined according to the air conditioning operating environment parameters, and the compressor frequency is adjusted based on the air conditioning operating environment parameter, the target temperature, and the inner fan speed.
  • the air conditioning operating environment parameters include multiple parameters, which can take into account all the parameters affecting the air conditioning temperature control, can improve the air conditioning temperature control accuracy, according to the air conditioning operating environment parameters and the target temperature and the internal fan speed determined according to the environmental parameters, the air conditioning The frequency of the compressor is closed-loop controlled, which can control the temperature adjusted by the air conditioner more accurately.
  • the target temperature of the air conditioner needs to be adjusted, and the first temperature difference between the indoor temperature and the preset temperature of the air conditioner can be calculated; according to the first temperature difference, indoor humidity, outdoor
  • the temperature to be compensated is determined by any one or any combination of temperature and air conditioning power consumption; the air conditioning target temperature is obtained based on the temperature to be compensated.
  • the determination of the compensation temperature is exemplified.
  • the temperature to be compensated may be determined according to the first temperature difference, wherein the value of the temperature to be compensated may be as follows:
  • the first temperature difference of ⁇ T 0 , T is to be compensated to be the temperature to be compensated
  • ⁇ T 01 , ⁇ T 02 , ⁇ T 03 , ⁇ T 04 are respectively different value ranges of ⁇ T 0
  • T is to be compensated to be compensated.
  • the temperature can range from -10 °C to 5 °C.
  • the value of the above T to be compensated is only an example.
  • the ⁇ T 0 can be divided into different temperature segments according to actual needs, and the value to be compensated is not limited to the above.
  • the temperature to be compensated can also be determined according to the first temperature difference and the indoor humidity, wherein the value of the temperature to be compensated can be as follows:
  • T is to be compensated as the temperature to be compensated
  • ⁇ T 01 , ⁇ T 02 , ⁇ T 03 , ⁇ T 04 are respectively different values of ⁇ T 0
  • T RH1 ⁇ T RH4 respectively correspond to temperature compensation values of different humidity
  • its value can be: -2 ° C ⁇ 7 ° C.
  • the value of T to be compensated for the temperature to be compensated may be -10 ° C ⁇ 5 ° C.
  • the above T compensation value is only an example.
  • the ⁇ T 0 and RH can be divided into different temperature segments according to actual needs, and the value to be compensated is not limited to the above.
  • the temperature to be compensated can also be determined according to the external temperature, wherein the value of the temperature to be compensated can be as shown in the following table:
  • the T outer ring is the external temperature
  • the T outer ring 1 ⁇ T outer ring 4 is a range of external temperature values.
  • the value of T to be compensated for the temperature to be compensated may be -10 ° C ⁇ 5 ° C.
  • the value of the above T to be compensated is only an example.
  • the external temperature T outer ring can be divided into different temperature segments according to actual needs, and the value to be compensated is not limited to the above.
  • the temperature to be compensated can also be determined according to the first temperature difference and the external temperature, wherein the value of the temperature to be compensated can be as shown in the following table:
  • T is to be compensated as the temperature to be compensated
  • ⁇ T 01 , ⁇ T 02 , ⁇ T 03 , ⁇ T 04 are respectively different values of ⁇ T 0
  • T outer ring is external temperature
  • T is compensated outer -2 °C ⁇ 7 °C.
  • T outer ring compensation 1 ⁇ T outer ring compensation 4 is the compensation temperature in which the external temperature is within the range of the outer ring 1 ⁇ T outer ring 4 and the values of ⁇ T 01 , ⁇ T 02 , ⁇ T 03 , ⁇ T 04 .
  • T to be compensated for the temperature to be compensated may be -10 ° C ⁇ 5 ° C.
  • the value of the above T to be compensated is only an example.
  • the external temperature T outer ring can be divided into different temperature segments according to actual needs, and the value to be compensated is not limited to the above.
  • the temperature to be compensated can also be determined according to the phase current of the compressor. The larger the compressor phase current is, the heavier the air conditioning load is.
  • the value of the temperature to be compensated can be as follows:
  • phase current I can be divided into different current segments according to actual needs to perform T compensation , which is not limited to the above values.
  • the temperature to be compensated can also be determined by the AC current of the air conditioner. The larger the compressor phase current is, the heavier the air conditioning load is.
  • the value of the temperature to be compensated can be as follows:
  • T values above are illustrative only be compensated, according to the actual needs of the current I AC into different segments to be compensated value T, the number is not limited to the above values.
  • T to be compensated may be any combination of inner ring T inner ring , indoor humidity RH, set temperature T set temperature , T outer ring , I phase , I AC, etc. The same is not repeated here.
  • the internal fan speed needs to be adjusted, and the first temperature difference between the indoor temperature and the preset temperature of the air conditioner is calculated; according to the first temperature difference, the indoor humidity, the outdoor temperature, or Any one or any combination of air-conditioning power consumption determines the speed to be compensated; the inner fan speed is obtained according to the speed to be compensated and the preset speed.
  • the user can set the fan speed. After the user sets the fan speed, adjust the user-set inner fan speed according to the air conditioning operating environment parameter.
  • Rpm inner fan Rpm set wind file +Rpm to be compensated , where Rpm is to be compensated ⁇ [0,500 rpm].
  • the internal fan speed does not change.
  • the method for determining the rotational speed of the internal fan is exemplarily shown. Specifically, the determination may be made according to the first temperature difference.
  • the value of the rotational speed to be compensated may be as follows:
  • Rpm to be compensated Rpm to be compensated 1 Rpm to be compensated 2 Rpm to be compensated 3 Rpm to be compensated 4 Rpm to be compensated 5
  • the value of the above Rpm to be compensated is only an example.
  • the ⁇ T 0 can be divided into different temperature segments according to actual needs, and the value of Rpm to be compensated is not limited to the above values.
  • the wind speed to be compensated can also be determined according to the first temperature difference and the indoor humidity.
  • the value of the speed to be compensated can be seen in the following table:
  • the above Rpm to be compensated is only an example.
  • the ⁇ T 0 and RH can be divided into different temperature segments according to actual needs, and the Rpm is to be compensated, which is not limited to the above number and relationship;
  • Rpm RH ⁇ Rpm RH 1 , Rpm RH 2 , Rpm RH 3 , Rpm RH 4 ⁇ , Rpm RH ⁇ [0,200 rpm]
  • the speed to be compensated can also be determined according to the outdoor temperature. Specifically, the value of the speed to be compensated can be seen in the following table:
  • the value of the above Rpm to be compensated is only an example.
  • the outer ring can be divided into different temperature segments according to actual needs, and the value of Rpm is to be compensated , which is not limited to the above.
  • the speed to be compensated can also be determined according to the first temperature difference and the outdoor temperature. Specifically, the value of the speed to be compensated can be referred to the following table:
  • the value of the above Rpm to be compensated is only an example.
  • the ⁇ T 0 and T outer rings can be divided into different temperature segments according to actual needs, and the value of Rpm is to be compensated, which is not limited to the above number and relationship;
  • Rpm outer ring ⁇ Rpm outer ring 1 , Rpm outer ring 2 , Rpm outer ring 3 , Rpm outer ring 4 ⁇ , Rpm outer ring ⁇ [0, 200 rpm].
  • the speed to be compensated can also be determined according to the first temperature difference, the indoor humidity, the outdoor temperature, and can also be determined according to the energy consumption of the air conditioner.
  • the value is similar to the above method, and can be referred to the above-mentioned speed to be compensated or the temperature to be compensated. The value method is not described here.
  • the internal fan speed needs to be adjusted, and the first temperature difference between the indoor temperature and the preset temperature of the air conditioner is calculated; according to the first temperature difference, the indoor humidity, the outdoor temperature, or The air blower speed is determined by any one or any combination of air conditioner power consumption.
  • the internal fan speed is automatically adjusted, and the internal fan speed needs to be adjusted in real time according to the air conditioning operating environment parameter.
  • the value of the internal fan speed can be determined according to the first temperature difference, specifically, The method of determining the fan speed can be found in the following table:
  • the value of the fan in the above Rpm is only an example.
  • the ⁇ T 0 can be divided into different temperature segments according to actual needs, and the value of the fan in the Rpm is not limited to the above.
  • the internal fan speed can also be determined according to the first temperature difference and the indoor humidity. Specifically, the value of the speed to be compensated can be seen in the following table:
  • the value of the fan in the above Rpm is only an example.
  • the ⁇ T 0 and RH can be divided into different temperature segments according to actual needs, and the value of the fan in the Rpm is not limited to the above number and relationship;
  • Rpm RH ⁇ Rpm RH 1 , Rpm RH 2 , Rpm RH 3 , Rpm RH 4 ⁇ , Rpm RH ⁇ [0, 200 rpm].
  • the internal fan speed can also be determined according to the outdoor temperature. Specifically, the value of the speed to be compensated can be seen in the following table:
  • the value of the fan in the above Rpm is only an example.
  • the outer ring can be divided into different temperature segments according to actual needs, and the value of the fan in the Rpm is not limited to the above.
  • the internal fan speed can also be determined according to the first temperature difference and the outdoor temperature. Specifically, the value of the speed to be compensated can be seen in the following table:
  • the value of the fan in the above Rpm is only an example.
  • the ⁇ T 0 and T outer rings can be divided into different temperature segments according to actual needs, and the value of the fan in the Rpm is not limited to the above number and relationship;
  • Rpm outer ring ⁇ Rpm outer ring 1 , Rpm outer ring 2 , Rpm outer ring 3 , Rpm outer ring 4 ⁇ , Rpm outer ring ⁇ [0, 200 rpm].
  • the air conditioning target temperature is multiple, and the current air conditioning target temperature needs to be adjusted according to the previous target temperature, which is related to the cooling rate, and the acquisition is achieved.
  • the cooling rate during the last target temperature of the air conditioner; the current temperature to be compensated is obtained according to the cooling speed; and the current air conditioning target temperature is obtained based on the current temperature to be compensated.
  • D( ⁇ T)/D(t) may represent the amount of change of ⁇ T in a certain period of time, and may also indicate the time required for ⁇ T to change by a certain amount, which is determined according to the design purpose;
  • T is currently to be compensated 02
  • T is currently to be compensated 03
  • T is currently to be compensated 04 ⁇
  • each parameter in the series may have a certain proportional relationship or other data relationship.
  • determining the air conditioner target temperature and the inner fan target speed are adjusted according to the cool feeling mode of the air conditioner, and in the embodiment, before determining the air conditioner target temperature and the inner fan target speed according to the air conditioner operating environment parameter, :
  • Control the air conditioner into the cool mode the air conditioning refrigeration comfort is very important to the human body, especially the temperature drop speed and the air temperature, which can bring practical benefits to the user and feel the cool feeling brought by the air conditioner.
  • the so-called cool feeling mode is that the air conditioner is ventilated to make people feel cool, and the operation mode can make the indoor rapid temperature drop while ensuring the comfortable air temperature of the human body, improve user comfort, and ensure the comfort of the air conditioner. The degree of temperature control accuracy is guaranteed.
  • the manner in which the air conditioner enters and exits the cool mode can be as shown in FIG. 2:
  • step S200 Determine whether the exit condition for exiting the cool mode is satisfied. When the exit condition is satisfied, the process proceeds to step S300. When the exit condition is not satisfied, the process proceeds to step S400.
  • the step S100 controls the air conditioner to enter the cool feeling mode according to the preset condition, and the preset condition may be multiple.
  • the air conditioner may receive the coolness control signal for characterizing the control of the air conditioner into the cool feeling mode.
  • the so-called cool mode control signal can be a command for the user to enter the cool mode by triggering the air conditioner remote control or a separate button or combination of buttons on the air conditioner body to send the control air conditioner.
  • the user can send the coolness control signal through the trigger button within a short time after the power is turned on, or send the coolness control signal through the trigger button after the air conditioner runs for a period of time.
  • step S100 may include:
  • the length of time is the length of time at which the recorded start-up time is obtained from the time when the coolness control signal is acquired.
  • step S103 Determine whether the duration is greater than the first preset duration. When the length is less than the first preset time length, the process proceeds to step S104. When the length is less than the first preset time length, the process proceeds to step S105.
  • S104 Control the air conditioner to operate in an initial coolness control mode.
  • the so-called initial cooling mode is to determine the initial fan speed according to the air conditioning operating environment parameters; the compressor is controlled to operate at the highest frequency according to the initial fan speed and/or the air conditioner target temperature.
  • the so-called compressor operates at the highest frequency for cooling operation at the maximum power that the compressor can achieve.
  • the running time of the initial air conditioning control mode of the air conditioner is calculated, that is, the running time of the compressor at the highest frequency, and the indoor preset temperature can be relatively quickly reduced in the initial cooling control mode for the second preset duration.
  • step S105 Determine whether the running time of the initial coolness control mode exceeds a second preset duration.
  • the process proceeds to step S106, and when the running time of the initial coolness control mode is less than the second preset time length, the process returns to step S104.
  • the step S100 may further include:
  • step S107 When the air conditioning operating environment parameter satisfies the condition of automatically entering the cool feeling mode, the process proceeds to step S106. Specifically, it is determined whether the outdoor temperature exceeds a first preset value. When the outdoor temperature exceeds the first preset value, calculating a second temperature difference between the indoor temperature and the air conditioner target temperature; determining whether the duration of the second temperature difference exceeding the second preset value exceeds a third preset duration; when the second temperature When the duration of the difference exceeding the second preset value exceeds the third preset duration, the air conditioner is controlled to enter the cool mode.
  • the automatic entering the cool feeling mode may be that after the air conditioner is turned on for a period of time, after entering the cool feeling mode after judging that the automatic entry condition is satisfied, the cool feeling mode may be entered at any time after determining that the automatic entry condition is satisfied.
  • the cool feeling mode can be exited.
  • the temperature of the outlet air or the temperature of the inner tube is abnormal, and the temperature is too low.
  • the air conditioner is controlled to exit the cool mode; and/or whether the duration of the inner tube temperature is less than the fifth preset value exceeds the fifth pre-determination
  • the duration is set; when the duration of the indoor temperature is less than the fifth preset value exceeds the fifth preset duration, the air conditioner is controlled to exit the cool mode.
  • the user also controls the air conditioner to exit the cool mode according to his own needs. Specifically, the stop signal for characterizing the control air conditioner exiting the cool mode is obtained; and the air conditioner exits the cool mode based on the stop signal.
  • the embodiment of the present invention further provides an air conditioning control device.
  • the device includes: an obtaining unit 100 configured to acquire an air conditioning operating environment parameter; and a determining unit 200 configured to determine an air conditioning target temperature according to an air conditioning operating environment parameter. And the inner fan speed; the adjusting unit 300 is configured to adjust the compressor frequency based on the air conditioning operating environment parameter, the target temperature, and the inner fan speed.
  • the embodiment of the present invention further provides an air conditioner, as shown in FIG. 5, comprising: an air conditioner body 1000; a sensor 2000 configured to collect air conditioning operating environment parameters; and a controller 3000 configured to perform the air conditioner described in the foregoing embodiment Control Method.
  • the air conditioner further includes: an instruction transmitting device disposed on the air conditioner body or the air conditioner remote controller, configured to trigger to be sent by the single button or the combination button for characterizing the control and controlling the air conditioner to enter the cool mode
  • the coolness control signal and the stop signal used to characterize the control of the air conditioner exiting the cool mode.
  • the embodiment of the present invention further provides another air conditioning control method.
  • the method includes the following steps: S60: acquiring a plurality of operating environment parameters of the air conditioner; and S62, determining an air conditioning target temperature according to the plurality of air conditioning operating environment parameters. And the internal fan target speed; S64, the compressor frequency is adjusted based on a plurality of air conditioning operating environment parameters, a target temperature, and an internal fan target speed.
  • S60 acquiring a plurality of operating environment parameters of the air conditioner
  • S62 determining an air conditioning target temperature according to the plurality of air conditioning operating environment parameters.
  • the internal fan target speed S64
  • the compressor frequency is adjusted based on a plurality of air conditioning operating environment parameters, a target temperature, and an internal fan target speed.
  • the embodiment of the present invention further provides a sub-transitory storage medium, wherein the non-transitory computer readable storage medium stores computer instructions for causing a computer to execute the air conditioning control method as described in any of the above embodiments.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), a random access memory (RAM), a flash memory, a hard disk (Hard Disk Drive). , abbreviations: HDD) or Solid-State Drive (SSD), etc.; the storage medium may also include a combination of the above types of memories.
  • the solution provided by the embodiment of the invention can be applied to the control process of the air conditioner.
  • the air conditioner can adjust the compressor frequency, and can improve the temperature control accuracy of the air conditioner, according to the air conditioning operating environment parameter and the target temperature and the inner temperature determined according to the environmental parameter.
  • the fan speed, closed-loop control of the frequency of the air conditioner compressor can more accurately control the temperature of the air conditioner to ensure higher comfort and better user experience of the air conditioner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空调控制方法、装置及空调器。其中,空调控制方法包括:获取空调运行环境参数;根据空调运行环境参数确定空调目标温度和内风机转速;基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。

Description

空调控制方法、装置及空调器 技术领域
本发明涉及家电技术领域,具体而言,涉及一种空调控制方法、装置及空调器。
背景技术
在人们生活当中,空调已经是必不可少的家电,空调的制冷或制热舒适性对人体非常重要,特别是温降或升速度和出风温度,能够给用户带来实际的好处,提高用户舒适度。
为了更好的满足用户的舒适度,现有技术中,用户使用空调时,一般根据经验人工调节温度,由于室内外环境温度变动幅度较大,不同的室内外环境温度需要的空调温度不同,仅通过人工调节,室内温控精度不准确以及用户较差的舒适性体验。在专利CN106196485A中,获取当前设定温度下对应的冷热感值,(冷热感值由房间内辐射温度以及人体表面的温度值确定),根据冷热感值调节空调器的设定温度,然而,要获取冷热感值需要在额外加装冷热感检测装置,使得空调器成本增加。在专利CN105371434B根据室外温度与设定温度获取空调设定温度,但由于其仅仅考虑室外温度,忽略室内环境参数(例如,室内湿度,室内温度)或室内温度与目标温度的温差的影响,将导致室内温控精度不准确以及升降温速率不能满足用户需求,导致用户使用空调的舒适性体验较差。
如何控制空调的温控精度成为亟待解决的问题。
发明内容
本发明要解决的技术问题在于控制空调的温控精度。
为此,根据第一方面,本发明实施例提供了一种空调控制方法,包括如下步骤:获取空调运行环境参数;根据空调运行环境参数确定空调目标温度和内风机转速;基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。
可选地,室内湿度,以及室内温度、室外温度、设定温度或空调系统元件电参数的任意一种或任意组合。
可选地,根据空调运行环境参数确定空调目标温度包括:计算室内温度与空调的 设定温度的第一温度差;根据室内湿度,以及第一温度差、室外温度或空调系统元件电参数的任意一种或任意组合确定待补偿温度;基于待补偿温度和设定温度得到空调目标温度。
可选地,空调目标温度为多个;基于待补偿温度和待补偿转速得到空调目标温度包括:获取达到上一次空调目标温度过程中的降温速率;根据降温速度得到当前待补偿温度;基于上一次空调目标温度和当前待补偿温度得到当前空调目标温度。
可选地,根据空调运行环境参数确定内风机目标转速包括:计算室内温度与空调的预设温度的第一温度差;根据室内湿度,以及第一温度差、、室外温度或空调系统元件电参数的任意一种或任意组合确定内风机转速。
可选地,根据空调运行环境参数确定内风机目标转速包括:计算室内温度与空调的预设温度的第一温度差;根据室内湿度,以及第一温度差、室外温度或空调系统元件电参数的任意一种或任意组合确定待补偿转速;根据待补偿转速和预设转速得到内风机目标转速。
可选地,在根据空调运行环境参数确定空调目标温度和内风机目标转速之前包括:根据预设条件控制空调进入凉感模式。
可选地,根据预设条件控制空调进入凉感模式包括:获取用于表征控制空调进入凉感模式的凉感控制信号;根据凉感控制信号控制空调进入凉感模式。
可选地,根据凉感控制信号控制空调进入凉感模式包括:计算获取凉感控制信号的时刻距离空调开机时刻的时长;判断时长是否大于第一预设时长;当时长小于第一预设时长时,控制空调以初始凉感控制模式运行;在初始凉感控制模式的运行时长超过第二预设时长时,控制空调进入凉感模式。
可选地,控制空调以初始凉感控制模式运行包括:根据空调运行环境参数确定内风机初始转速;根据内风机初始转速和/或空调目标温度控制压缩机以最高频率运行。
可选地,当时长大于第一预设时长时,控制空调进入凉感模式。
可选地,根据预设条件控制空调进入凉感模式包括:判断室外温度是否超过第一预设值;当室外温度超过第一预设值时,计算室内温度和空调目标温度的第二温度差;判断第二温度差超过第二预设值的持续时长是否超过第三预设时长;当第二温度差超过第二预设值的持续时长超过第三预设时长时,控制空调进入凉感模式。
可选地,在基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率之后还包括:判断是否满足退出凉感模式的退出条件;当满足退出条件时,控制空调退 出凉感模式。
可选地,判断是否满足退出凉感模式的退出条件,包括:判断第二温度差是否小于第三预设值;当第二温度差小于第三预设值时,满足退出条件。
可选地,空调运行环境参数还包括:出风温度和/或内管温度;判断是否满足退出凉感模式的退出条件,包括:判断出风温度是否小于第四预设值;当出风温度小于第四预设值时,满足退出条件;和/或,判断内管温度是否小于第五预设值;当室内温度小于第五预设值时,满足退出条件。
可选地,当出风温度小于第四预设值时和/或当室内温度小于第五预设值时包括:判断出风温度小于第四预设值的持续时长是否超过第四预设时长;当出风温度小于第四预设值的持续时长超过第四预设时长时,满足退出条件;和/或判断内管温度小于第五预设值的持续时长是否超过第五预设时长;当内管温度小于第五预设值的持续时长超过第五预设时长时,满足退出条件。
可选地,判断是否满足退出凉感模式的退出条件,包括:判断是否获取到用于表征控制空调退出凉感模式的停止信号;当获取到停止信号时,满足退出条件。
根据第二方面,本发明实施例提供了一种空调控制装置,包括:获取单元,设置为获取空调运行环境参数;确定单元,设置为根据空调运行环境参数确定空调目标温度和内风机转速;调整单元,设置为基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。
根据第三方面,本发明实施例提供了一种空调器,包括:空调器本体;传感器,设置为采集空调运行环境参数;控制器,设置为执行如上述第一方面任意一项描述的空调控制方法。
可选地,空调器还包括:指令发送装置,设置在空调器本体上或空调器遥控器上,设置为触发通过单独按键或组合按键发送用于表征控制控制空调进入凉感模式的凉感控制信号和用于表征控制空调退出凉感模式的停止信号。
根据第四方面,本发明实施例提供了一种非暂态存储介质,于,非暂态计算机可读存储介质存储计算机指令,计算机指令设置为使计算机执行上述第一方面任意一项描述的空调控制方法。
根据第五方面,本发明实施例提供了一种空调控制方法,包括:获取空调的多个运行环境参数;根据多个空调运行环境参数确定空调目标温度和内风机目标转速;基于多个空调运行环境参数、目标温度以及内风机目标转速调整压缩机频率。
本发明实施例提供的空调控制方法、装置及空调器,通过获取空调运行环境参数,根据空调运行环境参数确定空调目标温度和内风机转速,基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。基于本发明实施例提供的上述方案,可以将所有影响空调温控的参数均考虑在内,可以提高空调温控精度,根据空调运行环境参数和根据环境参数确定的目标温度和内风机转速,对空调压缩机的频率进行闭环控制,可以较为精准的控制空调调节的温度,保证空调器较高的舒适性和较佳的用户体验。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了本发明实施例的空调控制方法流程示意图;
图2示出了本发明实施例的空调凉感模式控制方法示意图;
图3示出了本发明实施例的空调进入凉感模式的方法示意图;
图4示出了本发明实施例的空调控制装置的示意图;
图5示出了本发明实施例的空调器的示意图;
图6示出了本发明实施例的另一空调控制方法的流程示意图。
具体实施方式
下面将结合附图对本发明的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,还可以是两个元件内部的连通,可以是无线连接,也可以是有线连接。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
本发明实施例提供了一种空调控制方法,在本实施中,以空调进入凉感模式为例 进行说明,如图1所示,该方法包括如下步骤:
S10.获取空调运行环境参数。在具体的实施例中,所称空调运行环境参数可以包括:室内湿度,以及室内温度、室外温度、设定温度或空调系统元件电参数的任意一种或任意组合,在本实施例中,由于室内湿度可以较为明显的影响人的体感温度,以及体感空调的出风的舒适度,在本实施例中,需要获取室内湿度。空调系统元件电参数可以由压缩机电参数、风机电机电参数以及空调的交流电参数等算得到。
S20.根据空调运行环境参数确定空调目标温度和内风机转速。在具体的实施例中,可以根据内环温度T内环、设定温度T设定温度,对用户设定温度进行修正,确定空调运行的目标温度;还可以根据室内环温度T内环、室内湿度RH、设定温度T设定温度,对用户设定温度进行修正,确定空调器运行的室内目标温度;还可以根据室内环境温度T内环、设定温度T设定温度、室外环温度T外环,对用户设定温度进行修正,确定空调器运行的室内目标温度;在本实施例中,空调出风温度不同,对应的空调的交流电电流和/或压缩机相电流的大小不同,在本实施例中,还可以根据压缩机相电流对用户设定温度进行修正,确定空调器运行的室内目标温度,和/或,以根据空调的交流电电流对用户设定温度进行修正,确定空调器运行的室内目标温度。
S30.基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。在本实施例中,可以对目标温度以及内风机转速进行闭环控制,可以根据空调运行环境参数实时调整目标温度以及内风机转速。在本实施例中,内风机转速可以包括,实时调节,或用户设定,若内风机转速实时调节运行,则内风机转速不断计算与更新;若用户设定转速,则在进入凉感模式时计算一次,室内风机按照内风机转速进行控制出风速度。由于出风速度和出风温度对应的压缩机频率不同,在本实施例中,对风速和温度进行调节,需要根据空调运行环境参数、目标温度和内风机转速对压缩机频率进行控制。例如,在达到第一目标温度后,空调运行环境参数发生变化,对频率进行闭环控制,实时根据空调运行环境参数调整压缩机频率以调整目标温度和内风机转速。
通过获取空调运行环境参数,根据空调运行环境参数确定空调目标温度和内风机转速,基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。空调运行环境参数包括多个参数,可以将所有影响空调温控的参数均考虑在内,可以提高空调温控精度,根据空调运行环境参数和根据环境参数确定的目标温度和内风机转速,对空调压缩机的频率进行闭环控制,可以较为精准的控制空调调节的温度。
为保证空调的温控精度,在可选的实施例中,需要对空调目标温度进行调节,可以计算室内温度与空调的预设温度的第一温度差;根据第一温度差、室内湿度、室外温度和空调耗电电能中的任意一种或任意组合确定待补偿温度;基于待补偿温度得到 空调目标温度。
在本实施例中对确定补偿温度的确定进行示例性的说明,具体的,可以根据第一温度差确定待补偿温度,其中,待补偿温度的取值方式可以如下表所示:
ΔT 0 ΔT 0≤ΔT 01 ΔT 01<ΔT 0≤ΔT 02 ΔT 02<ΔT 0≤ΔT 03 ΔT 03<ΔT 0≤ΔT 04 ΔT 0>ΔT 04
T 待补偿 T 待补偿1 T 待补偿2 T 待补偿3 T 待补偿4 T 待补偿5
其中,ΔT 0第一温度差,T 待补偿为待补偿温度,ΔT 01、ΔT 02、ΔT 03、ΔT 04分别为ΔT 0不同的取值范围,在本实施例中,T 待补偿为待补偿温度的取值范围可以为-10℃ˉ5℃。以上T 待补偿取值仅为举例说明,可根据实际需要将ΔT 0分为不同的温度段进行T 待补偿取值,不限于以上取值个数。
还可以根据第一温度差和室内湿度确定待补偿温度,其中,待补偿温度的取值方式可以如下表所示:
Figure PCTCN2018074974-appb-000001
其中,ΔT 0第一温度差,T 待补偿为待补偿温度,ΔT 01、ΔT 02、ΔT 03、ΔT 04分别为ΔT 0不同的取值范围,T RH1ˉT RH4分别对应不同湿度的温度补偿值,其取值范围可以为:-2℃ˉ7℃。在本实施例中,T 待补偿为待补偿温度的取值范围可以为-10℃ˉ5℃。以上T 待补偿取值仅为举例说明,可根据实际需要将ΔT 0和RH分为不同的温度段进行T 待补偿取值,不限于以上取值个数。
还可以根据外部温度确定待补偿温度,其中,待补偿温度的取值方式可以如下表 所示:
Figure PCTCN2018074974-appb-000002
其中,T 外环为外部温度,,T 外环1ˉT 外环4,为外部温度不同取值范围,T 待补偿为待补偿温度的取值范围可以为-10℃ˉ5℃。以上T 待补偿取值仅为举例说明,可根据实际需要将外部温度T 外环分为不同的温度段进行T 待补偿取值,不限于以上取值个数。
还可以根据第一温差和外部温度确定待补偿温度,其中,待补偿温度的取值方式可以如下表所示:
Figure PCTCN2018074974-appb-000003
其中,ΔT 0第一温度差,T 待补偿为待补偿温度,ΔT 01、ΔT 02、ΔT 03、ΔT 04分别为ΔT 0不同的取值范围,T 外环为外部温度,T 外环1ˉT 外环4,为外部温度不同取值范围,T 外环补 的取值范围为-2℃ˉ7℃。T 外环补偿1ˉT 外环补偿4,为外部温度在T 外环1ˉT 外环4的取值范围内和ΔT 01、ΔT 02、ΔT 03、ΔT 04的取值范围内不同的补偿温度。T 待补偿为待补偿温度的取值范围可以为-10℃ˉ5℃。以上T 待补偿取值仅为举例说明,可根据实际需要将外部温度T 外环分为不同的温度段进行T 待补偿取值,不限于以上取值个数。
还可以根据压缩机相电流确定待补偿温度,压缩机相电流越大,空调负荷越重,其中,待补偿温度的取值方式可以如下表所示:
I I ≤I 相1 I 相1<I ≤I 相2 I 相2<I ≤I 相3 I 相3<I ≤I 相4 I >I 相4
T 待补偿 T 待补偿1 T 待补偿2 T 待补偿3 T 待补偿4 T 待补偿5
其中,以上T 待补偿取值仅为举例说明,可根据实际需要将相电流I 分为不同的电流段进行T 待补偿取值,不限于以上取值个数。
还可以根空调交流电电流确定待补偿温度,压缩机相电流越大,空调负荷越重,其中,待补偿温度的取值方式可以如下表所示:
I AC I AC≤I AC1 I AC1<I AC≤I AC2 I AC2<I AC≤I AC3 I AC3<I AC≤I AC4 I AC>I AC4
T 待补偿 T 待补偿5 T 待补偿4 T 待补偿3 T 待补偿2 T 待补偿1
以上T 待补偿取值仅为举例说明,可根据实际需要将I AC分为不同的电流段进行T 待补 取值,不限于以上取值个数。
T 待补偿取值因素,可以是内环T 内环、室内湿度RH、设定温度T 设定温度、T 外环、I 、I AC等因素的任一组合,取值思想和上述方法类同,此处不再赘述。
为保证空调温控精确,在可选的实施例中还需要对内风机转速进行调节,计算室内温度与空调的预设温度的第一温度差;根据第一温度差、室内湿度、室外温度或空调耗电电能中的任意一种或任意组合确定待补偿转速;根据待补偿转速和预设转速得到内风机转速。在具体的实施例中,用户可以设定风机转速,在用户设定内风机转速后,根据空调运行环境参数调整用户设定的内风机转速,Rpm 内风机=Rpm 设定风档+Rpm 待补偿,其中Rpm 待补偿∈[0,500rpm]。
在确定内风机转速后,内风机转速不变。在本实施例中,示例性的示出了内风机转速的确定方式,具体的,可以根据第一温差进行确定,待补偿转速的取值方式可以参见下表:
ΔT 0 ΔT 0≤ΔT 01 ΔT 01<ΔT 0≤ΔT 02 ΔT 02<ΔT 0≤ΔT 03 ΔT 03<ΔT 0≤ΔT 04 ΔT 0>ΔT 04
Rpm 待补偿 Rpm 待补偿1 Rpm 待补偿2 Rpm 待补偿3 Rpm 待补偿4 Rpm 待补偿5
其中,以上Rpm 待补偿取值仅为举例说明,可根据实际需要将ΔT 0分为不同的温度段进行Rpm 待补偿取值,不限于以上取值个数。
待补偿风速还可以根据第一温度差和室内湿度进行确定,待补偿转速的取值方式 可以参见下表:
Figure PCTCN2018074974-appb-000004
其中,以上Rpm 待补偿取值仅为举例说明,可根据实际需要将ΔT 0、RH分为不同的温度段进行Rpm待补偿取值,不限于以上取值个数和关系;
Rpm RH={Rpm RH 1,Rpm RH 2,Rpm RH 3,Rpm RH 4},Rpm RH∈[0,200rpm]
待补偿住转速还可以根据室外温度进行确定,具体的,待补偿转速的取值方式可以参见下表:
Figure PCTCN2018074974-appb-000005
其中,以上Rpm 待补偿取值仅为举例说明,可根据实际需要将外环分为不同的温度段进行Rpm 待补偿取值,不限于以上取值个数。
待补偿转速还可以根据第一温度差和室外温度进行确定,具体的,待补偿转速的取值方式可以参见下表:
Figure PCTCN2018074974-appb-000006
以上Rpm待补偿取值仅为举例说明,可根据实际需要将ΔT 0、T 外环分为不同的温度段进行Rpm待补偿取值,不限于以上取值个数和关系;
Rpm 外环={Rpm 外环1,Rpm 外环2,Rpm 外环3,Rpm 外环4},Rpm 外环∈[0,200rpm]。
在本实施例中,待补偿转速还可以根据第一温度差,室内湿度,室外温度确定,还可以根据空调能耗确定,取值与上述方法类似,可以参见上述待补偿转速或待补偿温度的取值方法,在这里不再赘述。
为保证空调温控精确,在可选的实施例中还需要对内风机转速进行调节,计算室内温度与空调的预设温度的第一温度差;根据第一温度差、室内湿度、室外温度或空调耗电电能中的任意一种或任意组合确定内风机转速。在具体的实施例中,内风机转速为自动调节,需要根据空调运行环境参数对内风机转速进行实时调节,具体的,内风机转速的取值可以根据第一温度差进行确定,具体的,内风机转速的取值方法,可以参见下表:
ΔT 0 ΔT 0≤ΔT 01 ΔT 01<ΔT 0≤ΔT 02 ΔT 02<ΔT 0≤ΔT 03 ΔT 03<ΔT 0≤ΔT 04 ΔT 0>ΔT 04
Rpm 内风机 Rpm 内风机1 Rpm 内风机2 Rpm 内风机3 Rpm 内风机4 Rpm 内风机5
其中,以上Rpm 内风机取值仅为举例说明,可根据实际需要将ΔT 0分为不同的温度段进行Rpm 内风机取值,不限于以上取值个数。
内风机转速还可以根据第一温度差和室内湿度度进行确定,具体的,待补偿转速的取值方式可以参见下表:
Figure PCTCN2018074974-appb-000007
其中,以上Rpm 内风机取值仅为举例说明,可根据实际需要将ΔT 0、RH分为不同的温度段进行Rpm 内风机取值,不限于以上取值个数和关系;
Rpm RH={Rpm RH 1,Rpm RH 2,Rpm RH 3,Rpm RH 4},Rpm RH∈[0,200rpm]。
内风机转速还可以根据室外温度进行确定,具体的,待补偿转速的取值方式可以参见下表:
Figure PCTCN2018074974-appb-000008
备注:以上Rpm 内风机取值仅为举例说明,可根据实际需要将外环分为不同的温度段进行Rpm 内风机取值,不限于以上取值个数。
内风机转速还可以根据第一温度差和室外温度进行确定,具体的,待补偿转速的取值方式可以参见下表:
Figure PCTCN2018074974-appb-000009
备注:
a)以上Rpm 内风机取值仅为举例说明,可根据实际需要将ΔT 0、T 外环分为不同的温度段进行Rpm 内风机取值,不限于以上取值个数和关系;
Rpm 外环={Rpm 外环1,Rpm 外环2,Rpm 外环3,Rpm 外环4},Rpm 外环∈[0,200rpm]。
由于空调运行环境在实时变化,为保证空调温控精度,在可选的实施例中,空调目标温度为多个,当前空调目标温度需要根据上一次目标温度进行调节,与降温速率相关,获取达到上一次空调目标温度过程中的降温速率;根据降温速度得到当前待补偿温度;基于当前待补偿温度得到当前空调目标温度。
保证再一次温度调节频率相当或提升,优先满足制冷效果和制冷舒适度;当前待补偿温度的取值可以参见下表:
Figure PCTCN2018074974-appb-000010
备注:
D(ΔT)/D(t)可以表示一定时间内ΔT的变化量,也可以表示ΔT变化一定量时所需的时间,根据设计目的确定;
T 当前待补偿0={T 当前待补偿01,T 当前待补偿02,T 当前待补偿03,T 当前待补偿04},数列中各参数可以具有一定的比例关系或其他数据关系。
在可选的实施例中,确定空调目标温度和内风机目标转速是根据空调的凉感模式进行调节的,在本实施例中在根据空调运行环境参数确定空调目标温度和内风机目标转速之前包括:控制空调进入凉感模式,空调的制冷舒适性对人体非常重要,特别是温降速度和出风温度,能够给用户带来实际的好处,感受空调带来的凉爽感。在本实施例中,所称凉感模式为空调出风使人感到凉爽的运行模式可以使室内的快速温降同时保证人体较为舒适的出风温度的需求,提高用户舒适度;保证空调器舒适度的同时保证温控精度。
在可选的实施例中,空调进入和退出凉感模式的方式可以如图2所示:
S100.根据预设条件控制空调进入凉感模式。
S200.判断是否满足退出凉感模式的退出条件。当满足退出条件时,进入步骤S300。当不满足退出条件时,进入步骤S400.
S300.退出凉感模式。
S400.控制空调继续以凉感模式运行。
在本实施例中,步骤S100根据预设条件控制空调进入凉感模式,预设条件可以为多种,空调可以在开机后,接收到用于表征控制空调进入凉感模式的凉感控制信号后进入凉感模式,所称凉感模式控制信号可以为用户通过触发空调遥控器或者空调器本体上的单独按键或组合按键后发送的控制空调进入凉感模式的指令。用户可以在开机后较短的时间内通过触发按键发送凉感控制信号,也可以在空调运行一段时间后,通过触发按键发送凉感控制信号。
具体的,如图3所示,步骤S100可以包括:
S101.获取用于表征控制空调进入凉感模式的凉感控制信号。
S102.计算获取凉感控制信号的时刻距离空调开机时刻的时长。在本实施例中,所称时长为记录的开机时刻距离获取到凉感控制信号的时刻的时长。
S103.判断时长是否大于第一预设时长。当时长小于第一预设时长时,进入步骤S104。当时长小于第一预设时长时,进入步骤S105。
S104.控制空调以初始凉感控制模式运行。所称的初始凉感模式为根据空调运行环境参数确定内风机初始转速;根据内风机初始转速和/或空调目标温度控制压缩机以最高频率运行。所称压缩机以最高频率运行为以压缩机能达到的最大的功率进行制冷运转。统计空调以初始凉感控制模式的运行时长,即压缩机以最高频率运行的时长,在初始凉感控制模式的运行第二预设时长可以将室内温度较为快速的降低。
S105.判断初始凉感控制模式的运行时长是否超过第二预设时长。当初始凉感控制模式的运行时长是否超过第二预设时长进入步骤S106,当初始凉感控制模式的运行时长是小于过第二预设时长返回步骤S104。
S106.控制空调进入凉感模式。
在本实施例中,在空调开机运行一段时间后,可能由于开窗或者室温较高等原因空调负荷较大,降温速度较慢时,如图3所示,步骤S100还可以包括:
S107.在空调运行环境参数满足自动进入凉感模式条件时,进入步骤S106。具体的,判断室外温度是否超过第一预设值。当室外温度超过第一预设值时,计算室内温度和空调目标温度的第二温度差;判断第二温度差超过第二预设值的持续时长是否超过第三预设时长;当第二温度差超过第二预设值的持续时长超过第三预设时长时,控 制空调进入凉感模式。在本实施例中,自动进入凉感模式可以为空调开机运行一段时间后,经过判断满足自动进入条件后进入凉感模式,也可以在任意时刻,在判断满足自动进入条件后进入凉感模式。
为保证空调的温控的准确性,保证用户的舒适度,在室内温度适宜后,或者用户无需调温时,可以退出凉感模式,在可选地实施例中,判断第二温度差是否小于第三预设值;当第二温度差小于第三预设值时,控制空调退出凉感模式。在本实施例中,还可以通过检测出风温度或内管温度,退出凉感模式,具体的,判断出风温度是否小于第四预设值;当出风温度小于第四预设值时,控制空调退出凉感模式;和/或,判断内管温度是否小于第五预设值;当室内温度小于第五预设值时,控制空调退出凉感模式。
为避免暂态事件发生,出风温度或内管温度突变等原因造成温度过低,在本实施例中,还可以判断出风温度小于第四预设值的持续时长是否超过第四预设时长;当出风温度小于第四预设值的持续时长超过第四预设时长时,控制空调退出凉感模式;和/或判断内管温度小于第五预设值的持续时长是否超过第五预设时长;当室内温度小于第五预设值的持续时长超过第五预设时长时,控制空调退出凉感模式。
用户还以根据自身需求,控制空调退出凉感模式。,具体的,获取用于表征控制空调退出凉感模式的停止信号;基于停止信号控制空调退出凉感模式。
本发明实施例还提功率一种空调控制装置,如图4所示,该装置包括:获取单元100,设置为获取空调运行环境参数;确定单元200,设置为根据空调运行环境参数确定空调目标温度和内风机转速;调整单元300,设置为基于空调运行环境参数、目标温度以及内风机转速调整压缩机频率。
本发明实施例还提供了一种空调器,如图5所示,包括:空调器本体1000;传感器2000,设置为采集空调运行环境参数;控制器3000,设置为执行上述实施例中描述的空调控制方法。
在可选的实施例中,空调器还包括:指令发送装置,设置在空调器本体上或空调器遥控器上,设置为触发通过单独按键或组合按键发送用于表征控制控制空调进入凉感模式的凉感控制信号和用于表征控制空调退出凉感模式的停止信号。
本发明实施例还提供了另一种空调控制方法,如图6所示,该方法包括如下步骤:S60,获取空调的多个运行环境参数;S62,根据多个空调运行环境参数确定空调目标温度和内风机目标转速;S64,基于多个空调运行环境参数、目标温度以及内风机目标转速调整压缩机频率。该空调控制方法的具体实施方式可参照图1对应的实施方式, 在此不再赘述。
本发明实施例还提供可一种分暂态存储介质,非暂态计算机可读存储介质存储计算机指令,计算机指令用于使计算机执行如上述实施例中任意一项描述的空调控制方法。其中,存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)、随机存储记忆体(Random Access Memory,RAM)、快闪存储器(Flash Memory)、硬盘(Hard Disk Drive,缩写:HDD)或固态硬盘(Solid-State Drive,SSD)等;存储介质还可以包括上述种类的存储器的组合。
虽然结合附图描述了本发明的实施方式,但是本领域技术人员可以在不脱离本发明的精神和范围的情况下作出各种修改和变型,这样的修改和变型均落入由所附权利要求所限定的范围之内。
工业实用性
本发明实施例提供的方案,可以应用于空调的控制过程中,通过该方案,空调可以调整压缩机频率,可以提高空调温控精度,根据空调运行环境参数和根据环境参数确定的目标温度和内风机转速,对空调压缩机的频率进行闭环控制,可以较为精准的控制空调调节的温度,保证空调器较高的舒适性和较佳的用户体验。

Claims (22)

  1. 一种空调控制方法,包括:
    获取空调运行环境参数;
    根据所述空调运行环境参数确定空调目标温度和内风机目标转速;
    基于所述空调运行环境参数、所述目标温度以及所述内风机目标转速调整压缩机频率。
  2. 如权利要求1所述的空调控制方法,其中,所述空调运行环境参数包括:室内湿度,以及室内温度、室外温度、设定温度或空调系统元件电参数的任意一种或任意组合。
  3. 如权利要求2所述的空调控制方法,其中,所述根据所述空调运行环境参数确定空调目标温度包括:
    计算所述室内温度与空调的所述设定温度的第一温度差;
    根据所述室内湿度,以及所述第一温度差、所述室外温度或所述空调系统元件电参数的任意一种或任意组合确定待补偿温度;
    基于所述待补偿温度和所述设定温度得到所述空调目标温度。
  4. 如权利要求3所述的空调控制方法,其中,所述空调目标温度为多个;所述基于所述待补偿温度和所述待补偿转速得到所述空调目标温度包括:
    获取达到上一次空调目标温度过程中的降温速率;
    根据所述降温速度得到当前待补偿温度;
    基于所述上一次空调目标温度和所述当前待补偿温度得到当前空调目标温度。
  5. 如权利要求2所述的空调控制方法,其中,所述根据所述空调运行环境参数确定内风机目标转速包括:
    计算所述室内温度与空调的预设温度的第一温度差;
    根据所述室内湿度,以及所述第一温度差、、所述室外温度或所述空调系统元件电参数的任意一种或任意组合确定内风机转速。
  6. 如权利要求5所述的空调控制方法,其中,所述根据所述空调运行环境参数确定 内风机目标转速包括:
    计算所述室内温度与空调的预设温度的第一温度差;
    根据所述室内湿度,以及所述第一温度差、所述室外温度或所述空调系统元件电参数的任意一种或任意组合确定待补偿转速;
    根据所述待补偿转速和所述预设转速得到所述内风机目标转速。
  7. 如权利要求1至6中任意一项所述的空调控制方法,其中,在所述根据所述空调运行环境参数确定空调目标温度和内风机目标转速之前,包括:
    根据预设条件控制所述空调进入凉感模式。
  8. 如权利要求7所述的空调控制方法,其中,所述根据预设条件控制所述空调进入凉感模式包括:
    获取用于表征控制所述空调进入凉感模式的凉感控制信号;
    根据所述凉感控制信号控制所述空调进入所述凉感模式。
  9. 如权利要求8所述的空调控制方法,其中,所述根据所述凉感控制信号控制所述空调进入所述凉感模式包括:
    计算获取所述凉感控制信号的时刻距离空调开机时刻的时长;
    判断所述时长是否大于第一预设时长;
    当所述时长小于第一预设时长时,控制所述空调以初始凉感控制模式运行;
    在所述初始凉感控制模式的运行时长超过第二预设时长时,控制所述空调进入所述凉感模式。
  10. 如权利要求9所述的空调控制方法,其中,所述控制所述空调以初始凉感控制模式运行包括:
    根据空调运行环境参数确定内风机初始转速;
    根据所述内风机初始转速和/或空调目标温度控制所述压缩机以最高频率运行。
  11. 如权利要求9所述的空调控制方法,其中,
    当所述时长大于第一预设时长时,控制所述空调进入所述凉感模式。
  12. 如权利要求7所述的空调控制方法,其中,所述根据预设条件控制所述空调进入 凉感模式包括:
    判断所述室外温度是否超过第一预设值;
    当所述室外温度超过第一预设值时,计算室内温度和空调目标温度的第二温度差;
    判断所述第二温度差超过第二预设值的持续时长是否超过第三预设时长;
    当所述第二温度差超过第二预设值的持续时长超过所述第三预设时长时,控制所述空调进入所述凉感模式。
  13. 如权利要求12所述的空调控制方法,其中,在所述基于所述空调运行环境参数、目标温度以及内风机转速调整压缩机频率之后,还包括:
    判断是否满足退出所述凉感模式的退出条件;
    当满足所述退出条件时,控制所述空调退出所述凉感模式。
  14. 如权利要求13所述的空调控制方法,其中,判断是否满足退出所述凉感模式的退出条件,包括:
    判断所述第二温度差是否小于第三预设值;
    当所述第二温度差小于第三预设值时,满足所述退出条件。
  15. 如权利要求13所述的空调控制方法,其中,所述空调运行环境参数还包括:出风温度和/或内管温度;
    判断是否满足退出所述凉感模式的退出条件,包括:
    判断所述出风温度是否小于第四预设值;
    当所述出风温度小于所述第四预设值时,满足所述退出条件;
    和/或,
    判断所述内管温度是否小于第五预设值;
    当所述室内温度小于所述第五预设值时,满足所述退出条件。
  16. 如权利要求15所述的空调控制方法,其中,当所述出风温度小于所述第四预设值时和/或当所述室内温度小于所述第五预设值时包括:
    判断出风温度小于第四预设值的持续时长是否超过第四预设时长;
    当所述出风温度小于第四预设值的持续时长超过第四预设时长时,满足所述退出条件;
    和/或,
    判断内管温度小于第五预设值的持续时长是否超过第五预设时长;
    当所述内管温度小于第五预设值的持续时长超过第五预设时长时,满足所述退出条件。
  17. 如权利要求13所述的空调控制方法,其中,判断是否满足退出所述凉感模式的退出条件,包括:
    判断是否获取到用于表征控制所述空调退出所述凉感模式的停止信号;
    当获取到所述停止信号时,满足所述退出条件。
  18. 一种空调控制装置,包括:
    获取单元,设置为获取空调运行环境参数;
    确定单元,设置为根据所述空调运行环境参数确定空调目标温度和内风机目标转速;
    调整单元,设置为基于所述空调运行环境参数、所述目标温度以及内风机目标转速调整压缩机频率。
  19. 一种空调器,包括:
    空调器本体;
    传感器,设置为采集空调运行环境参数;
    控制器,设置为执行如权利要求1-17任意一项所述的空调控制方法。
  20. 如权利要求19所述的空调器,其中,还包括:
    指令发送装置,设置在所述空调器本体上或空调器遥控器上,设置为触发通过单独按键或组合按键发送用于表征控制控制空调进入凉感模式的凉感控制信号和用于表征控制所述空调退出所述凉感模式的停止信号。
  21. 一种非暂态存储介质,该非暂态计算机可读存储介质存储计算机指令,计算机指令用于使计算机执行如权利要求1至17中任意一项所述的空调控制方法。
  22. 一种空调控制方法,包括:
    获取空调的多个运行环境参数;
    根据所述多个空调运行环境参数确定空调目标温度和内风机目标转速;
    基于所述多个空调运行环境参数、所述目标温度以及所述内风机目标转速调整压缩机频率。
PCT/CN2018/074974 2017-11-14 2018-02-01 空调控制方法、装置及空调器 WO2019095561A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18879558.7A EP3712532A4 (en) 2017-11-14 2018-02-01 AIR CONDITIONER CONTROL PROCESS AND APPARATUS AND ASSOCIATED AIR CONDITIONER
US16/629,668 US11333386B2 (en) 2017-11-14 2018-02-01 Method and apparatus for controlling air conditioner and air conditioner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711133269.7A CN107990498B (zh) 2017-11-14 2017-11-14 空调控制方法、装置及空调器
CN201711133269.7 2017-11-14

Publications (1)

Publication Number Publication Date
WO2019095561A1 true WO2019095561A1 (zh) 2019-05-23

Family

ID=62030879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074974 WO2019095561A1 (zh) 2017-11-14 2018-02-01 空调控制方法、装置及空调器

Country Status (4)

Country Link
US (1) US11333386B2 (zh)
EP (1) EP3712532A4 (zh)
CN (1) CN107990498B (zh)
WO (1) WO2019095561A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856748A (zh) * 2021-01-21 2021-05-28 深圳市英威腾网能技术有限公司 冷量输出控制方法、装置、机房空调和存储介质

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109405215A (zh) * 2018-10-26 2019-03-01 美的集团武汉制冷设备有限公司 空调器及其控制方法、控制装置、可读存储介质
CN109579236B (zh) * 2018-11-30 2021-03-19 广东美的制冷设备有限公司 空调器的控制方法、空调器及计算机可读存储介质
CN111322729B (zh) * 2018-12-17 2022-02-01 浙江盾安自控科技有限公司 空调控制方法、装置、系统、设备和存储介质
CN110017584B (zh) * 2019-03-13 2020-05-22 珠海格力电器股份有限公司 一种设定空调器风档的方法及装置、空调器
CN110107994B (zh) * 2019-05-08 2020-04-17 珠海格力电器股份有限公司 一种室内设定温度的确定方法、装置、存储介质及空调
CN110160215B (zh) * 2019-05-15 2021-02-26 广东美的制冷设备有限公司 空调控制方法、装置、空调器、空调系统和可读存储介质
KR102654833B1 (ko) * 2019-08-14 2024-04-05 삼성전자주식회사 공기 조화기 및 그 제어 방법
KR20210027869A (ko) * 2019-09-03 2021-03-11 엘지전자 주식회사 냉장고 및 그의 제어방법
CN110715421B (zh) * 2019-10-08 2021-06-18 广东美的制冷设备有限公司 空调器及其控制方法与装置
TWI803781B (zh) * 2020-01-09 2023-06-01 瑞軒科技股份有限公司 溫度量測方法、可攜式電子裝置及視訊會議系統
CN111219845A (zh) * 2020-01-15 2020-06-02 珠海格力电器股份有限公司 一种温度控制方法、装置、存储介质及空调
CN111750501B (zh) * 2020-05-15 2022-02-01 海信(山东)空调有限公司 一种空调器和控制方法
CN111780377B (zh) * 2020-06-16 2021-07-09 珠海格力电器股份有限公司 一种风机转速控制方法、装置及空调设备
CN114061062B (zh) * 2020-07-31 2023-06-30 广东美的制冷设备有限公司 空调器智能调节方法、空调器及计算机可读存储介质
CN112944624B (zh) * 2021-03-01 2022-09-06 青岛海尔空调器有限总公司 用于空调控制的方法和空调
CN113091256A (zh) * 2021-04-02 2021-07-09 青岛海尔空调器有限总公司 空调控制方法、装置、空调、存储介质及程序产品
US11906182B2 (en) * 2021-04-02 2024-02-20 Carrier Corporation Scoring a building's atmospheric environment
CN113108436B (zh) * 2021-04-07 2023-05-26 广东美的制冷设备有限公司 便携式空调器及其控制方法、装置以及存储介质
CN113133286B (zh) * 2021-04-19 2023-01-24 西安易朴通讯技术有限公司 散热控制方法、装置、设备及存储介质
CN113819627B (zh) * 2021-08-25 2023-01-13 青岛海尔空调器有限总公司 用于控制空调出风的方法及装置、空调、存储介质
CN113915726B (zh) * 2021-11-25 2023-04-07 宁波奥克斯电气股份有限公司 一种空调器的控制方法、装置、空调器及存储介质
CN114326418B (zh) * 2021-11-30 2023-06-20 重庆电子工程职业学院 智能家居设备控制系统
CN114877506B (zh) * 2022-04-29 2023-03-24 美的集团股份有限公司 空调器的运行控制方法、运行控制装置及存储介质
CN115111825B (zh) * 2022-06-20 2023-10-31 青岛海信日立空调系统有限公司 一种压缩机运行频率的确定方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203233A (ja) * 1992-01-24 1993-08-10 Fujitsu General Ltd 空気調和機の制御装置
CN104006484A (zh) * 2013-02-21 2014-08-27 广东美的制冷设备有限公司 空调器送风温度的控制方法
CN104406271A (zh) * 2014-11-25 2015-03-11 珠海格力电器股份有限公司 一种智能控制空调器低温运行的方法及空调器
CN105371434A (zh) 2015-11-30 2016-03-02 珠海格力电器股份有限公司 空调运行控制方法及系统
CN106196485A (zh) 2016-07-29 2016-12-07 广东美的制冷设备有限公司 基于冷热感值的温度调节方法及装置
CN106369761A (zh) * 2016-10-08 2017-02-01 芜湖美智空调设备有限公司 快速制冷的控制方法、控制系统及移动空调器
CN106642592A (zh) * 2016-12-30 2017-05-10 美的集团股份有限公司 一种空调器的控制方法及装置
CN107869829A (zh) * 2017-11-14 2018-04-03 珠海格力电器股份有限公司 空调控制方法、装置及空调器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100512281B1 (ko) * 2003-01-30 2005-09-02 엘지전자 주식회사 냉난방기의 제습 운전방법
US20060130504A1 (en) * 2004-12-17 2006-06-22 Agrawal Nityanand J Method and apparatus for control of a variable speed compressor
TWI401400B (zh) * 2009-09-02 2013-07-11 Inst Information Industry 加入室內外溫差考量之溫度控制系統、溫度控制裝置、空調裝置及溫度控制方法
CN104285106B (zh) * 2012-05-14 2018-06-05 三菱电机株式会社 空调装置以及空气调节系统
CN103940058B (zh) * 2014-03-31 2017-02-08 广东美的制冷设备有限公司 空调器的控制方法、空调器的控制装置和空调器
CN105571047A (zh) * 2014-10-14 2016-05-11 青岛海尔科技有限公司 直流变频空调快速制冷或快速制热的控制方法及装置
KR20170065835A (ko) 2015-12-04 2017-06-14 엘지전자 주식회사 공기 조화기 및 그 제어방법
US10222109B2 (en) * 2016-01-22 2019-03-05 Lennox Industries Inc. Space temperature and discharge air temperature control
CN105650022B (zh) * 2016-03-29 2017-09-22 海信集团有限公司 一种风扇转速控制方法及风扇转速控制装置
CN105890119A (zh) 2016-04-29 2016-08-24 广东美的制冷设备有限公司 空调控制方法及装置
US10941951B2 (en) * 2016-07-27 2021-03-09 Johnson Controls Technology Company Systems and methods for temperature and humidity control
CN107084475A (zh) * 2017-03-30 2017-08-22 广东美的制冷设备有限公司 空调器制冷控制方法和装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05203233A (ja) * 1992-01-24 1993-08-10 Fujitsu General Ltd 空気調和機の制御装置
CN104006484A (zh) * 2013-02-21 2014-08-27 广东美的制冷设备有限公司 空调器送风温度的控制方法
CN104406271A (zh) * 2014-11-25 2015-03-11 珠海格力电器股份有限公司 一种智能控制空调器低温运行的方法及空调器
CN105371434A (zh) 2015-11-30 2016-03-02 珠海格力电器股份有限公司 空调运行控制方法及系统
CN106196485A (zh) 2016-07-29 2016-12-07 广东美的制冷设备有限公司 基于冷热感值的温度调节方法及装置
CN106369761A (zh) * 2016-10-08 2017-02-01 芜湖美智空调设备有限公司 快速制冷的控制方法、控制系统及移动空调器
CN106642592A (zh) * 2016-12-30 2017-05-10 美的集团股份有限公司 一种空调器的控制方法及装置
CN107869829A (zh) * 2017-11-14 2018-04-03 珠海格力电器股份有限公司 空调控制方法、装置及空调器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3712532A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112856748A (zh) * 2021-01-21 2021-05-28 深圳市英威腾网能技术有限公司 冷量输出控制方法、装置、机房空调和存储介质

Also Published As

Publication number Publication date
US20210095881A1 (en) 2021-04-01
CN107990498A (zh) 2018-05-04
CN107990498B (zh) 2020-01-14
US11333386B2 (en) 2022-05-17
EP3712532A1 (en) 2020-09-23
EP3712532A4 (en) 2021-08-04

Similar Documents

Publication Publication Date Title
WO2019095561A1 (zh) 空调控制方法、装置及空调器
CN107965888B (zh) 空调控制方法、装置及空调器
CN107869829B (zh) 空调控制方法、装置及空调器
CN110567137B (zh) 空调器及其送风控制方法
CN104406272B (zh) 一种空调控制方法
CN108361926B (zh) 一种基于温冷感的空调器控制方法和空调器
WO2018166372A1 (zh) 空调器控制方法
CN106482294B (zh) 空调运行控制方法
EP3910256B1 (en) Air conditioning and ventilation system
CN110940064B (zh) 空调的运行频率的控制方法
CN106500242B (zh) 一种空调运行控制方法
WO2018196578A1 (zh) 空调器制热运行控制方法
WO2018196580A1 (zh) 空调器制热运行控制方法和控制装置
CN109323377B (zh) 空调器及其控制方法和控制装置
CN109855253B (zh) 用于空调器的控制方法
CN110887175B (zh) 空调器的控制方法及空调器
JP6502820B2 (ja) 全館温調システム
WO2015034079A1 (ja) 空調制御システム
WO2018196577A1 (zh) 一种空调器制热控制方法
CN112050441B (zh) 新风空调的净化控制方法
WO2020158538A1 (ja) 空気調和装置システム
CN111895633A (zh) 多联机空调器的控制方法
JP2023118887A (ja) 空調機、空調制御方法、及び、プログラム
CN113654177B (zh) 用于空调器的静音控制方法
CN112050443B (zh) 新风空调的净化控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879558

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018879558

Country of ref document: EP

Effective date: 20200615