WO2020000838A1 - 空气调节设备的控制方法、装置和空气调节设备 - Google Patents

空气调节设备的控制方法、装置和空气调节设备 Download PDF

Info

Publication number
WO2020000838A1
WO2020000838A1 PCT/CN2018/113485 CN2018113485W WO2020000838A1 WO 2020000838 A1 WO2020000838 A1 WO 2020000838A1 CN 2018113485 W CN2018113485 W CN 2018113485W WO 2020000838 A1 WO2020000838 A1 WO 2020000838A1
Authority
WO
WIPO (PCT)
Prior art keywords
air supply
air
supply area
temperature
conditioning equipment
Prior art date
Application number
PCT/CN2018/113485
Other languages
English (en)
French (fr)
Inventor
郑伟锐
梁文潮
段晓华
陈志斌
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2020572829A priority Critical patent/JP7058352B2/ja
Publication of WO2020000838A1 publication Critical patent/WO2020000838A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/88Electrical aspects, e.g. circuits

Definitions

  • the present disclosure relates to the technical field of electrical appliance control, and in particular, to a control method, device, and air-conditioning apparatus for an air-conditioning apparatus.
  • air-conditioning equipment such as air conditioners and electric fans have gradually appeared in thousands of homes and offices.
  • the present disclosure proposes a control method, device, and air-conditioning apparatus for an air-conditioning apparatus, which are used to solve the technical problems that the temperature in front of the air-conditioning apparatus is inconsistent with the temperature on both sides, resulting in uneven temperature distribution in the space where the air-conditioning apparatus is located .
  • An embodiment of the first aspect of the present disclosure provides a method for controlling an air-conditioning apparatus, including:
  • the temperature distribution data is used to indicate the ambient temperature at N air supply areas within the air supply range of the air-conditioning equipment, where N is an odd number greater than 1, where the first air supply area is up to ((N + 1)
  • the / 2) -1 air supply area is located on one side of the (N + 1) / 2 air supply area, and the ((N + 1) / 2) +1 air supply area to the Nth air supply area are located on the corresponding side. (N + 1) / 2 the other side of the air supply area;
  • the method for controlling an air-conditioning apparatus determines the absolute temperature difference between each of the remaining air-supplying regions and the intermediate air-supplying region by obtaining temperature distribution data of the environment in which the air-conditioning apparatus is currently located. Value, and further based on the absolute value of each temperature difference, adjust the cooling capacity or heating capacity of the air conditioning equipment in each air supply area. Therefore, the purpose of automatically adjusting the cooling capacity or heating capacity in different areas according to the temperature difference of the indoor environment is achieved, ensuring the indoor environment temperature is uniform, improving the comfort of the indoor environment, and improving the user experience.
  • adjusting the cooling capacity or heating capacity of the air-conditioning equipment in the N air supply areas according to the absolute values of the temperature differences includes:
  • Corresponding control parameters are used to adjust the cooling capacity or heating capacity of the air-conditioning equipment in the N air supply regions, respectively.
  • the separately adjusting the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas includes:
  • the swing speed of the air guide bar in the i-th air supply area is adjusted according to corresponding control parameters
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • determining the control parameters corresponding to the N air supply areas according to the absolute values of the temperature differences includes:
  • the determining a control parameter corresponding to the j-th air supply area according to a relative position and a temperature difference between the j-th air supply area and the (N + 1) / 2th air supply area includes: :
  • a control parameter of the jth air supply area is determined.
  • determining an absolute value of a temperature difference between each of the remaining air supply regions and the (N + 1) / 2 air supply region according to the temperature distribution data includes:
  • the absolute values of temperature differences between the other air supply regions and the (N + 1) / 2th air supply region are determined.
  • the acquiring temperature distribution data of an environment in which the air conditioning device is currently located includes:
  • Adopting M-array sensors to detect the ambient temperature at each air supply position of the air-conditioning equipment
  • the array sensor includes an array infrared thermopile sensor.
  • the detecting the ambient temperature at each air supply position of the air-conditioning device by using the M-array array sensors includes:
  • the ambient temperature at each air supply position of the air conditioning device is detected with a preset detection cycle.
  • An embodiment of the second aspect of the present disclosure provides a control device for an air-conditioning apparatus, including:
  • An acquisition module for acquiring temperature distribution data of an environment in which the air conditioning equipment is currently located
  • the temperature distribution data is used to indicate the ambient temperature at N air supply areas within the air supply range of the air-conditioning equipment, where N is an odd number greater than 1, where the first air supply area is up to ((N + 1)
  • the / 2) -1 air supply area is located on one side of the (N + 1) / 2 air supply area, and the ((N + 1) / 2) +1 air supply area to the Nth air supply area are located on the corresponding side. (N + 1) / 2 the other side of the air supply area;
  • a calculation module configured to determine, based on the temperature distribution data, absolute values of temperature differences between the remaining air supply regions and the (N + 1) / 2th air supply region;
  • An adjustment module is configured to adjust the cooling capacity or heating capacity of the air-conditioning equipment in the N air supply areas according to the absolute values of the temperature differences.
  • the control device for an air-conditioning apparatus determines the absolute temperature difference between each of the remaining air supply regions and the intermediate air-supply region by obtaining temperature distribution data of the environment in which the air-conditioning apparatus is currently located. Value, and further based on the absolute value of each temperature difference, adjust the cooling capacity or heating capacity of the air conditioning equipment in each air supply area. Therefore, the purpose of automatically adjusting the cooling capacity or heating capacity in different areas according to the temperature difference of the indoor environment is achieved, ensuring the indoor environment temperature is uniform, improving the comfort of the indoor environment, and improving the user experience.
  • the adjustment module includes:
  • a second determining unit configured to determine a control parameter corresponding to each of the N air supply areas according to an absolute value of each temperature difference
  • the adjusting unit is configured to adjust the cooling capacity or heating capacity of the air-conditioning equipment in the N air supply areas respectively by using corresponding control parameters.
  • the adjustment unit is configured to:
  • the swing speed of the air guide bar in the i-th air supply area is adjusted according to corresponding control parameters
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • the calculation module includes:
  • a computing unit configured to determine an average temperature corresponding to each of the N air supply regions according to the temperature distribution data
  • the first determining unit is configured to determine an absolute value of a temperature difference between each of the remaining air supply regions and the (N + 1) / 2 air supply region according to the average temperatures corresponding to the N air supply regions.
  • the obtaining module is configured to:
  • Adopting M-array sensors to detect the ambient temperature at each air supply position of the air-conditioning equipment
  • the temperature distribution data of the environment in which the air-conditioning equipment is currently located is determined according to the ambient temperature at each air supply location, where M is an integer greater than N;
  • the array sensor includes an array infrared thermopile sensor.
  • An embodiment of the third aspect of the present disclosure provides an air-conditioning apparatus including: a memory, a processor, and a computer program stored on the memory and executable on the processor. When the processor executes the program, the first In one aspect, the method for controlling an air-conditioning apparatus according to the embodiment.
  • An embodiment of the fourth aspect of the present disclosure proposes a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements the method for controlling an air conditioning apparatus according to the embodiment of the first aspect.
  • FIG. 1 is a schematic flowchart of a method for controlling an air conditioning device according to an embodiment of the present disclosure
  • FIG. 2 is an example diagram of some temperature distribution data obtained by using an array sensor in an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another control method of an air conditioning device according to an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of another method for controlling an air conditioning device according to an embodiment of the present disclosure
  • FIG. 5 is a diagram illustrating an example of partial temperature distribution data obtained after the air supply volume of each air supply area is adjusted by using the control method of the air-conditioning apparatus according to the embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a control device for an air-conditioning apparatus according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of another control device for an air conditioning device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a control device for another air-conditioning apparatus according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of an air-conditioning apparatus according to an embodiment of the present disclosure.
  • air-conditioning equipment has air-guiding strips, such as air conditioners and tower fans. Users can control the air-guiding strips of the air-conditioning equipment to send air to and from the air by pressing the remote control's sweep button. When the user presses the wind sweep button of the remote control again, the air guide bar of the air conditioning device stops at the current position to supply air.
  • the existing air conditioning equipment mainly outputs the air volume directly in front of the air conditioning equipment, which makes the temperature distribution in the entire room uneven, resulting in a large temperature difference between the sides and the middle of the room, which affects the user's comfort.
  • the present disclosure proposes a control method of an air-conditioning apparatus to automatically adjust the cooling capacity or heating capacity of each air supply position according to the ambient temperature distribution, so as to achieve the purpose of uniform indoor ambient temperature distribution and improve user comfort.
  • FIG. 1 is a schematic flowchart of a method for controlling an air conditioning device according to an embodiment of the present disclosure.
  • control method of the air conditioning equipment includes the following steps:
  • Step 101 Obtain temperature distribution data of an environment in which the air conditioning device is currently located.
  • the temperature distribution data is used to indicate the ambient temperature of N air supply areas within the air supply range of the air conditioning device, where N is an odd number greater than 1.
  • the first air supply area to the ((N + 1) / 2) -1 air supply area are located on one side of the (N + 1) / 2 air supply area, and the ((N + 1) / 2) The +1 air supply area to the Nth air supply area are respectively located on the other side of the (N + 1) / 2 air supply area.
  • the number N of the air supply areas can be set by a technician in advance before the air-conditioning equipment leaves the factory, or can be set by the user according to his own requirements, which is not limited in this disclosure.
  • the air-conditioning equipment may be electrical equipment such as an air conditioner, an electric fan, and an air purifier.
  • the air conditioning device may include an environment temperature detection device, and by using the environment temperature detection device, temperature distribution data of an environment in which the air conditioning device is currently located may be detected.
  • the ambient temperature detection device may be a temperature sensor, such as an array sensor (m rows * n columns), or another type of sensor, which is not limited in the present disclosure.
  • the temperature distribution data of the current environment where the air conditioning device is located includes: using an M-type array sensor to detect the air Adjust the ambient temperature at each air supply location of the equipment; determine the temperature distribution data of the current environment of the air conditioning equipment according to the ambient temperature at each air supply location, where M is an integer greater than N, and the array sensor includes but is not limited to an array Infrared thermopile sensor.
  • the air conditioning device when an array-type sensor of M columns is used to detect the ambient temperature at each air supply position of the air conditioning device, the air conditioning device may be detected at a preset detection cycle. Ambient temperature at each air supply location. For example, the detection period can be set to 15 minutes, half an hour, and so on. By setting a detection period and periodically detecting the ambient temperature at each air supply position according to the detection period, the array sensor can be kept in a working state, which is conducive to saving power consumption and extending the service life of the array sensor.
  • an air conditioner is used as a cabinet air conditioner, and an array sensor (24 rows * 32 columns) is used to obtain temperature distribution data as an example to explain the distribution of the ambient temperature in each air supply area in the obtained temperature distribution data.
  • FIG. 2 is an example diagram of part of temperature distribution data obtained by using an array sensor in an embodiment of the present disclosure.
  • the array sensor can collect temperature values at various locations in the environment where the air conditioning device is located.
  • the air guide strip of the air conditioner sweeps the air back and forth in the left and right directions, and the operation mode of the air conditioner is the cooling mode.
  • the air supply range of the air conditioner is divided into three air supply areas: left, middle, and right.
  • the left and right air supply areas are defined as the range within the air supply range that is 30% from the left and right extreme positions.
  • the wind area is defined as the middle 40% range within the supply air range.
  • the air supply range of the air conditioner is 1% to 100%, where the left limit position is 1% and the right limit position is 100%, the left air supply area is (1% to 30%), and the middle air supply is The area is (31% to 70%), and the right air blowing area is (71% to 100%).
  • the temperature distribution data shown in FIG. 2 indicates the ambient temperature of the left air supply area and a part of the middle air supply area in the air supply air range.
  • columns 1 to 10 represent the ambient temperature of the left air supply area
  • columns 11 to 22 represent the ambient temperature of the intermediate air supply area
  • columns 23 to 32 (not shown in FIG. 2). The ambient temperature in the air supply area on the right.
  • the air supply range of the air conditioner is divided into five air supply regions, and the air supply range of the air conditioner is 1% to 100%, where the left extreme position is 1% and the right extreme position is 100%.
  • Each air supply area can be divided as follows: the first air supply area is (1% to 15%), the second air supply area is (16% to 30%), and the middle air supply area is (31% to 70%).
  • the first right air supply area is (71% to 85%), and the second right air supply area is (86% to 100%). Then, the temperature distribution data shown in FIG.
  • Step 102 Determine, based on the temperature distribution data, absolute values of temperature differences between the remaining air supply regions and the (N + 1) / 2th air supply region, respectively.
  • the remaining air supply regions may be determined separately from the (N) th according to the ambient temperature of each air supply region within the air supply range indicated in the temperature distribution data. +1) / 2 Absolute value of each temperature difference between air supply areas.
  • the absolute values of the temperature differences between the left air supply area and the right air supply area and the middle area are determined.
  • N is 5
  • the air supply direction of the air-conditioning equipment is left and right air supply
  • absolute values of temperature differences between the two air supply areas on the left and the two air supply areas on the right and the middle area are determined.
  • each average value corresponding to each air supply area can be calculated, and the average value of the remaining air supply areas and the average value of the (N + 1) / 2th air supply area can be calculated separately.
  • the absolute value of the difference can be calculated.
  • the median values corresponding to each air supply area can be determined, and the median values of the remaining air supply areas and the median of the (N + 1) / 2th air supply area can be calculated respectively.
  • the absolute value of the difference between the values can be determined.
  • the temperature distribution data indicates the ambient temperature of the left, middle, and right air supply regions in the air supply range.
  • the first to tenth columns indicate the left side The ambient temperature of the air supply area.
  • Columns 11 to 22 (some of which are not shown) indicate the ambient temperature of the intermediate air supply area, and columns 23 to 32 (not shown in FIG. 2) indicate the ambient temperature of the right air supply area.
  • the average temperature value of the left air supply area is 24.9 °
  • the average temperature value of the middle air supply area is 24.5 °
  • the average temperature value of the right air supply area is 26.1 °.
  • the absolute value of the temperature difference between the left air supply area and the middle air supply area is 0.4 °
  • the absolute value of the temperature difference between the right air supply area and the middle air supply area is 1.6 °.
  • Step 103 Adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas according to the absolute value of each temperature difference.
  • the air conditioning equipment in each air supply area can be adjusted according to the absolute values. Cooling capacity or heating capacity.
  • the adjustment of the cooling capacity or heating capacity of the air conditioning equipment in each air supply area may be specifically determined according to the operating mode of the air conditioning equipment. When the current operating mode of the air-conditioning equipment is cooling mode, the cooling capacity of the air-conditioning equipment in each air supply area is adjusted according to the absolute value of each temperature difference; when the current operating mode of the air-conditioning equipment is heating mode, Then, according to the absolute value of each temperature difference, the heating capacity of the air conditioning equipment in each air supply area is adjusted.
  • the corresponding relationship between the absolute value of different temperature differences and the cooling capacity or heating capacity can be set and stored in advance, and then the cooling capacity or heating capacity corresponding to the absolute value of each temperature difference can be determined by querying the corresponding relationship, and then according to the determined Cooling capacity or heating capacity, adjust the cooling capacity or heating capacity of air-conditioning equipment in each air supply area.
  • the cooling capacity or heating capacity of each air supply area can be adjusted by adjusting the swing speed of the air guide bar, and / or, adjusting the air supply speed, and / or adjusting the pause swing time of the air guide bar in the air supply area. Way to adjust. For example, when the air-conditioning equipment is operating in cooling mode, when the absolute value of the temperature difference is greater than 0 ° and less than 2 °, the cooling capacity can be increased by increasing the air supply speed; when the absolute value of the temperature difference is greater than or When it is equal to 2 °, the cooling capacity can be increased by increasing the air supply speed and controlling the air guide bar to pause for a certain period of time.
  • the air conditioning equipment can be adjusted by adjusting the swing speed of the air guide bar, and / or, adjusting the air supply speed, and / or, adjusting the pause swing time of the air guide bar in the air supply area, and so on.
  • the amount of air supply, and then by adjusting the amount of air supply, the cooling capacity or heating capacity can be adjusted.
  • the cooling capacity or heating capacity of the air conditioner can be determined by formula (1).
  • Q 0 represents the cooling capacity or heating capacity
  • G represents the supply air volume
  • i C and i D represent the air enthalpy values before and after the evaporator, respectively
  • i C and i D can be adjusted by increasing or decreasing the power of the compressor. From the formula (1), it can be seen that when (i C- i D ) remains unchanged, the cooling capacity or heating capacity of the air conditioner can be increased by increasing the air supply amount G; or, by reducing the air supply G to reduce the cooling capacity or heating capacity of the air conditioner.
  • the air supply volume can be adjusted by adjusting the swing speed of the air guide bar, and / or, adjusting the air supply speed, and / or adjusting the pause swing time of the air guide bar in the air supply area, thereby achieving Adjust the cooling speed or heating capacity of the air guide bar in various ways, such as adjusting the swing speed of the air guide bar, and / or, adjusting the air supply speed, and / or, adjusting the pause swing time of the air guide bar in the air supply area.
  • the control method of the air-conditioning apparatus of this embodiment obtains the temperature distribution data of the environment in which the air-conditioning apparatus is currently located, and determines the absolute values of the temperature differences between the remaining air supply areas and the intermediate air supply area based on the temperature distribution data. Then, according to the absolute value of each temperature difference, the cooling capacity or heating capacity of the air conditioning equipment in each air supply area is adjusted. Therefore, the purpose of automatically adjusting the cooling capacity or heating capacity in different areas according to the temperature difference of the indoor environment is achieved, ensuring the indoor environment temperature is uniform, improving the comfort of the indoor environment, and improving the user experience.
  • FIG. 3 is a schematic flowchart of another method for controlling an air-conditioning apparatus according to an embodiment of the present disclosure.
  • step 101 may include the following steps:
  • Step 201 Determine an average temperature corresponding to each of the N air supply regions according to the temperature distribution data.
  • Step 202 Determine the absolute value of the temperature difference between each of the remaining air supply areas and the (N + 1) / 2 air supply area according to the average temperatures corresponding to the N air supply areas.
  • the average temperature corresponding to the N air supply area distributions can be determined according to the temperature distribution data.
  • the temperature distribution data indicates the ambient temperature of the left, middle, and right air supply regions in the air supply range.
  • the first to tenth columns indicate the left side The ambient temperature of the air supply area.
  • Columns 11 to 22 (some of which are not shown) indicate the ambient temperature of the intermediate air supply area, and columns 23 to 32 (not shown in FIG. 2) indicate the ambient temperature of the right air supply area.
  • the temperature data shown in Figure 2 it can be determined through calculation that the average temperature value of the left air supply area is 24.9 °, the average temperature value of the middle air supply area is 24.5 °, and the average temperature value of the right air supply area is 26.1 °.
  • the absolute value of the temperature difference between the other air supply regions and the (N + 1) / 2th air supply region can be determined.
  • the absolute value of the temperature difference between the left air supply region and the middle air supply region can be determined to be 0.4 °, and the right air supply region
  • the absolute value of the temperature difference from the intermediate air supply area is 1.6 °.
  • the control method of the air-conditioning apparatus of this embodiment determines an average temperature corresponding to each of the N air supply regions, and then determines the remaining air supply regions and the (N + 1) / 2 air supply region respectively according to the N average temperatures.
  • the absolute value of the temperature difference between them can ensure the relative accuracy of the obtained absolute value, and provide conditions for adjusting the cooling capacity or heating capacity of each air supply area according to the absolute value of the temperature difference.
  • FIG. 4 is a schematic flowchart of a control method of an air conditioning device according to an embodiment of the present disclosure.
  • step 103 may further include the following steps:
  • Step 301 Determine control parameters corresponding to the N air supply areas according to the absolute values of the temperature differences.
  • the control parameter may be, but is not limited to, at least one of a supply air speed, a swing speed of the wind guide bar, and a pause swing time of the wind guide bar.
  • N air supply areas can be determined according to the absolute value of each temperature difference. Corresponding control parameters.
  • the corresponding j-th air supply area may be determined according to the relative position of the j-th air supply area and the (N + 1) / 2-th air supply area and the absolute value of the temperature difference.
  • the air supply range is divided into five air supply areas, from left to right, the left air supply area, the left air supply area, and the middle air supply.
  • Wind area, right first air supply area, and second right air supply area are the same, both being 1.3 °
  • the absolute value of the temperature difference between the right air supply area and the middle air supply area is 1.3 °
  • the absolute value of the temperature difference between the second right air supply area and the middle air supply area is 1.7 °.
  • the corresponding air supply speed is 1.1 * v
  • the absolute value is not less than 1.5 ° and less than At 2 °
  • the corresponding air supply speed is 1.2 * v, where v is the original air speed and also the air supply speed in the middle air supply area.
  • the air supply speed in the middle air supply area is v
  • the air supply speed in the first right air supply area is 1.1 * v
  • the air supply speed in the second right air supply area is 1.2 * v
  • the air speed of the second left air supply area is 1.1 * v
  • the left first air supply area is determined.
  • the air supply speed is higher than the air supply speed of the second left air supply area.
  • the air supply speeds of the left and right air supply areas may be 1.15 * v, 1.2 * v, and the like.
  • control parameters corresponding to each air supply area can be improved, and the accuracy and accuracy of the determined control parameters can be improved. Reasonable, and further improve the comfort of the indoor environment.
  • the control parameter corresponding to the j-th air supply area when determining the control parameter corresponding to the j-th air supply area according to the relative position and temperature difference between the j-th air supply area and the (N + 1) / 2th air supply area, it is possible to First determine the control parameters of the jth air supply area and the (N + 1) / 2 air supply according to the relative position of the jth air supply area and the (N + 1) / 2th air supply area and the absolute value of the temperature difference. The ratio of the current control parameter corresponding to the area, and then the control parameter of the jth air supply area is determined according to the ratio and the current corresponding control parameter of the (N + 1) / 2 air supply area.
  • a correspondence table between absolute values of different temperature differences and ratios of control parameters may be stored in advance, and further, between the air supply area and the (N + 1) / 2th air supply area are determined. After the absolute value of the temperature difference, according to each absolute value, by querying the correspondence relationship table, the ratio of the control parameters corresponding to each absolute value can be determined, and then for the rest of the supply except the (N + 1) / 2 supply air area For the wind region, the product of the ratio of the j-th air-supply region and the control parameter currently corresponding to the (N + 1) / 2-air-supply region is determined as the control parameter corresponding to the j-th air-supply region.
  • control parameter is the air supply speed
  • the correspondence between the absolute value of the temperature difference and the ratio is shown in Table 1.
  • control parameter is the swing speed of the air guide bar
  • the correspondence between the absolute value of the temperature difference and the ratio is shown in Table 2.
  • control parameter is the suspension swing period of the air guide bar
  • the correspondence between the absolute value of the temperature difference and the ratio is shown in Table 3.
  • a correspondence table between absolute values of different temperature differences and control parameters may be stored in advance, and the temperature difference between each air supply area and the (N + 1) / 2th air supply area is determined After the absolute value of the value, according to each absolute value, the control parameter corresponding to each air supply area can be determined by querying the correspondence relationship table.
  • control parameter is the air supply speed (unit: m / s)
  • the correspondence between the absolute value of the temperature difference and the air supply speed is shown in Table 4.
  • j is not equal to (N + 1) / 2.
  • control parameter is the swing speed of the air guide bar (unit: ° / s)
  • the correspondence between the absolute value of the temperature difference and the swing speed of the air guide bar is shown in Table 5.
  • j is not equal to (N + 1) / 2.
  • control parameter is the pause swing duration (unit: second) of the air guide bar
  • the correspondence between the absolute value of the temperature difference and the ratio is shown in Table 6.
  • j is not equal to (N + 1) / 2.
  • step 302 the corresponding control parameters are used to adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply regions, respectively.
  • control parameters corresponding to the N air supply areas are determined, the corresponding control parameters can be used to adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas, respectively.
  • the corresponding control parameters are used to adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas, including: when the air guide bar of the air conditioning equipment swings to the i air supply area, according to the corresponding control Parameter to adjust the air speed of the air conditioning equipment in the i-th air supply area; or, when the air guide bar of the air conditioning equipment swings to the i-th air supply area, adjust the air guide bar in the i-th air supply area according to the corresponding control parameter.
  • the swing speed of each air supply area; or when the air guide bar of the air-conditioning equipment swings to the i-th air supply area adjust the suspension swing time of the air guide bar in the i-th air supply area according to the corresponding control parameter.
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • the left air supply area can be determined.
  • the air supply speed is 10m / s
  • the air supply speed in the right air supply area is 12m / s.
  • the air supply speed can be adjusted according to the air supply speeds corresponding to the three air supply areas to adjust the cooling capacity of each air supply area. Or heating.
  • the left air supply area and the middle air supply area can be determined.
  • the wind speed of the air guide bar is 6 ° / s
  • the speed of the air guide bar on the right air supply area is 4.8 ° / s, so that the air guide bar can be controlled to sway according to the corresponding swing speed in each air supply area.
  • the left air supply area and the middle air supply area can be determined.
  • the suspension time of the corresponding air guide bar is 5 seconds, and the suspension time of the air guide bar corresponding to the right air supply area is 15s, so that the corresponding length of time when the air guide bar is suspended in each air supply area can be adjusted to adjust each Cooling capacity or heating capacity of the air supply area.
  • the control method of the air conditioning equipment provided by the embodiment of the present disclosure is used to adjust the cooling capacity of the air conditioning equipment in each air supply area for a preset period of time. After (for example, 30 minutes), the temperature distribution data of the environment in which the air-conditioning equipment is currently located is acquired again to obtain a partial temperature distribution data image as shown in FIG. 5. It can be seen from Figure 5 that after adjusting the cooling capacity, the indoor ambient temperature tends to be more uniform.
  • the cooling capacity or heating capacity of the air-conditioning equipment can be adjusted by one of the supply air speed, the swing speed of the air guide bar, and the pause swing time of the air guide bar, or by a combination.
  • To adjust the cooling capacity or heating capacity of the air-conditioning equipment for example, to adjust the cooling capacity or heating capacity by a combination of the supply air speed and the swing speed of the air guide bar, or through the supply air speed and the suspension swing time of the air guide bar
  • the combined manner is used to adjust the cooling capacity or heating capacity, and the disclosure does not limit the manner of adjusting the cooling capacity or heating capacity.
  • control parameters corresponding to the N air supply areas are determined according to the absolute value of each temperature difference, and then the corresponding control parameters are used to adjust the air conditioning equipment to the N air supply
  • the cooling capacity or heating capacity of the area thereby realizing the automatic adjustment of the cooling capacity or heating capacity in each air-supply area, ensuring uniform indoor ambient temperature and improving the comfort of the indoor environment.
  • the present disclosure also proposes a control device for an air-conditioning apparatus.
  • FIG. 6 is a schematic structural diagram of a control device for an air-conditioning apparatus according to an embodiment of the present disclosure.
  • the control device 40 of the air-conditioning apparatus includes an acquisition module 410, a calculation module 420, and an adjustment module 430. among them,
  • the obtaining module 410 is configured to obtain temperature distribution data of an environment in which the air conditioning device is currently located. Among them, the temperature distribution data is used to indicate the ambient temperature at N air supply areas within the air supply range of the air-conditioning equipment. N is an odd number greater than 1. Among them, the first air supply area to ((N + 1) / 2 ) -1 air supply area is located on one side of the (N + 1) / 2 air supply area, and ((N + 1) / 2) +1 air supply area to the Nth air supply area are respectively located on the (N +1) / 2 the other side of the air supply area.
  • the obtaining module 410 is specifically configured to detect the ambient temperature at each air supply position of the air-conditioning device by using an array-type sensor of M columns; Temperature to determine the temperature distribution data of the environment in which the air-conditioning equipment is currently located.
  • M is an integer greater than N; the array sensor includes an array infrared thermopile sensor.
  • the obtaining module 410 is specifically configured to detect an ambient temperature at each air supply position of the air-conditioning device with a preset detection period. Therefore, by setting a detection period and periodically detecting the ambient temperature at each air supply position according to the detection period, the array sensor can be prevented from being always in the working state, which is conducive to saving power consumption and extending the service life of the array sensor.
  • the calculation module 420 is configured to determine the absolute values of the temperature differences between the remaining air supply areas and the (N + 1) / 2 air supply area respectively according to the temperature distribution data.
  • the adjusting module 430 is configured to adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas according to the absolute values of the temperature differences.
  • the calculation module 420 includes:
  • the calculating unit 421 is configured to determine the average temperatures corresponding to the N air supply regions respectively according to the temperature distribution data.
  • the first determining unit 422 is configured to determine an absolute value of a temperature difference between each of the remaining air supply regions and the (N + 1) / 2 air supply region according to the average temperatures corresponding to the N air supply regions.
  • the absolute value of the temperature difference between the other air supply areas and the (N + 1) / 2 air supply area can be determined, which can ensure that The relative accuracy of the obtained absolute value provides conditions for adjusting the air supply volume of each air supply area according to the absolute value of the temperature difference.
  • the adjustment module 430 includes:
  • the second determining unit 431 is configured to determine the control parameters corresponding to the N air supply regions respectively according to the absolute values of the temperature differences.
  • the second determining unit 431 is configured to determine a control parameter corresponding to the j-th air supply area according to a relative position of the j-th air supply area and the (N + 1) / 2-air supply area and an absolute value of a temperature difference;
  • j is an integer greater than or equal to 1 and less than or equal to N.
  • the second determining unit 431 is specifically configured to determine the control parameters of the jth air supply area and the absolute value of the temperature difference between the jth air supply area and the (N + 1) / 2th air supply area and the absolute value of the temperature difference.
  • the ratio of the control parameter currently corresponding to the (N + 1) / 2 air supply area; and the control parameter of the jth air supply area is determined according to the ratio and the current corresponding control parameter of the (N + 1) / 2 air supply area.
  • the adjusting unit 432 is configured to adjust the cooling capacity or heating capacity of the air-conditioning equipment in the N air supply regions by using corresponding control parameters.
  • the adjustment unit 432 is configured to adjust the air speed of the air conditioning equipment in the i-th air supply area according to the corresponding control parameter when the air guide bar of the air conditioning equipment swings to the i-th air supply area; or, When the air guide bar of the air-conditioning equipment swings to the i-th air supply area, adjust the swing speed of the air guide bar in the i-th air supply area according to the corresponding control parameter; or, When there are i air supply areas, according to the corresponding control parameters, the suspension swing duration of the air guide bar in the i air supply area is adjusted.
  • i is an integer greater than or equal to 1 and less than or equal to N.
  • control parameters corresponding to the N air supply areas are determined, and then the corresponding control parameters are used to adjust the cooling capacity or heating capacity of the air conditioning equipment in the N air supply areas, respectively.
  • the automatic adjustment of the cooling capacity or heating capacity in each air supply area is achieved, ensuring the uniform indoor environment temperature and improving the comfort of the indoor environment.
  • the control device of the air-conditioning apparatus of this embodiment obtains the temperature distribution data of the environment in which the air-conditioning apparatus is currently located, and determines the absolute values of the temperature differences between the remaining air supply areas and the intermediate air supply area based on the temperature distribution data. Then, according to the absolute value of each temperature difference, the cooling capacity or heating capacity of the air conditioning equipment in each air supply area is adjusted. Therefore, the purpose of automatically adjusting the cooling capacity or heating capacity in different areas according to the temperature difference of the indoor environment is achieved, ensuring the indoor environment temperature is uniform, improving the comfort of the indoor environment, and improving the user experience.
  • the present disclosure also proposes an air-conditioning apparatus.
  • FIG. 9 is a schematic structural diagram of an air-conditioning apparatus according to an embodiment of the present disclosure.
  • the air conditioning device 50 includes: a memory 510, a processor 520, and a computer program 530 stored on the memory 510 and executable on the processor 520.
  • the processor 520 executes the computer program 530, the implementation is as follows: A method for controlling an air-conditioning apparatus according to the foregoing embodiment of the present disclosure.
  • the present disclosure also proposes a computer-readable storage medium having stored thereon a computer program that, when executed by a processor, implements a method for controlling an air-conditioning apparatus according to the foregoing embodiment of the present disclosure.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present disclosure, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of the present disclosure includes additional implementations in which the functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present disclosure belong.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium,
  • the instruction execution system, device, or device such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • portions of the present disclosure may be implemented in hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGAs), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried by the methods in the foregoing embodiments may be implemented by a program instructing related hardware.
  • the program may be stored in a computer-readable storage medium.
  • the program is When executed, one or a combination of the steps of the method embodiment is included.
  • each functional unit in each embodiment of the present disclosure may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空气调节设备的控制方法、装置和空气调节设备,所述方法包括:获取空气调节设备当前所在环境的温度分布数据;温度分布数据用于指示空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,其余送风区域位于另一侧;根据温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值;根据各温度差值的绝对值,调整空气调节设备在N个送风区域的制冷量或制热量。所述方法能够达到根据室内环境的温度差,自动调节不同区域的制冷量或制热量的目的,确保室内环境温度均匀,提高室内环境的舒适度。

Description

空气调节设备的控制方法、装置和空气调节设备
相关申请的交叉引用
本公开要求广东美的制冷设备有限公司、美的集团股份有限公司于2018年06月29日提交的、发明名称为“空气调节设备的控制方法、装置和空气调节设备”的、中国专利申请号为“201810698032.1”的优先权。
技术领域
本公开涉及电器控制技术领域,尤其涉及一种空气调节设备的控制方法、装置和空气调节设备。
背景技术
随着人们生活水平的提高,空调、电风扇等空气调节设备逐渐出现在成千上万的家庭和办公场所中。
然而,申请人发现,无论是空调,还是电风扇,在实际使用中,都存在设备正前方温度与两侧温度不一致的情况,从而导致空气调节设备所在空间内的温度分布不均匀,影响舒适度。
发明内容
本公开提出一种空气调节设备的控制方法、装置和空气调节设备,用于解决相关技术中,空气调节设备正前方与两侧温度不一致,导致空气调节设备所在空间内温度分布不均的技术问题。
本公开第一方面实施例提出了一种空气调节设备的控制方法,包括:
获取空气调节设备当前所在环境的温度分布数据;
所述温度分布数据,用于指示所述空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧;
根据所述温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值;
根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
本公开实施例的空气调节设备的控制方法,通过获取空气调节设备当前所在环境的温度分布数据,根据温度分布数据,确定其余各送风区域分别与中间送风区域间的各温度差值的绝对值,进而根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制冷量或制热量。由此,达到了根据室内环境的温度差,自动调节不同区域的制冷量或制热量的目的,确保了室内环境温度均匀,提高了室内环境的舒适度,改善了用户体验。
根据本公开的一个实施例,所述根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量,包括:
根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数;
采用对应的控制参数,分别调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
根据本公开的一个实施例,所述分别调整所述空气调节设备在所述N个送风区域的制冷量或制热量,包括:
在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述空气调节设备在所述第i个送风区域的送风速度;
或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的摆动速度;
或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的暂停摆动时长;
其中,i为大于或等于1,且小于或等于N的整数。
根据本公开的一个实施例,所述根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数,包括:
根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定所述第j送风区域对应的控制参数;其中,j为大于或等于1,且小于或等于N的整数。
根据本公开的一个实施例,所述根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值,确定所述第j送风区域对应的控制参数,包括:
根据所述第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值;
根据所述比值和所述第(N+1)/2送风区域当前对应的控制参数,确定第j送风区域的控制参数。
根据本公开的一个实施例,所述根据所述温度分布数据,确定其余各送风区域分别与 第(N+1)/2送风区域间的温度差值的绝对值,包括:
根据所述温度分布数据,确定所述N个送风区域分别对应的平均温度;
根据所述N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
根据本公开的一个实施例,所述获取空气调节设备当前所在环境的温度分布数据,包括:
采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度;
根据所述各送风位置处的环境温度,确定所述空气调节设备当前所在环境的温度分布数据,其中,M为大于N的整数;
所述阵列式传感器包括阵列式红外热电堆传感器。
根据本公开的一个实施例,所述采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度,包括:
以预设的检测周期,检测所述空气调节设备各送风位置处的环境温度。
本公开第二方面实施例提出了一种空气调节设备的控制装置,包括:
获取模块,用于获取空气调节设备当前所在环境的温度分布数据;
所述温度分布数据,用于指示所述空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧;
计算模块,用于根据所述温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值;
调整模块,用于根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
本公开实施例的空气调节设备的控制装置,通过获取空气调节设备当前所在环境的温度分布数据,根据温度分布数据,确定其余各送风区域分别与中间送风区域间的各温度差值的绝对值,进而根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制冷量或制热量。由此,达到了根据室内环境的温度差,自动调节不同区域的制冷量或制热量的目的,确保了室内环境温度均匀,提高了室内环境的舒适度,改善了用户体验。
根据本公开的一个实施例,所述调整模块,包括:
第二确定单元,用于根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数;
调整单元,用于采用对应的控制参数,分别调整所述空气调节设备在所述N个送风区 域的制冷量或制热量。
根据本公开的一个实施例,所述调整单元,用于:
在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述空气调节设备在所述第i个送风区域的送风速度;
或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的摆动速度;
或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的暂停摆动时长;
其中,i为大于或等于1,且小于或等于N的整数。
根据本公开的一个实施例,所述计算模块,包括:
计算单元,用于根据所述温度分布数据,确定所述N个送风区域分别对应的平均温度;
第一确定单元,用于根据所述N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
根据本公开的一个实施例,所述获取模块,用于:
采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度;
根据所述各送风位置处的环境温度,确定所述空气调节设备当前所在环境的温度分布数据,其中,M为大于N的整数;所述阵列式传感器包括阵列式红外热电堆传感器。
本公开第三方面实施例提出了一种空气调节设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如第一方面实施例所述的空气调节设备的控制方法。
本公开第四方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如第一方面实施例所述的空气调节设备的控制方法。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例所提供的一种空气调节设备的控制方法的流程示意图;
图2为本公开实施例中利用阵列式传感器获取的部分温度分布数据示例图;
图3为本公开实施例所提供的另一种空气调节设备的控制方法的流程示意图;
图4为本公开实施例所提供的又一种空气调节设备的控制方法的流程示意图;
图5为采用本公开实施例的空气调节设备的控制方法调整各送风区域的送风量后获取的部分温度分布数据示例图;
图6为本公开实施例所提供的一种空气调节设备的控制装置的结构示意图;
图7为本公开实施例所提供的另一种空气调节设备的控制装置的结构示意图;
图8为本公开实施例所提供的又一种空气调节设备的控制装置的结构示意图;以及
图9为本公开实施例所提供的一种空气调节设备的结构示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的空气调节设备的控制方法、装置和空气调节设备。
目前,空气调节设备大多都具有导风条,例如空调、塔扇,用户可以通过按下遥控器的扫风按键,控制空气调节设备的导风条来回送风。当用户再次按下遥控器的扫风按键时,空气调节设备的导风条停在当前位置送风。
然而,现有的空气调节设备主要将风量输出至空气调节设备的正前方,使得整个房间内的温度分布不均匀,造成房间两侧与中间的温差较大,影响用户的舒适感。
针对上述问题,本公开提出了一种空气调节设备的控制方法,以根据环境温度分布,自动调整各送风位置的制冷量或制热量,达到室内环境温度分布均匀的目的,提高用户的舒适性。
图1为本公开实施例所提供的一种空气调节设备的控制方法的流程示意图。
如图1所示,该空气调节设备的控制方法包括以下步骤:
步骤101,获取空气调节设备当前所在环境的温度分布数据,温度分布数据用于指示空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数。
其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧。
此处需要说明的是,送风区域的个数N可以在空气调节设备出厂前,由技术人员预先设定,也可以由用户根据自身的需求自行设定,本公开对此不作限制。
本公开实施例中,空气调节设备可以是空调、电风扇、空气净化器等电器设备。
作为一种可能的实现方式,空气调节设备可以包括环境温度检测装置,利用环境温度检测装置,可以检测空气调节设备当前所在环境的温度分布数据。该环境温度检测装置可以为温度传感器,例如为阵列式传感器(m行*n列),或者为其他类型的传感器,本公开 对此不作限制。
在本公开实施例一种可能的实现方式中,当采用阵列式传感器获取所在环境的温度分布数据时,获取空气调节设备当前所在环境的温度分布数据,包括:采用M列的阵列式传感器检测空气调节设备各送风位置处的环境温度;根据各送风位置处的环境温度,确定空气调节设备当前所在环境的温度分布数据,其中,M为大于N的整数,阵列式传感器包括但不限于阵列式红外热电堆传感器。通过设置阵列式传感器的列数大于送风范围内送风区域的个数,可以确保能够获取到各个送风区域的环境温度。
进一步地,在本公开实施例一种可能的实现方式中,在采用M列的阵列式传感器检测空气调节设备各送风位置处的环境温度时,可以以预设的检测周期,检测空气调节设备各送风位置处的环境温度。比如,检测周期可以设置为15分钟、半小时等。通过设置检测周期,按照检测周期来定期检测各送风位置处的环境温度,能够避免阵列式传感器一直处于工作状态,有利于节省功耗,延长阵列式传感器的使用寿命。
下面以空气调节设备为柜式空调,利用阵列式传感器(24行*32列)获取温度分布数据为例,解释说明获取的温度分布数据中,各送风区域的环境温度的分布情况。
图2为本公开实施例中利用阵列式传感器获取的部分温度分布数据示例图,如图2所示,通过阵列式传感器可以采集到空气调节设备所在环境中各个位置处的温度值。其中,空调的导风条在左右方向上来回扫风,空调的运行模式为制冷模式。
作为一种示例,假设将空调的送风范围划分为左、中和右三个送风区域,其中,左右送风区域定义为送风范围内距离左右两侧极限位置30%的范围,中间送风区域定义为送风范围内中间40%的范围。例如,空调的送风范围为1%~100%,其中,左侧极限位置为1%,右侧极限位置为100%,则左侧送风区域为(1%~30%),中间送风区域为(31%~70%),右侧送风区域为(71%~100%)。则,图2所示的温度分布数据指示的是空调送风范围内左侧送风区域和部分中间送风区域的环境温度。其中,第1~10列表示左侧送风区域的环境温度,第11~22列(其中部分未示出)表示中间送风区域的环境温度,第23~32列(图2未示出)表示右侧送风区域的环境温度。
作为一种示例,假设将空调的送风范围划分为五个送风区域,空调的送风范围为1%~100%,其中,左侧极限位置为1%,右侧极限位置为100%,则各送风区域可以划分如下:左一送风区域为(1%~15%),左二送风区域为(16%~30%),中间送风区域为(31%~70%),右一送风区域为(71%~85%),右二送风区域为(86%~100%)。则,图2所示的温度分布数据指示的是空调送风范围内五个送风区域的环境温度,其中,第1~5列表示左一送风区域的环境温度,第6~10列表示左二送风区域的环境温度,第11~22列(其中部分未示出)表示中间送风区域的环境温度,第23~27列(图2未示出)表示右一送风区域的环境温度, 第28~32列(图2未示出)表示右二送风区域的环境温度。
步骤102,根据温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值。
本实施例中,获取了空气调节设备当前所在的温度分布数据后,可以根据温度分布数据中所指示的送风范围内各送风区域的环境温度,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值。
例如,当N为3,空调设备的送风方向为左右送风时,确定左侧一个送风区域和右侧一个送风区域分别与中间区域的温度差值的绝对值。又例如,当N为5,空调设备的送风方向为左右送风时,确定左侧两个送风区域和右侧两个个送风区域分别与中间区域的温度差值的绝对值。
作为一种示例,可以根据各个送风区域的环境温度,计算各个送风区域对应的各均值,分别计算其余各送风区域的均值与第(N+1)/2送风区域的均值之间的差值的绝对值。
作为一种示例,可以根据各个送风区域的环境温度,确定各个送风区域对应的各中值,分别计算其余各送风区域的中值与第(N+1)/2送风区域的中值之间的差值的绝对值。
仍以上述图2所示的温度分布数据为例,该温度分布数据指示送风范围内左、中和右三个送风区域的环境温度,假设图2中,第1~10列表示左侧送风区域的环境温度,第11~22列(其中部分未示出)表示中间送风区域的环境温度,第23~32列(图2未示出)表示右侧送风区域的环境温度。根据图2所示的温度分别数据,可以得到左侧送风区域的平均温度值为24.9°,中间送风区域的平均温度值为24.5°,右侧送风区域的平均温度值为26.1°。则,可以确定左侧送风区域与中间送风区域的温度差值的绝对值为0.4°,右侧送风区域与中间送风区域的温度差值的绝对值为1.6°。
步骤103,根据各温度差值的绝对值,调整空气调节设备在N个送风区域的制冷量或制热量。
本实施例中,确定了各送风区域与第(N+1)/2送风区域间的各温度差值的绝对值之后,可以根据各绝对值,调整空气调节设备在各个送风区域的制冷量或制热量。其中,调整空气调节设备在各个送风区域的制冷量或制热量,具体可以根据空气调节设备的运行模式确定。当空气调节设备当前的运行模式为制冷模式时,则根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制冷量;当空气调节设备当前的运行模式为制热模式时,则根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制热量。
例如,可以预先设置并存储不同温度差值的绝对值与制冷量或制热量的对应关系,进而通过查询对应关系,确定各温度差值的绝对值对应的制冷量或制热量,进而按照确定的制冷量或制热量,调整空气调节设备在各个送风区域的制冷量或制热量。
其中,各个送风区域的制冷量或制热量可以通过调整导风条的摆动速度,和/或,调整送风速度,和/或,调整导风条在送风区域的暂停摆动时间等多种方式进行调整。例如,在空气调节设备运行在制冷模式下时,当温度差值的绝对值大于0°且小于2°时,可以通过增大送风速度来增加制冷量;当温度差值的绝对值大于或等于2°时,可以通过增大送风速度的同时控制导风条暂停一定的时长来增加制冷量。
实际应用中,可以通过调整导风条的摆动速度,和/或,调整送风速度,和/或,调整导风条在送风区域的暂停摆动时间等多种方式,来调整空气调节设备的送风量,进而通过调整送风量,实现对制冷量或制热量的调整。
举例而言,当空气调节设备为空调时,空调的制冷量或者制热量可以通过公式(1)确定。
Q 0=(i C-i D)*G(kJ/h)        (1)
其中,Q 0表示制冷量或制热量,G表示送风量,i C和i D分别表示蒸发器前后的空气焓值,i C和i D可以通过增加或减小压缩机的功率进行调整。由公式(1)可以看出,在(i C-i D)保持不变的情况下,可以通过增加送风量G,来增大空调的制冷量或者制热量;或者,通过减小送风量G,来降低空调的制冷量或者制热量。而送风量可以通过调整导风条的摆动速度,和/或,调整送风速度,和/或,调整导风条在送风区域的暂停摆动时间等多种方式进行调整,从而实现了通过调整导风条的摆动速度,和/或,调整送风速度,和/或,调整导风条在送风区域的暂停摆动时间等多种方式调整制冷量或制热量。
本实施例的空气调节设备的控制方法,通过获取空气调节设备当前所在环境的温度分布数据,根据温度分布数据,确定其余各送风区域分别与中间送风区域间的各温度差值的绝对值,进而根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制冷量或制热量。由此,达到了根据室内环境的温度差,自动调节不同区域的制冷量或制热量的目的,确保了室内环境温度均匀,提高了室内环境的舒适度,改善了用户体验。
为了更加清楚地描述前述实施例中,根据温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值的具体实现过程,本公开实施例还提供了另一种空气调节设备的控制方法,图3为本公开实施例所提供的另一种空气调节设备的控制方法的流程示意图。
如图3所示,在如图1所示实施例的基础上,步骤101可以包括以下步骤:
步骤201,根据温度分布数据,确定N个送风区域分别对应的平均温度。
步骤202,根据N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
本实施例中,获取了空气调节设备当前所在环境的温度分布数据之后,可以根据温度 分布数据,确定N个送风区域分布对应的平均温度。
仍以上述图2所示的温度分布数据为例,该温度分布数据指示送风范围内左、中和右三个送风区域的环境温度,假设图2中,第1~10列表示左侧送风区域的环境温度,第11~22列(其中部分未示出)表示中间送风区域的环境温度,第23~32列(图2未示出)表示右侧送风区域的环境温度。根据图2所示的温度分别数据,通过计算可以确定,左侧送风区域的平均温度值为24.9°,中间送风区域的平均温度值为24.5°,右侧送风区域的平均温度值为26.1°。
进而,本实施例中,根据N个送风区域分别对应的平均温度,可以确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
仍以上述举例为例,根据左、中和右三个送风区域的平均温度,可以确定左侧送风区域与中间送风区域的温度差值的绝对值为0.4°,右侧送风区域与中间送风区域的温度差值的绝对值为1.6°。
本实施例的空气调节设备的控制方法,通过确定N个送风区域分别对应的平均温度,进而根据N个平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值,能够保证所得绝对值的相对准确性,为根据温度差值的绝对值调整各送风区域的制冷量或制热量提供条件。
为了更加清楚地描述前述实施例中,根据各温度差值的绝对值,调整空气调节设备在N个送风区域的制冷量或制热量的具体实现过程,本公开实施例提出了另一种空气调节设备的控制方法,图4为本公开实施例所提供的又一种空气调节设备的控制方法的流程示意图。
如图4所示,在如图1所示实施例的基础上,步骤103还可以包括以下步骤:
步骤301,根据各温度差值的绝对值,确定N个送风区域分别对应的控制参数。
其中,控制参数可以是但不限于是送风速度、导风条的摆动速度,以及导风条的暂停摆动时长中的至少一个。
本实施例中,确定了各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值之后,可以根据各温度差值的绝对值,确定N个送风区域分别对应的控制参数。
在本公开实施例一种可能的实现方式中,可以根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域对应的控制参数;其中,j为大于或等于1,且小于或等于N的整数。
举例而言,假设空气调节设备的送风方向为左右往返送风,送风范围被划分为五个送风区域,从左至右依次为左一送风区域、左二送风区域、中间送风区域、右一送风区域和右二送风区域。其中,左一送风区域与左二送风区域和中间送风区域的温度差值的绝对值 相同,均为1.3°,右一送风区域和中间送风区域的温度差值的绝对值为1.3°,右二送风区域和中间送风区域的温度差值的绝对值为1.7°。在预设的温度差值的绝对值与送风速度的对应关系表中,绝对值不小于1°且小于1.5°时,对应的送风速度为1.1*v,绝对值不小于1.5°且小于2°时,对应的送风速度为1.2*v,其中,v为原始风速,也是中间送风区域的送风速度。则通过查询绝对值与送风速度的对应关系,可以确定中间送风区域的送风速度为v,右一送风区域的送风速度为1.1*v,右二送风区域的送风速度为1.2*v;由于左一送风区域相对于左二送风区域,距离中间送风区域的距离较远,可以确定左二送风区域的送风速度为1.1*v,确定左一送风区域的送风速度大于左二送风区域的送风速度,例如左右送风区域的送风速度可以为1.15*v、1.2*v等。
通过根据各个送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定各送风区域对应的控制参数,能够提高所确定的控制参数的准确性和合理性,进一步提高室内环境的舒适度。
进一步地,作为一种可能的实现方式,根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值,确定第j送风区域对应的控制参数时,可以先根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值,再根据比值和第(N+1)/2送风区域当前对应的控制参数,确定第j送风区域的控制参数。
具体实现时,可以预先存储不同的温度差值的绝对值与控制参数的比值之间的对应关系表,进而,在确定了各送风区域与第(N+1)/2送风区域间的温度差值的绝对值之后,根据各绝对值,通过查询对应关系表,可以确定各绝对值对应的控制参数的比值,进而针对除第(N+1)/2送风区域之外的其余送风区域,将第j送风区域的比值与第(N+1)/2送风区域当前对应的控制参数的乘积,确定为第j送风区域对应的控制参数。
作为一种示例,当控制参数为送风速度时,温度差值的绝对值与比值之间的对应关系表如表1所示。
表1
温度差值的绝对值(Ta) 比值
0°≤Ta<1° 1
1°≤Ta<1.5° 1.1
1.5°≤Ta<2° 1.2
2°≤Ta<2.5° 1.3
2.5°≤Ta<3° 1.4
Ta≥3° 1.5
从表1中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值越大。
作为一种示例,当控制参数为导风条的摆动速度时,温度差值的绝对值与比值之间的对应关系表如表2所示。
表2
温度差值的绝对值(Ta) 比值
0°≤Ta<1° 1
1°≤Ta<1.5° 0.9
1.5°≤Ta<2° 0.8
2°≤Ta<2.5° 0.7
2.5°≤Ta<3° 0.6
Ta≥3° 0.5
从表2中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值越小。
作为一种示例,当控制参数为导风条的暂停摆动时长时,温度差值的绝对值与比值之间的对应关系表如表3所示。
表3
温度差值的绝对值(Ta) 比值
0°≤Ta<1° 1
1°≤Ta<1.5° 2
1.5°≤Ta<2° 3
2°≤Ta<2.5° 4
2.5°≤Ta<3° 5
Ta≥3° 6
从表3中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值越大。
作为一种可能的实现方式,可以预先存储不同的温度差值的绝对值与控制参数的对应关系表,在确定了各送风区域与第(N+1)/2送风区域间的温度差值的绝对值之后,根据各绝对值,通过查询对应关系表,可以确定各送风区域对应的控制参数。
作为一种示例,当控制参数为送风速度(单位为:m/s)时,温度差值的绝对值与送风速度的对应关系表如表4所示。表4中,j不等于(N+1)/2。
表4
Figure PCTCN2018113485-appb-000001
从表4中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的送风速度越大。
作为一种示例,当控制参数为导风条的摆动速度(单位为:°/s)时,温度差值的绝对值与导风条的摆动速度之间的对应关系表如表5所示。表5中,j不等于(N+1)/2。
表5
Figure PCTCN2018113485-appb-000002
从表5中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的导风条的摆动速度越小。
作为一种示例,当控制参数为导风条的暂停摆动时长(单位为:秒)时,温度差值的绝对值与比值之间的对应关系表如表6所示。表6中,j不等于(N+1)/2。
表6
Figure PCTCN2018113485-appb-000003
从表6中可以看出,第j送风区域与第(N+1)/2送风区域之间的温度差值的绝对值越大,第j送风区域对应的导风条的暂停摆动时长越长。
步骤302,采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量。
本实施例中,确定了N个送风区域分别对应的控制参数之后,即可采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量。
具体地,采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量,包括:在空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整空气调节设备在第i个送风区域的送风速度;或者,在空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整导风条在第i个送风区域的摆动速度;或者,在空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整导风条在第i个送风区域的暂停摆动时长。其中,i为大于或等于1,且小于或等于N的整数。由此,实现了送风量调整方式的多样性。
举例而言,仍以图2所示的温度分布数据为例,假设N=3,三个送风区域分别为左侧送风区域、中间送风区域和右侧送风区域,经过计算可以确定,左侧送风区域的平均温度值为24.9°,中间送风区域的平均温度值为24.5°,右侧送风区域的平均温度值为26.1°,则左侧送风区域与中间送风区域的温度差值的绝对值为0.4°,右侧送风区域与中间送风区域的温度差值的绝对值为1.6°。当通过调整送风速度来调整制冷量或制热量时,假设中间送风区域的送风速度为10m/s,根据表1以及中间送风区域当前的送风速度,可以确定左侧送风区域的送风速度为10m/s,右侧送风区域的送风速度为12m/s,进而可以按照三个送风区域分别对应的送风速度进行送风,以调整各送风区域的制冷量或制热量。当通过调整导风条的摆动速度来调整制冷量或制热量时,假设导风条正常摇摆的速度w为6°/s,通过查 询表5,可以确定左侧送风区域和中间送风区域的导风条的摆动速度均为6°/s,右侧送风区域的导风条的摆动速度为4.8°/s,进而可以控制导风条在各个送风区域按照对应的摆动速度进行摇摆,以调整各送风区域的制冷量或制热量。当通过控制导风条的暂停摆动时间来调整制冷量或制热量时,假设正常情况下导风条的暂停摆动时长为5s,通过查询表6,可以确定左侧送风区域和中间送风区域对应的导风条的暂停摆动时长均为5秒,右侧送风区域对应的导风条的暂停摆动时长为15s,进而可以控制导风条在各个送风区域暂停对应的时长,以调整各送风区域的制冷量或制热量。
经试验表明,对于如图2所示的温度分布数据,采用本公开实施例所提供的空气调节设备的控制方法,对空气调节设备在各个送风区域的制冷量进行调节之后,在预设时长(例如30分钟)后,再次获取空气调节设备当前所在环境的温度分布数据,得到如图5所示的部分温度分布数据图像。从图5中可以看出,调整制冷量后,室内环境温度趋于较均匀的状态。
此处需要说明的是,可以单独通过送风速度、导风条的摆动速度和导风条的暂停摆动时长中的一种来调整空气调节设备的制冷量或制热量,也可以通过组合的方式来调整空气调节设备的制冷量或制热量,例如,通过送风速度和导风条的摆动速度组合的方式来调整制冷量或制热量,或者,通过送风速度和导风条的暂停摆动时长组合的方式来调整制冷量或制热量,本公开对调整制冷量或制热量的方式不作限制。
本实施例的空气调节设备的控制方法,通过根据各温度差值的绝对值,确定N个送风区域分别对应的控制参数,进而采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量,由此,实现了各送风区域制冷量或制热量的自动调整,确保了室内环境温度均匀,提高了室内环境的舒适度。
为了实现上述实施例,本公开还提出一种空气调节设备的控制装置。
图6为本公开实施例所提供的一种空气调节设备的控制装置的结构示意图。
如图6所示,该空气调节设备的控制装置40包括:获取模块410、计算模块420,以及调整模块430。其中,
获取模块410,用于获取空气调节设备当前所在环境的温度分布数据。其中,温度分布数据,用于指示空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧。
进一步地,在本公开实施例一种可能的实现方式中,获取模块410具体用于采用M列的阵列式传感器检测空气调节设备各送风位置处的环境温度;根据各送风位置处的环境温度,确定空气调节设备当前所在环境的温度分布数据。其中,M为大于N的整数;阵列式 传感器包括阵列式红外热电堆传感器。
在本公开实施例一种可能的实现方式中,获取模块410具体用于以预设的检测周期,检测空气调节设备各送风位置处的环境温度。由此,通过设置检测周期,按照检测周期来定期检测各送风位置处的环境温度,能够避免阵列式传感器一直处于工作状态,有利于节省功耗,延长阵列式传感器的使用寿命。
计算模块420,用于根据温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值。
调整模块430,用于根据各温度差值的绝对值,调整空气调节设备在N个送风区域的制冷量或制热量。
进一步地,在本公开实施例的一种可能的实现方式中,参见图7,在图6所示实施例的基础上,计算模块420包括:
计算单元421,用于根据温度分布数据,确定N个送风区域分别对应的平均温度。
第一确定单元422,用于根据N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
通过确定N个送风区域分别对应的平均温度,进而根据N个平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值,能够保证所得绝对值的相对准确性,为根据温度差值的绝对值调整各送风区域的送风量提供条件。
在本公开实施例的一种可能的实现方式中,参见图8,在图6所示实施例的基础上,调整模块430包括:
第二确定单元431,用于根据各温度差值的绝对值,确定N个送风区域分别对应的控制参数。
具体地,第二确定单元431用于根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域对应的控制参数;其中,j为大于或等于1,且小于或等于N的整数。
进一步地,第二确定单元431具体用于根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值;根据比值和第(N+1)/2送风区域当前对应的控制参数,确定第j送风区域的控制参数。
调整单元432,用于采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量。
具体地,调整单元432用于在空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整空气调节设备在第i个送风区域的送风速度;或者,在空气调节设备 的导风条摆动至第i个送风区域时,根据对应控制参数,调整导风条在第i个送风区域的摆动速度;或者,在空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整导风条在第i个送风区域的暂停摆动时长。其中,i为大于或等于1,且小于或等于N的整数。
通过根据各温度差值的绝对值,确定N个送风区域分别对应的控制参数,进而采用对应的控制参数,分别调整空气调节设备在N个送风区域的制冷量或制热量,由此,实现了各送风区域制冷量或制热量的自动调整,确保了室内环境温度均匀,提高了室内环境的舒适度。
需要说明的是,前述对空气调节设备的控制方法实施例的解释说明也适用于该实施例的空气调节设备的控制装置,其实现原理类似,此处不再赘述。
本实施例的空气调节设备的控制装置,通过获取空气调节设备当前所在环境的温度分布数据,根据温度分布数据,确定其余各送风区域分别与中间送风区域间的各温度差值的绝对值,进而根据各温度差值的绝对值,调整空气调节设备在各个送风区域的制冷量或制热量。由此,达到了根据室内环境的温度差,自动调节不同区域的制冷量或制热量的目的,确保了室内环境温度均匀,提高了室内环境的舒适度,改善了用户体验。
为了实现上述实施例,本公开还提出一种空气调节设备。
图9为本公开实施例所提供的一种空气调节设备的结构示意图。如图9所示,该空气调节设备50包括:存储器510、处理器520及存储在存储器510上并可在处理器520上运行的计算机程序530,当处理器520执行计算机程序530时,实现如本公开前述实施例所述的空气调节设备的控制方法。
为了实现上述实施例,本公开还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如本公开前述实施例所述的空气调节设备的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个 或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本公开的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本公开各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (15)

  1. 一种空气调节设备的控制方法,其特征在于,所述方法包括以下步骤:
    获取空气调节设备当前所在环境的温度分布数据;
    所述温度分布数据,用于指示所述空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧;
    根据所述温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值;
    根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量,包括:
    根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数;
    采用对应的控制参数,分别调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
  3. 根据权利要求2所述的控制方法,其特征在于,所述分别调整所述空气调节设备在所述N个送风区域的制冷量或制热量,包括:
    在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述空气调节设备在所述第i个送风区域的送风速度;
    或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的摆动速度;
    或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的暂停摆动时长;
    其中,i为大于或等于1,且小于或等于N的整数。
  4. 根据权利要求2或3所述的控制方法,其特征在于,所述根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数,包括:
    根据第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定所述第j送风区域对应的控制参数;
    其中,j为大于或等于1,且小于或等于N的整数。
  5. 根据权利要求4所述的控制方法,其特征在于,所述根据第j送风区域与第(N+1)/2 送风区域的相对位置及温度差值,确定所述第j送风区域对应的控制参数,包括:
    根据所述第j送风区域与第(N+1)/2送风区域的相对位置及温度差值的绝对值,确定第j送风区域的控制参数与第(N+1)/2送风区域当前对应的控制参数的比值;
    根据所述比值和所述第(N+1)/2送风区域当前对应的控制参数,确定第j送风区域的控制参数。
  6. 根据权利要求1-5任一项所述的控制方法,其特征在于,所述根据所述温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值,包括:
    根据所述温度分布数据,确定所述N个送风区域分别对应的平均温度;
    根据所述N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
  7. 根据权利要求1-6任一项所述的控制方法,其特征在于,所述获取空气调节设备当前所在环境的温度分布数据,包括:
    采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度;
    根据所述各送风位置处的环境温度,确定所述空气调节设备当前所在环境的温度分布数据,其中,M为大于N的整数;
    所述阵列式传感器包括阵列式红外热电堆传感器。
  8. 根据权利要求7所述的控制方法,其特征在于,所述采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度,包括:
    以预设的检测周期,检测所述空气调节设备各送风位置处的环境温度。
  9. 一种空气调节设备的控制装置,其特征在于,包括:
    获取模块,用于获取空气调节设备当前所在环境的温度分布数据;
    所述温度分布数据,用于指示所述空气调节设备送风范围内N个送风区域处的环境温度,N为大于1的奇数,其中,第一送风区域至第((N+1)/2)-1送风区域分别位于第(N+1)/2送风区域的一侧,第((N+1)/2)+1送风区域至第N送风区域分别对应位于第(N+1)/2送风区域的另一侧;
    计算模块,用于根据所述温度分布数据,确定其余各送风区域分别与第(N+1)/2送风区域间的各温度差值的绝对值;
    调整模块,用于根据所述各温度差值的绝对值,调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
  10. 根据权利要求9所述的控制装置,其特征在于,所述调整模块,包括:
    第二确定单元,用于根据所述各温度差值的绝对值,确定所述N个送风区域分别对应的控制参数;
    调整单元,用于采用对应的控制参数,分别调整所述空气调节设备在所述N个送风区域的制冷量或制热量。
  11. 根据权利要求10所述的控制装置,其特征在于,所述调整单元,用于:
    在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述空气调节设备在所述第i个送风区域的送风速度;
    或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的摆动速度;
    或者,在所述空气调节设备的导风条摆动至第i个送风区域时,根据对应控制参数,调整所述导风条在所述第i个送风区域的暂停摆动时长;
    其中,i为大于或等于1,且小于或等于N的整数。
  12. 根据权利要求9-11任一项所述的控制装置,其特征在于,所述计算模块,包括:
    计算单元,用于根据所述温度分布数据,确定所述N个送风区域分别对应的平均温度;
    第一确定单元,用于根据所述N个送风区域分别对应的平均温度,确定其余各送风区域分别与第(N+1)/2送风区域间的温度差值的绝对值。
  13. 根据权利要求9-12任一项所述的控制装置,其特征在于,所述获取模块,用于:
    采用M列的阵列式传感器检测所述空气调节设备各送风位置处的环境温度;
    根据所述各送风位置处的环境温度,确定所述空气调节设备当前所在环境的温度分布数据,其中,M为大于N的整数;
    所述阵列式传感器包括阵列式红外热电堆传感器。
  14. 一种空气调节设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-8中任一项所述的空气调节设备的控制方法。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一项所述的空气调节设备的控制方法。
PCT/CN2018/113485 2018-06-29 2018-11-01 空气调节设备的控制方法、装置和空气调节设备 WO2020000838A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020572829A JP7058352B2 (ja) 2018-06-29 2018-11-01 空気調節機器の制御方法、制御装置、空気調節機器及び記憶媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810698032.1 2018-06-29
CN201810698032.1A CN108800428B (zh) 2018-06-29 2018-06-29 空气调节设备的控制方法、装置和空气调节设备

Publications (1)

Publication Number Publication Date
WO2020000838A1 true WO2020000838A1 (zh) 2020-01-02

Family

ID=64073246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113485 WO2020000838A1 (zh) 2018-06-29 2018-11-01 空气调节设备的控制方法、装置和空气调节设备

Country Status (3)

Country Link
JP (1) JP7058352B2 (zh)
CN (1) CN108800428B (zh)
WO (1) WO2020000838A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114135971A (zh) * 2020-09-04 2022-03-04 宁波奥克斯电气股份有限公司 一种空调器的出风控制方法、装置、控制器及存储介质
WO2022217998A1 (zh) * 2021-04-12 2022-10-20 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调
US11524083B1 (en) 2020-05-13 2022-12-13 James William Potthast Personal, portable, hand-held UV sanitizer and method of use
US11986563B1 (en) 2020-05-07 2024-05-21 James William Potthast Portable, safe UV hand and surface sanitizer and method of use

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109059224B (zh) * 2018-06-29 2020-06-05 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN110220287A (zh) * 2019-05-22 2019-09-10 青岛海尔空调器有限总公司 空调器及其控制方法
CN110749063B (zh) * 2019-10-31 2021-08-31 广东美的制冷设备有限公司 空调器的送风方法、空调器及计算机可读存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195232A (ja) * 1985-02-25 1986-08-29 Toshiba Corp 空気調和装置
JPH03164646A (ja) * 1989-11-24 1991-07-16 Daikin Ind Ltd 空気調和装置の運転制御装置
CN107062557A (zh) * 2017-05-19 2017-08-18 上海斐讯数据通信技术有限公司 一种空调扫风自动调节方法及其装置、一种空调
CN108168036A (zh) * 2017-12-25 2018-06-15 珠海格力电器股份有限公司 空调系统控制方法及空调系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0526508A (ja) * 1991-07-16 1993-02-02 Matsushita Refrig Co Ltd 空気調和機
JP2978374B2 (ja) * 1992-08-21 1999-11-15 松下電器産業株式会社 画像処理装置及び画像処理方法並びに空気調和機の制御装置
CN104165440B (zh) * 2014-08-07 2016-08-31 珠海格力电器股份有限公司 空调风速控制方法及系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61195232A (ja) * 1985-02-25 1986-08-29 Toshiba Corp 空気調和装置
JPH03164646A (ja) * 1989-11-24 1991-07-16 Daikin Ind Ltd 空気調和装置の運転制御装置
CN107062557A (zh) * 2017-05-19 2017-08-18 上海斐讯数据通信技术有限公司 一种空调扫风自动调节方法及其装置、一种空调
CN108168036A (zh) * 2017-12-25 2018-06-15 珠海格力电器股份有限公司 空调系统控制方法及空调系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11986563B1 (en) 2020-05-07 2024-05-21 James William Potthast Portable, safe UV hand and surface sanitizer and method of use
US11524083B1 (en) 2020-05-13 2022-12-13 James William Potthast Personal, portable, hand-held UV sanitizer and method of use
CN114135971A (zh) * 2020-09-04 2022-03-04 宁波奥克斯电气股份有限公司 一种空调器的出风控制方法、装置、控制器及存储介质
CN114135971B (zh) * 2020-09-04 2023-04-07 宁波奥克斯电气股份有限公司 一种空调器的出风控制方法、装置、控制器及存储介质
WO2022217998A1 (zh) * 2021-04-12 2022-10-20 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调

Also Published As

Publication number Publication date
JP7058352B2 (ja) 2022-04-21
JP2021529927A (ja) 2021-11-04
CN108800428B (zh) 2020-05-05
CN108800428A (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
WO2020000838A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000836A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000551A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
WO2020000554A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2019144940A1 (zh) 一种基于温冷感的空调器控制方法和空调器
WO2018191703A1 (en) Thermostat with preemptive heating, cooling, and ventilation in response to elevated occupancy detection via proxy
WO2019034123A1 (zh) 一种智能空调器控制方法及智能空调器
WO2019075785A1 (zh) 空调系统及其化霜控制方法和装置
US20210222905A1 (en) Air-conditioning device, control device, air-conditioning method, and program
WO2020134124A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
JP4864019B2 (ja) 空調システムで所在環境の快適性を制御する方法
CN109855253B (zh) 用于空调器的控制方法
WO2020134360A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
WO2019075821A1 (zh) 一种多媒体教室空调控制方法
WO2019034124A1 (zh) 自动调温空调器控制方法及空调器
US11466885B2 (en) Air-conditioning control device, air-conditioning system, and air-conditioning control method
CN108917088A (zh) 一种体感风量调节方法、装置及空调器
CN109028470B (zh) 空气调节设备的控制方法、装置和空气调节设备
JP6932264B2 (ja) 空調装置、制御装置、空調方法及びプログラム
WO2020000553A1 (zh) 空气调节设备及其控制方法和装置
WO2020035907A1 (ja) 空調装置、制御装置、空調方法及びプログラム
CN109724221A (zh) 空气调节设备的控制方法、装置和空气调节设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18923824

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020572829

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18923824

Country of ref document: EP

Kind code of ref document: A1