WO2022217998A1 - 用于空调送风控制的方法、装置及空调 - Google Patents

用于空调送风控制的方法、装置及空调 Download PDF

Info

Publication number
WO2022217998A1
WO2022217998A1 PCT/CN2022/072065 CN2022072065W WO2022217998A1 WO 2022217998 A1 WO2022217998 A1 WO 2022217998A1 CN 2022072065 W CN2022072065 W CN 2022072065W WO 2022217998 A1 WO2022217998 A1 WO 2022217998A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
supplied
air supply
area
heat source
Prior art date
Application number
PCT/CN2022/072065
Other languages
English (en)
French (fr)
Inventor
孙权
孙强
崔永伟
丁杰兵
潘玉琪
Original Assignee
青岛海尔空调器有限总公司
青岛海尔空调电子有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司, 青岛海尔空调电子有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2022217998A1 publication Critical patent/WO2022217998A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure

Definitions

  • the present application relates to the technical field of intelligent air conditioners, for example, to methods, devices and air conditioners for air supply control of air conditioners.
  • Air conditioners have been widely used as a common smart device for adjusting indoor temperature and humidity.
  • the air supply control of most air conditioners realizes the setting of the air supply direction by controlling the guide plate, and every time the air supply direction is adjusted, a remote control or control application APP is required, so the degree of intelligence is low.
  • the air conditioner when the air conditioner is located in a crowded room, if the air conditioner is concentrated in one location, it will make people in some locations feel overheated or too cold, and when the automatic wind direction is used, the experience effect will be poor in a location where people are more concentrated. If the wind direction is set to blow against the person when sleeping at night, it is easy to cause discomfort after the user falls asleep. It can be seen that the air supply control of the air conditioner is not intelligent enough, and the user experience needs to be improved.
  • the embodiments of the present disclosure provide a method, a device and an air conditioner for air supply control of an air conditioner, so as to solve the technical problem of low intelligence in air supply air control of an air conditioner.
  • the method includes:
  • the position trajectory information and the temperature information determine two or more areas to be air-supplied, and a heat source concentration value of each area to be air-supplied;
  • the heat source concentration degree value determine the air supply time length that matches each area to be air-supplied, and control the air conditioner to perform regional air supply operation according to the air supply time length.
  • the apparatus includes:
  • an acquisition module configured to scan the temperature of the room where the air conditioner is located, and acquire the position track information and temperature information of each heat source in the room within the scanning time period;
  • an area division module configured to determine two or more areas to be air-supplied and a heat source concentration value of each area to be air-supplied according to the position trajectory information and the temperature information;
  • the air supply control module is configured to determine, according to the heat source concentration value, an air supply duration matching each area to be air supplied, and to control the air conditioner to perform regional air supply operation according to the air supply duration.
  • the apparatus for air-conditioning air supply control includes a processor and a memory storing program instructions, the processor is configured to execute the above-mentioned air-conditioning air supply when executing the program instructions Control Method.
  • the air conditioner includes the above-mentioned device for air supply control of an air conditioner.
  • the method, device and air conditioner for air-conditioning air supply control provided by the embodiments of the present disclosure can achieve the following technical effects:
  • the air supply duration that matches each area to be air-supplied is determined.
  • the air supply time is controlled by the air conditioner to perform regional air supply operation. In this way, different areas correspond to different air supply time, realizing the function of automatically adjusting the air supply time according to the degree of heat source concentration, and improving the intelligence of the air conditioner.
  • FIG. 1 is a schematic flowchart of a method for controlling air supply for an air conditioner provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a heat source community division provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for controlling air supply for an air conditioner provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of an air-conditioning air supply control device provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic structural diagram of an air supply control device for an air conditioner provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of an air supply control device for an air conditioner provided by an embodiment of the present disclosure.
  • A/B means: A or B.
  • a and/or B means: A or B, or, A and B three relationships.
  • the temperature of the room where the air conditioner is located can be scanned, and the position track information and temperature information of each heat source in the scanning time period can be obtained, thereby dividing two or more areas to be air-supplied, and according to each
  • the heat source concentration value of the air supply area determines the air supply duration that matches each area to be supplied air, and controls the air conditioner to perform regional air supply operation according to the air supply time. In this way, different areas correspond to different air supply durations.
  • the function of automatically adjusting the air supply time according to the degree of heat source concentration is realized, which improves the intelligence of the air conditioner.
  • the probability of poor experience in a location where people are more concentrated is reduced, and the probability of user discomfort caused by directional blowing while sleeping at night is also reduced, thereby further improving user experience.
  • FIG. 1 is a schematic flowchart of a method for controlling air supply for an air conditioner provided by an embodiment of the present disclosure. As shown in Figure 1, the process for air conditioning supply air control includes:
  • Step 101 Scan the temperature of the room where the air conditioner is located, and obtain the position track information and temperature information of each heat source in the room within the scanning time period.
  • a temperature detection device such as an infrared sensor, can be configured on the air conditioner.
  • the heat sources in the room where the air conditioner is located can be scanned to obtain the position track information and temperature information of each heat source within the scanning time period.
  • the temperature of the room where the air conditioner is located can be scanned, and the position track information and temperature information of each heat source in the room within the scanning time period can be obtained.
  • the air conditioner may perform temperature scanning in real time or periodically, or, in some embodiments, after the induction air supply mode configured by the air conditioner is activated, the temperature scanning in the room where the air conditioner is located is performed, that is, before the temperature scanning is performed on the room where the air conditioner is located, the process further includes: starting Configured induction air supply mode.
  • Step 102 Determine two or more areas to be air-supplied and a heat source concentration value of each area to be air-supplied according to the position trajectory information and the temperature information.
  • the position trajectory information and temperature information of each heat source in the scanning time period have been obtained, so that the current residence time of each heat source at the corresponding current position can be obtained.
  • Community division you can get two or more areas to be ventilated. For example, according to the location trajectory information and temperature information of M heat sources obtained by scanning, the current residence time of each heat source at the current location is determined, and then, through the community division algorithm, two or more areas to be air-supplied can be obtained.
  • the regional boundary information of each area to be air-supplied, the distance between the center point and the air conditioner, etc. can be obtained.
  • the area to be air-supplied is a rectangular area, and the length and width of each area to be air-supplied, as well as the distance between the center point of each area to be air-supplied and the air conditioner, etc. can be obtained.
  • some heat sources when scanning the temperature of the room where the air conditioner is located, some heat sources may be non-human heat sources, or mobile heat sources, or high-temperature heat sources. These heat sources have little to do with the degree of crowding of people. Therefore, these heat sources may be excluded.
  • the heat source that is, the determination of two or more areas to be air-supplied includes: according to the position trajectory information and the temperature information, removing the non-human heat source, the moving heat source whose moving speed is greater than the set speed value, and the moving heat source whose temperature is greater than the set temperature value from the heat source.
  • the high-temperature heat source is used to obtain the heat source to be supplied; according to the first temperature information and the first position track information corresponding to each heat source to be supplied within the scanning time period, the first position of each heat source to be supplied at the first current position is obtained.
  • the human body temperature is generally 36.5°C ⁇ T. Therefore, during the scanning time period, in the acquired temperature information, if the current temperature value corresponding to the current heat source is not within this range, it can be determined that the current heat source is a non-human heat source and can be excluded.
  • the moving speed of each heat source can be obtained according to the position trajectory information in the scanning time period and the scanning time period. If the current speed corresponding to the current heat source is greater than the set speed value, it can be determined that the current heat source is a moving heat source, which also needs to be eliminated. For example, a child running around in the room can be determined as a mobile heat source if the corresponding current speed is greater than the set speed value.
  • the temperature of the current heat source is greater than the set temperature value, that is, the current heat source is a high temperature heat source, it also needs to be removed. For example: cookware in use.
  • non-human heat sources moving heat sources whose moving speed is greater than the set speed value, and high-temperature heat sources whose temperature is greater than the set temperature value are eliminated from the heat sources to obtain the heat source to be supplied.
  • the first temperature information and the first position trajectory information corresponding to each air heat source to be supplied in the scanning time period the first current residence time of each air heat source to be supplied at the first current position is obtained, thus, according to The first current location and the first current stay time are divided into communities to obtain two or more areas to be air-supplied.
  • the area boundary information corresponding to each area to be air-supplied and the distance between the center point and the air conditioner can be determined.
  • FIG. 2 is a schematic diagram of a heat source community division provided by an embodiment of the present disclosure. After removing the non-human heat source from the heat source, moving the heat source and the high temperature heat source, and obtaining the heat source to be supplied, according to the first temperature information and the first position trajectory information corresponding to each heat source to be supplied during the scanning period, obtain each The first current residence time of the air supply heat source at the first current location, and then, according to the first current location and the first current residence time, through the community division algorithm, the N areas to be supplied air as shown in Figure 2 can be obtained.
  • each area to be air-supplied can be a rectangular area
  • the length L and width H of each area to be air-supplied can be obtained, and of course, the center of each area to be air-supplied can also be obtained
  • the distance between the point and the air conditioner, or, the distance between the heat source and the air conditioner on the boundary is not limited to this.
  • the area to be air-supplied can also be a circular area, and the radius of each area to be air-supplied and the distance between the center point of each area to be air-supplied and the air conditioner can be determined. The distance between the heat source and the air conditioner, etc., will not be described in detail.
  • the heat source concentration value of each area to be air-supplied can be determined.
  • the size of the area to be air-supplied can be determined, for example: length and Width, or radius, etc., in this way, by counting the number of heat sources to be aired in each area to be aired, the heat source concentration value of each area to be aired can be obtained according to the number and the size of the area to be aired.
  • determining the heat source concentration value of each area to be air-supplied includes: counting the number of heat sources to be air-supplied in each area to be air-supplied; according to the number, and the area of each area to be air-supplied Boundary information, get the heat source concentration value of each area to be air-supplied.
  • Step 103 Determine the air supply duration matching each area to be supplied air according to the heat source concentration value, and control the air conditioner to perform regional air supply operation according to the air supply duration.
  • the corresponding relationship between the heat source concentration degree value and the air supply weight value can be preset and configured.
  • the heat source concentration degree value is obtained, and the air supply weight value matching the heat source concentration degree value can be determined according to the corresponding relationship of the configuration. , thus, according to the preset air supply cycle duration of the air conditioner and the air supply weight value, the air supply duration matching each area to be air supplied is obtained.
  • the larger the heat source concentration value the larger the corresponding air supply weight value.
  • the larger the heat source concentration value is, the longer the air supply time corresponding to the air supply area will be.
  • the air conditioner can be controlled to perform regional air supply operation according to the air supply time.
  • it includes: determining the area boundary information corresponding to each area to be air supplied and the distance between the center point and the air conditioner.
  • the air supply angle corresponding to each area to be aired; the air supply operation of the air conditioner is controlled according to the air supply duration and air supply angle matched with each area to be aired.
  • the area boundary information can be determined according to the length and width of the area to be air-supplied and the location information of the heat source on the boundary, or it can be determined based on the radius and center point of the area to be air-supplied and so on.
  • two or more areas to be air-supplied are divided by performing temperature scanning in the room where the air conditioner is located, and according to the heat source concentration value of each area to be air-supplied, it is determined to match each area to be air-supplied According to the air supply time, the air conditioner is controlled to perform regional air supply operation.
  • areas with different heat source concentration values correspond to different air supply time periods, and the function of automatically adjusting the air supply time according to the heat source concentration degree is realized.
  • the probability of poor experience in a location where people are more concentrated is reduced, and the probability of user discomfort caused by directional blowing while sleeping at night is also reduced, thereby further improving user experience.
  • temperature compensation may also be performed and the air supply operation may be controlled according to the air supply duration and air supply angle matching each area to be air supplied.
  • the heat source is dynamic and may change. Therefore, the area to be ventilated can also be dynamically adjusted.
  • the method further includes: periodically acquiring the area temperature value of each area to be air supplied; the current temperature difference corresponding to one or more areas to be air supplied is not within the set range In the case of indoor temperature, the indoor temperature is scanned again, wherein the current temperature difference is the difference between the current regional temperature value corresponding to the current to-be-supplied area and the previous regional temperature value.
  • the temperature value of each heat source can be obtained regularly, so that the temperature values of each heat source in each area to be aired can be summed and averaged.
  • the regional temperature value of each area to be air-supplied can be obtained.
  • the current time corresponding to the timing is reached, the current regional temperature value corresponding to each area to be air-supplied can be obtained.
  • the difference is not within the set range, that is, the temperature of the current area to be air-supplied fluctuates greatly. Therefore, it is necessary to re-divide the area, that is, re-scan the temperature of the room, which further improves the performance of the air conditioner for regional air supply operation.
  • the accuracy also further improves the intelligence of the air conditioner.
  • an infrared temperature sensor is configured in the air conditioner.
  • the corresponding relationship between the heat source concentration value and the air supply weight value has been saved.
  • FIG. 3 is a schematic flowchart of a method for controlling air supply for an air conditioner provided by an embodiment of the present disclosure.
  • the process for air-conditioning air supply control in conjunction with FIG. 3 includes:
  • Step 301 Determine whether the air conditioner has activated the induction air supply mode? If yes, go to step 302; otherwise, go back to step 301.
  • Step 302 Scan the temperature of the room where the air conditioner is located by using the infrared temperature sensor, and obtain the position track information and temperature information of each heat source in the room within the scanning time period.
  • Step 303 Eliminate non-human heat sources, moving heat sources with a moving speed greater than the set speed value, and high temperature heat sources with a temperature greater than the set temperature value from the heat sources to obtain the heat source to be supplied.
  • Step 304 According to the first temperature information and the first position track information corresponding to each heat source to be supplied in the scanning time period, obtain the first current residence time of each heat source to be supplied at the first current position.
  • Step 305 According to the first current location and the first current stay time, perform community division to obtain two or more areas to be air-supplied.
  • the regional location information of each area to be air-supplied can be obtained through community division calculation, including: regional boundary information, the distance between the center point or the boundary point and the air conditioner. As shown in FIG. 2 , the length L and width H of each area to be air-supplied, as well as the positional relationship information with the air conditioner can be obtained.
  • Step 306 Count the number of heat sources to be aired in each area to be aired.
  • Step 307 According to the quantity, and the length and width of each area to be air-supplied, obtain the heat source concentration value of each area to be air-supplied.
  • Step 308 Determine the air supply weight value matching the heat source concentration value, and obtain the air supply duration matching each area to be aired according to the preset air supply cycle duration of the air conditioner and the air supply weight value.
  • the air supply weight value matching the heat source concentration value can be determined.
  • Step 309 Determine the air supply angle corresponding to each to-be-air-supplied area according to the positional relationship information between each to-be-air-supplied area and the air conditioner.
  • the air supply angle corresponding to each to-be-air-supplied area can be determined according to the area boundary information corresponding to each to-be-air-supplied area and the distance between the center point and the air conditioner.
  • Step 310 Control the air supply operation of the air conditioner according to the air supply duration and air supply angle matched with each to-be-supplied area.
  • a stepper motor can be configured on the air outlet guide of the air conditioner. As shown in Figure 2, according to the length of each area to be air-supplied, as well as the air supply time and air supply angle, the swing speed of the guide plate is determined, that is, the parameters of the stepper motor are determined.
  • Step 311 Determine whether the temperature timing acquisition time is reached? If yes, go to step 312; otherwise, go back to step 311.
  • Step 312 Acquire the current regional temperature value of the area to be ventilated.
  • Step 313 Is there a situation where the current temperature difference corresponding to one or more areas to be air-supplied is not within the set range? If yes, go back to step 302; otherwise, go back to step 310.
  • the current temperature difference is the difference between the current area temperature value corresponding to the current to-be-supplied area and the previous area temperature value.
  • the temperature of the room where the air conditioner is located can be scanned, and the positional trajectory information and temperature information of each heat source in the scanning time period can be obtained, thereby dividing two or more areas to be air-supplied, and according to each The heat source concentration value of the area to be air-supplied, determine the air supply duration matching each area to be air-supplied, and control the air conditioner to perform regional air-supply operation according to the air-supply duration, so that different areas correspond to different air supply durations , realizes the function of automatically adjusting the air supply time according to the degree of heat source concentration, and improves the intelligence of the air conditioner.
  • the probability of poor experience in a location where people are more concentrated is reduced, and the probability of user discomfort caused by directional blowing while sleeping at night is also reduced, thereby further improving user experience.
  • an apparatus for air-conditioning blowing control can be constructed.
  • FIG. 4 is a schematic structural diagram of an air supply control device for an air conditioner provided by an embodiment of the present disclosure.
  • the air supply control device for air conditioning includes: an acquisition module 410 , an area division module 420 , and an air supply control module 430 .
  • the acquisition module 410 is configured to scan the temperature of the room where the air conditioner is located, and acquire the position track information and temperature information of each heat source in the room within the scanning time period.
  • the area dividing module 420 is configured to determine two or more areas to be air-supplied and a heat source concentration value of each area to be air-supplied according to the position trajectory information and the temperature information.
  • the air supply control module 430 is configured to determine the air supply duration matching each area to be air supplied according to the heat source concentration value, and control the air conditioner to perform the area air supply operation according to the air supply duration.
  • the zoning module 420 includes:
  • the removal unit is configured to remove non-human heat sources, moving heat sources whose moving speed is greater than the set speed value, and high-temperature heat sources whose temperature is greater than the set temperature value from the heat sources according to the position trajectory information and the temperature information, to obtain the heat sources to be supplied.
  • the stay determination unit is configured to obtain the first current stay of each heat source to be supplied at the first current position according to the first temperature information and the first position track information corresponding to each heat source to be supplied during the scanning period time.
  • the dividing unit is configured to divide the community according to the first current location and the first current stay time, and obtain two or more areas to be air-supplied.
  • the area division module 420 further includes:
  • the statistics unit is configured to count the number of heat sources to be supplied air in each area to be supplied air.
  • the concentration determination unit is configured to obtain the heat source concentration value of each to-be-air-supplied area according to the quantity and the area boundary information of each to-be-air-supplied area.
  • the supply air control module 430 includes:
  • the weight determination unit is configured to determine the air supply weight value matching the heat source concentration value.
  • the duration determining unit is configured to obtain the air supply duration matching each to-be-supplied area according to the preset air supply cycle duration of the air conditioner and the air supply weight value.
  • the air supply control module 430 further includes:
  • the angle determination unit is configured to determine the air supply angle corresponding to each to-be-air-supplied area according to the area boundary information corresponding to each to-be-air-supplied area and the distance between the center point and the air conditioner.
  • the control unit is configured to control the air supply operation of the air conditioner according to the air supply duration and the air supply angle matched with each to-be-supplied area.
  • it further includes: a scan reset module configured to obtain the regional temperature value of each area to be air-supplied periodically; the current temperature difference corresponding to one or more areas to be air-supplied is not within the set range In the case of , re-scan the indoor temperature, wherein the current temperature difference is the difference between the current regional temperature value corresponding to the current to-be-ventilated area and the previous regional temperature value.
  • an activation module configured to activate the configured induction blowing mode is further included.
  • the device for air supply control of the air conditioner can be applied to the air conditioner and also to the cloud server.
  • an infrared temperature sensor is configured in the air conditioner.
  • the corresponding relationship between the heat source concentration value and the air supply weight value has been saved.
  • FIG. 5 is a schematic structural diagram of an air supply control device for an air conditioner provided by an embodiment of the present disclosure.
  • the air supply control device for air conditioning includes: an acquisition module 410 , an area division module 420 , an air supply control module 430 , a scan reset module 440 and a start module 450 , wherein the area division module 420 includes: a rejection unit 421 , a stay determination unit 422 , a division unit 423 , a statistics unit 424 , and a concentration determination unit 425 .
  • the air supply control module 430 includes: a weight determination unit 431 , a duration determination unit 432 , an angle determination unit 433 and a control unit 434 .
  • the activation module 450 scans the temperature of the room where the air conditioner is located by using the infrared temperature sensor after activating the induction air supply mode configured by the air conditioner.
  • the area dividing module 420 can divide the area to be air-supplied, wherein the removing unit 421 can remove non-human heat sources, moving heat sources whose moving speed is greater than the set speed value, and temperature from the heat sources according to the position track information and temperature information.
  • the high-temperature heat source greater than the set temperature value will obtain the heat source to be supplied.
  • the stay determination unit 422 can obtain the first current stay time of each heat source to be supplied at the first current position according to the first temperature information and the first position trajectory information corresponding to each heat source to be supplied during the scanning period .
  • the dividing unit 423 can divide the community according to the first current location and the first current stay time, obtain two or more areas to be air-supplied, and determine the area boundary information corresponding to each area to be air-supplied, and the center point and the area to be air-supplied. Air conditioning distance.
  • the statistical unit 424 counts the number of heat sources to be aired in each area to be aired. In this way, the concentration determination unit 425 can obtain the heat source concentration value of each to-be-ventilated region according to the quantity and the region boundary information of each to-be-ventilated region. Therefore, the air supply control module 430 can perform air supply control according to the heat source concentration value of each area to be air-supplied.
  • the weight determination unit 431 may determine the air supply weight value matching the heat source concentration value according to the saved correspondence.
  • the duration determining unit 432 obtains the air supply duration matching each to-be-ventilated area according to the preset air supply cycle duration of the air conditioner and the air supply weight value.
  • the angle determination unit 433 determines the air supply angle corresponding to each to-be-air-supplied area according to the area boundary information corresponding to each to-be-air-supplied area and the distance between the center point and the air conditioner. Therefore, the control unit 434 can determine the swing speed of the guide plate according to the length of each area to be air-supplied, the air-supply duration, and the air-supply angle, ie, the air-supply control of the air conditioner.
  • the scan reset module 440 can re-measure the indoor temperature scanning, wherein the current temperature difference is the difference between the current area temperature value corresponding to the current area to be air-supplied and the previous area temperature value.
  • the device used for air supply control of the air conditioner can scan the temperature of the room where the air conditioner is located, and obtain the position track information and temperature information of each heat source within the scanning time period, thereby dividing two or more The air supply area, and according to the heat source concentration value of each area to be aired, determine the air supply duration that matches each area to be aired, and control the air conditioner to perform regional air supply operation according to the air supply time. Areas correspond to different air supply durations, which realizes the function of automatically adjusting the air supply duration according to the degree of heat source concentration, and improves the intelligence of the air conditioner. In addition, the probability of poor experience in a location where people are more concentrated is reduced, and the probability of user discomfort caused by directional blowing while sleeping at night is also reduced, thereby further improving user experience.
  • An embodiment of the present disclosure provides a device for air-conditioning air supply control, the structure of which is shown in FIG. 6 and includes:
  • a processor (processor) 1000 and a memory (memory) 1001 may also include a communication interface (Communication Interface) 1002 and a bus 1003 .
  • the processor 1000 , the communication interface 1002 , and the memory 1001 can communicate with each other through the bus 1003 .
  • Communication interface 1002 may be used for information transfer.
  • the processor 1000 may invoke the logic instructions in the memory 1001 to execute the method for air-conditioning air supply control in the above-mentioned embodiments.
  • logic instructions in the memory 1001 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the memory 1001 can be used to store software programs and computer-executable programs, such as program instructions/modules corresponding to the methods in the embodiments of the present disclosure.
  • the processor 1000 executes the function application and data processing by running the program instructions/modules stored in the memory 1001, that is, the method for air-conditioning air supply control in the above method embodiments is implemented.
  • the memory 1001 may include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal air conditioner, and the like.
  • the memory 1001 may include high-speed random access memory, and may also include non-volatile memory.
  • An embodiment of the present disclosure provides an air supply control device for an air conditioner, including: a processor and a memory storing program instructions, where the processor is configured to execute a method for controlling air supply for an air conditioner when the program instructions are executed.
  • An embodiment of the present disclosure provides an air conditioner, including the above-mentioned air supply control device for an air conditioner.
  • An embodiment of the present disclosure provides a computer-readable storage medium storing computer-executable instructions, where the computer-executable instructions are configured to execute the above-mentioned method for controlling air supply for an air conditioner.
  • An embodiment of the present disclosure provides a computer program product, where the computer program product includes a computer program stored on a computer-readable storage medium, and the computer program includes program instructions that, when executed by a computer, cause all The computer executes the above-mentioned air supply control method for the air conditioner.
  • the above-mentioned computer-readable storage medium may be a transient computer-readable storage medium, and may also be a non-transitory computer-readable storage medium.
  • the technical solutions of the embodiments of the present disclosure may be embodied in the form of software products, and the computer software products are stored in a storage medium and include one or more instructions to make a computer air conditioner (which may be a personal computer, a server, or a network air conditioner, etc.) to perform all or part of the steps of the methods described in the embodiments of the present disclosure.
  • the aforementioned storage medium can be a non-transitory storage medium, including: U disk, removable hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk, etc.
  • a first element could be termed a second element, and similarly, a second element could be termed a first element, so long as all occurrences of "the first element” were consistently renamed and all occurrences of "the first element” were named consistently
  • the “second element” can be renamed consistently.
  • the first element and the second element are both elements, but may not be the same element.
  • the terms used in this application are used to describe the embodiments only and not to limit the claims. As used in the description of the embodiments and the claims, the singular forms "a” (a), “an” (an) and “the” (the) are intended to include the plural forms as well, unless the context clearly dictates otherwise. .
  • the term “and/or” as used in this application is meant to include any and all possible combinations of one or more of the associated listings.
  • the term “comprise” and its variations “comprises” and/or including and/or the like refer to stated features, integers, steps, operations, elements, and/or The presence of a component does not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groupings of these.
  • an element defined by the phrase “comprising a" does not preclude the presence of additional identical elements in the process, method, or air conditioner that includes the element.
  • each embodiment may focus on the differences from other embodiments, and the same and similar parts between the various embodiments may refer to each other.
  • the methods, products, etc. disclosed in the embodiments if they correspond to the method section disclosed in the embodiments, reference may be made to the description of the method section for relevant parts.
  • the disclosed methods and products can be implemented in other ways.
  • the apparatus embodiments described above are only illustrative.
  • the division of the units may only be a logical function division.
  • there may be other division methods for example, multiple units or components may be combined Either it can be integrated into another system, or some features can be omitted, or not implemented.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, indirect coupling or communication connection of devices or units, and may be in electrical, mechanical or other forms.
  • each functional unit in the embodiment of the present disclosure may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more functions for implementing the specified logical function(s) executable instructions.
  • the functions noted in the blocks may occur out of the order noted in the figures. For example, two blocks in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及智能空调技术领域,公开一种用于空调送风控制的方法、装置及空调。该方法包括:对空调所在室内进行温度扫描,获取所述室内每个热源在扫描时间段内的位置轨迹信息和温度信息;根据所述位置轨迹信息和所述温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值;根据所述热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据所述送风时长,控制空调进行区域送风运行。实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。

Description

用于空调送风控制的方法、装置及空调
本申请基于申请号为202110390973.0、申请日为2021年4月12日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本申请涉及智能空调技术领域,例如涉及用于空调送风控制的方法、装置及空调。
背景技术
空调作为一种常见调节室内环境温湿度的智能设备已被广泛应用。目前,大多数空调的送风控制是通过控制导板来实现送风方向的设定,而每次调整送风方向,都需要使用遥控器或控制应用APP,这样,智能程度低。
并且,当空调所在室内人群集中时,如果空调集中在一个位置吹,会使某些位置的人感觉过热或过冷,而使用风向自动时,在人员较集中的位置体验效果又会较差。如果夜晚睡觉是设定风向对着人吹,在用户入睡后容易引起不适,可见,空调的送风控制不够智能,用户体验还有待提高。
发明内容
为了对披露的实施例的一些方面有基本的理解,下面给出了简单的概括。所述概括不是泛泛评述,也不是要确定关键/重要组成元素或描绘这些实施例的保护范围,而是作为后面的详细说明的序言。
本公开实施例提供了一种用于空调送风控制的方法、装置和空调,以解决空调送风控制智能性不高的技术问题。
在一些实施例中,所述方法包括:
对空调所在室内进行温度扫描,获取所述室内每个热源在扫描时间段内的位置轨迹信息和温度信息;
根据所述位置轨迹信息和所述温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值;
根据所述热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据所述 送风时长,控制空调进行区域送风运行。
在一些实施例中,所述装置包括:
获取模块,被配置为对空调所在室内进行温度扫描,获取所述室内每个热源在扫描时间段内的位置轨迹信息和温度信息;
区域划分模块,被配置为根据所述位置轨迹信息和所述温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值;
送风控制模块,被配置为根据所述热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据所述送风时长,控制空调进行区域送风运行。
在一些实施例中,所述用于空调送风控制的装置,包括处理器和存储有程序指令的存储器,所述处理器被配置为在执行所述程序指令时,执行上述用于空调送风控制方法。
在一些实施例中,所述空调,包括上述用于空调送风控制的装置。
本公开实施例提供的用于空调送风控制的方法、装置和空调,可以实现以下技术效果:
通过空调所在室内进行温度扫描,划分出两个或多个待送风区域,并根据每个待送风区域的热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行,这样,不同的区域,对应不同的送风时长,实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。
以上的总体描述和下文中的描述仅是示例性和解释性的,不用于限制本申请。
附图说明
一个或多个实施例通过与之对应的附图进行示例性说明,这些示例性说明和附图并不构成对实施例的限定,附图中具有相同参考数字标号的元件示为类似的元件,附图不构成比例限制,并且其中:
图1是本公开实施例提供的一种用于空调送风控制方法的流程示意图;
图2是本公开实施例提供的一种热源社区划分的示意图;
图3是本公开实施例提供的一种用于空调送风控制方法的流程示意图;
图4是本公开实施例提供的一种用于空调送风控制装置的结构示意图;
图5是本公开实施例提供的一种用于空调送风控制装置的结构示意图;
图6是本公开实施例提供的一种用于空调送风控制装置的结构示意图。
具体实施方式
为了能够更加详尽地了解本公开实施例的特点与技术内容,下面结合附图对本公开实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本公开实施例。在以下的技术描述中,为方便解释起见,通过多个细节以提供对所披露实施例的充分理解。然而,在没有这些细节的情况下,一个或多个实施例仍然可以实施。在其它情况下,为简化附图,熟知的结构和装置可以简化展示。
本公开实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开实施例的实施例。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含。
除非另有说明,术语“多个”表示两个或两个以上。
本公开实施例中,字符“/”表示前后对象是一种“或”的关系。例如,A/B表示:A或B。
术语“和/或”是一种描述对象的关联关系,表示可以存在三种关系。例如,A和/或B,表示:A或B,或,A和B这三种关系。
本公开实施例中,可对空调所在室内进行温度扫描,获取扫描时间段内每个热源的位置轨迹信息和温度信息,从而,划分出两个或多个待送风区域,并根据每个待送风区域的热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行,这样,不同的区域,对应不同的送风时长,实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。并且,减少了人员较集中的位置体验效果差几率,也减少了夜晚睡觉定向吹风引起用户不适的几率,进一步提高了用户体验。
图1是本公开实施例提供的一种用于空调送风控制方法的流程示意图。如图1所示,用于空调送风控制的过程包括:
步骤101:对空调所在室内进行温度扫描,获取室内每个热源在扫描时间段内的位置轨迹信息和温度信息。
本公开实施例中,空调上可配置温度检测装置,例如:红外传感器,通过温度检测装置,可扫描空调所在室内的热源,得到每个热源在扫描时间段内的位置轨迹信息和温度信息。即可对空调所在室内进行温度扫描,获取室内每个热源在扫描时间段内的位 置轨迹信息和温度信息。
空调可实时或定时进行温度扫描,或者,在一些实施例中,空调配置的感应送风模式启动后,才进行空调所在室内的温度扫描,即对空调所在室内进行温度扫描之前,还包括:启动配置的感应送风模式。
步骤102:根据位置轨迹信息和温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值。
通过温度扫描,已获取了扫描时间段内,每个热源的位置轨迹信息和温度信息,从而,可得到每个热源在对应当前位置上的当前停留时间,从而,根据当前位置和当前停留时间进行社区划分,即可得到两个或多个待送风区域。例如:根据扫描得到的M个热源的位置轨迹信息和温度信息,确定每个热源在当前位置上的当前停留时间,然后,通过社区划分算法,可得到两个或多个待送风区域,当然,通过社区划分算法可到每个待送风区域的区域边界信息、中心点与空调的距离等等。例如:待送风区域为矩形区域,可获得每个待送风区域的长度和宽度,以及每个待送风区域中心点与空调的距离等等。
在一些实施例中,对空调所在室内进行温度扫描时,有的热源可能是一些非人热源,或者,移动热源,或者,高温热源,这些热源跟人员聚集程度关系不大,因此,可剔除这些热源,即确定两个或多个待送风区域包括:根据位置轨迹信息和温度信息,从热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源;根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上的第一当前停留时间;根据第一当前位置以及第一当前停留时间,进行社区划分,得到两个或多个待送风区域。
其中,人体温度一般可为36.5℃±T,因此,扫描时间段,获取的温度信息中,当前热源对应的当前温度值不在这个范围内,即可确定当前热源为非人热源,可剔除。而根据扫描时间段内的位置轨迹信息以及扫描时间段,可得到每个热源的移动速度,若当前热源对应的当前速度大于设定速度值,即可确定当前热源为移动热源,也需剔除。例如:在房间中跑来跑去的小孩,对应的当前速度大于设定速度值,即可确定为移动热源。当然,若当前热源的温度大于设定温度值,即当前热源为高温热源,也需剔除。例如:正在使用的炊具。
这样,从热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源。然后,根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上 的第一当前停留时间,从而,根据第一当前位置以及第一当前停留时间,进行社区划分,得到两个或多个待送风区域。当然,在进行社区划分的时候,可确定每个待送风区域对应的区域边界信息、以及中心点与空调的距离。
图2是本公开实施例提供的一种热源社区划分的示意图。从热源中剔除非人热源,移动热源、高温热源,得到待送风热源后,根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上的第一当前停留时间,然后,根据第一当前位置以及第一当前停留时间,通过社区划分算法,即可得到如图2所示的N个待送风区域,其中,N大于或等于2,其中,每个待送风区域可为矩形区域,可得到每个待送风区域的长度L和宽度H,当然,还可得到每个待送风区域的中心点与空调的距离,或者,边界上的热源与空调的距离。当然,本公开实施例也不限于此,待送风区域也可以是圆形区域,可确定每个待送风区域的半径,以及每个待送风区域的中心点与空调的距离,边界上的热源与空调的距离等等,具体就不详述了。
确定了两个或多个待送风区域后,即可确定每个待送风区域的热源集中程度值,在确定待送风区域时,即可确定待送风区域的大小,例如:长度和宽度,或者,半径等等,这样,统计每个待送风区域中待送风热源的数量,即可根据数量以及待送风区域的大小,得到每个待送风区域的热源集中程度值。因此,在一些实施例中,可确定每个待送风区域的热源集中程度值包括:统计每个待送风区域中待送风热源的数量;根据数量,以及每个待送风区域的区域边界信息,得到每个待送风区域的热源集中程度值。
步骤103:根据热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行。
可预设配置热源集中程度值与送风权重值的对应关系,这里,步骤102中,得到了热源集中程度值,即可根据配置的对应关系,确定与热源集中程度值匹配的送风权重值,从而,根据空调的预设送风周期时长,以及送风权重值,得到与每个待送风区域匹配的送风时长。
一般热源集中程度值越大对应的送风权重值越大,这样,在一个预设送风周期时长中,热源集中程度值越大的待送风区域对应的送风时长就会越长。
确定了送风时长后,可根据送风时长控制空调进行区域送风运行,在一些实施例中,包括:根据每个待送风区域对应的区域边界信息、以及中心点与空调的距离,确定与每个待送风区域对应的送风角度;根据与每个待送风区域匹配的送风时长和送风角度,控制空调的送风运行。其中,区域边界信息可根据待送风区域的长度、宽度以及边 界上的热源位置信息来确定,或者,根据待送风区域的半径、以及中心点来确定等等。
可见,本实施例中,通过空调所在室内进行温度扫描,划分出两个或多个待送风区域,并根据每个待送风区域的热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行,这样,不同的热源集中程度值的区域,对应不同的送风时长,实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。并且,减少了人员较集中的位置体验效果差几率,也减少了夜晚睡觉定向吹风引起用户不适的几率,进一步提高了用户体验。
当然,在一些实施例中,进行区域送风运行时,还可根据与每个待送风区域匹配的送风时长和送风角度,进行温度补偿,并控制送风运行。
空调所在室内,热源可是动态,有可能会变化,因此,待送风区域也可进行动态调整。在一些实施例中,控制空调进行区域送风运行之后,还包括:定时获取每个待送风区域的区域温度值;在一个或多个待送风区域对应的当前温度差值不在设定范围内的情况下,重新对室内进行温度扫描,其中,当前温度差值是当前待送风区域对应的当前区域温度值与前次区域温度值之间的差值。
可通过空调上配置的温度检测装置,或者,与热源进行通讯,可定时获得每个热源的温度值,从而,可对每个待送风区域的每个热源的温度值进行求和并平均,即可得到每个待送风区域的区域温度值。其中,到达定时对应的当前时刻,即可得到每个待送风区域对应的当前区域温度值,其中,若当前待送风区域对应的当前区域温度值与前次区域温度值之间的当前温度差值不在设定范围内,即该当前待送风区域温度波动较大了,因此,需要重新进行区域划分了,即重新对室内进行温度扫描,这样,进一步提高了空调进行区域送风运行的准确性,也进一步提高了空调的智能性。
下面将操作流程集合到具体实施例中,举例说明本发明实施例提供的用于空调送风控制过程。
本实施例中,空调中配置了红外温度传感器,当然,已保存了热源集中程度值与送风权重值之间的对应关系。
图3是本公开实施例提供的一种用于空调送风控制方法的流程示意图。结合图3用于空调送风控制的过程包括:
步骤301:判断空调是否启动了感应送风模式?若是,执行步骤302,否则,返回步骤301。
步骤302:通过红外温度传感器,对空调所在室内进行温度扫描,获取室内每个热 源在扫描时间段内的位置轨迹信息和温度信息。
步骤303:根据位置轨迹信息和温度信息,从热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源。
步骤304:根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上的第一当前停留时间。
步骤305:根据第一当前位置以及第一当前停留时间,进行社区划分,得到两个或多个待送风区域。
可通过社区划分计算,得到每个待送风区域的区域位置信息,包括:区域边界信息、中心点或边界点与空调的距离。如图2,可得到每个待送风区域的长度L和宽度H,以及与空调的位置关系信息。
步骤306:统计每个待送风区域中待送风热源的数量。
步骤307:根据数量,以及每个待送风区域的长度和宽度,得到每个待送风区域的热源集中程度值。
步骤308:确定与热源集中程度值匹配的送风权重值,以及根据空调的预设送风周期时长,以及送风权重值,得到与每个待送风区域匹配的送风时长。
根据保存的对应关系,可确定与热源集中程度值匹配的送风权重值。
步骤309:根据每个待送风区域与空调之间的位置关系信息,确定与每个待送风区域对应的送风角度。
例如:可根据每个待送风区域对应的区域边界信息、以及中心点与空调的距离,确定与每个待送风区域对应的送风角度。
步骤310:根据与每个待送风区域匹配的送风时长和送风角度,控制空调的送风运行。
空调的出风口导板上可配置步进电机。如图2,根据每个待送风区域的长度,以及送风时长,送风角度,确定导板的摆动速度,即确定步进电机的参数。
步骤311:判断是否到达温度定时采集时间?若是,执行步骤312,否则,返回步骤311。
步骤312:获取待送风区域的当前区域温度值。
步骤313:是否有一个或多个待送风区域对应的当前温度差值不在设定范围内的情况下?若是,返回步骤302,否则,返回步骤310。
其中,当前温度差值是当前待送风区域对应的当前区域温度值与前次区域温度值 之间的差值。
可见,本实施例中,可对空调所在室内进行温度扫描,获取扫描时间段内每个热源的位置轨迹信息和温度信息,从而,划分出两个或多个待送风区域,并根据每个待送风区域的热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行,这样,不同的区域,对应不同的送风时长,实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。并且,减少了人员较集中的位置体验效果差几率,也减少了夜晚睡觉定向吹风引起用户不适的几率,进一步提高了用户体验。
根据上述用于空调送风控制的过程,可构建一种用于空调送风控制的装置。
图4是本公开实施例提供的一种用于空调送风控制装置的结构示意图。如图4所示,用于空调送风控制装置包括:获取模块410、区域划分模块420、送风控制模块430。
获取模块410,被配置为对空调所在室内进行温度扫描,获取室内每个热源在扫描时间段内的位置轨迹信息和温度信息。
区域划分模块420,被配置为根据位置轨迹信息和温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值。
送风控制模块430,被配置为根据热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行。
在一些实施例中,区域划分模块420包括:
剔除单元,被配置为根据位置轨迹信息和温度信息,从热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源。
停留确定单元,被配置为根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上的第一当前停留时间。
划分单元,被配置为根据第一当前位置以及第一当前停留时间,进行社区划分,得到两个或多个待送风区域。
在一些实施例中,区域划分模块420还包括:
统计单元,被配置为统计每个待送风区域中待送风热源的数量。
集中度确定单元,被配置为根据数量,以及每个待送风区域的区域边界信息,得到每个待送风区域的热源集中程度值。
在一些实施例中,送风控制模块430包括:
权重确定单元,被配置为确定与热源集中程度值匹配的送风权重值。
时长确定单元,被配置为根据空调的预设送风周期时长,以及送风权重值,得到与每个待送风区域匹配的送风时长。
在一些实施例中,送风控制模块430还包括:
角度确定单元,被配置为根据每个待送风区域对应的区域边界信息、以及中心点与空调的距离,确定与每个待送风区域对应的送风角度。
控制单元,被配置为根据与每个待送风区域匹配的送风时长和送风角度,控制空调的送风运行。
在一些实施例中,还包括:扫描重置模块,被配置为定时获取每个待送风区域的区域温度值;在一个或多个待送风区域对应的当前温度差值不在设定范围内的情况下,重新对室内进行温度扫描,其中,当前温度差值是当前待送风区域对应的当前区域温度值与前次区域温度值之间的差值。
在一些实施例中,还包括:启动模块,被配置为启动配置的感应送风模式。
用于空调送风控制的装置可应用于空调中,也可应用于云端服务器中。
下面具体描述应用于空调中的用于空调送风控制的装置的空调送风控制过程。
本实施例中,空调中配置了红外温度传感器,当然,已保存了热源集中程度值与送风权重值之间的对应关系。
图5是本公开实施例提供的一种用于空调送风控制装置的结构示意图。
如图5所示,用于空调送风控制装置包括:获取模块410、区域划分模块420、送风控制模块430、扫描重置模块440和启动模块450,其中,区域划分模块420包括:剔除单元421、停留确定单元422、划分单元423、统计单元424、以及集中度确定单元425。送风控制模块430包括:权重确定单元431、时长确定单元432、角度确定单元433以及控制单元434。
其中,启动模块450启动空调配置的感应送风模式后,通过红外温度传感器,对空调所在室内进行温度扫描,获取模块410可获取室内每个热源在扫描时间段内的位置轨迹信息和温度信息。
这样,区域划分模块420可进行待送风区域的划分,其中,剔除单元421可根据位置轨迹信息和温度信息,从热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源。而停留确定单元422可根据扫描时间段内,每个待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个 待送风热源在第一当前位置上的第一当前停留时间。从而,划分单元423可根据第一当前位置以及第一当前停留时间,进行社区划分,得到两个或多个待送风区域,确定每个待送风区域对应的区域边界信息、以及中心点与空调的距离。
划分区域后,统计单元424统计每个待送风区域中待送风热源的数量。这样,集中度确定单元425可根据数量,以及每个待送风区域的区域边界信息,得到每个待送风区域的热源集中程度值。从而,送风控制模块430可根据每个待送风区域的热源集中程度值进行送风控制。
其中,权重确定单元431可根据保存的对应关系,可确定与热源集中程度值匹配的送风权重值。时长确定单元432根据空调的预设送风周期时长,以及送风权重值,得到与每个待送风区域匹配的送风时长。而角度确定单元433根据每个待送风区域对应的区域边界信息、以及中心点与空调的距离,确定与每个待送风区域对应的送风角度。从而,控制单元434则可根据每个待送风区域的长度,以及送风时长,送风角度,确定导板的摆动速度,即进行空调的送风控制。
当然,定时获取每个待送风区域的区域温度值;在一个或多个待送风区域对应的当前温度差值不在设定范围内的情况下,扫描重置模块440可重新对室内进行温度扫描,其中,当前温度差值是当前待送风区域对应的当前区域温度值与前次区域温度值之间的差值。
可见,本实施例中,用于空调送风控制的装置可对空调所在室内进行温度扫描,获取扫描时间段内每个热源的位置轨迹信息和温度信息,从而,划分出两个或多个待送风区域,并根据每个待送风区域的热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据送风时长,控制空调进行区域送风运行,这样,不同的区域,对应不同的送风时长,实现了根据热源集中程度自动调整送风时长的功能,提高了空调的智能性。并且,减少了人员较集中的位置体验效果差几率,也减少了夜晚睡觉定向吹风引起用户不适的几率,进一步提高了用户体验。
本公开实施例提供了一种用于空调送风控制的装置,其结构如图6所示,包括:
处理器(processor)1000和存储器(memory)1001,还可以包括通信接口(Communication Interface)1002和总线1003。其中,处理器1000、通信接口1002、存储器1001可以通过总线1003完成相互间的通信。通信接口1002可以用于信息传输。处理器1000可以调用存储器1001中的逻辑指令,以执行上述实施例的用于空调送风控制的方法。
此外,上述的存储器1001中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。
存储器1001作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序,如本公开实施例中的方法对应的程序指令/模块。处理器1000通过运行存储在存储器1001中的程序指令/模块,从而执行功能应用以及数据处理,即实现上述方法实施例中的用于空调送风控制的方法。
存储器1001可包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序;存储数据区可存储根据终端空调的使用所创建的数据等。此外,存储器1001可以包括高速随机存取存储器,还可以包括非易失性存储器。
本公开实施例提供了一种用于空调送风控制装置,包括:处理器和存储有程序指令的存储器,处理器被配置为在执行程序指令时,执行用于空调送风控制方法。
本公开实施例提供了一种空调,包括上述用于空调送风控制装置。
本公开实施例提供了一种计算机可读存储介质,存储有计算机可执行指令,所述计算机可执行指令设置为执行上述用于空调送风控制方法。
本公开实施例提供了一种计算机程序产品,所述计算机程序产品包括存储在计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,使所述计算机执行上述用于空调送风控制方法。
上述的计算机可读存储介质可以是暂态计算机可读存储介质,也可以是非暂态计算机可读存储介质。
本公开实施例的技术方案可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括一个或多个指令用以使得一台计算机空调(可以是个人计算机,服务器,或者网络空调等)执行本公开实施例所述方法的全部或部分步骤。而前述的存储介质可以是非暂态存储介质,包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等多种可以存储程序代码的介质,也可以是暂态存储介质。
以上描述和附图充分地示出了本公开的实施例,以使本领域的技术人员能够实践它们。其他实施例可以包括结构的、逻辑的、电气的、过程的以及其他的改变。实施例仅代表可能的变化。除非明确要求,否则单独的部件和功能是可选的,并且操作的顺序可以变化。一些实施例的部分和特征可以被包括在或替换其他实施例的部分和特征。本公开实施例的范围包括权利要求书的整个范围,以及权利要求书的所有可获得的等同 物。当用于本申请中时,虽然术语“第一”、“第二”等可能会在本申请中使用以描述各元件,但这些元件不应受到这些术语的限制。这些术语仅用于将一个元件与另一个元件区别开。比如,在不改变描述的含义的情况下,第一元件可以叫做第二元件,并且同样第,第二元件可以叫做第一元件,只要所有出现的“第一元件”一致重命名并且所有出现的“第二元件”一致重命名即可。第一元件和第二元件都是元件,但可以不是相同的元件。而且,本申请中使用的用词仅用于描述实施例并且不用于限制权利要求。如在实施例以及权利要求的描述中使用的,除非上下文清楚地表明,否则单数形式的“一个”(a)、“一个”(an)和“所述”(the)旨在同样包括复数形式。类似地,如在本申请中所使用的术语“和/或”是指包含一个或一个以上相关联的列出的任何以及所有可能的组合。另外,当用于本申请中时,术语“包括”(comprise)及其变型“包括”(comprises)和/或包括(comprising)等指陈述的特征、整体、步骤、操作、元素,和/或组件的存在,但不排除一个或一个以上其它特征、整体、步骤、操作、元素、组件和/或这些的分组的存在或添加。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法或者空调中还存在另外的相同要素。本文中,每个实施例重点说明的可以是与其他实施例的不同之处,各个实施例之间相同相似部分可以互相参见。对于实施例公开的方法、产品等而言,如果其与实施例公开的方法部分相对应,那么相关之处可以参见方法部分的描述。
本领域技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,可以取决于技术方案的特定应用和设计约束条件。所述技术人员可以对每个特定的应用来使用不同方法以实现所描述的功能,但是这种实现不应认为超出本公开实施例的范围。所述技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本文所披露的实施例中,所揭露的方法、产品(包括但不限于装置、空调等),可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另外,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。所述作为分离部 件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例。另外,在本公开实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
附图中的流程图和框图显示了根据本公开实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个连续的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。在附图中的流程图和框图所对应的描述中,不同的方框所对应的操作或步骤也可以以不同于描述中所披露的顺序发生,有时不同的操作或步骤之间不存在特定的顺序。例如,两个连续的操作或步骤实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这可以依所涉及的功能而定。框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或动作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。

Claims (10)

  1. 一种用于空调送风控制的方法,其特征在于,包括:
    对空调所在室内进行温度扫描,获取所述室内每个热源在扫描时间段内的位置轨迹信息和温度信息;
    根据所述位置轨迹信息和所述温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值;
    根据所述热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据所述送风时长,控制空调进行区域送风运行。
  2. 根据权利要求1所述的方法,其特征在于,所述确定两个或多个待送风区域包括:
    根据所述位置轨迹信息和所述温度信息,从所述热源中剔除非人热源、移动速度大于设定速度值的移动热源,以及温度大于设定温度值的高温热源,得到待送风热源;
    根据所述扫描时间段内,每个所述待送风热源对应的第一温度信息和第一位置轨迹信息,得到每个待送风热源在第一当前位置上的第一当前停留时间;
    根据所述第一当前位置以及所述第一当前停留时间,进行社区划分,得到两个或多个待送风区域。
  3. 根据权利要求2所述的方法,其特征在于,所述确定每个待送风区域的热源集中程度值包括:
    统计每个待送风区域中所述待送风热源的数量;
    根据所述数量,以及每个所述待送风区域的区域边界信息,得到每个待送风区域的热源集中程度值。
  4. 根据权利要求1所述的方法,其特征在于,所述确定与每个待送风区域匹配的送风时长包括:
    确定与热源集中程度值匹配的送风权重值;
    根据空调的预设送风周期时长,以及送风权重值,得到与每个待送风区域匹配的送风时长。
  5. 根据权利要求1所述的方法,其特征在于,所述控制空调进行区域送风运行包括:
    根据每个所述待送风区域对应的区域边界信息、以及中心点与空调的距离,确定与每个所述待送风区域对应的送风角度;
    根据与每个待送风区域匹配的所述送风时长和所述送风角度,控制空调的送风运行。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述控制空调进行区域送风运行之后,还包括:
    定时获取每个待送风区域的区域温度值;
    在一个或多个待送风区域对应的当前温度差值不在设定范围内的情况下,重新对所述室内进行温度扫描,其中,所述当前温度差值是当前待送风区域对应的当前区域温度值与前次区域温度值之间的差值。
  7. 根据权利要求6所述的方法,其特征在于,所述对空调所在室内进行温度扫描之前,还包括:
    启动配置的感应送风模式。
  8. 一种用于空调送风控制的装置,其特征在于,包括:
    获取模块,被配置为对空调所在室内进行温度扫描,获取所述室内每个热源在扫描时间段内的位置轨迹信息和温度信息;
    区域划分模块,被配置为根据所述位置轨迹信息和所述温度信息,确定两个或多个待送风区域,以及每个待送风区域的热源集中程度值;
    送风控制模块,被配置为根据所述热源集中程度值,确定与每个待送风区域匹配的送风时长,并根据所述送风时长,控制空调进行区域送风运行。
  9. 一种用于空调送风控制的装置,该装置包括处理器和存储有程序指令的存储器,其特征在于,所述处理器被配置为在执行所述程序指令时,执行如权利要求1至7任一项所述用于空调送风控制的方法。
  10. 一种空调,其特征在于,包括:如权利要求8或9所述用于空调送风控制的装置。
PCT/CN2022/072065 2021-04-12 2022-01-14 用于空调送风控制的方法、装置及空调 WO2022217998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110390973.0A CN113091230A (zh) 2021-04-12 2021-04-12 用于空调送风控制的方法、装置及空调
CN202110390973.0 2021-04-12

Publications (1)

Publication Number Publication Date
WO2022217998A1 true WO2022217998A1 (zh) 2022-10-20

Family

ID=76677160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072065 WO2022217998A1 (zh) 2021-04-12 2022-01-14 用于空调送风控制的方法、装置及空调

Country Status (2)

Country Link
CN (1) CN113091230A (zh)
WO (1) WO2022217998A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113091230A (zh) * 2021-04-12 2021-07-09 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调
CN114061119A (zh) * 2021-10-18 2022-02-18 青岛海尔空调器有限总公司 用于控制智能空调的方法及装置、智能空调
CN114234413B (zh) * 2021-11-22 2023-06-02 青岛海尔空调器有限总公司 空调送风的控制方法、控制系统、电子设备和储存介质
CN114484747B (zh) * 2021-12-25 2024-05-28 浙江大华技术股份有限公司 一种送风方法、送风系统及相关装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855000B1 (ko) * 2007-04-27 2008-08-28 삼성전자주식회사 공기조화기 및 그 제어방법
US20090230307A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Device to detect heat source, home appliance having the same and method of detecting heat source
CN106247555A (zh) * 2016-08-19 2016-12-21 青岛海尔空调器有限总公司 一种空调控制方法及基于红外检测的非人体热源滤除方法
CN107314511A (zh) * 2017-08-23 2017-11-03 广东美的制冷设备有限公司 空调设备的控制方法及装置、空调
CN108458451A (zh) * 2018-03-29 2018-08-28 广东美的制冷设备有限公司 空调器送风控制方法、装置及可读存储介质、空调器
CN109812934A (zh) * 2019-01-29 2019-05-28 广东美的制冷设备有限公司 送风系统、送风方法及计算机可读存储介质
CN109945423A (zh) * 2019-03-06 2019-06-28 广东美的制冷设备有限公司 空调控制方法和装置
CN110030680A (zh) * 2019-04-25 2019-07-19 珠海格力电器股份有限公司 一种带毫米波雷达的空调器的控制方法、系统及空调器
CN110094846A (zh) * 2019-05-24 2019-08-06 珠海格力电器股份有限公司 空调扫风控制方法、控制装置、存储介质和空调设备
WO2020000838A1 (zh) * 2018-06-29 2020-01-02 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN112032987A (zh) * 2020-07-28 2020-12-04 四川虹美智能科技有限公司 基于红外人体追踪的空调控制方法及装置
CN113091230A (zh) * 2021-04-12 2021-07-09 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2571142B2 (ja) * 1990-07-03 1997-01-16 シャープ株式会社 空気調和機
ID16934A (id) * 1996-05-22 1997-11-20 Samsung Electronics Co Ltd Alat kontrol arah dan kecepatan alir udara yang dikeluarkan oleh mesin penyejuk udara dan metoda kerjanya
JP4277652B2 (ja) * 2003-11-07 2009-06-10 富士電機システムズ株式会社 自動間仕切り空調制御装置
JP6046579B2 (ja) * 2013-09-09 2016-12-21 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 空気調和機
CN104864567B (zh) * 2015-05-28 2017-10-13 奥克斯空调股份有限公司 空调的控制方法
CN105972760B (zh) * 2016-05-23 2018-11-27 珠海格力电器股份有限公司 中央空调控制方法及装置
CN105928130A (zh) * 2016-06-20 2016-09-07 中铁第四勘察设计院集团有限公司 高大空间动态热探测变风量送风系统
CN106403164B (zh) * 2016-08-31 2019-04-19 芜湖美智空调设备有限公司 空调器风机转速的控制方法和空调器
CN107013978B (zh) * 2017-04-10 2020-08-25 青岛海尔空调器有限总公司 空调室内机及其送风方法
CN107084795B (zh) * 2017-04-19 2020-06-02 珠海格力电器股份有限公司 人体热源识别方法、装置及具有该装置的设备
CN109708262B (zh) * 2017-10-20 2020-10-02 深圳市鹰硕技术有限公司 一种多媒体教室空调控制方法
CN109323428B (zh) * 2018-11-13 2021-03-16 青岛海尔空调器有限总公司 人体位置识别方法、空调器的控制方法及控制系统
CN112484250A (zh) * 2020-11-16 2021-03-12 东南大学 一种基于室内热源信息的hvac在线监控系统及控制方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100855000B1 (ko) * 2007-04-27 2008-08-28 삼성전자주식회사 공기조화기 및 그 제어방법
US20090230307A1 (en) * 2008-03-17 2009-09-17 Samsung Electronics Co., Ltd. Device to detect heat source, home appliance having the same and method of detecting heat source
CN106247555A (zh) * 2016-08-19 2016-12-21 青岛海尔空调器有限总公司 一种空调控制方法及基于红外检测的非人体热源滤除方法
CN107314511A (zh) * 2017-08-23 2017-11-03 广东美的制冷设备有限公司 空调设备的控制方法及装置、空调
CN108458451A (zh) * 2018-03-29 2018-08-28 广东美的制冷设备有限公司 空调器送风控制方法、装置及可读存储介质、空调器
WO2020000838A1 (zh) * 2018-06-29 2020-01-02 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109812934A (zh) * 2019-01-29 2019-05-28 广东美的制冷设备有限公司 送风系统、送风方法及计算机可读存储介质
CN109945423A (zh) * 2019-03-06 2019-06-28 广东美的制冷设备有限公司 空调控制方法和装置
CN110030680A (zh) * 2019-04-25 2019-07-19 珠海格力电器股份有限公司 一种带毫米波雷达的空调器的控制方法、系统及空调器
CN110094846A (zh) * 2019-05-24 2019-08-06 珠海格力电器股份有限公司 空调扫风控制方法、控制装置、存储介质和空调设备
CN112032987A (zh) * 2020-07-28 2020-12-04 四川虹美智能科技有限公司 基于红外人体追踪的空调控制方法及装置
CN113091230A (zh) * 2021-04-12 2021-07-09 青岛海尔空调器有限总公司 用于空调送风控制的方法、装置及空调

Also Published As

Publication number Publication date
CN113091230A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022217998A1 (zh) 用于空调送风控制的方法、装置及空调
WO2022160769A1 (zh) 用于空调的控制方法及控制装置、空调
CN100385178C (zh) 空调器的睡眠运行模式
CN103900208B (zh) 一种空调控制方法及空调
WO2023273653A1 (zh) 用于控制空调的方法、装置、空调及存储介质
CN112254283A (zh) 智能空调的控制方法、装置、存储介质及系统
CN111397114B (zh) 一种空调控制方法、装置、存储介质及可穿戴设备
WO2022227820A1 (zh) 用于家居系统中睡眠环境控制的方法、装置、设备及系统
CN113819620B (zh) 用于控制空调的方法及装置、空调、存储介质
WO2022257607A1 (zh) 用于控制家电设备的方法、系统、装置及服务器
CN114061051B (zh) 用于控制空调的方法及装置、空调
CN111594985A (zh) 一种空调控制方法、装置、电子设备及存储介质
CN109579237A (zh) 空调温度控制方法、存储介质及空调
CN113932389A (zh) 用于空调控制的方法、装置、空调及存储介质
WO2022242265A1 (zh) 用于控制空调显示温度的方法、装置和空调
WO2022247345A1 (zh) 用于驱蚊的家电设备控制方法及装置、家电设备
CN110701751B (zh) 运行控制方法、装置、空调器以及存储介质
WO2023082653A1 (zh) 用于控制空调的方法、装置及智能空调
WO2023040345A1 (zh) 用于空调控制的方法、装置及空调
WO2023147728A1 (zh) 用于控制空调的方法及装置、空调、存储介质
WO2023005350A1 (zh) 用于空调控制的方法、装置、空调、存储介质
WO2022267771A1 (zh) 用于空调器预热的方法、装置、空调器及空调系统
CN113932428B (zh) 用于家电的控制方法、控制装置和服务器
CN113819621B (zh) 用于控制空调器运行的方法及装置、空调器
CN112594893B (zh) 用于空调制热控制的方法、装置及空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22787229

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22787229

Country of ref document: EP

Kind code of ref document: A1