WO2020000839A1 - 空气调节设备及其控制方法和装置 - Google Patents

空气调节设备及其控制方法和装置 Download PDF

Info

Publication number
WO2020000839A1
WO2020000839A1 PCT/CN2018/113499 CN2018113499W WO2020000839A1 WO 2020000839 A1 WO2020000839 A1 WO 2020000839A1 CN 2018113499 W CN2018113499 W CN 2018113499W WO 2020000839 A1 WO2020000839 A1 WO 2020000839A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
air
air supply
determining
supply area
Prior art date
Application number
PCT/CN2018/113499
Other languages
English (en)
French (fr)
Inventor
梁文潮
段晓华
郑伟锐
陈志斌
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2020000839A1 publication Critical patent/WO2020000839A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/65Electronic processing for selecting an operating mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature

Definitions

  • the present application relates to the technical field of smart home appliances, and in particular, to an air conditioning device and a control method and device thereof.
  • air-conditioning equipment such as air conditioners have gradually come into the lives of users.
  • air-conditioning equipment such as air conditioners have vertical air guide strips.
  • the air conditioner controls the vertical air guide.
  • the air bar realizes air supply from left to right; when the user presses the left and right air sweep buttons again, the air conditioner controls the vertical air guide bar to stop at the current position to supply air in a fixed direction.
  • the left and right air supply methods mainly output most of the cooling / heating power directly to the front of the air conditioner, which makes the temperature distribution of the entire room uneven, resulting in a large difference between the temperature on the two sides of the room and the middle temperature, which affects service quality.
  • the present application provides an air-conditioning apparatus, a method and a device for controlling the same, to solve the technical problem that the air-conditioning temperature is not uniform in the prior art, resulting in low user comfort.
  • the present application provides a method for controlling an air-conditioning apparatus.
  • the method includes the following steps: detecting an environmental temperature distribution; determining a target air supply area according to the environmental temperature distribution and an operating mode of the air-conditioning apparatus; The target stay position of the air guide bar corresponding to the target air supply area; determining the target stay time corresponding to the target stay position; controlling the air guide bar to stop swinging at the target stay position according to the target stay time.
  • Another embodiment of the present application provides a control device for an air-conditioning apparatus, including: a detection module for detecting an environmental temperature distribution; and a first determining module for detecting the environmental temperature distribution and the air-conditioning apparatus according to the The operation mode determines the target air supply area; the second determination module is used to determine the target stay position of the air guide bar corresponding to the target air supply area; the third determination module is used to determine the target corresponding to the target stay position Dwell time; a control module, configured to control the air guide bar to stop swinging at the target stay position according to the target stay time.
  • Another embodiment of the present application provides an air-conditioning apparatus, including: a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, the implementation is implemented as in the foregoing embodiment.
  • the control method of the air conditioning equipment is implemented as in the foregoing embodiment.
  • Another embodiment of the present application provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the method for controlling an air conditioning device according to the foregoing embodiment is implemented.
  • Detect the ambient temperature distribution determine the target air supply area according to the ambient temperature distribution and the operation mode of the air-conditioning equipment, determine the target stay position of the air guide bar corresponding to the target air supply area, and determine the target stay time corresponding to the target stay position Further, control the air guide bar to stop swinging at the target stay position according to the target stay time. Thereby, the uniformity of the distribution of the temperature adjustment of the air equipment is improved, and the user comfort is improved.
  • FIG. 1 is a flowchart of a method for controlling an air-conditioning apparatus according to an embodiment of the present application
  • FIG. 2 (a) is a schematic structural diagram of an environmental temperature detection device according to an embodiment of the present application.
  • FIG. 2 (b) is a schematic structural diagram of an ambient temperature detection device according to another embodiment of the present application.
  • FIG. 2 (c) is a schematic structural diagram of an environmental temperature detection device according to another embodiment of the present application.
  • FIG. 3 (a) is a schematic diagram of an application scenario of a method for controlling an air conditioning device according to an embodiment of the present application
  • FIG. 3 (b) is a schematic diagram of an application scenario of a method for controlling an air conditioning device according to another embodiment of the present application.
  • FIG. 4 is a flowchart of a method for controlling an air-conditioning apparatus according to another embodiment of the present application.
  • FIG. 5 is a flowchart of a control method of an air conditioning apparatus according to another embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a control device of an air-conditioning apparatus according to an embodiment of the present application.
  • the air conditioning equipment includes various equipment for adjusting the room temperature through the air guide bar.
  • FIG. 1 is a flowchart of a method for controlling an air-conditioning apparatus according to an embodiment of the present application. As shown in FIG. 1, the method includes:
  • Step 101 Detect an environmental temperature distribution.
  • the ambient temperature in this application mainly refers to the indoor ambient temperature.
  • the manner of detecting the environmental temperature distribution is different, and the examples are described as follows:
  • temperature sensors are set at different locations in the room in advance, and the temperature detection range from multiple temperature sensors to the coverage includes the entire indoor physical space environment, so that the environmental temperature distribution is determined according to the detection results of the temperature sensors.
  • an array infrared thermopile sensor is used to detect the ambient temperature distribution.
  • the array infrared thermopile sensor can detect the temperature distribution of the entire indoor space.
  • the array infrared The thermopile sensor can be a matrix with m rows and n columns.
  • the infrared thermopile sensor can also have other shapes that meet the corresponding scenarios.
  • the array infrared The thermopile sensor can be a triangle, as shown in Figure 2 (c), the array infrared thermopile sensor can be a circular ring, etc.
  • Step 102 Determine the target air supply area according to the ambient temperature distribution and the operation mode of the air-conditioning equipment.
  • the operation modes of the air conditioning equipment mainly include a cooling mode and a heating mode.
  • a target air supply area corresponding to the current operating mode of the air-conditioning equipment is determined.
  • the target air supply area is an area with a large temperature difference from other areas.
  • the number of target air supply areas may be Is greater than or equal to one.
  • the target air supply area of the ambient temperature is determined according to the highest temperature. It is easy to understand that when the operating mode of the air-conditioning equipment is a cooling mode, Obviously, the highest temperature in the current ambient temperature is the main pain point that causes the current indoor temperature to be uneven. Therefore, the region where the highest temperature is located is determined as the target air supply region to further adjust the target air supply region.
  • the target air supply area of the ambient temperature is determined according to the minimum temperature. It is easy to understand that when the operation mode of the air-conditioning equipment is the heating mode, the lowest temperature in the current ambient temperature is obviously the main pain point that causes the current indoor temperature to be uneven. Therefore, the region where the lowest temperature is located is determined as the target air supply region. To further adjust the target air supply area.
  • the highest and lowest values in this embodiment may correspond to a higher value range or a lower value range relative to the target temperature adjusted by the current air equipment, rather than just a higher or lower value range. The only number.
  • the above-mentioned target air supply area may be the corresponding position of the sensor that detects the ambient temperature, and the position on the sensor must correspond to the actual environmental space area in the environment, that is, the difference on the sensor can be set according to a large amount of experimental data in advance.
  • Correspondence between the location and the actual environmental space area for example, the location A1 on the sensor, corresponding to the area B1 in the environment, etc.
  • the target air supply area can also directly indicate the actual physical location space area. Obviously, the environmental space area needs to be established in advance at this time. Correspondence with the position of the sensor. Therefore, after obtaining the position on the sensor, query the correspondence to obtain the corresponding environmental space area.
  • Fig. 3 (a) Take an array infrared thermopile sensor with m rows and n columns as shown in Fig. 3 (a) as an example for detecting the ambient temperature.
  • the temperature detected by each unit of the array infrared thermopile sensor can form heat.
  • Sensitive effect map (the gray value is used in the figure to indicate that the larger the difference between the gray values, the more uneven the temperature distribution, and the numbers in the figure represent the ambient temperature of the indoor area corresponding to the position unit). It can be seen that the location of area 1-3 is a location where the temperature is significantly different from other areas, which is the main area that causes the uneven temperature distribution. Therefore, the area 1-3 shown in Fig. 3 (a) is used as the target air supply. Area, the target air supply area 1-3 corresponds to the space area 4-6 in the actual environment.
  • Step 103 Determine a target stay position of the air guide bar corresponding to the target air supply area.
  • the target air-supply area and the position of the air guide bar need to be mapped in advance. Therefore, after the target air-supply area is determined, the above-mentioned correspondence relationship is queried to obtain The target stay position of the air guide bar corresponding to the target air supply area. When the air guide bar is swayed at the target stay position, air can be supplied to the target air supply area.
  • the above step 103 includes:
  • Step 201 Obtain device parameters of a detection device for detecting temperature distribution.
  • the detection position corresponding to the detection device corresponds to the environmental space area. Therefore, in order to determine the corresponding target stay position, it is necessary to obtain the device parameters of the detection device used to detect the temperature distribution. For example, when the detection device is When the infrared thermopile sensor shown in FIG. 3 (a), the corresponding equipment parameter obtained is the number of rows M (not shown in the figure) where the target air supply area is located.
  • Step 202 Determine a reference position corresponding to a reference ambient temperature in the target air supply area according to an operating mode of the air-conditioning equipment.
  • the operation mode of the air-conditioning equipment when the operation mode of the air-conditioning equipment is a cooling mode, a region having a small difference in temperature from the cooling temperature corresponding to the current cooling mode is determined as the reference position.
  • the operation mode of the air-conditioning equipment is a heating mode, then An area with a small difference between the temperature and the heating temperature corresponding to the current cooling mode is determined as a reference position, where the reference ambient temperature corresponding to the reference position is an average temperature or a weighted temperature corresponding to the reference position.
  • Step 203 Calculate the device parameters and the reference position according to a preset algorithm to obtain the target stay position of the air guide bar corresponding to the target air supply area.
  • this space area is the position where the wind guide bar should adjust the swing time.
  • the reference position can assist in determining the position of the target air supply area.
  • the device parameters and the reference position are calculated to obtain the target stay position of the air guide bar corresponding to the target air supply area of the ambient temperature.
  • the swing range corresponding to the target stay position of the air guide bar is 93.75%, and the swingable range of the air guide bar is [0,100%].
  • Step 104 Determine a target staying time corresponding to the target staying position.
  • the air supply to the air guide strip of the environmental area corresponding to the target air supply area can be changed.
  • the current air guide strip is cold air
  • increasing the air supply time to the target air supply area can obviously increase the amount of cold air. Therefore, the lower the temperature of the target air supply area, the longer the air supply time. The higher the temperature is, the more obvious the temperature drop is.
  • increasing the air guide bar is warm air
  • increasing the air supply time to the target air supply area obviously increases the amount of warm air supply, thereby achieving a higher temperature in the target air supply area.
  • the lower the blowing time the greater the temperature increase.
  • the above step 105 includes:
  • Step 301 Calculate the average ambient temperature according to the environmental temperature distribution.
  • Step 302 Determine a reference ambient temperature in the target air supply area according to the operation mode of the air-conditioning equipment.
  • the reference ambient temperature may be an average value of the ambient temperature corresponding to the target air supply area.
  • Step 303 Calculate the temperature difference between the average ambient temperature and the reference ambient temperature.
  • Step 304 Determine a target stay duration corresponding to the target stay position according to the temperature difference and a preset strategy.
  • the corresponding target stay time is longer. Therefore, it is determined according to the temperature difference and the preset strategy.
  • the target stop time corresponding to the target stop position.
  • a correspondence relationship between a temperature difference and a target stay duration is established in advance, so as to query the correspondence relationship to obtain a corresponding target stay duration:
  • Th in the above table is the reference ambient temperature of the target air supply area
  • Ta is the average ambient temperature
  • the reference swing speed V can be 6 degrees / second (that is, one degree of movement every sixth second).
  • the reference ambient temperature is 27.9 ° C
  • the average ambient temperature is 25.1 ° C
  • the temperature difference is 2.8 ° C.
  • step 105 the air guide bar is controlled to swing at the target stay position according to the target stay time.
  • the air guide bar is controlled to stay at the target stay position to perform direct blowing and air blowing according to the target stay duration, so that the indoor environment is evenly distributed.
  • the wind deflector is controlled to swing at a normal swing position according to a preset reference swing speed without stopping.
  • the preset swing speed is a default swing speed of the air device in a corresponding operation mode. It should be emphasized that the normal swing position is a position other than the target swing position after the target swing position is determined.
  • the method for controlling an air-conditioning apparatus detects the distribution of the ambient temperature, determines the target air supply area of the ambient temperature according to the distribution of the ambient temperature and the operating mode of the air-conditioning apparatus, and determines the target of the ambient temperature.
  • the target stay position of the air guide bar corresponding to the air supply area determines the target stay time corresponding to the target stay position.
  • the air guide bar is controlled to stop swinging at the target stay position according to the target stay time.
  • FIG. 6 is a schematic structural diagram of a control device for an air conditioning device according to an embodiment of the present application.
  • the air conditioning device includes: a detection module 100, a first determination module 200, a second determination module 300, a third determination module 400, and a control module 500.
  • the detection module 100 is configured to detect an environmental temperature distribution.
  • the first determining module 200 is configured to determine a target air supply area according to an environmental temperature distribution and an operating mode of an air-conditioning apparatus.
  • the second determining module 300 is configured to determine a target stay position of the air guide bar corresponding to the target air supply region.
  • the third determining module 400 is configured to determine a target staying time corresponding to the target staying position.
  • the control module 500 is configured to control the air guide bar to stop swinging at the target stay position according to the target stay time.
  • control module 500 is further configured to control the air guide bar to swing at a preset reference swing speed in a normal swing position.
  • control device for an air-conditioning apparatus detects the temperature distribution of the environment, determines the target air supply area according to the environmental temperature distribution and the operation mode of the air-conditioning device, and determines a guide corresponding to the target air-supply area.
  • the target stay position of the wind bar determines the target stay time corresponding to the target stay position, and further, the wind guide bar is controlled to stop swinging at the target stay position according to the target stay time.
  • the present application also proposes an air-conditioning apparatus including a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program
  • the implementation is implemented as A method for controlling an air-conditioning apparatus according to the foregoing embodiment.
  • the air conditioning device includes an array-type infrared hotspot sensor electrically connected to the processor.
  • the present application also proposes a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the method for controlling an air conditioning device according to the foregoing embodiment is implemented.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, the meaning of "plurality” is at least two, for example, two, three, etc., unless it is specifically and specifically defined otherwise.
  • any process or method description in a flowchart or otherwise described herein can be understood as representing a module, fragment, or portion of code that includes one or more executable instructions for implementing steps of a custom logic function or process
  • the scope of the preferred embodiments of the present application includes additional implementations, in which the functions may be performed out of the order shown or discussed, including performing functions in a substantially simultaneous manner or in the reverse order according to the functions involved, which should It is understood by those skilled in the art to which the embodiments of the present application pertain.
  • a sequenced list of executable instructions that can be considered to implement a logical function can be embodied in any computer-readable medium,
  • the instruction execution system, device, or device such as a computer-based system, a system including a processor, or other system that can fetch and execute instructions from the instruction execution system, device, or device), or combine these instruction execution systems, devices, or devices Or equipment.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wirings, portable computer disk cartridges (magnetic devices), random access memory (RAM), Read-only memory (ROM), erasable and editable read-only memory (EPROM or flash memory), fiber optic devices, and portable optical disk read-only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable Processing to obtain the program electronically and then store it in computer memory.
  • each part of the application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic circuits with logic gates for implementing logic functions on data signals Logic circuits, ASICs with suitable combinational logic gate circuits, programmable gate arrays (PGA), field programmable gate arrays (FPGAs), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist separately physically, or two or more units may be integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software functional modules. If the integrated module is implemented in the form of a software functional module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

一种空气调节设备控制方法,包括:步骤(101),检测环境温度分布情况;步骤(102),根据环境温度分布情况和空气调节设备的运行模式确定目标送分各区域;步骤(103),确定与目标送风区域对应的导风条的目标停留位置;步骤(104),确定与目标停留位置对应的目标停留时长;步骤(105),控制导风条在目标停留位置按照目标停留时长停止摇摆。还涉及一种空气调节设备的控制装置。由此,提高了空气设备调节温度的分布均匀性,提升了用户舒适度。

Description

空气调节设备及其控制方法和装置
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司和美的集团股份有限公司于2018年06月29日提交的、申请名称为“空气调节设备及其控制方法和装置”的、中国专利申请号“201810699356.7”的优先权。
技术领域
本申请涉及智能家电技术领域,尤其涉及一种空气调节设备及其控制方法和装置。
背景技术
随着制造技术的进步,空调等空气调节设备也逐渐走进用户的生活,其中,空调等空气调节设备具有垂直导风条,当用户按下遥控器的左右扫风按键,空调器控制垂直导风条实现左右来回送风;当用户再次按下左右扫风按键时,空调器控制垂直导风条停在当前位置,以固定的方向进行送风。
然而,相关技术中,左右送风方式主要把大部分的制冷/制热量输出到空调的正前方,使整个房间的温度分布不均匀,造成房间两侧的温度与中间的温度差较大,影响服务质量。
申请内容
本申请提供一种空气调节设备及其控制方法和装置,以解决现有技术中,空气调节温度不均匀,从而导致用户舒适感不高的技术问题。
本申请提供一种空气调节设备的控制方法,所述方法包括以下步骤:检测环境温度分布情况;根据所述环境温度分布情况和所述空气调节设备的运行模式确定目标送风区域;确定与所述目标送风区域对应的导风条的目标停留位置;确定与所述目标停留位置对应的目标停留时长;控制所述导风条在所述目标停留位置按照所述目标停留时长停止摇摆。
本申请另一实施例提供一种空气调节设备的控制装置,包括:检测模块,用于检测环境温度分布情况;第一确定模块,用于根据所述环境温度分布情况和所述空气调节设备的运行模式确定目标送风区域;第二确定模块,用于确定与所述目标送风区域对应的导风条的目标停留位置;第三确定模块,用于确定与所述目标停留位置对应的目标停留时长;控制模块,用于控制所述导风条在所述目标停留位置按照所述目标停留时长停止摇摆。
本申请又一实施例提供一种空气调节设备,包括:存储器、处理器及存储在存储器上 并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述实施例所述的空气调节设备的控制方法。
本申请还一实施例提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现如前述实施例所述的空气调节设备的控制方法。
本申请实施例提供的技术方案可以包括以下有益效果:
检测环境温度分布情况,根据环境温度分布情况和空气调节设备的运行模式确定目标送风区域,确定与目标送风区域对应的导风条的目标停留位置,确定与目标停留位置对应的目标停留时长,进而,控制导风条在目标停留位置按照目标停留时长停止摇摆。由此,提高了空气设备调节温度的分布均匀性,提升了用户舒适性。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本申请一个实施例的空气调节设备的控制方法的流程图;
图2(a)是根据本申请一个实施例的环境温度检测设备的结构示意图;
图2(b)是根据本申请另一个实施例的环境温度检测设备的结构示意图;
图2(c)是根据本申请又一个实施例的环境温度检测设备的结构示意图;
图3(a)是根据本申请一个实施例的空气调节设备的控制方法的应用场景示意图;
图3(b)是根据本申请另一个实施例的空气调节设备的控制方法的应用场景示意图;
图4是根据本申请另一个实施例的空气调节设备的控制方法的流程图;
图5是根据本申请又一个实施例的空气调节设备的控制方法的流程图;以及
图6是根据本申请一个实施例的空气调节设备的控制装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空气调节设备及其控制方法和装置。其中,空气调节设备包括各种通过导风条调节室温的设备。
图1是根据本申请一个实施例的空气调节设备的控制方法的流程图,如图1所示,该 方法包括:
步骤101,检测环境温度分布情况。
其中,本申请中的环境温度主要指的是室内环境温度。
应当理解的是,在实际生活中,当室内温度调节的不均匀时,用户在经过不同温度所在区域时由于体感具有较大跨度从而导致舒适感大大降低,因而,提高室内温度调节的均匀性,以使得用户感受到处在一个相对稳定的温度空间内,对用户的体感舒适性具有重要意义。
在不同的实施例中,检测环境温度分布情况的方式不同,示例说明如下:
示例一:
在本示例中,预先在室内的不同位置设置温度传感器,多个温度传感器到覆盖的温度检测范围包括整个室内物理空间环境,从而,根据温度传感器的检测结果确定环境温度分布情况。
示例二:
在本示例中,通过阵列式红外热电堆传感器检测环境温度分布情况,其中,阵列式红外热电堆传感器可以检测整个室内空间的温度分布情况,其中,如图2(a)所示,阵列式红外热电堆传感器可以是一个具有m行和n列的矩阵,当然,在不同的应用场景下,红外热电堆传感器也可以是其他满足对应场景的形状,如图2(b)所示,阵列式红外热电堆传感器可以是一个三角形,如图2(c)所示,阵列式红外热电堆传感器可以是一个圆环形等。
步骤102,根据环境温度分布情况和空气调节设备的运行模式确定目标送风区域。
其中,空气调节设备的运行模式主要包括制冷模式和制热模式。
具体地,根据环境温度分布情况,确定与当前空气调节设备的运行模式对应的目标送风区域,该目标送风区域是与其他区域温度相差较大的区域,其中目标送风区域的个数可以为大于等于一个。
在本申请的一个实施例中,当空气调节设备的运行模式为制冷模式时,根据最高温度确定环境温度的目标送风区域,容易理解的是,当空气调节设备的运行模式为制冷模式时,当前环境温度中最高温度显然是导致当前室内温度不均匀的主要痛点,因而,将该最高温度所在区域确定为目标送风区域,以便于进一步对目标送风区域进行调节。
在本申请的另一个实施例中,当空气调节设备的运行模式为制热模式时,根据最低温度确定环境温度的目标送风区域。容易理解的是,当空气调节设备的运行模式为制热模式时,当前环境温度中最低温度显然是导致当前室内温度不均匀的主要痛点,因而,将该最低温度所在区域确定为目标送风区域,以便于进一步对目标送风区域进行调节。
需要强调的是,本实施例中的最高和最低,可以对应于相对当前空气设备调节的目标 温度的一个较高的数值范围或者较低的数值范围,而不仅仅是一个较高的或较低的唯一的数字。
在实际执行过程中,上述目标送风区域可以是检测环境温度的传感器的对应位置,该传感器上的位置必然与环境中的实际环境空间区域对应,即可以预先根据大量实验数据设置传感器上的不同位置与实际环境空间区域对应关系,比如,传感器上的位置A1,对应环境中的区域B1等,该目标送风区域也可以直接指示实际物理位置空间区域,显然,此时需要预先建立环境空间区域与传感器位置的对应关系,从而,在获取到传感器上的位置后,查询该对应关系,获取对应的环境空间区域。
以检测环境温度的为如图3(a)所示的具有m行和n列的阵列式红外热电堆传感器为例,此时可以将阵列式红外热电堆传感器每个单元检测出的温度形成热感效果图(图中使用灰度值表示,灰度值差距越大,代表温度分布越不均匀,图中的数字代表该位置单元对应的室内区域的环境温度),则根据热感图可以清晰地看出区域1-3所在位置为温度与其他区域差距明显的位置,是导致环境温度分布不均匀的主要区域所在,从而,将图3(a)所示的区域1-3作为目标送风区域,该目标送风区域1-3与实际环境中的空间区域4-6对应。
步骤103,确定与目标送风区域对应的导风条的目标停留位置。
具体地,需要根据空气调节设备以及室内空间的位置关系,预先将目标送风区域与导风条的位置进行对应,从而,在确定目标送风区域后,查询上述对应关系,获取与环境温度的目标送风区域对应的导风条的目标停留位置,该导风条在目标停留位置进行摇摆时,可以实现对目标送风区域的送风。
在本申请的一个实施例中,如图4所示,上述步骤103包括:
步骤201,获取用于检测温度分布情况的检测设备的设备参数。
正如以上分析的,检测设备对应的检测位置与环境空间区域对应,因而,为了确定出对应的目标停留位置,需要获取用于检测温度分布情况的检测设备的设备参数,比如,当检测设备为如图3(a)所示的红外热电堆传感器时,获取到对应的设备参数为目标送风区域所在的行数M(图中未示出)。
步骤202,根据空气调节设备的运行模式,确定目标送风区域中的参考环境温度对应的参考位置。
具体地,当空气调节设备的运行模式为制冷模式时,则将温度与当前制冷模式对应的制冷温度相差较小的区域确定为参考位置,当空气调节设备的运行模式为制热模式时,则将温度与当前制冷模式对应的制热温度相差较小的区域确定为参考位置,其中,参考位置对应的参考环境温度为对应参考位置的平均温度或加权温度等。
步骤203,按照预设算法对设备参数和参考位置进行计算,获取与目标送风区域对应的 导风条的目标停留位置。
应当理解的是,由于设备参数与环境空间区域对应,该空间区域即为导风条应当调整摇摆时长的位置,参考位置可以辅助确定出目标送风区域的位置,因而,可以按照预设算法对设备参数和参考位置进行计算,获取与环境温度的目标送风区域对应的导风条的目标停留位置。
继续以如图3(a)所示的红外热电堆传感器为例,获取到对应的设备参数为目标送风区域所在的行数M后,根据参考位置确定参考位置所在列为[0,M-1],[M+1,m],则确定目标送风区域为M列,进而将100*M/m确定为导风条的目标停留位置。
举例而言,当M为30时,则确定的导风条的目标停留位置对应的摇摆范围为93.75%,其中,导风条的可摇摆范围为[0,100%]。
步骤104,确定与目标停留位置对应的目标停留时长。
应当理解的是,为了实现目标送风区域的温度与其他区域的温度的温差的降低,以提高环境温度分布均匀性,可以通过改变对目标送风区域对应的环境区域的导风条的送风时长来实现,比如,如果当前导风条为送冷风,则提高对目标送风区域的送风时长显然可以提高送冷风量,从而,实现对目标送风区域的温度较低,送风时长越高,降低温度越明显,又比如,如果当前导风条为送暖风,则提高对目标送风区域的送风时长显然可以提高送暖风量,从而,实现对目标送风区域的温度提高,送风时长越低,温度提高越大。
具体地,为了实现对目标送风区域对应的环境温度的调节适当,使得目标送风区域对应的环境温度与其他区域对应的环境温度差距较小,基于以上分析,需要把握住送风时长,即需要确定与目标停留位置对应的目标停留时长,从而,在该目标停留位置停留目标停留时长进行直吹送风,提高送风量。
在本申请的一个实施例中,如图5所示,上述步骤105包括:
步骤301,根据环境温度分布情况计算环境平均温度。
步骤302,根据空气调节设备的运行模式,确定目标送风区域中的参考环境温度。
其中,参考环境温度可以为目标送风区域对应的环境温度的平均值。
步骤303,计算环境平均温度和参考环境温度之间的温差。
步骤304,根据温差和预设策略确定与目标停留位置对应的目标停留时长。
容易理解的是,环境平均温度和参考环境温度之间的温差越大,则目标送风区域需要调整的温度越多,从而,对应的目标停留时长越大,因而,根据温差和预设策略确定与目标停留位置对应的目标停留时长。
在本申请的一个实施例中,如下表1所示,预先建立温差与目标停留时长的对应关系,从而查询该对应关系,获取对应的目标停留时长:
表1
Figure PCTCN2018113499-appb-000001
其中,上表中的Th为目标送风区域的参考环境温度,Ta为环境平均温度,参考摇摆速度V可以为6度/秒(即每六分之一秒移动一度),举例而言,当参考环境温度为27.9℃,环境平均温度为25.1℃,温差为2.8℃,查询上述对应关系获取到对应的目标停留时长为25s次。
步骤105,控制导风条在目标停留位置按照目标停留时长摇摆。
具体地,控制导风条在目标停留位置按照目标停留时长停留进行直吹送风,从而使得室内环境分布均匀。
举例而言,继续以图3(a)所示的场景为例,在按照目标停留时长停留直吹30分钟后,如图3(b)所示,此时根据阵列式红外热电堆传感器检测环境温度分布情况的热力图,显然此时环境分布情况分布趋于平均,温度均匀性调节效果显著,实用性较强。
在本申请的一个实施例中,控制导风条在正常摇摆位置按照预设的参考摇摆速度摇摆,不进行停留,其中,预设的摇摆速度为空气设备在对应运行模式下默认的摇摆速度。需要强调的是,正常摇摆位置为在确定目标摇摆位置之后,除目标摇摆位置之外的其他位置。
综上所述,本申请实施例的空气调节设备的控制方法,检测环境温度分布情况,根据环境温度分布情况和空气调节设备的运行模式确定环境温度的目标送风区域,确定与环境温度的目标送风区域对应的导风条的目标停留位置,确定与目标停留位置对应的目标停留时长,进而,控制导风条在目标停留位置按照目标停留时长停止摇摆。由此,提高了空气设备调节温度的分布均匀性,提升了用户舒适性。
为了实现上述实施例,本申请还提出了一种空气调节设备的控制装置,图6是根据本 申请一个实施例的空气调节设备的控制装置的结构示意图,如图6所示,该空气调节设备的控制装置包括:检测模块100、第一确定模块200、第二确定模块300、第三确定模块400和控制模块500。
其中,检测模块100,用于检测环境温度分布情况。
第一确定模块200,用于根据环境温度分布情况和空气调节设备的运行模式确定目标送风区域。
第二确定模块300,用于确定与目标送风区域对应的导风条的目标停留位置。
第三确定模块400,用于确定与目标停留位置对应的目标停留时长。
控制模块500,用于控制导风条在目标停留位置按照目标停留时长停止摇摆。
在本申请的一个实施例中,控制模块500还用于控制导风条在正常摇摆位置按照预设的参考摇摆速度摇摆。
需要说明的是,前述集中在空气调节设备的控制方法侧描述的实施例,也适用于本申请实施例的空气调节设备的控制装置,其实现原理类似,在此不再赘述。
综上所述,本申请实施例的空气调节设备的控制装置,检测环境温度分布情况,根据环境温度分布情况和空气调节设备的运行模式确定目标送风区域,确定与目标送风区域对应的导风条的目标停留位置,确定与目标停留位置对应的目标停留时长,进而,控制导风条在目标停留位置按照目标停留时长停止摇摆。由此,提高了空气设备调节温度的分布均匀性,提升了用户舒适性。
为了实现上述实施例,本申请还提出了一种空气调节设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述实施例所述的空气调节设备的控制方法。
在本申请的一个实施例中,空气调节设备包括与处理器电连接的阵列式红外热点堆传感器。
为了实现上述实施例,本申请还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如前述实施例所述的空气调节设备的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一 个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可 以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种空气调节设备的控制方法,其特征在于,所述方法包括以下步骤:
    检测环境温度分布情况;
    根据所述环境温度分布情况和所述空气调节设备的运行模式确定目标送风区域;
    确定与所述目标送风区域对应的导风条的目标停留位置;
    确定与所述目标停留位置对应的目标停留时长;
    控制所述导风条在所述目标停留位置按照所述目标停留时长停止摇摆。
  2. 根据权利要求1所述的控制方法,其特征在于,还包括:
    控制所述导风条在正常摇摆位置按照预设的参考摇摆速度摇摆。
  3. 根据权利要求1或2所述的控制方法,其特征在于,所述检测环境温度分布情况,包括:
    通过阵列式红外热电堆传感器检测环境温度分布情况。
  4. 根据权利要求1-3任一所述的控制方法,其特征在于,所述根据所述环境温度分布情况和所述空气调节设备的运行模式确定目标送风区域,包括:
    当所述空气调节设备的运行模式为制冷模式时,根据最高温度确定所述目标送风区域;
    当所述空气调节设备的运行模式为制热模式时,根据最低温度确定所述目标送风区域。
  5. 根据权利要求1-4任一所述的控制方法,其特征在于,所述确定与所述目标送风区域对应的导风条的目标停留位置,包括:
    获取用于检测温度分布情况的检测设备的设备参数;
    根据所述空气调节设备的运行模式,确定所述目标送风区域中的参考环境温度对应的参考位置;
    按照预设算法对所述设备参数和所述参考位置进行计算,获取与所述目标送风区域对应的导风条的目标停留位置。
  6. 根据权利要求1-5任一所述的控制方法,其特征在于,所述确定与所述目标停留位置对应的目标停留时长,包括:
    根据所述环境温度分布情况计算环境平均温度;
    根据所述空气调节设备的运行模式,确定所述目标送风区域中的参考环境温度;
    计算所述环境平均温度和所述参考环境温度之间的温差;
    根据所述温差和预设策略确定与所述目标停留位置对应的目标停留时长。
  7. 一种空气调节设备的控制装置,其特征在于,包括:
    检测模块,用于检测环境温度分布情况;
    第一确定模块,用于根据所述环境温度分布情况和所述空气调节设备的运行模式确定目标送风区域;
    第二确定模块,用于确定与所述目标送风区域对应的导风条的目标停留位置;
    第三确定模块,用于确定与所述目标停留位置对应的目标停留时长;
    控制模块,用于控制所述导风条在所述目标停留位置按照所述目标停留时长停止摇摆。
  8. 如权利要求7所述的装置,其特征在于,
    所述控制模块,还用于控制所述导风条在正常摇摆位置按照预设的参考摇摆速度摇摆。
  9. 一种空气调节设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-6中任一所述的控制方法。
  10. 如权利要求9所述的空气调节设备,其特征在于,所述空气调节设备还包括与所述处理器电连接的阵列式红外热电堆传感器。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1-6中任一所述的空气调节设备的控制方法。
PCT/CN2018/113499 2018-06-29 2018-11-01 空气调节设备及其控制方法和装置 WO2020000839A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810699356.7A CN109059223A (zh) 2018-06-29 2018-06-29 空气调节设备及其控制方法和装置
CN201810699356.7 2018-06-29

Publications (1)

Publication Number Publication Date
WO2020000839A1 true WO2020000839A1 (zh) 2020-01-02

Family

ID=64818538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/113499 WO2020000839A1 (zh) 2018-06-29 2018-11-01 空气调节设备及其控制方法和装置

Country Status (2)

Country Link
CN (1) CN109059223A (zh)
WO (1) WO2020000839A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111486578A (zh) * 2020-04-23 2020-08-04 五邑大学 一种空调器控制装置、方法和设备
CN114427744B (zh) * 2020-10-29 2023-08-18 重庆海尔空调器有限公司 一种空调器的控制方法及控制设备
CN112432325A (zh) * 2020-11-16 2021-03-02 青岛海尔空调器有限总公司 一种空调器的控制方法和控制设备
CN115013956A (zh) * 2022-06-10 2022-09-06 广东海悟科技有限公司 空调的风摆角度控制方法、装置和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452550B2 (ja) * 2006-09-07 2014-03-26 三菱電機株式会社 空気調和機
CN104279710A (zh) * 2014-10-08 2015-01-14 广东美的制冷设备有限公司 空调控制方法、系统及空调设备
CN105352106A (zh) * 2014-08-22 2016-02-24 珠海格力电器股份有限公司 人体检测方法和装置、空调器及其控制方法和装置
CN105890121A (zh) * 2016-05-09 2016-08-24 珠海格力电器股份有限公司 一种空调的控制方法、装置及空调
CN107120787A (zh) * 2017-04-24 2017-09-01 青岛海尔空调器有限总公司 空调的控制方法
CN107514685A (zh) * 2017-08-01 2017-12-26 青岛海尔空调器有限总公司 壁挂式空调室内机及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5452550B2 (ja) * 2006-09-07 2014-03-26 三菱電機株式会社 空気調和機
CN105352106A (zh) * 2014-08-22 2016-02-24 珠海格力电器股份有限公司 人体检测方法和装置、空调器及其控制方法和装置
CN104279710A (zh) * 2014-10-08 2015-01-14 广东美的制冷设备有限公司 空调控制方法、系统及空调设备
CN105890121A (zh) * 2016-05-09 2016-08-24 珠海格力电器股份有限公司 一种空调的控制方法、装置及空调
CN107120787A (zh) * 2017-04-24 2017-09-01 青岛海尔空调器有限总公司 空调的控制方法
CN107514685A (zh) * 2017-08-01 2017-12-26 青岛海尔空调器有限总公司 壁挂式空调室内机及其控制方法

Also Published As

Publication number Publication date
CN109059223A (zh) 2018-12-21

Similar Documents

Publication Publication Date Title
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
WO2020000551A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
US10627130B2 (en) Air conditioning system, indoor unit of air conditioning system and method for controlling the same
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
WO2019075785A1 (zh) 空调系统及其化霜控制方法和装置
CN108954709B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000838A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018166372A1 (zh) 空调器控制方法
WO2020134124A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN107906692B (zh) 厨房空调器控制方法、厨房空调器及存储介质
CN108444080A (zh) 空调器的控制方法以及空调器
WO2019144940A1 (zh) 一种基于温冷感的空调器控制方法和空调器
CN108917120A (zh) 空气调节设备的控制方法、装置、设备及存储介质
WO2020000836A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN104279710A (zh) 空调控制方法、系统及空调设备
CN104729001A (zh) 一种空调控制方法、装置及系统
JP7220787B2 (ja) 空気調和機器の制御方法、制御装置及び空気調和機器
US20180283721A1 (en) Multi-type air conditioning system and anti-cold-air control method and apparatus of indoor unit thereof
CN109668267B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN113446711A (zh) 空调器的控制方法及装置、空调器和计算机可读存储介质
WO2020000552A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
CN108954723A (zh) 空气调节设备及其控制方法和装置
CN109668264B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN109724221B (zh) 空气调节设备的控制方法、装置和空气调节设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18924472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/05/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18924472

Country of ref document: EP

Kind code of ref document: A1