WO2020134124A1 - 空气调节设备的控制方法、装置和空气调节设备 - Google Patents

空气调节设备的控制方法、装置和空气调节设备 Download PDF

Info

Publication number
WO2020134124A1
WO2020134124A1 PCT/CN2019/101735 CN2019101735W WO2020134124A1 WO 2020134124 A1 WO2020134124 A1 WO 2020134124A1 CN 2019101735 W CN2019101735 W CN 2019101735W WO 2020134124 A1 WO2020134124 A1 WO 2020134124A1
Authority
WO
WIPO (PCT)
Prior art keywords
cold
ambient temperature
value
heat
air
Prior art date
Application number
PCT/CN2019/101735
Other languages
English (en)
French (fr)
Inventor
郑伟锐
梁文潮
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Priority to JP2021529341A priority Critical patent/JP2022515972A/ja
Publication of WO2020134124A1 publication Critical patent/WO2020134124A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/10Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2120/00Control inputs relating to users or occupants
    • F24F2120/10Occupancy

Definitions

  • the present application relates to the technical field of household appliances, and in particular to a control method and device of air conditioning equipment and air conditioning equipment.
  • Air conditioning equipment can realize automatic control of the current environment.
  • infrared thermopile sensors are used to detect the surface temperature of heat sources (for example, the human body) and other information to calculate the cold and hot sense of the human body.
  • the value of the cold and hot sense value reflects the degree of cold and heat of the human body , Automatically control the air conditioner according to the determined cold and heat sense value to achieve air conditioning.
  • the actual home environment is generally more complicated in actual detection.
  • the air conditioner according to the cold and heat sense values the environment cannot be adjusted to a state where the human body feels comfortable, and the accuracy of the adjustment is low, which greatly affects the user experience.
  • This application aims to solve one of the technical problems in the related art at least to a certain extent.
  • this application proposes a control method for air conditioning equipment, which corrects the cold and hot sense values of the detected heat source by the ambient temperature, improves the accuracy of the cold and heat sense values, and avoids the presence of other heat sources in the environment.
  • the air conditioning equipment continuously adjusts the environmental parameters to a value range that is not suitable for the human body, and improves the accuracy of the automatic adjustment of the air conditioning equipment.
  • This application proposes a control device for air conditioning equipment.
  • This application proposes an air conditioning device.
  • This application proposes a computer-readable storage medium.
  • An embodiment of the present application provides a method for controlling air conditioning equipment, including:
  • control device for air conditioning equipment including:
  • the detection module is used to determine the thermal sense value of the heat source according to the environmental parameter detection result of the current environment
  • the correction module is used to correct the cold and hot sensed value according to the ambient temperature
  • the control module is used to reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cooling and heating sense value.
  • An embodiment of another aspect of the present application provides an air-conditioning apparatus, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the implementation is as described above The control method described in one aspect.
  • An embodiment of another aspect of the present application provides a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the control method as described in the foregoing aspect is implemented.
  • the heat and cold sense values of the heat source determine the heat and cold sense values of the heat source, correct the detected heat and cold sense values according to the ambient temperature, and reduce the cooling capacity or the system of the air conditioning equipment according to the corrected cold and heat sense values Heat, correct the detected cold and heat sense value through the ambient temperature, improve the accuracy of the cold and heat sense value, and avoid other heat sources present in the environment, causing the air conditioning equipment to continuously adjust the environmental parameter to an unsuitable
  • the numerical range of the human body improves the accuracy of automatic adjustment of air conditioning equipment.
  • FIG. 1 is a schematic flowchart of a method for controlling an air-conditioning device provided by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of another method for controlling an air-conditioning device provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of the ambient temperature distribution before correction provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a control device of an air conditioning device according to an embodiment of the present application.
  • FIG. 1 is a schematic flowchart of a method for controlling an air-conditioning device according to an embodiment of the present application.
  • the method includes the following steps:
  • Step 101 Determine the heat and cold sense value of the heat source according to the detection result of the environment parameters of the current environment.
  • the heat source is an object in the current environment, such as a human body, a teapot, etc., which is detected by environmental parameters.
  • the parameters obtained by the air conditioning device itself are detected, for example, by the array type of the air conditioning device
  • the value of the cold and heat sense value reflects the degree of heat and coldness of the heat source, that is, the larger the cold and heat sense value, the higher the temperature of the heat source, that is, the hotter, the smaller the cold and heat sense value, the lower the temperature of the heat source, that is The colder.
  • the maximum cold and heat sense value of the multiple heat sources is used as the detected cold and heat sense value, or the multiple cold and heat sense values are used Take the average value, and use the average cold and heat sense value as the detected cold and heat sense value.
  • the user's cold and heat sensation value is related to the user's personal physique and exercise intensity.
  • real-time collection and labeling can be performed according to the user's personal situation, etc.
  • Big data establishes a model of the reference temperature of the user's body surface and the user's hot and cold sense values (in this example, a large number of user cold and heat sense values, user's body surface temperature and the area of the air deflector of the air conditioning equipment, the performance of the motor and other hardware are collected Parameters, based on a large amount of collected experimental data to establish a model of the user's body surface reference temperature and the user's hot and cold sense value.
  • the cold and hot sense model can also be combined with various user physiological parameter settings, etc., where the cold
  • the unit is W/m2
  • K is the heat dissipation generated by conduction
  • the unit is W/m2.
  • Esk is the heat dissipation caused by the evaporation of skin moisture.
  • the unit is W/m2, Eres is the heat dissipation caused by the evaporation of exhaled water, the unit is W/m2Cres is the heat dissipation flow generated by exhaled convection, and the unit is W/m2), which is used for calculation and user according to the model The user's cold and hot sense value corresponding to the reference temperature on the body surface.
  • the expression formula of the cooling and heating model introduced in this embodiment is only an example, and those skilled in the art can select a suitable cooling and heating model according to the actual situation, for example, by increasing or decreasing the cooling
  • the parameters in the expression formula of the thermal model to meet the needs of the actual situation will not be repeated here.
  • Step 102 according to the ambient temperature, correct the detected thermal and thermal sense values.
  • the ambient temperature determine the corresponding compensation value or compensation coefficient in the operating mode of the air conditioning equipment, and add the compensation value to the detected cold and heat sense value to obtain the corrected cold and heat sense value, or, The compensation coefficient is multiplied by the detected cold and heat sense value to obtain the corrected cold and heat sense value, and the cold and heat sense value is compensated by the ambient temperature, thereby improving the accuracy of the cold and heat sense value.
  • the compensation value or compensation coefficient corresponding to the ambient temperature is determined in advance. As a possible implementation, it may be determined in advance according to the operating mode of the air conditioner through a large amount of experimental data, which is not limited in this embodiment .
  • Step 103 Reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cold and heat sense value.
  • the air guide bar swing speed is reduced, or, according to the corrected hot and cold sense value, the air speed of the air conditioning device is reduced, or, according to the corrected The cooling and heating sense value, lower the set temperature of the air conditioning equipment in the heating operation mode, and increase the set temperature of the air conditioning equipment in the cooling operation mode, which improves the accuracy of the automatic control of the air conditioning equipment to the user Bring a comfortable experience.
  • the cooling capacity or the heating capacity may be specifically adjusted by the air supply volume.
  • the cooling capacity or heating capacity of the air conditioning equipment can be determined by the following formula:
  • Q 0 represents the cooling capacity or heating capacity
  • i C and i D represent the air enthalpy before and after the evaporator
  • G represents the air supply volume.
  • i C and i D can be adjusted by increasing or decreasing the compressor power.
  • the cooling capacity or heating capacity of the air conditioning equipment at the corresponding air supply angle needs to be increased according to the ambient temperature distribution, it can be done by increasing the air supply amount while the value of (i C -i D ) remains unchanged. G, to increase the cooling capacity or heating capacity of air conditioning equipment.
  • the air supply volume can be reduced by reducing the air supply amount while the value of (i C -i D ) remains unchanged. G, to reduce the cooling capacity or heating capacity of air conditioning equipment.
  • control methods such as adjusting the wind speed, adjusting the speed of the air guide bar and the duration of the suspension can be specifically used, and several control methods can also be combined to improve the adjustment efficiency of the cooling capacity or the heating capacity. .
  • several possible implementations will be described separately.
  • the air speed of the air supply may be adjusted according to the corresponding control parameter.
  • the greater the maximum value of the temperature difference in the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, thus the cooling capacity corresponding to the air supply angle
  • the greater the heating capacity the smaller the maximum value of the temperature difference in the air supply position.
  • the corresponding air speed of the air supply is smaller, thereby supplying air
  • the cooling capacity or heating capacity corresponding to the angle is smaller.
  • the swing speed of the air guide bar is adjusted according to the corresponding control parameter.
  • the larger the maximum value of the temperature difference at the air supply position the smaller the swing speed of the air guide bar when the air guide bar of the air conditioning device swings to the corresponding air supply angle, thus the cooling corresponding to the air supply angle.
  • the greater the amount or heating capacity, and the smaller the maximum value of the temperature difference in the air supply position the greater the swing speed of the air guide bar when the air guide bar swings to the corresponding air supply angle, so that the The cooling capacity or heating capacity corresponding to the air supply angle is smaller.
  • the pause swing time of the air guide bar is adjusted according to the corresponding control parameter.
  • the greater the maximum value of the temperature difference at the air supply position the longer the suspension of the air guide bar swings when the air guide bar swings to the corresponding air supply angle, so that the air supply angle corresponds to
  • the greater the cooling capacity or heating capacity, and the smaller the maximum value of the temperature difference in the air supply position the smaller the suspension swing time of the air guide bar when the air guide bar swings to the corresponding air supply angle, Therefore, the smaller the cooling capacity or the heating capacity corresponding to the blowing angle.
  • the air speed of the air supply and the swing speed of the air guide bar are adjusted according to the corresponding control parameters.
  • the greater the maximum value of the temperature difference in the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, and the greater the swing speed of the air guide bar
  • the smaller the cooling capacity or heating capacity corresponding to the air supply angle the smaller the maximum value of the temperature difference at the air supply position.
  • the air speed of the air supply and the suspension swing time of the air guide bar are adjusted according to the corresponding control parameters.
  • the greater the maximum value of the temperature difference of the air supply position the greater the wind speed of the corresponding air supply when the air guide bar of the air conditioning device swings to the corresponding air supply angle, and the duration of the suspension of the air guide bar
  • the cold and hot sense values of the heat source are determined according to the detection results of the current environmental parameters, the detected cold and hot sense values are corrected according to the ambient temperature, and the corrected cold and hot Sensing value, reduce the cooling capacity or heating capacity of the air conditioning equipment, correct the detected cold and hot sense value through the ambient temperature, improve the accuracy of the cold and heat sense value, on the one hand avoid other heat sources present in the environment, Causes the air conditioning equipment to continuously adjust the environmental parameters to a value range that is not suitable for the human body, improving the accuracy of the automatic adjustment of the air conditioning equipment.
  • FIG. 2 is a schematic flowchart of another method for controlling an air-conditioning device according to an embodiment of the present application.
  • the method may include the following steps:
  • step 201 according to the detection result of the environmental parameters of the current environment, the cold and hot sense value of the heat source is determined.
  • the ambient temperature distribution is detected by the array-type infrared thermopile sensor, and the cold and heat sense value of the heat source is determined according to the ambient temperature distribution and the operation mode of the air conditioning equipment.
  • the air conditioning device is an air conditioner
  • the air conditioning operation mode is a cooling mode as an example for illustration.
  • FIG. 3 is a schematic diagram of the ambient temperature distribution before correction provided by an embodiment of the present application.
  • the air conditioner is in the cooling mode
  • the environment is detected by the array infrared thermopile sensor, and the corresponding different temperature distributions in the environment temperature distribution diagram are detected, as shown in FIG. 3.
  • Identify the highest temperature area in the temperature distribution diagram as the heat source area that is, the area A corresponding to the dotted rectangular frame indicated by the arrow in FIG. 3, and determine the temperature of the heat source according to the heat source area.
  • the highest heat source area The temperature value is the temperature value of the heat source, or the average value of the temperature values in the heat source area is used as the temperature value of the heat source, and the cooling value of the heat source is determined according to the correspondence between the preset temperature value of the heat source and the cold and heat sense value Thermal value.
  • the figure only shows the case where one heat source is included. In actual application, there may be more than one heat source in the environment. If there are multiple heat sources, the maximum cooling value of the cold and heat sense values of the multiple heat sources The thermal sense value is used as the detected thermal sense value, or the thermal sense values of multiple heat sources are averaged, and the average thermal sense value is used as the detected thermal sense value.
  • Step 202 Obtain the ambient temperature distribution, and determine the ambient temperature for the background area other than the heat source area according to the ambient temperature distribution.
  • the ambient temperature distribution is detected by an array-type infrared thermopile sensor and is used to indicate the ambient temperature of each area.
  • the ambient temperature is determined for the background area other than the heat source area.
  • the temperature of the background area is averaged as the ambient temperature, that is, the In the ambient temperature distribution diagram shown, the temperature values of the areas other than the area A corresponding to the heat source indicated by the arrow are averaged and used as the ambient temperature.
  • step 203 it is determined that the ambient temperature is within the set temperature range, so as to determine the corresponding compensation value or compensation coefficient.
  • the ambient temperature of the background area is within the set temperature range, and if it is within the set temperature range, the cold and heat sensation value calculated above is compensated.
  • the temperature range can be divided into different temperature range intervals, and the temperature range interval has a corresponding relationship with the compensation value, that is, the different temperature range interval corresponds to the unused compensation value, that is, When the ambient temperature is within the set temperature range, the corresponding compensation value can be determined.
  • the ambient temperature in the background area and the compensation value are in a positive relationship, that is, Said that the ambient temperature of the background area increases, the corresponding compensation value also increases.
  • the increase of the compensation value may be a fixed ratio or a fixed value increase with the increase of the ambient temperature of the background area, for example , When the ambient temperature of the background area is 23 degrees Celsius, the compensation value is -1, and when the ambient temperature of the background area is 25 degrees Celsius, the compensation value is -0.5, and when the ambient temperature of the background area is 26 degrees Celsius, the compensation value is 0, That is, the compensation value increases with a fixed increase of +0.5 as the ambient temperature of the background area increases.
  • the increase in the compensation value may also be increased in an unfixed proportion or in an unfixed value with the increase in the ambient temperature of the background area.
  • the compensation value is -1, and when the ambient temperature of the background area is 25 degrees Celsius, the compensation value is -0.5, and when the ambient temperature of the background area is 26 degrees Celsius, the compensation value is -0.1, that is, the increase of the compensation value is not a fixed ratio
  • the way of increasing the unfixed value increases with the increase of the ambient temperature of the background area.
  • Table 1-1 shows the relationship between the temperature range interval and the corresponding compensation value in cooling mode.
  • the temperature range may be divided into different temperature range intervals, and the temperature range interval has a corresponding relationship with the compensation coefficient, that is, the different temperature range interval corresponds to the unused compensation coefficient, that is to say , Determine the interval where the ambient temperature is within the set temperature range, you can determine the corresponding compensation coefficient, and at the same time, in the cooling and heating operation mode, the ambient temperature of the background area and the compensation coefficient are in a positive relationship, and
  • the increase of the compensation coefficient can be increased with the increase of the ambient temperature of the background area in a fixed ratio or a fixed value, or it can be increased with the increase of the ambient temperature of the background area in a non-fixed ratio or a fixed value.
  • the realization principle of the positive relationship between the value and the ambient temperature of the background area is the same, and will not be repeated here.
  • Table 1-2 shows the relationship between the temperature range and the corresponding compensation coefficient in cooling mode.
  • step 204 by determining whether the background area temperature belongs to the set temperature range, it can be used to determine whether the current ambient temperature is within a reasonable range. If the current ambient temperature is abnormally high or low, Then it does not meet the application scenario of this embodiment, and the automatic adjustment of the ambient temperature cannot be achieved by compensating the cold and heat sense values. In step 204, according to the compensation value or compensation coefficient corresponding to the ambient temperature, the detected cold and hot sense values are corrected.
  • Step 205 Reduce the cooling capacity or heating capacity of the air-conditioning equipment according to the corrected cold and heat sense value.
  • the corrected cold and heat sense value reduce the air supply air speed of the air conditioner as an example to explain, where the corrected cold and heat sense value range is [-3,3], the cold The range of the thermal sensation value is divided into different sections, and different sections correspond to different supply air speed adjustment coefficients.
  • Table 2 is a correspondence table between the corrected cooling and heating sensation value sections and the supply air speed adjustment coefficients.
  • the thermal value of the heat source corresponding to the area A indicated by the arrow in FIG. 3 is recorded as M.
  • the M value is 1 and the ambient temperature is 31 degrees, then the temperature range corresponding to the background temperature
  • the compensation value corresponding to ⁇ 30°C is 1, the M value obtained after compensating the M value is 2, the corresponding wind speed is 1.4v, after a period of operation, the M value is 1, and the current background area temperature is 25.9, then
  • FIG. 4 is a schematic diagram of the corrected ambient temperature distribution provided by an embodiment of the present application.
  • the dotted rectangle indicated by the arrow The area B corresponding to the frame is the adjusted heat source area, and the part outside the heat source area is the background area. Comparing Figure 3 and Figure 4 can be seen
  • the temperature distribution obtained tends to be stable, that is, the purpose of automatic air conditioning is achieved, which makes the ambient temperature more comfortable and reduces energy consumption.
  • controlling the swing speed of the air guide bar of the air conditioning device according to the corrected cold and heat sense values and controlling the set temperature of the air conditioning device have the same implementation principle, which will not be repeated in this embodiment.
  • the cold and heat sense values are corrected according to the ambient light temperature distribution.
  • the ambient temperature of the background area and the compensation value there is also a positive relationship between the ambient temperature of the area and the compensation coefficient; while in the heating mode, there is a positive relationship between the ambient temperature of the background area and the compensation value, and the relationship between the ambient temperature of the background area and the compensation coefficient is also
  • the principle of correcting the cold and heat sense value according to the ambient temperature distribution is the same, and will not be repeated here.
  • the ambient temperature distribution of the air-conditioning apparatus is obtained, and the ambient temperature is determined for the background area other than the heat source area according to the ambient temperature distribution, and the operating mode of the air-conditioning apparatus is determined according to the ambient temperature
  • the corresponding compensation value below improves the accuracy of the compensation value, and corrects the detected cold and heat sense value through the compensation value, improves the accuracy of the corrected cold and heat sense value, and avoids other heat sources present in the environment.
  • the present application also proposes a control device for air conditioning equipment.
  • FIG. 5 is a schematic structural diagram of a control device of an air conditioning device according to an embodiment of the present application.
  • the device includes a detection module 51, a correction module 52 and a control module 53.
  • the detection module 51 is used to determine the cold and hot sense value of the heat source according to the detection result of the environmental parameters of the current environment.
  • the correction module 52 is used for correcting the detected cold and hot sense value according to the ambient temperature.
  • the control module 53 is used to reduce the cooling capacity or heating capacity of the air conditioning equipment according to the corrected cooling and heating sense value.
  • the apparatus further includes: a first determination module, a second determination module, and a third determination module.
  • the first determining module is used to obtain an ambient temperature distribution; wherein the ambient temperature distribution is detected by an array-type infrared thermopile sensor and is used to indicate the ambient temperature of each area; according to the ambient temperature distribution, the heat removal source Determine the ambient temperature in the background area outside the area; determine the corresponding compensation value or compensation coefficient in the operating mode of the air conditioning device according to the ambient temperature in the background area.
  • the second determination module is used to determine that the ambient temperature is within a set temperature range.
  • the third determining module is configured to, if there are multiple heat sources, use the maximum cold and heat sense value among the cold and heat sense values of the multiple heat sources as the detected cold and heat sense value.
  • the ambient temperature of the background area and the compensation value are in a positive relationship; in the cooling and heating operation mode, the background There is a positive relationship between the ambient temperature of the area and the compensation coefficient.
  • the above correction module 52 is specifically used for:
  • the ambient temperature determine the corresponding compensation value or compensation coefficient in the operating mode of the air conditioning device; add the compensation value to the detected cold and heat sense value to obtain the corrected cold and heat sense value; Alternatively, the compensation coefficient is multiplied by the detected cold and heat sense value to obtain the corrected cold and heat sense value.
  • the above detection module 51 is specifically used for:
  • the ambient temperature distribution is obtained by array infrared thermopile sensor detection; according to the ambient temperature distribution, the cold and heat sense value of the heat source is determined.
  • control module 53 is specifically used for:
  • the set temperature of the air-conditioning device is lowered in the heating operation mode, and the set temperature of the air-conditioning device is increased in the cooling operation mode.
  • control method embodiment is also applicable to the control device of this embodiment, and the principle is the same, and will not be repeated here.
  • the ambient temperature distribution of the air-conditioning apparatus is obtained, and the ambient temperature is determined for the background area other than the heat source area according to the ambient temperature distribution, and the operating mode of the air-conditioning apparatus is determined according to the ambient temperature
  • the corresponding compensation value below improves the accuracy of the compensation value, and corrects the detected cold and heat sense value through the compensation value, improves the accuracy of the corrected cold and heat sense value, and avoids other heat sources present in the environment.
  • the present application also proposes an air-conditioning device, including: a memory, a processor, and a computer program stored on the memory and executable on the processor.
  • the processor executes the program, the implementation The control method of the air conditioning device as described in the foregoing method embodiment.
  • the present application also proposes a computer-readable storage medium on which a computer program is stored.
  • the program is executed by a processor, the control method of the air-conditioning apparatus described in the foregoing method embodiments is implemented.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • the features defined as “first” and “second” may include at least one of the features explicitly or implicitly.
  • the meaning of “plurality” is at least two, such as two, three, etc., unless otherwise specifically limited.
  • Any process or method description in a flowchart or otherwise described herein may be understood as representing a module, segment, or portion of code that includes one or more executable instructions for implementing custom logic functions or steps of a process , And the scope of the preferred embodiment of the present application includes additional implementations, in which the order may not be shown or discussed, including performing the functions in a substantially simultaneous manner or in reverse order according to the functions involved, which shall It is understood by those skilled in the art to which the embodiments of the present application belong.
  • a "computer-readable medium” may be any device that can contain, store, communicate, propagate, or transmit a program for use by or in connection with an instruction execution system, apparatus, or device.
  • computer-readable media include the following: electrical connections (electronic devices) with one or more wires, portable computer cartridges (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other appropriate if necessary Process to obtain the program electronically and then store it in computer memory.
  • each part of the present application may be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods may be implemented in software or firmware stored in memory and executed by a suitable instruction execution system.
  • a suitable instruction execution system For example, if it is implemented in hardware as in another embodiment, it can be implemented using any one or a combination of the following techniques known in the art: discrete with logic gates for implementing logic functions on data signals Logic circuits, dedicated integrated circuits with appropriate combinational logic gates, programmable gate arrays (PGA), field programmable gate arrays (FPGA), etc.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units are integrated into one module.
  • the above integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it may also be stored in a computer-readable storage medium.
  • the storage medium mentioned above may be a read-only memory, a magnetic disk or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请提出一种空气调节设备的控制方法、装置和空气调节设备,其中,方法包括:根据当前环境的环境参数检测结果,确定热源的冷热感值,根据环境温度,对检测得到的冷热感值进行校正,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,通过环境温度对检测得到的冷热感值进行校正,提高了冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。

Description

空气调节设备的控制方法、装置和空气调节设备
相关申请的交叉引用
本申请要求广东美的制冷设备有限公司和美的集团股份有限公司于2018年12月25日提交的、申请名称为“空气调节设备的控制方法、装置和空气调节设备”的、中国专利申请号“201811595350.1”的优先权。
技术领域
本申请涉及家用电器技术领域,尤其涉及一种空气调节设备的控制方法、装置和空气调节设备。
背景技术
空气调节设备可以实现对当前环境的自动控制,相关技术中,采用红外热电堆传感器检测热源(例如,人体)表面温度等信息,计算人体冷热感,冷热感值的大小反映人体冷热程度,根据确定的冷热感值对空调进行自动控制,实现对空气的调节。
但是,实际检测中家居环境一般较复杂,根据冷热感值进行空调调节时,无法将环境调节到人体感觉舒适的状态,调节的准确性较低,从而极大影响了用户体验。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种空气调节设备的控制方法,通过环境温度对检测得到的热源的冷热感值校正,提高了冷热感值的准确定,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
本申请提出一种空气调节设备的控制装置。
本申请提出一种空气调节设备。
本申请提出一种计算机可读存储介质。
本申请一方面实施例提出了一种空气调节设备的控制方法,包括:
根据当前环境的环境参数检测结果,确定热源的冷热感值;
根据环境温度,对检测得到的冷热感值进行校正;
根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
本申请又一方面实施例提出了一种空气调节设备的控制装置,包括:
检测模块,用于根据当前环境的环境参数检测结果,确定热源的冷热感值;
校正模块,用于根据环境温度,对检测得到的冷热感值进行校正;
控制模块,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
本申请又一方面实施例提出了一种空气调节设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述一方面所述的控制方法。
本申请又一方面实施例提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如前述一方面所述的控制方法。
本申请实施例所提供的技术方案可以包含如下的有益效果:
根据当前环境的环境参数检测结果,确定热源的冷热感值,根据环境温度,对检测得到的冷热感值进行校正,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,通过环境温度对检测得到的冷热感值进行校正,提高了冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例所提供的一种空气调节设备的控制方法的流程示意图;
图2为本申请实施例所提供的另一种空气调节设备的控制方法的流程示意图;
图3为本申请实施例提供的校正前的环境温度分布示意图;
图4为本申请实施例提供的校正后的环境温度分布示意图;以及
图5为本申请实施例提供的一种空气调节设备的控制装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的空气调节设备的控制方法、装置和空气调节设备。
图1为本申请实施例所提供的一种空气调节设备的控制方法的流程示意图。
如图1所示,该方法包括以下步骤:
步骤101,根据当前环境的环境参数检测结果,确定热源的冷热感值。
其中,热源是当前环境中的物体,例如人体、茶壶等,进行环境参数检测得到的,作为一种可能的实现方式,通过空气调节设备自身检测得到的参数,例如,通过空气调节设备的阵列式红外热电堆传感器检测得到的环境温度分布,根据环境温度分布以及空气调节设备的运行模式,确定热源的冷热感值;作为另一种可能的实现方式,还可以根据空气调节设备自身检测到的参数,结合其他空气设备,例如,加湿器或除湿机检测到的湿度等参数,确定热源的冷热感值。其中,冷热感值的大小反映热源的冷热程度,也就是说,冷热感值越大代表热源的温度越高,即越热,冷热感值越小代表热源的温度越低,即越冷。
可选的,若检测到的热源为多个,则将多个热源的冷热感值中的最大冷热感值作为检测得到的冷热感值,或者是将多个热源的冷热感值取平均值,将平均的冷热感值作为检测得到的冷热感值。
在一种场景下,当热源即为用户时,用户的冷热感值与用户的个人体质和运动激烈程度有关,在实际操作时,可以根据用户的个人情况进行实时采集标注等,也可以根据大数据建立用户体表参考温度和用户冷热感值的模型(在本示例中,采集大量用户冷热感值、用户体表温度和空气调节设备的导风板的面积、电机的性能等硬件参数,根据采集的大量实验数据建立用户体表参考温度和用户冷热感值的模型,作为一种可能的实现方式,冷热感模型还可结合多种用户生理参数设置等,其中,该冷热感模型的表达公式可以为M=F(H),其中,M为冷热感模型,H=R+C+K+Esk+Eres+Cres,其中,R为人体辐射产生的热量,单位为W/m2,C为人体与环境中的气流对流产生的热量单位为W/m2,K为传导产生的散热量,单位为W/m2,Esk为因皮肤的水份蒸发而产生的散热量,单位为W/m2,Eres为因为呼气水份蒸发而产生的散热量,单位为W/m2 Cres为呼气对流产生的散热流量,单位为W/m2),根据该模型用于计算与用户体表参考温度对应的用户冷热感值。
需要说明的是,本实施例中所介绍的冷热感模型的表达公式仅仅是一个示例,本领域所属的技术人员能够根据实际情况,选择合适的冷热感模型,例如通过增加或者减少上述冷热感模型的表达公式中的参数,以满足实际情况的需要,在此就不再赘述了。
步骤102,根据环境温度,对检测得到的冷热感值进行校正。
具体地,根据环境温度,确定空气调节设备的运行模式下对应的补偿值或补偿系数,将补偿值与检测得到的冷热感值相加,以得到校正后的冷热感值,或者,将补偿系数与检测得到的冷热感值相乘,以得到校正后的冷热感值,通过环境温度对冷热感值进行补偿,提高了冷热感值的准确度。
其中,环境温度对应的补偿值或补偿系数是预先确定好的,作为一种可能的实现方式,可以是根据空调的运行模式,预先通过大量的实验数据确定的,本实施例中对此不作限定。
步骤103,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
具体地,根据校正后的冷热感值,减小空气调节设备的导风条摆动速度,或者,根据校正后的冷热感值,减小空气调节设备的送风风速,或者,根据校正后的冷热感值,在制热的运行模式下调低空气调节设备的设定温度,在制冷的运行模式下调高空气调节设备的设定温度,提高了空气调节设备自动控制的准确度,给用户带来舒适体验。
本申请实施例中,制冷量或制热量具体可以是通过送风量调整的。
举例而言,当空气调节设备为空调时,空气调节设备的制冷量或者制热量可以通过下式确定:
Q 0=(i C-i D)·G(kJ/h);(1)
其中,Q 0表示制冷量或制热量,i C和i D分别表示蒸发器前后的空气焓值,G表示送风量。i C和i D可以通过增加或者减少压缩机的功率进行调整。
因此,当根据环境温度分布,确定空气调节设备在对应送风角度的制冷量或制热量需要增加时,可以通过在(i C-i D)值保持不变的情况下,通过增加送风量G,来增加空气调节设备的制冷量或者制热量。而当根据环境温度分布,确定空气调节设备在对应送风角度的制冷量或制热量需减小时,可以通过在(i C-i D)值保持不变的情况下,通过减小送风量G,来减小空气调节设备的制冷量或者制热量。
为了实现对送风量进行调整,可以具体采用调整风速、调整导风条摆动速度和暂停摆动时长等多种控制手段,而且还可以将几种控制手段结合,提高制冷量或制热量的调整效率。下面将对几种可能的实现方式分别进行说明。
作为第一种可能的实现方式,可以在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,从而送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越小,从而送风角度对应的制冷量或制热量越小。
作为第二种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整导风条的摆动速度。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,导风条的摆动速度越小,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,导风条的摆动速度越大,从而该送风角度对应的制冷量或制热量越小。
作为第三种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整导风条的暂停摆动时长。其中,送风位置的温度差值中的最大值越大,在空 气调节设备的导风条摆动至对应的送风角度时,导风条的暂停摆动时长越大,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,导风条的暂停摆动时长越小,从而该送风角度对应的制冷量或制热量越小。
作为第四种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速和导风条的摆动速度。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,且导风条的摆动速度越小,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越小,且导风条的摆动速度越大,从而该送风角度对应的制冷量或制热量越小。
作为第五种可能的实现方式,在空气调节设备的导风条摆动至各送风角度时,根据对应控制参数,调整送风的风速和导风条的暂停摆动时长。其中,送风位置的温度差值中的最大值越大,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越大,且导风条的暂停摆动时长越大,从而该送风角度对应的制冷量或制热量越大,而送风位置的温度差值中的最大值越小,在空气调节设备的导风条摆动至对应的送风角度时,相应的送风的风速越小,且导风条的暂停摆动时长越小,从而该送风角度对应的制冷量或制热量越小。
本实施例的空气调节设备的控制方法中,根据当前环境的环境参数检测结果,确定热源的冷热感值,根据环境温度,对检测得到的冷热感值进行校正,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量,通过环境温度对检测得到的冷热感值进行校正,提高了冷热感值的准确度,一方面避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性,另一方面,即使环境中没有人体之外的其他热源时,根据冷热感值确定的空气调节参数进行补偿,也能够避免空气调节设备持续以较高的调节效率运行,在保证了对环境的调节效果同时又不影响用户体验的情况下,降低了能耗。
基于上一实施例,本实施例提供了另一种空气调节设备的控制方法,图2为本申请实施例所提供的另一种空气调节设备的控制方法的流程示意图。
如图2所示,该方法可以包括以下步骤:
步骤201,根据当前环境的环境参数检测结果,确定热源的冷热感值。
具体地,通过阵列式红外热电堆传感器检测得到环境温度分布,根据环境温度分布以及空气调节设备的运行模式,确定热源的冷热感值。
本实施例中,以空气调节设备为空调,空调运行模式为制冷模式为例进行说明,图3为本申请实施例提供的校正前的环境温度分布示意图,由于物体一直向外辐射红外能量,在空 调处于制冷模式下时,通过阵列式红外热电堆传感器对环境进行检测,检测得到环境温度分布图中对应的不同的温度分布,如图3中所示。将温度分布图中温度最高的区域识别为热源区域,即图3中,箭头指示的虚线的矩形框对应的A区域,根据热源区域确定热源的温度,本实施例中可将热源区域中最高的温度值作为热源的温度值,或者,是将热源区域中的温度值求取平均值作为热源的温度值,根据预先设定的热源的温度值与冷热感值的对应关系,确定热源的冷热感值。
需要说明的是,图中仅示出了包含一个热源的情况,实际应用中,环境中可能包含的热源不止一个,若热源为多个,则将多个热源的冷热感值中的最大冷热感值作为检测得到的冷热感值,或者是将多个热源的冷热感值取平均值,将平均的冷热感值作为检测得到的冷热感值。
步骤202,获取环境温度分布,根据环境温度分布,对除热源区域以外的背景区域,确定环境温度。
其中,环境温度分布,是通过阵列式红外热电堆传感器检测得到的,用于指示各区域的环境温度。
具体地,根据环境温度分布,对除热源区域以外的背景区域,确定环境温度,作为一种可能的实现方式,将背景区域的温度求取平均值作为环境温度,也就是说,将图3所示的环境温度分布图中,除去箭头指示的热源对应的A区域以外的区域的温度值求取平均值,作为环境温度。
步骤203,确定环境温度处于设定的温度范围内,从而确定对应的补偿值或补偿系数。
其中,背景区域的环境温度与补偿值之间为正向关系。
具体地,确定背景区域的环境温度是否处于设定的温度范围内,若处于设定的温度范围内,则对上述计算得到的冷热感值进行补偿。
作为一种可能的实现方式,温度范围可以划分为不同的温度范围的区间,温度范围的区间与补偿值具有对应关系,即不同的温度范围的区间,对应了不用的补偿值,也就是说,确定了环境温度处于设定的温度范围的区间,即可确定对应的补偿值,同时,在制冷和制热的运行模式下,背景区域的环境温度与补偿值之间为正向关系,也就是说背景区域的环境温度增加,对应的补偿值也增加,作为一种可能的实现方式,补偿值的增加可以是以固定比例或固定值的增加方式随背景区域的环境温度的增加而增加,例如,背景区域的环境温度为23摄氏度时,补偿值为-1,而背景区域的环境温度为25摄氏度时,补偿值为-0.5,而背景区域的环境温度为26摄氏度时,补偿值为0,即补偿值是以固定增加+0.5随背景区域的环境温度的增加而增加的。作为另一种可能的实现方式,补偿值的增加也可以是以不固定比例或不固定值的增加方式随背景区域的环境温度的增加而增加,例如,背景区域的环境温度为23 摄氏度时,补偿值为-1,而背景区域的环境温度为25摄氏度时,补偿值为-0.5,而背景区域的环境温度为26摄氏度时,补偿值为-0.1,即补偿值的增加是以不固定比例或不固定值的增加方式随背景区域的环境温度的增加而增加。
表1-1为制冷模式下,温度范围的区间与对应的补偿值的关系。
温度范围的区间(℃) 补偿值
20≤X<24 -1
24≤X<26 -0.5
26≤X<28 +0
28≤X<30 +0.5
30≤X +1
表1-1
从表1-1中可以看出,不同的背景区域温度,对应属于不同的温度范围的区间,即对应了不同的补偿值,根据表1-1所示,若图3中箭头指示的A区域对应的热源的冷热感值记为M,例如,M值为1,当前的背景区域温度为25.9,则背景区域温度对应的温度范围为≥24℃,对应的补偿值为-0.5。
作为另一种可能的实现方式,温度范围可以划分为不同的温度范围的区间,温度范围的区间与补偿系数具有对应关系,即不同的温度范围的区间,对应了不用的补偿系数,也就是说,确定了环境温度处于设定的温度范围的区间,即可确定对应的补偿系数,同时,在制冷和制热的运行模式下,背景区域的环境温度与补偿系数之间为正向关系,而补偿系数的增加可以是以固定比例或固定值的方式随背景区域的环境温度的增加而增加,也可以是以不固定比例或固定值的方式随背景区域的环境温度的增加而增加,同补偿值与背景区域的环境温度之间的正向关系的实现原理相同,此处不再赘述。
表1-2为制冷模式下,温度范围的区间与对应的补偿系数的关系。
温度范围的区间(℃) 补偿系数
20≤X<24 0.4
24≤X<26 0.5
26≤X<28 1
28≤X<30 1.2
30≤X 1.3
表1-2
从表1-2中可以看出,不同的背景区域温度,对应属于不同的温度范围的区间,即对应了不同的补偿值,根据表1-2所示,在制冷模式下,开始运行时,环境温度为31度,则背景区域温度对应的温度范围为≥30℃对应的补偿值为1,运行一段时间后,M值为1,当前的背景区域温度为25.9,则背景区域温度对应的温度范围为≥24℃,对应的补偿值为-0.5。
需要说明的是,本实施例中通过确定背景区域温度是否属于设定的温度范围,可以用于判断当前的环境温度是否在一个合理的范围,如果当前的环境温度异常偏高,或偏低,则不符合本实施例的应用场景,无法通过对冷热感值进行补偿实现环境温度的自动调节。步骤204,根据环境温度对应的补偿值或补偿系数,对检测得到的冷热感值进行校正。
具体地,将环境温度对应的补偿值与检测得到的冷热感值相加得到校正后的冷热感值,例如,环境温度,也就是背景区域的环境温度对应的补偿值为-0.5,则将背景区域的环境温度对应的补偿值和冷热感值M相加,即1-0.5=0.5,得到校正后的冷热感值为0.5。
或者,将环境温度对应的补偿系数与检测得到的冷热感值相乘得到校正后的冷热感值,例如,环境温度,也就是背景区域的环境温度对应的补偿系数为0.5,则将背景区域的环境温度对应的补偿系数和冷热感值M相乘,即1*0.5=0.5,得到校正后的冷热感值为0.5。
步骤205,根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
本实施例中,以制冷模式下,根据校正后的冷热感值,降低空调的送风风速为例进行说明,其中,校正后的冷热感值范围为[-3,3],将冷热感值的范围划分为不同的区间,不同的区间对应不同的送风风速调节系数,表2为校正后的冷热感值的区间与送风风速调节系数的对应表。
校正后的冷热感值M的区间 送风风速调节系数
0.5≤M<1 1.1
1≤M<1.5 1.2
1.5≤M<2 1.3
2≤M<2.5 1.4
2.5≤M 1.5
表2
例如,在制冷模式下,图3中箭头指示的A区域对应的热源的冷热感值记为M,开始运行时,M值为1,环境温度为31度,则背景区域温度对应的温度范围为≥30℃对应的补偿值为1,对M值进行补偿后得到的M值为2,对应的风速为1.4v,运行一段时间后,M值为1,当前的背景区域温度为25.9,则背景区域温度对应的温度范围为≥24℃,对应的补偿值为-0.5,则冷热感值进行补偿后,为1-0.5=0.5,当M值为0.5时对应的风速则降为1.1v,对风速进行降低后,运行预设时间,,例如,30分钟,再次测量获取当前的环境温度分布,图4为本申请实施例提供的校正后的环境温度分布示意图,箭头指示的虚线的矩形框对应的B区域即为调整后的热源区域,热源区域以外的部分则为背景区域,对比图3和图4可以看出,根据校正后的冷热感值进行空气调节设备的控制后,获取得到的温度分布趋向于平稳,即达到了对空气自动调节的目的,使得环境温度更加舒适,同时降低了能耗。
需要说明的是,根据校正后的冷热感值,控制空气调节设备的导风条摆动速度,和控制空气调节设备的设定温度,实现原理相同,本实施例中不再赘述。
还需要说明的是,本申请实施例的上述表中的数值部分仅仅是举例,本领域所属的技术人员能够根据实际情况对数值进行调整,例如,进行增大或者减小,范围区间分布也不一定采用本实施例介绍的划分情况。
另外,本实施例中是以空调运行在制冷模式下时,根据环境光温度分布对冷热感值进行校正进行说明的,其中,背景区域的环境温度与补偿值之间为正向关系,背景区域的环境温度与补偿系数之间也为正向关系;而在制热模式下时,背景区域的环境温度与补偿值之间为正向关系,背景区域的环境温度与补偿系数之间也为正向关系,在制热模式下,根据环境温度分布对冷热感值进行校正的原理相同,此处不再赘述。
本申请实施例的空气调节设备的控制方法中,获取空气调节设备的环境温度分布,根据环境温度分布,对除热源区域以外的背景区域,确定环境温度,根据环境温度确定空气调节设备的运行模式下对应的补偿值,提高了补偿值的准确度,通过补偿值对检测得到的冷热感值进行校正,提高了校正后的冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。。
为了实现上述实施例,本申请还提出一种空气调节设备的控制装置。
图5为本申请实施例提供的一种空气调节设备的控制装置的结构示意图。
如图5所示,该装置包括:检测模块51、校正模块52和控制模块53。
检测模块51,用于根据当前环境的环境参数检测结果,确定热源的冷热感值。
校正模块52,用于根据环境温度,对检测得到的冷热感值进行校正。
控制模块53,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
进一步地,在本申请实施例的一种可能的实现方式中,该装置还包括:第一确定模块、第二确定模块和第三确定模块。
第一确定模块,用于获取环境温度分布;其中,所述环境温度分布是通过阵列式红外热电堆传感器检测得到的,用于指示各区域的环境温度;根据所述环境温度分布,对除热源区域以外的背景区域,确定环境温度;根据所述背景区域的环境温度,确定所述空气调节设备的运行模式下对应的补偿值或补偿系数。
第二确定模块,用于确定所述环境温度处于设定的温度范围内。
第三确定模块,用于若所述热源为多个,将多个热源的冷热感值中的最大冷热感值作为检测得到的冷热感值。
作为一种可能的实现方式,在制冷和制热的运行模式下,所述背景区域的环境温度与所述补偿值之间为正向关系;在制冷和制热的运行模式下,所述背景区域的环境温度与所述补偿系数之间为正向关系。
作为一种可能的实现方式,上述校正模块52,具体用于:
根据环境温度,确定所述空气调节设备的运行模式下对应的补偿值或补偿系数;将所述补偿值与检测得到的冷热感值相加,以得到所述校正后的冷热感值;或者,将所述补偿系数与检测得到的冷热感值相乘,以得到所述校正后的冷热感值。
作为一种可能的实现方式,上述检测模块51,具体用于:
通过阵列式红外热电堆传感器检测得到环境温度分布;根据所述环境温度分布,确定热源的冷热感值。
作为一种可能的实现方式,上述控制模块53,具体用于:
根据校正后的冷热感值,减小所述空气调节设备的导风条摆动速度;
或者,根据校正后的冷热感值,减小所述空气调节设备的送风风速;
或者,根据校正后的冷热感值,在制热的运行模式下调低所述空气调节设备的设定温度,在制冷的运行模式下调高所述空气调节设备的设定温度。
需要说明的是,前述对控制方法实施例的解释说明也适用于该实施例的控制装置,原理相同,此处不再赘述。
本申请实施例的空气调节设备的控制装置中,获取空气调节设备的环境温度分布,根据环境温度分布,对除热源区域以外的背景区域,确定环境温度,根据环境温度确定空气调节 设备的运行模式下对应的补偿值,提高了补偿值的准确度,通过补偿值对检测得到的冷热感值进行校正,提高了校正后的冷热感值的准确度,避免了环境中存在的其他热源时,导致空气调节设备持续地将环境参数调整为一个不适宜于人体的数值范围,提高了空气调节设备自动调节的准确性。
为了实现上述实施例,本申请还提出了一种空气调节设备,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如前述方法实施例所述的空气调节设备的控制方法。
为了实现上述实施例,本申请还提出了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时,实现如前述方法实施例所述的空气调节设备的控制方法。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电 子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种空气调节设备的控制方法,其特征在于,所述方法包括以下步骤:
    根据当前环境的环境参数检测结果,确定热源的冷热感值;
    根据环境温度,对检测得到的冷热感值进行校正;
    根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
  2. 根据权利要求1所述的控制方法,其特征在于,所述根据环境温度,对检测得到的冷热感值进行校正,包括:
    根据环境温度,确定所述空气调节设备的运行模式下对应的补偿值或补偿系数;
    将所述补偿值与检测得到的冷热感值相加,以得到所述校正后的冷热感值;或者,将所述补偿系数与检测得到的冷热感值相乘,以得到所述校正后的冷热感值。
  3. 根据权利要求2所述的控制方法,其特征在于,所述根据环境温度,确定所述空气调节设备的运行模式下对应的补偿值或补偿系数之前,还包括:
    获取环境温度分布;其中,所述环境温度分布是通过阵列式红外热电堆传感器检测得到的,用于指示各区域的环境温度;
    根据所述环境温度分布,对除热源区域以外的背景区域,确定环境温度;
    根据所述背景区域的环境温度,确定所述空气调节设备的运行模式下对应的补偿值或补偿系数。
  4. 根据权利要求3所述的控制方法,其特征在于,在制冷和制热的运行模式下,所述背景区域的环境温度与所述补偿值之间为正向关系;
    在制冷和制热的运行模式下,所述背景区域的环境温度与所述补偿系数之间为正向关系。
  5. 根据权利要求1-4任一项所述的控制方法,其特征在于,所述根据环境温度,对检测得到的冷热感值进行校正之前,还包括:
    确定所述环境温度处于设定的温度范围内。
  6. 根据权利要求1-5任一项所述的控制方法,其特征在于,所述根据当前环境的环境参数检测结果,确定热源的冷热感值,包括:
    通过阵列式红外热电堆传感器检测得到环境温度分布;
    根据所述环境温度分布,确定热源的冷热感值。
  7. 根据权利要求1-6任一项所述的控制方法,其特征在于,若所述热源为多个,所述根据所述环境温度分布,确定热源的冷热感值之后,还包括:
    将多个热源的冷热感值中的最大冷热感值作为检测得到的冷热感值。
  8. 根据权利要求1-7任一项所述的控制方法,其特征在于,所述根据校正后的冷热感 值,降低空气调节设备的制冷量或制热量,包括:
    根据校正后的冷热感值,减小所述空气调节设备的导风条摆动速度;
    或者,根据校正后的冷热感值,减小所述空气调节设备的送风风速;
    或者,根据校正后的冷热感值,在制热的运行模式下调低所述空气调节设备的设定温度,在制冷的运行模式下调高所述空气调节设备的设定温度。
  9. 一种空气调节设备的控制装置,其特征在于,所述方法包括以下步骤:
    检测模块,用于根据当前环境的环境参数检测结果,确定热源的冷热感值;
    校正模块,用于根据环境温度,对检测得到的冷热感值进行校正;
    控制模块,用于根据校正后的冷热感值,降低空气调节设备的制冷量或制热量。
  10. 一种空气调节设备,其特征在于,包括:存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时,实现如权利要求1-8中任一所述的控制方法。
  11. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现如权利要求1-8中任一所述的控制方法。
PCT/CN2019/101735 2018-12-25 2019-08-21 空气调节设备的控制方法、装置和空气调节设备 WO2020134124A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021529341A JP2022515972A (ja) 2018-12-25 2019-08-21 空気調和機器の制御方法、制御装置及び空気調和機器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811595350.1 2018-12-25
CN201811595350.1A CN109668266B (zh) 2018-12-25 2018-12-25 空气调节设备的控制方法、装置和空气调节设备

Publications (1)

Publication Number Publication Date
WO2020134124A1 true WO2020134124A1 (zh) 2020-07-02

Family

ID=66146144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/101735 WO2020134124A1 (zh) 2018-12-25 2019-08-21 空气调节设备的控制方法、装置和空气调节设备

Country Status (3)

Country Link
JP (1) JP2022515972A (zh)
CN (1) CN109668266B (zh)
WO (1) WO2020134124A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865256A (zh) * 2021-10-09 2021-12-31 珠海格力电器股份有限公司 化霜控制方法、装置、电子设备和制冷设备
CN116624976A (zh) * 2023-07-07 2023-08-22 圣辉工程科技有限公司 一种中央空调远程控制系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724220A (zh) * 2018-12-25 2019-05-07 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
CN109668266B (zh) * 2018-12-25 2021-01-22 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备
WO2024048010A1 (ja) * 2022-08-29 2024-03-07 パナソニックIpマネジメント株式会社 設計方法、プログラム及び設計システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001327A (ko) * 2012-06-26 2014-01-07 한라비스테온공조 주식회사 차량용 공조장치 및 그에 따른 공조제어방법
CN106931587A (zh) * 2015-12-31 2017-07-07 广东美的制冷设备有限公司 空调的控制方法及空调
CN109668266A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3189410B2 (ja) * 1992-09-02 2001-07-16 三菱電機株式会社 冷暖房装置
JP5627562B2 (ja) * 2011-12-09 2014-11-19 三菱電機株式会社 空気調和システム
CN110081566B (zh) * 2014-02-17 2021-01-26 松下电器产业株式会社 空调机及其控制方法、热图像传感器系统、冷热感推断方法以及记录介质
JP6090383B2 (ja) * 2015-07-31 2017-03-08 ダイキン工業株式会社 空調制御システム
JP2017032268A (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 空調制御装置
JP2017058062A (ja) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 空気調和機
JP6304502B2 (ja) * 2015-10-14 2018-04-04 パナソニックIpマネジメント株式会社 空気調和機
CN106196484A (zh) * 2016-07-29 2016-12-07 广东美的制冷设备有限公司 空调器的控制方法及空调器
CN106524402A (zh) * 2016-10-25 2017-03-22 美的集团武汉制冷设备有限公司 空调器及其冷热感修正方法
CN106440249B (zh) * 2016-10-28 2019-07-19 美的集团武汉制冷设备有限公司 基于可穿戴设备的空调器控制方法、装置及空调器
JP6800804B2 (ja) * 2017-05-01 2020-12-16 株式会社東芝 空調制御システム、空調制御方法及びプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140001327A (ko) * 2012-06-26 2014-01-07 한라비스테온공조 주식회사 차량용 공조장치 및 그에 따른 공조제어방법
CN106931587A (zh) * 2015-12-31 2017-07-07 广东美的制冷设备有限公司 空调的控制方法及空调
CN109668266A (zh) * 2018-12-25 2019-04-23 广东美的制冷设备有限公司 空气调节设备的控制方法、装置和空气调节设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113865256A (zh) * 2021-10-09 2021-12-31 珠海格力电器股份有限公司 化霜控制方法、装置、电子设备和制冷设备
CN116624976A (zh) * 2023-07-07 2023-08-22 圣辉工程科技有限公司 一种中央空调远程控制系统及方法

Also Published As

Publication number Publication date
JP2022515972A (ja) 2022-02-24
CN109668266B (zh) 2021-01-22
CN109668266A (zh) 2019-04-23

Similar Documents

Publication Publication Date Title
WO2020134124A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020134125A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020134360A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN110715415B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2018126581A1 (zh) 风管机空调系统及其的室内风机的控制方法和装置
CN105650821B (zh) 空调除霜方法
CN108361926B (zh) 一种基于温冷感的空调器控制方法和空调器
WO2020000838A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2019075785A1 (zh) 空调系统及其化霜控制方法和装置
WO2020000551A1 (zh) 空气调节设备的导风条控制方法、装置和空气调节设备
WO2018166372A1 (zh) 空调器控制方法
WO2020000554A1 (zh) 空气调节设备的控制方法、装置和空气调节设备
CN109668267B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000839A1 (zh) 空气调节设备及其控制方法和装置
JP4864019B2 (ja) 空調システムで所在環境の快適性を制御する方法
CN104279710A (zh) 空调控制方法、系统及空调设备
CN105605726B (zh) 一种空调节能控制方法和装置
CN109668264B (zh) 空气调节设备的控制方法、装置和空气调节设备
CN107084500A (zh) 空调控制方法、空调和计算机可读存储介质
WO2019057039A1 (zh) 一种空调房间实时湿度推算方法及空调器
CN114562790A (zh) 制热模式新风控制方法及其装置、空调器及可读存储介质
CN106594979B (zh) 空调器的控制方法、装置
CN103759391B (zh) 一种恒温恒湿空调系统及提高室内温湿度精度的控制方法
CN109724221B (zh) 空气调节设备的控制方法、装置和空气调节设备
WO2020000553A1 (zh) 空气调节设备及其控制方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901796

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901796

Country of ref document: EP

Kind code of ref document: A1