WO2020133815A1 - 高分子纳米复合材料的制备方法 - Google Patents

高分子纳米复合材料的制备方法 Download PDF

Info

Publication number
WO2020133815A1
WO2020133815A1 PCT/CN2019/082994 CN2019082994W WO2020133815A1 WO 2020133815 A1 WO2020133815 A1 WO 2020133815A1 CN 2019082994 W CN2019082994 W CN 2019082994W WO 2020133815 A1 WO2020133815 A1 WO 2020133815A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl chloride
polyethylene
preparing
mass fraction
polymer nanocomposite
Prior art date
Application number
PCT/CN2019/082994
Other languages
English (en)
French (fr)
Inventor
周永祥
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/488,399 priority Critical patent/US11306185B2/en
Publication of WO2020133815A1 publication Critical patent/WO2020133815A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/205Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase
    • C08J3/21Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase
    • C08J3/212Compounding polymers with additives, e.g. colouring in the presence of a continuous liquid phase the polymer being premixed with a liquid phase and solid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/201Pre-melted polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K13/00Use of mixtures of ingredients not covered by one single of the preceding main groups, each of these compounds being essential
    • C08K13/02Organic and inorganic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/04Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08L27/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/04Homopolymers or copolymers of ethene
    • C08J2323/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2353/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/04Homopolymers or copolymers of ethene
    • C08J2423/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2427/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2453/00Characterised by the use of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend

Definitions

  • the invention relates to the field of preparation of fingerprint identification materials, in particular to a preparation method of polymer nano-composite materials for improving fingerprint identification.
  • the ultrasonic fingerprint recognition technology is not interfered by water and oil pollution, has a stronger environmental adaptability, and can be used in a more complex environment. As a result, it has gradually received extensive attention and is increasingly used in various fields, such as improving the security of electronic products such as mobile phones, computers, tablets and access control systems. Compared with traditional digital passwords, due to the rapidity of fingerprint unlocking, Bring a lot of convenience to people's lives.
  • the ultrasonic fingerprint recognition technology currently used is not very mature, and the recognition effect of the ultrasonic fingerprint recognition module is not ideal.
  • the signal contrast of the valleys and ridges of the fingers is not high, and the signal-to-noise ratio is not high, resulting in late signals. It is difficult to handle, and it is difficult to accurately identify the lines of the mobile phone. This is because when ultrasonic waves are reflected between the protective glass and the mobile phone, the reflectivity of the fingerprint valley and the ridge is very close, which causes great difficulty in fingerprint recognition.
  • the present invention provides a method for preparing a polymer nanocomposite material.
  • the preparation method of the polymer nano-composite material includes the following steps:
  • Step 1 Dissolve polyvinyl chloride with a molecular weight of 50,000 to 110,000 in a tetrahydrofuran solution at room temperature, and the mass ratio of polyvinyl chloride and tetrahydrofuran is 1:3 to 1:10;
  • Step 2 Dissolve polyethylene with a molecular weight of 50,000 to 500,000 in a benzene solution at 60°C to 120°C, and the mass ratio of the polyethylene and benzene is 1:3 to 1:10;
  • Step 3 Dissolve the polyvinyl chloride-polyethylene block copolymer with a molecular weight of 10,000 to 100,000 in another tetrahydrofuran solution at a temperature of 20°C to 100°C;
  • Step 4 Mix the solutions obtained in Step 1, Step 2, and Step 3 together, and add surfactant;
  • Step 5 Add the optical antireflection material to the solution obtained in step 4;
  • Step 6 Add reinforcement materials to the solution obtained in Step 5;
  • Step 7 Sonicate the solution obtained in Step 6 for 1 to 3 hours at a temperature of 60°C to 100°C;
  • Step 8 Rotate the solution obtained in Step 7 at a temperature of 80° C. to 120° C. to form a polymer nano-composite material.
  • the mass fraction of the polyvinyl chloride in the first step is 5% to 90%.
  • the mass fraction of the polyethylene in the second step is 5% to 90%.
  • the mass fraction of the polyvinyl chloride-polyethylene block copolymer in step 3 is 5% to 90%, and the polyvinyl chloride -The mass ratio of the polyethylene block copolymer and the other tetrahydrofuran is 1:3 ⁇ 1:10.
  • the surfactant in step 4 is stearic acid or sodium dodecylbenzenesulfonate.
  • the optical antireflection material in step 5 is one of magnesium fluoride, titanium oxide, lead sulfide, and lead selenide,
  • the mass fraction of the optical antireflection material is 1% ⁇ 5%.
  • the reinforcing material in step 6 is fullerene, carbon nanotubes, montmorillonite or other nanoparticles, and the quality of the reinforcing material The score is 1% ⁇ 5%.
  • the invention also provides a method for preparing a polymer nanocomposite material, which includes the following steps:
  • Step 1 Dissolve polyvinyl chloride with molecular weight of 50,000 ⁇ 110,000 in tetrahydrofuran solution at room temperature;
  • Step 2 Dissolve the polyethylene with a molecular weight of 50000 ⁇ 500,000 in the benzene solution at 60°C ⁇ 120°C;
  • Step 3 Dissolve the polyvinyl chloride-polyethylene block copolymer with a molecular weight of 10,000 to 100,000 in another tetrahydrofuran solution at a temperature of 20°C to 100°C;
  • Step 4 Mix the solutions obtained in Step 1, Step 2, and Step 3 together, and add surfactant;
  • Step 5 Add the optical antireflection material to the solution obtained in step 4;
  • Step 6 Add reinforcement materials to the solution obtained in Step 5;
  • Step 7 Sonicate the solution obtained in Step 6 for 1 to 3 hours at a temperature of 60°C to 100°C;
  • Step 8 Rotate the solution obtained in Step 7 at a temperature of 80° C. to 120° C. to form a polymer nano-composite material.
  • the mass fraction of polyvinyl chloride in the first step is 5% to 90%, and the mass ratio of polyvinyl chloride and tetrahydrofuran is 1:3 to 1. :10.
  • the mass fraction of the polyethylene in the second step is 5% to 90%, and the mass ratio of the polyethylene and benzene is 1:3 ⁇ 1:10.
  • the mass fraction of the polyvinyl chloride-polyethylene block copolymer in step 3 is 5% to 90%, and the polyvinyl chloride -The mass ratio of the polyethylene block copolymer and the other tetrahydrofuran is 1:3 ⁇ 1:10.
  • the surfactant in step 4 is stearic acid or sodium dodecylbenzenesulfonate.
  • the optical antireflection material in step 5 is one of magnesium fluoride, titanium oxide, lead sulfide, and lead selenide,
  • the mass fraction of the optical antireflection material is 1% ⁇ 5%.
  • the reinforcing material in step 6 is fullerene, carbon nanotubes, montmorillonite or other nanoparticles, and the quality of the reinforcing material The score is 1% ⁇ 5%.
  • the polyvinyl chloride in the first step and the polyethylene in the second step are replaced with polymethyl methacrylate, polyurethane, At least one of polystyrene, polycarbonate, rubber, and nylon.
  • the invention also provides a method for preparing a polymer nanocomposite material, which includes the following steps:
  • Step 1 Separately, a polyvinyl chloride material with a molecular weight of 50,000 to 110,000, a mass fraction of 5% to 90%, a polyethylene material with a molecular weight of 50,000 to 500,000, a mass fraction of 5% to 90%, and a molecular weight of 10,000 to 100,000
  • the polyvinyl chloride-polyethylene block copolymer materials are mixed together to form a mixed material, which is heated to 100 to 120°C, so that the mixed material melts at a high temperature;
  • Step 2 Add an optical antireflection material to the mixed material, and the mass fraction of the optical antireflection material is 1% to 5%;
  • Step 3 Add a reinforcing material to the mixed material, the mass fraction of the reinforcing material is 1% to 5%, and the mixed material, the optical antireflection material and the reinforcing material constitute a composite material;
  • Step 4 Add the composite material to a twin-screw extruder for blending and extrusion, so that the composite material is uniformly mixed at a temperature of 100 to 130° C. for a time of 5 to 60 minutes, and then discharged; and
  • Step 5 After the step 4, the composite material is cooled to -10 ⁇ 10°C for 10 seconds ⁇ 2 minutes to form a polymer nano-composite material.
  • the polyvinyl chloride material in the first step and the polyethylene material in the second step are replaced with polymethyl methacrylate, At least one of polyurethane, polystyrene, polycarbonate, rubber, and nylon.
  • the present invention combines two or more of polyethylene, polyurethane, polystyrene, polymethyl methacrylate, polycarbonate, rubber, nylon and other materials.
  • the molecules are mixed by solvent or twin screw extruder to obtain a composite material with matching acoustic impedance and fingerprint ridge, so the reflectivity of the fingerprint ridge can be significantly reduced, so that the ratio of the fingerprint valley to the ridge reflectivity increases, and the effect of ultrasonic fingerprint recognition Obviously improved.
  • the crystallinity of the material can be reduced, and the final light transmittance and mechanical properties are improved.
  • FIG. 1 is a schematic structural diagram of an ultrasonic fingerprint identification module.
  • Embodiment 2 is a schematic flowchart of Embodiment 1 of a method for preparing a polymer nanocomposite material provided by the present invention.
  • Embodiment 3 is a schematic flowchart of Embodiment 2 of a method for preparing a polymer nanocomposite material provided by the present invention.
  • the present invention is directed to the ultrasonic fingerprint recognition module of the prior art, in which the signal contrast to the valleys and ridges of the fingers is not high, and the signal-to-noise ratio is not high, which causes difficulty in signal processing in the later stage and it is difficult to accurately identify the texture of the fingers .
  • the present embodiment provides a new type of polymer nano-composite material to replace the protective layer material of the traditional fingerprint module to improve the ratio of fingerprint valley to ridge reflectivity and the effect of ultrasonic fingerprint recognition.
  • FIG. 1 is a schematic structural diagram of an ultrasonic fingerprint identification module 100.
  • the bottom layer of the ultrasonic fingerprint recognition module 100 is a thin film transistor substrate 110, and on the thin film transistor substrate 110 is a display layer 120, and a adhesive layer 130 and a touch layer are coated on the display layer 120 140 is adhered to the display layer 120 by an adhesive 130, a piezoelectric film layer 150 is further provided on the touch layer 140, and finally a polymer protective layer 160 is provided on the piezoelectric film layer 150.
  • This embodiment proposes a method for preparing a protective layer material, by synthesizing a new type of polymer nanocomposite material to replace the traditional protective layer material (such as glass, sapphire, metal or metal alloy, etc.) to improve the fingerprint valley and The ratio of ridge reflectivity and the effect of ultrasonic fingerprint recognition.
  • a protective layer material such as glass, sapphire, metal or metal alloy, etc.
  • This embodiment 1 proposes a new method for preparing a polymer nanocomposite material.
  • the materials required for the preparation method include: polymethyl methacrylate, polyvinyl chloride, polyethylene, polyurethane, polystyrene, and polycarbonate Two or more of ester, rubber, nylon and other materials, solvents, surfactants, optical antireflection materials and reinforcement materials.
  • the preparation method 200 is explained by taking polyvinyl chloride materials and polyethylene materials as examples:
  • Step one 210 Dissolve polyvinyl chloride with a molecular weight of 50,000 to 110,000 in a tetrahydrofuran solution at room temperature, wherein the mass fraction of the polyvinyl chloride is 5% to 90%, and the mass of the polyvinyl chloride and the tetrahydrofuran The ratio is 1:3 ⁇ 1:10, where the amount of solvent added affects the dissolution rate and evaporation time;
  • Step two 220 Dissolve polyethylene with a molecular weight of 50,000 to 500,000 in a benzene solution at a temperature of 60°C to 120°C.
  • the mass fraction of the polyethylene is 5% to 90%.
  • the polyethylene and the benzene The mass ratio is 1:3 ⁇ 1:10, where the amount of solvent added affects the dissolution rate and evaporation time;
  • Step 3 230. Dissolve the polyvinyl chloride-polyethylene block copolymer with a molecular weight of 10,000 to 100,000 in another tetrahydrofuran solution at a temperature of 20°C to 100°C.
  • the polyvinyl chloride-polyethylene block copolymer The mass fraction of 5% to 90%, the mass ratio of the polyvinyl chloride-polyethylene block copolymer and the other tetrahydrofuran is 1:3 ⁇ 1:10, where the amount of solvent added affects the dissolution rate and evaporation time ;
  • Step 4 240. Mix the various solutions in the above three steps together and add a surfactant to reduce the surface tension of the system and increase the solubility of the mixture.
  • the surfactant is stearic acid. Sodium dialkylbenzenesulfonate, etc.;
  • Step 5 250. Add an optical antireflection material of magnesium fluoride, titanium oxide, lead sulfide, and lead selenide to the solution in step four to increase the transmittance of the composite material.
  • Step 6 260. Adding fullerene, carbon nanotubes, montmorillonite or other nanoparticles to the solution in step 5 to enhance the mechanical properties of the material, the reinforcement material has a mass fraction of 1% to 5% ;
  • Step 7 270.
  • the solution in step 6 is subjected to ultrasonic treatment at a temperature of 60°C to 100°C for 1 to 3 hours, so that the components in the solution are evenly dispersed to prevent molecular aggregation (the aggregation between molecules will be obvious Reduce the performance of the material);
  • Step 8 280. Rotate the solution obtained in step 7 at a temperature of 80° C. to 120° C. to rapidly evaporate the solution and suppress the crystallization of the material. Eventually, after the evaporation of the solvent is completed, a polymer nano polymer nano composite material is formed.
  • This embodiment 2 proposes a novel method for preparing a polymer nanocomposite material.
  • the materials required for the preparation method include: polymethyl methacrylate, polyvinyl chloride, polyethylene, polyurethane, polystyrene, and polycarbonate Two or more of materials such as ester, rubber and nylon, optical antireflection materials and reinforcement materials.
  • the preparation method 300 is explained by taking polyvinyl chloride materials and polyethylene materials as examples:
  • Step one 310 Separately, a polyvinyl chloride material with a molecular weight of 50,000 to 110,000, a mass fraction of 5% to 90%, a polyethylene material with a molecular weight of 50,000 to 500,000, a mass fraction of 5% to 90%, and a molecular weight of 10000 to 100000 polyvinyl chloride-polyethylene block copolymer materials are mixed together to form a mixed material, which is heated to 100 to 120°C, so that the mixed material melts at a high temperature;
  • Step 2 320. Add an optical antireflection material from magnesium fluoride, titanium oxide, lead sulfide, and lead selenide to increase the light transmittance of the composite material.
  • the mass fraction of the optical antireflection material is 1% to 5% ;
  • Step three 330 Reinforcement material that adds fullerene, carbon nanotubes, montmorillonite or other nanoparticles to improve the mechanical properties of the material.
  • the mass fraction of the reinforcement material is 1% to 5%.
  • the optical antireflection material and the reinforcing material constitute a composite material;
  • Step 340 Add the composite material to a twin-screw extruder for blending and extrusion, so that the composite material is uniformly mixed at a temperature of 100 to 130° C. for a time of 5 to 60 minutes, and then discharge the material;
  • Step 5 350. After step 4, cool the composite material to -10 ⁇ 10°C for 10s ⁇ 2min to form a polymer nanocomposite.
  • two or more polymers of polyethylene, polyurethane, polystyrene, polymethyl methacrylate, polycarbonate, rubber, and nylon are mixed with a solvent or co-existed with a twin screw extruder
  • the polymer nanocomposite material with matching acoustic impedance and fingerprint ridge is mixed, so the reflectivity of the fingerprint ridge can be significantly reduced, so that the ratio of the fingerprint valley to the ridge reflectivity is increased, and the effect of ultrasonic fingerprint recognition is significantly improved.
  • the crystallinity of the material can be reduced, and the final light transmittance and mechanical properties are improved.
  • the embodiment of the present invention provides a novel method for preparing a polymer nanocomposite material, and the method can adjust the material formula and performance according to the needs of the product.
  • the ultrasonic fingerprint identification module manufactured by using the polymer nano-composite material process provided by the invention can increase the ratio of the reflectivity of the fingerprint valley and the ridge to improve the fingerprint identification effect, and also improve the mechanical properties of the protective layer material and extend the service life.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明提供一种高分子纳米复合材料的制备方法。包括:(1)溶解聚氯乙烯;(2)溶解聚乙烯;(3)溶解聚氯乙烯-聚乙烯嵌段共聚物;(4)向溶液中加入表面活性剂;(5)向溶液中加入光增透材料;(6)向溶液中加入增强材料;(7)将溶液进行超声波混合;(8)将溶液进行旋蒸。

Description

高分子纳米复合材料的制备方法 技术领域
本发明涉及指纹识别材料的制备领域,尤其涉及一种提高指纹识别的高分子纳米复合材料的制备方法。
背景技术
目前,超声波指纹识别技术由于不受水和油污干扰,具有更强的环境适应能力,可以用于更加复杂的环境。从而逐渐得到广泛的重视,被越来越多地用于各个领域,如提升手机、电脑、平板和门禁系统等电子产品的安全性,相比于传统的数字密码,由于指纹解锁的快速性,给人们的生活带来很多的便利。
但是目前所采用超声波指纹识别技术并不是很成熟,超声波指纹识别模组的识别效果并不理想,比如手指的谷和脊的信号对比度并不高,还有信噪比不高,造成了后期信号处理困难,难以精确地识别出手机的纹路。这是由于当超声波在保护玻璃与手机之间发生反射,指纹谷和脊的反射率很接近,给指纹识别造成了很大的困难。
因此,寻找一种材料替代传统的保护玻璃来提高指纹谷和脊反射率之比和超声波指纹识别的效果对于科学研究和工程应用都显得尤为重要。
技术问题
由于当超声波在保护玻璃与手机之间发生反射,指纹谷和脊的反射率很接近,给指纹识别造成了很大的困难。
技术解决方案
为解决上述技术问题,本发明提供一高分子纳米复合材料的制备方法。
所述高分子纳米复合材料的制备方法,包括以下步骤:
步骤一、将分子量为50000~110000的聚氯乙烯在室温下溶解在四氢呋喃溶液中,聚氯乙烯和四氢呋喃的质量比为1:3~1:10;
步骤二、将分子量为50000~500000的聚乙烯在60℃~120℃下溶解在苯溶液中,所述聚乙烯和苯的质量比为1:3~1:10;
步骤三、将分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物在20℃~100℃的温度下溶解在另一四氢呋喃溶液中;
步骤四、将所述步骤一、所述步骤二、所述步骤三中取得的多种溶液混合到一起,加入表面活性剂;
步骤五、向所述步骤四所获得的溶液中加入光增透材料;
步骤六、向所述步骤五所获得的溶液中加入增强材料;
步骤七、将所述步骤六所获得的溶液进行超声处理1~3小时,温度为60℃~100℃;以及
步骤八、将所述步骤七所获得的溶液进行旋蒸,所述旋蒸的温度为80℃~120℃,以形成高分子纳米复合材料。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤一中的聚氯乙烯的质量分数为5%~90%。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤二中的所述聚乙烯的质量分数为5%~90%。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤三中的所述聚氯乙烯-聚乙烯嵌段共聚物的质量分数为5%~90%,所述聚氯乙烯-聚乙烯嵌段共聚物和所述另一四氢呋喃的质量比为1:3~1:10。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤四中的所述表面活性剂为硬脂酸或十二烷基苯磺酸钠。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤五中的所述光增透材料为氟化镁、氧化钛、硫化铅和硒化铅中的一种,所述光增透材料的质量分数为1%~5%。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤六中的所述增强材料为富勒烯、碳纳米管、蒙脱土或其它纳米粒子,所述增强材料的质量分数为1%~5%。
本发明还提供了一高分子纳米复合材料的制备方法,包括以下步骤:
步骤一、将分子量为50000~110000的聚氯乙烯在室温下溶解在四氢呋喃溶液中;
步骤二、将分子量为50000~500000的聚乙烯在60℃~120℃下溶解在苯溶液中;
步骤三、将分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物在20℃~100℃的温度下溶解在另一四氢呋喃溶液中;
步骤四、将所述步骤一、所述步骤二、所述步骤三中取得的多种溶液混合到一起,加入表面活性剂;
步骤五、向所述步骤四所获得的溶液中加入光增透材料;
步骤六、向所述步骤五所获得的溶液中加入增强材料;
步骤七、将所述步骤六所获得的溶液进行超声处理1~3小时,温度为60℃~100℃;以及
步骤八、将所述步骤七所获得的溶液进行旋蒸,所述旋蒸的温度为80℃~120℃,以形成高分子纳米复合材料。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤一中的聚氯乙烯的质量分数为5%~90%,聚氯乙烯和四氢呋喃的质量比为1:3~1:10。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤二中的所述聚乙烯的质量分数为5%~90%,所述聚乙烯和苯的质量比为1:3~1:10。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤三中的所述聚氯乙烯-聚乙烯嵌段共聚物的质量分数为5%~90%,所述聚氯乙烯-聚乙烯嵌段共聚物和所述另一四氢呋喃的质量比为1:3~1:10。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤四中的所述表面活性剂为硬脂酸或十二烷基苯磺酸钠。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤五中的所述光增透材料为氟化镁、氧化钛、硫化铅和硒化铅中的一种,所述光增透材料的质量分数为1%~5%。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,所述步骤六中的所述增强材料为富勒烯、碳纳米管、蒙脱土或其它纳米粒子,所述增强材料的质量分数为1%~5%。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,在所述步骤一中的所述聚氯乙烯和步骤二中的所述聚乙烯均替换成聚甲基丙烯酸甲酯、聚氨酯、聚苯乙烯、聚碳酸酯、橡胶和尼龙中的至少一种。
本发明还提供了一高分子纳米复合材料的制备方法,包括以下步骤:
步骤一、分别将分子量为50000~110000,质量分数为5%~90%的聚氯乙烯材料、分子量为50000~500000,质量分数为5%~90%的聚乙烯材料、以及分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物材料混合到一起形成混合材料,加热至100~120℃,使得所述混合材料在高温下发生熔融;
步骤二、在所述混合材料中加入光增透材料,所述光增透材料的质量分数为1%~5%;
步骤三、在所述混合材料中加入增强材料,所述增强材料的质量分数为1%~5%,所述混合材料、所述光增透材料和所述增强材料构成复合材料;
步骤四、将所述复合材料加入到双螺杆挤出机进行共混挤出,使得所述复合材料均匀混合,温度为100~130℃,时间为5~60分钟,然后出料;以及
步骤五、于所述步骤四后,使所述复合材料冷却至-10~10℃,时间为10秒~2分钟,以形成高分子纳米复合材料。
根据本发明实施例所提供的高分子纳米复合材料的制备方法,在所述步骤一中的所述聚氯乙烯材料和步骤二中的所述聚乙烯材料均替换成聚甲基丙烯酸甲酯、聚氨酯、聚苯乙烯、聚碳酸酯、橡胶和尼龙中的至少一种。
有益效果
相较于现有技术,为解决上述技术问题,本发明将聚乙烯,聚氨酯,聚苯乙烯,聚甲基丙烯酸甲酯,聚碳酸酯、橡胶和尼龙等材料中的两种或几种的高分子采用溶剂混合或者双螺杆挤出机共混得到声阻抗和指纹脊相匹配的复合材料,所以可以明显降低指纹脊的反射率,从而指纹谷和脊反射率之比增加,超声波指纹识别的效果得到明显提升。并且通过骤冷和加入添加剂等措施来抑制高分子材料的结晶,可以降低材料的结晶度,最终透光率和力学性能得到提升。
附图说明
图1为超声波指纹识别模组的结构示意图。
图2为本发明提供的高分子纳米复合材料的制备方法实施例一的流程示意图。
图3为本发明提供的高分子纳米复合材料的制备方法实施例二的流程示意图。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图式,用以例示本揭示可用以实施的特定实施例。
为了让本揭示的上述及其他目的、特征、优点能更明显易懂,下文将特举本揭示优选实施例,并配合所附图式,作详细说明如下。再者,本揭示所提到的方向用语,例如上、下、顶、底、前、后、左、右、内、外、侧层、周围、中央、水平、横向、垂直、纵向、轴向、径向、最上层或最下层等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本揭示,而非用以限制本揭示。
在图中,结构相似的单元是以相同标号表示。
本发明针对现有技术的超声波指纹识别模组中,对手指的谷和脊的信号对比度并不高,还有信噪比不高,造成了后期信号处理困难,难以精确地识别出手指的纹路。而本实施例提供了一种新型的高分子纳米复合材料用来替换传统的指纹模组的保护层材料,来提高指纹谷和脊反射率之比和超声波指纹识别的效果。
如图1所示为超声波指纹识别模组100的结构示意图。
在超声波指纹识别模组100的最底层是一层薄膜晶体管基板110,在所述薄膜晶体管基板110上是一层显示层120,显示层120之上涂覆有一层粘合剂130,触控层140通过粘合剂130粘合在显示层120之上,触控层140之上还设置有一层压电薄膜层150,最后在压电薄膜层150上设置有一层高分子保护层160。
本实施例提出一种保护层材料的制备方法,通过合成一种新型的高分子纳米复合材料用来替换传统的保护层材料(如玻璃,蓝宝石,金属或金属合金等),来提高指纹谷和脊反射率之比和超声波指纹识别的效果。
实施例一:
本实施例一提出一种新型的高分子纳米复合材料的制备方法,所述制备方法所需要的材料包括:聚甲基丙烯酸甲酯,聚氯乙烯,聚乙烯,聚氨酯,聚苯乙烯,聚碳酸酯,橡胶和尼龙等材料中的两种或几种,溶剂、表面活性剂、光增透材料和增强材料等。
如图2所示为本实施例一以聚氯乙烯材料和聚乙烯材料为例来阐述制备方法200:
步骤一210、将分子量为50000~110000的聚氯乙烯在室温下溶解在四氢呋喃溶液中,其中所述聚氯乙烯的质量分数为5%~90%,所述聚氯乙烯和所述四氢呋喃的质量之比为1:3~1:10,其中溶剂的加入量影响溶解的速度和蒸发时间;
步骤二220、将分子量为50000~500000的聚乙烯在60℃~120℃的温度下溶解在苯溶液中,所述聚乙烯的质量分数为5%~90%,所述聚乙烯和所述苯的质量比为1:3~1:10,其中溶剂加入量影响溶解速度和蒸发时间;
步骤三230、将分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物在20℃~100℃的温度下溶解在另一四氢呋喃溶液中,所述聚氯乙烯-聚乙烯嵌段共聚物的质量分数为5%~90%,所述聚氯乙烯-聚乙烯嵌段共聚物和所述另一四氢呋喃的质量比为1:3~1:10,其中溶剂加入量影响溶解速度和蒸发时间;
步骤四240、将上述三个步骤中的多种溶液混合到一起,加入表面活性剂,来降低体系的表面张力,增大混合物的溶解性,其中的所述表面活性剂为硬脂酸,十二烷基苯磺酸钠等;
步骤五250、向步骤四中的溶液加入氟化镁、氧化钛、硫化铅、硒化铅中的一种光增透材料,来提升复合材料透光率,所述光增透材料的质量分数为1%~5%;
步骤六260、向步骤五中的溶液加入富勒烯、碳纳米管、蒙脱土或其它纳米粒子来提高材料的力学性能的增强材料,所述增强材料的质量分数为为1%~5%;
步骤七270、将步骤六中的溶液在温度为60℃~100℃下,进行超声波处理1~3小时,使溶液中的各个组分都分散均匀,防止分子聚集(分子之间发生聚集会明显降低材料的性能);
步骤八280、将步骤七中获得的溶液在温度为80℃~120℃下进行旋蒸,使溶液快速蒸发,抑制材料结晶,最终待溶剂蒸发完毕,以形成高分子纳米高分子纳米复合材料。
实施例二:
本实施例二提出一种新型的高分子纳米复合材料的制备方法,所述制备方法所需要的材料包括:聚甲基丙烯酸甲酯,聚氯乙烯,聚乙烯,聚氨酯,聚苯乙烯,聚碳酸酯,橡胶和尼龙等材料中的两种或几种,光增透材料和增强材料等。
如图3所示为本实施例二以聚氯乙烯材料和聚乙烯材料为例来阐述制备方法300:
步骤一310、分别将分子量为50000~110000,质量分数为5%~90%的聚氯乙烯材料、分子量为50000~500000,质量分数为5%~90%的聚乙烯材料、以及分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物材料混合到一起形成混合材料,加热至100~120℃,使得所述混合材料在高温下发生熔融;
步骤二320、加入氟化镁、氧化钛、硫化铅、硒化铅中的一种光增透材料,来提升复合材料透光率,所述光增透材料的质量分数为1%~5%;
步骤三330、加入富勒烯、碳纳米管、蒙脱土或其它纳米粒子来提高材料的力学性能的增强材料,所述增强材料的质量分数为1%~5%,所述混合材料、所述光增透材料和所述增强材料构成复合材料;
步骤四340、将所述复合材料加入到双螺杆挤出机进行共混挤出,使得所述复合材料均匀混合,温度为100~130℃,时间为5~60分钟,然后出料;
步骤五350、于所述步骤四后,使所述复合材料冷却至-10~10℃,时间为10s~2min,以形成高分子纳米复合材料。
本发明实施例将聚乙烯,聚氨酯,聚苯乙烯,聚甲基丙烯酸甲酯,聚碳酸酯、橡胶和尼龙等材料中的两种或几种的高分子采用溶剂混合或者双螺杆挤出机共混得到声阻抗和指纹脊相匹配的高分子纳米复合材料,所以可以明显降低指纹脊的反射率,从而指纹谷和脊反射率之比增加,超声波指纹识别的效果得到明显提升。并且通过骤冷和加入添加剂等措施来抑制高分子材料的结晶,可以降低材料的结晶度,最终透光率和力学性能得到提升。
本发明实施例提供了一种新型的高分子纳米复合材料的制备方法,而且该方法可以根据产品的需要,来调整材料的配方以及性能。使用本发明提供的高分子纳米复合材料制程的超声波指纹识别模组可以提升指纹谷和脊的反射率之比,来提升指纹识别效果,并且还提升了保护层材料的力学性能,延长使用寿命。
尽管已经相对于一个或多个实现方式示出并描述了本揭示,但是本领域技术人员基于对本说明书和附图的阅读和理解将会想到等价变型和修改。本揭示包括所有这样的修改和变型,并且仅由所附权利要求的范围限制。特别地关于由上述组件执行的各种功能,用于描述这样的组件的术语旨在对应于执行所述组件的指定功能(例如其在功能上是等价的)的任意组件(除非另外指示),即使在结构上与执行本文所示的本说明书的示范性实现方式中的功能的公开结构不等同。此外,尽管本说明书的特定特征已经相对于若干实现方式中的仅一个被公开,但是这种特征可以与如可以对给定或特定应用而言是期望和有利的其他实现方式的一个或多个其他特征组合。而且,就术语“包括”、“具有”、“含有”或其变形被用在具体实施方式或权利要求中而言,这样的术语旨在以与术语“包含”相似的方式包括。
以上仅是本揭示的优选实施方式,应当指出,对于本领域普通技术人员,在不脱离本揭示原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本揭示的保护范围。

Claims (17)

  1. 一种高分子纳米复合材料的制备方法,包括以下步骤:
    步骤一、将分子量为50000~110000的聚氯乙烯在室温下溶解在四氢呋喃溶液中,聚氯乙烯和四氢呋喃的质量比为1:3~1:10;
    步骤二、将分子量为50000~500000的聚乙烯在60℃~120℃下溶解在苯溶液中,所述聚乙烯和苯的质量比为1:3~1:10;
    步骤三、将分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物在20℃~100℃的温度下溶解在另一四氢呋喃溶液中;
    步骤四、将所述步骤一、所述步骤二、所述步骤三中取得的多种溶液混合到一起,加入表面活性剂;
    步骤五、向所述步骤四所获得的溶液中加入光增透材料;
    步骤六、向所述步骤五所获得的溶液中加入增强材料;
    步骤七、将所述步骤六所获得的溶液进行超声处理1~3小时,温度为60℃~100℃;以及
    步骤八、将所述步骤七所获得的溶液进行旋蒸,所述旋蒸的温度为80℃~120℃,以形成高分子纳米复合材料。
  2. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤一中的聚氯乙烯的质量分数为5%~90%。
  3. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤二中的所述聚乙烯的质量分数为5%~90%。
  4. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤三中的所述聚氯乙烯-聚乙烯嵌段共聚物的质量分数为5%~90%,所述聚氯乙烯-聚乙烯嵌段共聚物和所述另一四氢呋喃的质量比为1:3~1:10。
  5. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤四中的所述表面活性剂为硬脂酸或十二烷基苯磺酸钠。
  6. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤五中的所述光增透材料为氟化镁、氧化钛、硫化铅和硒化铅中的一种,所述光增透材料的质量分数为1%~5%。
  7. 根据权利要求1所述的高分子纳米复合材料的制备方法,其中所述步骤六中的所述增强材料为富勒烯、碳纳米管、蒙脱土或其它纳米粒子,所述增强材料的质量分数为1%~5%。
  8. 一种高分子纳米复合材料的制备方法,包括以下步骤:
    步骤一、将分子量为50000~110000的聚氯乙烯在室温下溶解在四氢呋喃溶液中;
    步骤二、将分子量为50000~500000的聚乙烯在60℃~120℃下溶解在苯溶液中;
    步骤三、将分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物在20℃~100℃的温度下溶解在另一四氢呋喃溶液中;
    步骤四、将所述步骤一、所述步骤二、所述步骤三中取得的多种溶液混合到一起,加入表面活性剂;
    步骤五、向所述步骤四所获得的溶液中加入光增透材料;
    步骤六、向所述步骤五所获得的溶液中加入增强材料;
    步骤七、将所述步骤六所获得的溶液进行超声处理1~3小时,温度为60℃~100℃;以及
    步骤八、将所述步骤七所获得的溶液进行旋蒸,所述旋蒸的温度为80℃~120℃,以形成高分子纳米复合材料。
  9. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤一中的聚氯乙烯的质量分数为5%~90%,聚氯乙烯和四氢呋喃的质量比为1:3~1:10。
  10. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤二中的所述聚乙烯的质量分数为5%~90%,所述聚乙烯和苯的质量比为1:3~1:10。
  11. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤三中的所述聚氯乙烯-聚乙烯嵌段共聚物的质量分数为5%~90%,所述聚氯乙烯-聚乙烯嵌段共聚物和所述另一四氢呋喃的质量比为1:3~1:10。
  12. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤四中的所述表面活性剂为硬脂酸或十二烷基苯磺酸钠。
  13. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤五中的所述光增透材料为氟化镁、氧化钛、硫化铅和硒化铅中的一种,所述光增透材料的质量分数为1%~5%。
  14. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中所述步骤六中的所述增强材料为富勒烯、碳纳米管、蒙脱土或其它纳米粒子,所述增强材料的质量分数为1%~5%。
  15. 根据权利要求8所述的高分子纳米复合材料的制备方法,其中在所述步骤一中的所述聚氯乙烯和步骤二中的所述聚乙烯均替换成聚甲基丙烯酸甲酯、聚氨酯、聚苯乙烯、聚碳酸酯、橡胶和尼龙中的至少一种。
  16. 一种高分子纳米复合材料的制备方法,包括以下步骤:
    步骤一、分别将分子量为50000~110000,质量分数为5%~90%的聚氯乙烯材料、分子量为50000~500000,质量分数为5%~90%的聚乙烯材料、以及分子量为10000~100000的聚氯乙烯-聚乙烯嵌段共聚物材料混合到一起形成混合材料,加热至100~120℃,使得所述混合材料在高温下发生熔融;
    步骤二、在所述混合材料中加入光增透材料,所述光增透材料的质量分数为1%~5%;
    步骤三、在所述混合材料中加入增强材料,所述增强材料的质量分数为1%~5%,所述混合材料、所述光增透材料和所述增强材料构成复合材料;
    步骤四、将所述复合材料加入到双螺杆挤出机进行共混挤出,使得所述复合材料均匀混合,温度为100~130℃,时间为5~60分钟,然后出料;以及
    步骤五、于所述步骤四后,使所述复合材料冷却至-10~10℃,时间为10秒~2分钟,以形成高分子纳米复合材料。
  17. 根据权利要求16所述的高分子纳米复合材料的制备方法,其中在所述步骤一中的所述聚氯乙烯材料和步骤二中的所述聚乙烯材料均替换成聚甲基丙烯酸甲酯、聚氨酯、聚苯乙烯、聚碳酸酯、橡胶和尼龙中的至少一种。
PCT/CN2019/082994 2018-12-29 2019-04-17 高分子纳米复合材料的制备方法 WO2020133815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/488,399 US11306185B2 (en) 2018-12-29 2019-04-17 Method for preparing polymer nanocomposite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811638213.1 2018-12-29
CN201811638213.1A CN109721887A (zh) 2018-12-29 2018-12-29 高分子纳米复合材料的制备方法

Publications (1)

Publication Number Publication Date
WO2020133815A1 true WO2020133815A1 (zh) 2020-07-02

Family

ID=66298561

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/082994 WO2020133815A1 (zh) 2018-12-29 2019-04-17 高分子纳米复合材料的制备方法

Country Status (3)

Country Link
US (1) US11306185B2 (zh)
CN (1) CN109721887A (zh)
WO (1) WO2020133815A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109815838A (zh) * 2018-12-29 2019-05-28 武汉华星光电技术有限公司 高分子复合材料的制备方法及指纹识别的显示面板
CN110862629A (zh) * 2019-12-02 2020-03-06 江苏龙汇纳米科技有限公司 一种新型耐高温、抗阻燃的高分子纳米复合材料制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654524A (zh) * 2008-03-10 2010-02-24 财团法人工业技术研究院 驻极体材料、驻极体扬声器及其制造方法
CN106565981A (zh) * 2015-10-12 2017-04-19 中国科学院苏州纳米技术与纳米仿生研究所 抗静电膜及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050196552A1 (en) * 2003-11-18 2005-09-08 Lehmann Maria J. Anti-reflective optical film for display devices
KR20080017969A (ko) * 2006-08-23 2008-02-27 주식회사 엘지화학 인쇄를 이용한 표면층 및 무기질 보드를 포함하는 건식바닥재
CN100412126C (zh) * 2006-09-05 2008-08-20 武汉理工大学 一类类流体无机纳米粒子与聚合物的复合材料及制备
EP2188324A2 (en) * 2007-09-14 2010-05-26 Loughborough University Process
KR101007535B1 (ko) * 2008-12-24 2011-01-14 경북대학교 산학협력단 지문 검출 또는 인식용 고분자 필름, 및 이를 이용한 지문검출 또는 인식방법
FR2965269B1 (fr) * 2010-09-28 2013-10-04 Arkema France Composition a base de peba et son utilisation pour la fabrication d'objets transparents resistants a un impact de haute vitesse
CN103304935A (zh) * 2013-07-11 2013-09-18 常熟市慧丰塑料制品有限公司 一种聚氯乙烯和聚乙烯复合改性塑料
CN104553113A (zh) * 2014-12-11 2015-04-29 业成光电(深圳)有限公司 声波式指纹识别组件及其制造方法
CN104779223A (zh) * 2015-04-10 2015-07-15 华进半导体封装先导技术研发中心有限公司 具有单边沟槽的指纹识别芯片封装结构与制作方法
CN108373847A (zh) * 2016-10-19 2018-08-07 上海和辉光电有限公司 一种柔性触摸屏基材及其制备方法
CN107245199A (zh) * 2017-05-23 2017-10-13 江阴华东装饰材料有限公司 仿幕墙彩色玻璃pvc硬质片材的制备方法
CN107977602A (zh) * 2017-10-10 2018-05-01 成都安瑞芯科技有限公司 超声波指纹识别模块、模组、器件及电子设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654524A (zh) * 2008-03-10 2010-02-24 财团法人工业技术研究院 驻极体材料、驻极体扬声器及其制造方法
CN106565981A (zh) * 2015-10-12 2017-04-19 中国科学院苏州纳米技术与纳米仿生研究所 抗静电膜及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QIU, GUANMING: "Study on Preparation and Properties of PVC Film Modified by Rare Earth,", JOURNAL OF RARE EARTHS, vol. 21, no. 01, 28 February 2003 (2003-02-28), DOI: 8700302 *

Also Published As

Publication number Publication date
US11306185B2 (en) 2022-04-19
CN109721887A (zh) 2019-05-07
US20210355286A1 (en) 2021-11-18

Similar Documents

Publication Publication Date Title
CN100555474C (zh) 透明导电性层合体以及使用其的透明触摸面板
JP6069435B2 (ja) 樹脂組成物、およびそのフィルム
JP5408885B2 (ja) 樹脂組成物、フィルムおよび偏光板
WO2020133815A1 (zh) 高分子纳米复合材料的制备方法
CN102239432B (zh) 包括具有形状重叠的两种防闪光颗粒的防闪光剂的防闪光膜及其制备方法
JP6597598B2 (ja) 太陽光耐久性高透明フィルム、太陽光制御フィルム、赤外線反射フィルム及びフィルムミラー
JP2006328334A (ja) 樹脂組成物、またはこれを使用した光学用フィルム、偏光子保護フィルム
JP2010284840A (ja) コーティング層が付与されたフィルム、偏光子保護フィルム、及び、それを用いてなる偏光板
WO2005054311A1 (ja) イミド樹脂、並びにその製造方法及び利用
JPWO2017171008A1 (ja) 樹脂組成物、その成形体及びフィルム
CN108292063A (zh) 液晶显示装置
JP3855307B2 (ja) 透明導電性フィルムおよびその製造法
EP3626776B1 (en) Dope for film manufacture, and method for manufacturing film
WO2015075941A1 (ja) 樹脂材料、およびそのフィルム
JP2006328331A (ja) 樹脂組成物、成形体、フィルムとその製造方法
JP2001083489A (ja) 液晶表示パネル用基板
JP2001035261A (ja) 透明導電性積層体および透明タブレット
JP2015123618A (ja) 光学フィルムの製造方法
JP2003294942A (ja) 位相差フィルム及びその製造方法
WO2022114194A1 (ja) グルタルイミド樹脂
JP2005018551A (ja) 電磁波シールド機能を有するタッチパネル、およびそれに用いる透明積層フィルム
WO2020133695A1 (zh) 高分子复合材料的制备方法及指纹识别的显示面板
JP2000347170A (ja) 液晶表示パネル用基板
JPH09262926A (ja) タッチパネル用透明導電積層体及びその製造方法
JP4768981B2 (ja) 耐熱性イミド樹脂またはこの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19902574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19902574

Country of ref document: EP

Kind code of ref document: A1