WO2020132843A1 - 一种发光二极管及其制作方法 - Google Patents

一种发光二极管及其制作方法 Download PDF

Info

Publication number
WO2020132843A1
WO2020132843A1 PCT/CN2018/123265 CN2018123265W WO2020132843A1 WO 2020132843 A1 WO2020132843 A1 WO 2020132843A1 CN 2018123265 W CN2018123265 W CN 2018123265W WO 2020132843 A1 WO2020132843 A1 WO 2020132843A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light
emitting diode
diode according
ohmic contact
Prior art date
Application number
PCT/CN2018/123265
Other languages
English (en)
French (fr)
Inventor
王晶
郭桓邵
吴俊毅
Original Assignee
泉州三安半导体科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泉州三安半导体科技有限公司 filed Critical 泉州三安半导体科技有限公司
Priority to PCT/CN2018/123265 priority Critical patent/WO2020132843A1/zh
Priority to CN202310753897.4A priority patent/CN116825925A/zh
Priority to EP18944919.2A priority patent/EP3905344A4/en
Priority to JP2021546032A priority patent/JP7154429B2/ja
Priority to CN201880035523.6A priority patent/CN110710002B/zh
Priority to TW108115851A priority patent/TWI695520B/zh
Publication of WO2020132843A1 publication Critical patent/WO2020132843A1/zh
Priority to US17/226,082 priority patent/US20210226095A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0062Processes for devices with an active region comprising only III-V compounds
    • H01L33/0075Processes for devices with an active region comprising only III-V compounds comprising nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/42Transparent materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0016Processes relating to electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements

Definitions

  • the present invention relates to semiconductor elements, and in particular, to a light-emitting diode and a method of manufacturing the same.
  • LED chips continue to pursue higher brightness and increase brightness, a common method is to increase the mirror reflectance.
  • a large part of the light emitted in the MQW is directed in the opposite direction to the light exit surface. This part of the light is partially absorbed and partially reflected. Therefore, reducing absorption and increasing reflection are effective ways to increase specular reflectance.
  • ITO Indium Tin Oxide
  • GaP gallium arsphide
  • ITO absorption also has a certain loss of brightness.
  • the present invention provides a light-emitting diode to solve the problems described in the background art above, using a material with low thermal mobility as an anti-diffusion barrier film to prevent the ohmic contact material from diffusing into the light-emitting epitaxial window used as an ohmic contact,
  • the ohmic contact material is too deep into the light-emitting epitaxial layer to cause unevenness or light absorption, and limit the opening area to be too large, to avoid reducing the reflection area or absorbing light at the opening.
  • a light emitting diode including: a light emitting epitaxial layer, including a first semiconductor layer, a second semiconductor layer and both A light-emitting layer between; a transparent dielectric layer formed at least on the side of the second semiconductor layer of the light-emitting epitaxial layer, the transparent dielectric layer has a platform and a series of openings, the openings expose the light-emitting epitaxial layer; the opening of the transparent dielectric layer has an ohmic contact layer There is a transition layer between the ohmic contact layer and the light-emitting epitaxial layer, and the material used for the transition layer has a lower thermal mobility than the material of the ohmic contact layer.
  • the light-emitting epitaxial layer exposed through the opening is a first semiconductor layer or a second semiconductor layer.
  • the transition layer is a conductive oxide layer.
  • the transition layer is ITO, IZO, GZO or AZO.
  • the transition layer is a metal oxide or metal nitride film, and is in the form of a film or particles.
  • the transition layer is TiN or AlN.
  • the thickness of the transition layer is greater than or equal to 10 angstroms to less than or equal to
  • the thickness of the transition layer is greater than or equal to 20 angstroms to less than or equal to 50 angstroms.
  • the transition layer does not prevent the ohmic contact layer from electrically conducting with the second semiconductor layer.
  • the resistivity of the transition layer is higher than that of the ohmic contact layer.
  • the material of the ohmic contact layer is AuBe, AuGe or AuGeNi.
  • the ohmic contact layer material is ITO, IZO, GZO or AZO.
  • the pore diameter of the opening is greater than or equal to 1.5 microns to less than or equal to 2.5 microns, or greater than 2.5 microns to less than or equal to 10 microns.
  • the ratio of the opening area to the total area of the transparent medium layer is greater than or equal to 3% to less than or equal to 8%, or greater than 8% to less than or equal to 15%.
  • the transparent medium layer material is magnesium fluoride or silica.
  • a reflective layer on the side of the platform and the ohmic contact layer away from the light emitting epitaxial layer.
  • the reflective layer is Ag, Au or DBR.
  • transition layer between the platform and the reflective layer.
  • the light emitting diode is defined to emit light downward, it should be noted that The downwards in is only for explaining the positional relationship, and does not limit the actual use.
  • the light-emitting epitaxial layer is a gallium nitride-based or gallium arsenide-based.
  • the second semiconductor includes gallium phosphide, and the gallium phosphide is in contact with the transition layer.
  • the present invention provides a method for manufacturing a light-emitting diode, including the steps of: (1) sequentially manufacturing a first semiconductor layer, a light-emitting layer, and a second semiconductor layer on a substrate; (2) On the second semiconductor, make a transparent dielectric layer with a platform and a series of openings; (3) make a sacrificial layer on the platform; (4) cover the transparent conductive film on the platform and the opening; (5) cover on the transparent conductive film Alloy film; (6) Remove the sacrificial layer, and remove the transparent conductive film and alloy film on the sacrificial layer to expose the platform; (7) Make a metal reflective layer on the platform and alloy metal film; (8) Bond on the metal reflective layer A supporting substrate, which directly serves as a second electrode or as a carrier for the second electrode;
  • the substrate is peeled off to expose the light-emitting epitaxial layer, and the first electrode is formed on the bare light-emitting epitaxial layer.
  • the thickness of the alloy thin film is less than or equal to 200A.
  • a more simplified manufacturing method may be used to fabricate the light-emitting diode, including the steps of: (1) fabricating the first semiconductor layer, the light-emitting layer, and the second semiconductor layer in sequence on the substrate; (2) Make a transparent dielectric layer with a series of openings on the second semiconductor layer; (3) Cover the transparent conductive film on the platform and the opening; (4) Cover the alloy film on the transparent conductive film on the opening; (5) Cover the platform and alloy A metal reflective layer is formed on the metal thin film; (6) The support substrate is bonded on the metal reflective layer, and the support substrate directly serves as a second electrode or as a carrier for the second electrode; (7) The substrate is peeled to expose the light-emitting epitaxial layer, at The first electrode is formed on the exposed light-emitting epitaxial layer.
  • the present invention has at least the following beneficial effects:
  • the ohmic contact area can be reduced without changing the ohmic contact area, ensuring that the voltage is not greatly affected, and the ohmic light absorption is reduced, forming an invisible ohmic structure and improving brightness.
  • FIG. 1 is a schematic diagram of a prior art light emitting diode
  • FIG. 2 is an appearance view of a CB hole in the prior art
  • FIGS. 3 and 4 are schematic cross-sectional views of a chip according to Embodiment 1 of the present invention.
  • FIG. 5 is an external view of the CB hole according to Embodiment 1 of the present invention.
  • FIG. 6 is a schematic cross-sectional view of a chip according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic cross-sectional view of a chip according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic cross-sectional view of a chip according to Embodiment 4 of the present invention.
  • the present invention mainly discloses a light-emitting diode chip structure using insulating holes for ohmic contact, through the selection of insulating hole filling material to improve the overall light-emitting diode light, the insulating medium includes a protective effect (PV layer) or current blocking ( CBS) role.
  • PV layer protective effect
  • CBS current blocking
  • the light-emitting diode chip structure of this embodiment has a light-emitting epitaxial layer for exciting light
  • the light-emitting epitaxial layer includes a first semiconductor layer 110, a light-emitting layer 120, and a second semiconductor layer 130 in order from bottom to top; a transparent dielectric layer 200, formed at least on the second semiconductor layer 130, the transparent dielectric layer 200 has a platform 210 and A series of openings 220, where the series of openings 220 refers to a porous transparent dielectric layer 200, and the openings 220 expose the light-emitting epitaxial layer; the openings 220 of the transparent dielectric layer have an ohmic contact layer 310, the ohmic contact layer 310 is not specific
  • the metal layer in contact with the light-emitting epitaxial layer includes a metal layer in indirect contact with the light-e
  • the side of the second semiconductor layer 130 in contact with the transition layer 320 is gallium phosphide
  • the transition layer 320 is a conductive oxide layer
  • E-Beam electron beam evaporation is better for the effect ITO, or ITO, IZO, GZO, or AZO, which can be made by other processes, have some materials with higher resistivity than the ohmic contact layer.
  • An ohmic contact layer 310 is formed on the transition layer 320 in the insulating opening, and AuBe, AuGe, or AuGeNi is preferably used.
  • the dielectric material of the insulating opening 320 is magnesium fluoride (MgF 2 ).
  • ITO is designed as a thin film structure or particles
  • the thickness of the transition layer 320 is greater than or equal to 10 angstroms to less than or equal to 200 angstroms. In some embodiments, the thickness of the transition layer 320 may be greater than or equal to 20 angstroms to less than or equal to 50 angstroms.
  • the aperture of the opening 220 of the LED chip structure manufactured according to this embodiment can be controlled to be greater than or equal to 1.5 microns to less than or equal to 2.5 microns, or greater than 2.5 microns to less than or equal to 10 microns, and the ratio of the area of the opening 220 to the total area of the transparent medium layer is greater than or equal to 3% to less than or equal to 8%, or more than 8% to less than or equal to 15%, that is, the ohmic contact area made of ultra-thin ITO and alloy can minimize the opening area on the basis of ensuring current spreadability.
  • the opening area is small, the light absorption is small, and the area where light is reflected is increased. The light is mainly transmitted to the reflective layer 500 through the transparent medium layer 200 and then exits upward.
  • a reflective layer 500 is provided on the side of the platform and the ohmic contact layer away from the light-emitting epitaxial layer, and the reflective layer 500 may be a reflective metal such as Ag or Au.
  • the reflective layer 500 mainly refers to a material with a reflective effect in a broad sense, such as most metals.
  • the above-mentioned chip can be regarded as a process structure in the process of the light-emitting diode chip, which is further fabricated in this embodiment, refer to FIG. 4, since FIG. 3 is inverted relative to FIG. 4 for ease of understanding, that is, the The structure is to emit light upward, and the arrow is a light transmission path.
  • the support substrate 600 may be bonded to the side of the reflective layer 500 away from the light-emitting layer 120.
  • the support substrate 600 may directly serve as the second electrode 720, or may serve as a carrier for the second electrode 720.
  • the growth substrate 400 is removed to expose the light-emitting epitaxial layer, and the first electrode 710 is formed on the light-emitting epitaxial layer. Referring to FIG. 5, in this embodiment, the color depth of the middle dark CB hole is significantly diluted to effectively improve light emission. brightness.
  • the light-emitting epitaxial layer exposed through the opening is the first semiconductor layer or the second semiconductor layer.
  • the above embodiment describes the opening 220 to the second semiconductor layer, and in some embodiments the opening 200 penetrates the second semiconductor layer 130 and The light emitting layer 120, which opens to the first semiconductor layer 110, may also play the same role.
  • a corresponding process including the steps of: (1) a first semiconductor layer 110, a light emitting layer 120 and a first semiconductor layer are sequentially formed on a gallium arsenide growth substrate 400 The second semiconductor layer 130; (2) on the second semiconductor 120, using a yellow light process to produce a platform 210 And a series of transparent dielectric layers 200 with openings 220; (3) making a sacrificial layer 800 on the platform 210, the sacrificial layer
  • a metal reflective layer 500 is formed on the platform 210 and the alloy metal film.
  • Further fabrication of the subsequent structure includes the steps of: (8) bonding the support substrate 600 on the surface of the metal reflective layer 500, the support substrate 600 may be directly used as the second electrode 720, or may be used as a carrier for the second electrode 720, and thereafter
  • the gallium arsenide growth substrate 400 is stripped to expose the light-emitting epitaxial layer, and the first electrode 710 is formed on the bare light-emitting epitaxial layer.
  • the thickness of the design alloy film is less than or equal to 200A, and when the metal is deposited at a thickness of S200A, the metal film is transparent. Therefore, the invisible ohmic structure of the transparent conductive ITO layer + transparent metal layer is formed. When this structure is combined with the Ag mirror process of the reflective layer 500, the reflectivity at the ohmic position can be increased even more. Further increase the brightness.
  • the same as the first embodiment is a gallium arsenide group, different from the first embodiment is that between the platform 210 and the reflective layer 500 Between the transition layer 320.
  • a method for manufacturing the structure of this embodiment including the steps of: (1) sequentially manufacturing a first semiconductor layer 110, a light emitting layer 120, and a second semiconductor layer 130 on a gallium arsenide growth substrate 400; ( 2) On the second semiconductor layer 130, a transparent dielectric layer 200 having a platform 210 and a series of openings 220 is fabricated; (3
  • Further fabrication of the subsequent structure includes the steps of: (6) bonding the support substrate 600 on the surface of the metal reflective layer 500, the support substrate 600 can be directly used as the second electrode 720, and can also be used as a carrier for the second electrode 720; (7) The gallium arsenide growth substrate 400 is stripped to expose the light-emitting epitaxial layer, and the first electrode 710 is formed on the bare light-emitting epitaxial layer.
  • the reflective layer 500 includes a DBR distributed Bragg reflective layer, or is composed of a DBR and a metal reflective layer, the DBR has The hole 510 corresponding to the opening 220 of the transparent dielectric layer 200 is filled with a conductive substance, such as a metal material commonly used for electrical contact.
  • a conductive substance such as a metal material commonly used for electrical contact.
  • the design of the present invention can be applied to a gallium nitride based chip can also achieve good results, such as the chip structure in the figure, in this structure
  • the chip emits light upwards, and has the light-emitting epitaxial layer of Embodiment 1, which will not be repeated here.
  • the supporting substrate 600 may be silicon or heat-dissipating ceramics
  • the reflective layer 500 is a metal layer, which extends outward
  • the layer 200 has a platform 210 and a series of openings 220 for electrical conduction.
  • the opening 220 has two conductive materials.
  • the conductive material near the light-emitting epitaxial layer is the transition layer 320, and the conductive material away from the light-emitting epitaxial layer is the ohmic contact layer 310.
  • the thermal mobility of the transition layer 320 is lower than that of the ohmic contact layer 310.
  • the ohmic contact layer 310 is a metal or an alloy, and the transition layer 320 is a conductive metal oxide, an ultra-thin metal nitride, or a metal with a lower thermal mobility than the ohmic contact layer 310.
  • the metal oxide or The nitride is electrically conductive due to tunneling.
  • the nitride is, for example, titanium nitride or aluminum nitride.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

一种发光二极管及其制作方法,包括:发光外延层,自下而上依次包括第一半导体层(110)、发光层(120)和第二半导体层(130);透明介质层(200),至少形成在第二半导体层(130)上,透明介质层(200)具有平台(210)和一系列开口(220);透明介质层(200)的开口(220)内具有欧姆接触层(310),欧姆接触层(310)与第二半导体层(130)之间具有过渡层(320),过渡层(320)的热迁移率低于欧姆接触层(310),解决了欧姆接触区域材料选择的难题,有效控制了开口面积,减小欧姆接触区域的吸光。

Description

一种发光二极管及其制作方法
技术领域
[0001] 本发明涉及半导体元件, 尤其是涉及一种发光二极管及其制作方法。
背景技术
[0002] LED芯片持续追求更高的亮度, 提高亮度中, 一种常用的方法就是提高镜面反 射率。 MQW中发出的光很大的部分射向与出光面相反的方向。 这部分的光一部 分被吸收一部分被反射。 因此减少吸收和增加反射就是提高镜面反射率的有效 方法。
[0003] 提升镜面系统的镜面反射率是常用的提亮方法。 但是镜面一侧同时也需要做 oh mic接触。 参看图 1, 以 RS产品为例, 镜面侧的 ohmic接触常用的方法是合金金属 如 AuZn与 GaP接触, 进行熔合后, AuZn扩散入 GaP, 形成 ohmic接触。 在这个过 程中 AuZn扩散入 GaP, 会引起界面的不平整, 参看图 2, 显微镜中观察会看到 oh mic接触的地方, 由于不平整导致吸光严重而显的颜色比较深。 另外一种方式是 用透明导电层做 ohmic常用的材料为 ITO, 但是 ITO本身的折射率较高, 透光性一 般, 因此做镜面的话镜面反射率会有一定的下降。 另外 ITO与 GaP做 ohmic, 要达 到 AuZn ohmic—样的电压, 需要将 ITO ohmic的面积加大, ITO吸光同样对亮度 有一定的损失。
发明概述
技术问题
问题的解决方案
技术解决方案
[0004] 本发明提供了一种发光二极管解决了上述背景技术中记载的难题, 利用热迁移 率低的材料作为防扩散阻隔薄膜, 防止欧姆接触材料扩散进入用作欧姆接触的 发光外延层窗口, 欧姆接触材料进入发光外延层太深造成不平整或者吸光, 且 限制开口面积过大, 避免减小反射面积或者开口处吸光。
[0005] 一种发光二极管,包括: 发光外延层, 包括第一半导体层、 第二半导体层及两者 之间的发光层; 透明介质层, 至少形成在发光外延层的第二半导体层一侧, 透 明介质层具有平台和一系列开口, 开口露出发光外延层; 透明介质层的开口内 具有欧姆接触层, 欧姆接触层与发光外延层之间具有过渡层, 过渡层采用的材 料热迁移率低于欧姆接触层的材料。
[0006] 根据本发明, 优选的, 开口露出的发光外延层为第一半导体层或者第二半导体 层。
[0007] 在第一类实施例中, 优选的, 过渡层为导电氧化物层。
[0008] 在该类实施例中, 优选的, 过渡层为 ITO、 IZO、 GZO或者 AZO。
[0009] 在第二类实施例中, 优选的, 过渡层为金属氧化物或者金属氮化物薄膜, 且呈 薄膜或者颗粒状。
[0010] 在该类实施例中, 优选的, 过渡层为 TiN或者 A1N。
[0011] 在第一类和第二类实施例中, 优选的, 过渡层厚度为大于等于 10埃到小于等于
200埃。
[0012] 在前两类实施例中, 更优选的, 过渡层厚度为大于等于 20埃到小于等于 50埃。
[0013] 根据本发明, 优选的, 过渡层不阻止欧姆接触层与第二半导体层电导通。
[0014] 根据本发明, 优选的, 过渡层的电阻率高于欧姆接触层。
[0015] 根据本发明, 优选的, 欧姆接触层材料为 AuBe、 AuGe或者 AuGeNi。
[0016] 在第三类实施例中, 优选的, 欧姆接触层材料为 ITO、 IZO、 GZO或者 AZO。
[0017] 根据本发明, 优选的, 开口的孔径大于等于 1.5微米至小于等于 2.5微米, 或者 大于 2.5微米至小于等于 10微米。
[0018] 根据本发明, 优选的, 开口面积占透明介质层总面积的比例大于等于 3%至小 于等于 8%, 或者大于 8%至小于等于 15%。
[0019] 根据本发明, 优选的, 透明介质层材料为氟化镁或者二氧化硅。
[0020] 在第四类实施例中, 优选的, 在平台与欧姆接触层远离发光外延层的一侧具有 反射层。
[0021] 在该类实施例中, 优选的, 反射层为 Ag、 Au或者 DBR。
[0022] 根据本发明, 优选的, 平台与反射层之间具有过渡层。
[0023] 为了表述清楚, 在一些实施例中, 定义发光二极管为向下出光, 需要注意的这 里的向下只是便于说明位置关系, 并不限定实际使用。
[0024] 根据本发明, 优选的, 发光外延层为氮化镓基或者砷化镓基。
[0025] 根据本发明, 优选的, 第二半导体包括磷化镓, 磷化镓与过渡层接触。
[0026] 为实现上述发光二极管结构, 本发明提供了一种发光二极管的制作方法, 包括 步骤: (1) 在衬底上依次制作第一半导体层、 发光层和第二半导体层; (2) 在第二半导体上, 制作具有平台和一系列开口的透明介质层; (3) 在平台上制 作牺牲层; (4) 在平台和开口处覆盖透明导电薄膜; (5) 在透明导电薄膜上 覆盖合金薄膜; (6) 去除牺牲层, 并去除牺牲层上的透明导电薄膜和合金薄膜 , 露出平台; (7) 在平台和合金金属薄膜上制作金属反射层; (8) 在金属反 射层面键合支撑基板, 支撑基板直接作为第二电极, 或做为第二电极的载体;
(9) 剥离衬底裸露出发光外延层, 在裸露出的发光外延层上制作第一电极。
[0027] 在该制作方法中, 优选的, 合金薄膜的厚度小于等于 200A。
[0028] 在一些实施例中, 制作发光二极管还可以采用更简化的制作方法, 包括步骤: (1) 在衬底上依次制作第一半导体层、 发光层和第二半导体层; (2) 在第二 半导体层上制作具有一系列开口的透明介质层; (3) 在平台和开口处覆盖透明 导电薄膜; (4) 在开口处的透明导电薄膜上覆盖合金薄膜; (5) 在平台和合 金金属薄膜上制作金属反射层; (6) 在金属反射层面键合支撑基板, 支撑基板 直接作为第二电极, 或做为第二电极的载体; (7) 剥离衬底裸露出发光外延层 , 在裸露出的发光外延层上制作第一电极。
发明的有益效果
有益效果
[0029] 本发明至少具有以下有益效果:
[0030] 通过在接触绝缘孔内设置一层过渡层, 即可在不改变 ohmic接触面积, 保证电 压不受到太大影响的同时减少 ohmic吸光, 形成隐形的 ohmic结构, 提升亮度。
[0031] 本发明的其它特征和优点将在随后的说明书中阐述, 并且, 部分地从说明书中 变得显而易见, 或者通过实施本发明而了解。 本发明的目的和其他优点可通过 在说明书、 权利要求书以及附图中所特别指出的结构来实现和获得。
[0032] 虽然在下文中将结合一些示例性实施及使用方法来描述本发明, 但本领域技术 人员应当理解, 并不旨在将本发明限制于这些实施例。 反之, 旨在覆盖包含在 所附的权利要求书所定义的本发明的精神与范围内的所有替代品、 修正及等效 物。
对附图的简要说明
附图说明
[0033] 附图用来提供对本发明的进一步理解, 并且构成说明书的一部分, 与本发明实 施例一起用于解释本发明, 并不构成对本发明的限制。 此外, 附图数据是描述 概要, 不是按比例绘制。
[0034] 图 1为现有技术的发光二极管示意图;
[0035] 图 2为现有技术的 CB孔外观图;
[0036] 图 3和图 4为本发明实施例 1的芯片剖面示意图;
[0037] 图 5为本发明实施例 1的 CB孔外观图;
[0038] 图 6为本发明实施例 2的芯片剖面示意图;
[0039] 图 7为本发明实施例 3的芯片剖面示意图;
[0040] 图 8为本发明实施例 4的芯片剖面示意图;
[0041] 图中标示: 110、 第一半导体层, 120、 发光层, 130、 第二半导体层, 200、 透 明介质层, 210、 平台, 220、 开口, 310、 欧姆接触层, 320、 过渡层, 400、 生 长衬底, 500、 反射层, 510、 孔洞, 520、 第二台阶, 600、 支持基板, 710、 第 一电极, 720、 第二电极, 800、 牺牲层。
发明实施例
本发明的实施方式
[0042] 以下将结合附图及实施例来详细说明本发明的实施方式, 借此对本发明如何应 用技术手段来解决技术问题, 并达成技术效果的实现过程能充分理解并据以实 施。 需要说明的是, 只要不构成冲突, 本发明中的各个实施例以及各实施例中 的各个特征可以相互结合, 所形成的技术方案均在本发明的保护范围之内。
[0043] 应当理解, 本发明所使用的术语仅出于描述具体实施方式的目的, 而不是旨在 限制本发明。 如本发明所使用的, 单数形式“一”、 “一种”和“所述”也旨在包括复 数形式, 除上下文清楚地表明之外。 应进一步理解, 当在本发明中使用术语“包 含”、 ”包括’’、 “含有”时, 用于表明陈述的特征、 整体、 步骤、 操作、 元件、 和 / 或封装件的存在, 而不排除一个或多个其他特征、 整体、 步骤、 操作、 元件、 封装件、 和 /或它们的组合的存在或增加。
[0044] 除另有定义之外, 本发明所使用的所有术语 (包括技术术语和科学术语) 具有 与本发明所属领域的普通技术人员通常所理解的含义相同的含义。 应进一步理 解, 本发明所使用的术语应被理解为具有与这些术语在本说明书的上下文和相 关领域中的含义一致的含义, 并且不应以理想化或过于正式的意义来理解, 除 本发明中明确如此定义之外。
[0045] 本发明主要公开了一种利用绝缘孔洞做欧姆接触的发光二极管芯片结构, 通过 对绝缘孔洞填充材质的选择来提高发光二极管整体出光, 绝缘介质包括保护作 用 (PV层) 或者电流阻挡 (CBS) 作用。
[0046] 参看图 3 , 在本发明的第一个实施例中, 针对的是砷化镓基发光二极管进行设 计, 在本实施例的发光二极管芯片结构中, 具有用于激发出光的发光外延层, 发光外延层自下而上依次包括第一半导体层 110、 发光层 120和第二半导体层 130 ; 透明介质层 200, 至少形成在第二半导体层 130上, 透明介质层 200具有平台 21 0和一系列开口 220, 这里一系列开口 220指的是多孔的透明介质层 200, 开口 220 露出发光外延层; 透明介质层的开口 220内具有欧姆接触层 310, 该欧姆接触层 3 10并不是特指与发光外延层接触的金属层, 而包括了与发光外延层间接接触的 金属层, 欧姆接触层 310与第二半导体层 130之间具有过渡层 320, 过渡层 320的 热迁移率低于欧姆接触层 310, 在高温退火时, 过渡层 320不易向第二半导体层 1 30迁移, 且阻碍了欧姆接触层 310的材料想第二半导体层 130迁移。 在本实施例 中在第一半导体层 110远离一侧具有生长衬底 400, 生产衬底 400为临时衬底而非 永久衬底。
[0047] 在本实施例中, 第二半导体层 130与过渡层 320接触的一侧为磷化镓, 过渡层 32 0为导电氧化物层, 效果较佳的选用 E-Beam电子束蒸镀的 ITO , 或者可以用其他 工艺制作的 ITO、 IZO、 GZO或者 AZO等一些电阻率高于欧姆接触层的材料。 在 绝缘开口内的过渡层 320上制作欧姆接触层 310, 效果较佳的选用 AuBe、 AuGe或 者 AuGeNi, 该绝缘开口 320的介质材料为氟化镁 (MgF 2) 。 [0048] 以 E-Beam ITO为例由于 ITO的导电性低于合金的导电性, 为了保证和提高欧姆 接触层 310的导电性, 增强外量子效率、 减少光损失, ITO设计为薄膜结构或者 颗粒状结构, 过渡层 320厚度为大于等于 10埃到小于等于 200埃, 在一些实施例 中, 过渡层 320厚度可以为大于等于 20埃到小于等于 50埃, 超薄的 ITO不会对电 性造成明显影响, 且有效地避免了在退火工艺后欧姆接触层 310不平整导致吸光 严重而显得颜色比较深。 根据本实施例制作的发光二极管芯片结构开口 220的孔 径可以控制在大于等于 1.5微米至小于等于 2.5微米, 或者大于 2.5微米至小于等于 10微米, 开口 220面积占透明介质层总面积的比例大于等于 3%至小于等于 8%, 或者大于 8%至小于等于 15%, 即超薄 ITO与合金制作的欧姆接触区域可以在保证 电流扩展性的基础上尽可能缩小开口面积。 开口面积小的情况下吸光小, 且增 大了反射出光的面积, 光主要通过透明介质层 200传导到反射层 500上再向上出 光。
[0049] 在平台与欧姆接触层远离发光外延层的一侧具有反射层 500, 该反射层 500可以 是 Ag或者 Au等反射金属。 该反射层 500主要指的是广义的具有反射效应的材料, 例如绝大多数的金属。
[0050] 在本实施例中, 上述芯片可以认为是发光二极管芯片制程中的过程结构, 在本 实施例中进一步制作, 参看图 4, 由于为了便于理解图 3相对图 4进行了倒置, 即 该结构为向上出光, 箭头为光传导路径, 可以在反射层 500远离发光层 120的一 面键合支撑基板 600, 支撑基板 600可直接作为第二电极 720, 也可以做为第二电 极 720的载体, 在键合后去除生长衬底 400, 露出发光外延层, 在发光外延层上 制作第一电极 710, 参看图 5 , 在本实施例中明显淡化了中间深色 CB孔的颜色深 度, 有效提高出光亮度。
[0051] 开口露出的发光外延层为第一半导体层或者第二半导体层, 上述实施方式描述 的是开口 220至第二半导体层, 而在一些实施方式中开口 200贯穿第二半导体层 1 30和发光层 120, 开至第一半导体层 110, 也可起到相同作用。
[0052] 根据本发明第一个实施例的发光二极管芯片结构, 提供对应的工艺制程, 包括 步骤: ( 1) 在砷化镓生长衬底 400上依次制作第一半导体层 110、 发光层 120和 第二半导体层 130; (2) 在第二半导体 120上, 利用黄光制程制作具有平台 210 和一系列开口 220的透明介质层 200; (3) 在平台 210上制作牺牲层 800, 牺牲层
800材料例如光阻或者其他易去除的胶材; (4) 在牺牲层 800和开口 220处覆盖 透明导电薄膜作为过渡层 320; (5) 在透明导电薄膜上覆盖作为欧姆接触层 310 的合金薄膜; (6) 去除牺牲层 800, 并去除牺牲层 800上的透明导电薄膜和合金 薄膜, 露出平台 210; (7) 在平台 210和合金金属薄膜上制作金属反射层 500。
[0053] 进一步制作后续结构, 包括步骤: (8) 在金属反射层 500面键合支撑基板 600 , 支撑基板 600可直接作为第二电极 720, 也可以做为第二电极 720的载体, 其后 剥离砷化镓生长衬底 400裸露出发光外延层, 在裸露出的发光外延层上制作第一 电极 710。
[0054] 在第一个实施例的一些变形方案中, 设计合金薄膜的厚度小于等于 200A, 当金 属的蒸镀厚度 S200A时, 金属薄膜是透明的。 因此形成透明导电 ITO层 +透明金 属层的隐形 ohmic结构。 这种结构再搭配反射层 500的 Ag镜制程时, 更加能够增 加 ohmic位置的反射率。 进一步的提升亮度。
[0055] 在本发明的第二个实施例中, 参看图 6, 与第一个实施例相同的是砷化镓基, 与第一个实施例不同的是, 在平台 210与反射层 500之间具有过渡层 320。 与芯片 结构对应的, 提供了该实施例结构的制作方法, 包括步骤: (1) 在砷化镓生长 衬底 400上依次制作第一半导体层 110、 发光层 120和第二半导体层 130; (2) 在 第二半导体层 130上, 制作具有平台 210和一系列开口 220的透明介质层 200; (3
) 在平台 210和开口 220处覆盖透明导电薄膜; (4) 在开口 220处的透明导电薄 膜上覆盖合金薄膜; (5) 在平台 210和合金金属薄膜上制作金属反射层 500。
[0056] 进一步进行后续结构的制作, 包括步骤: (6) 在金属反射层 500面键合支撑基 板 600, 支撑基板 600可直接作为第二电极 720, 也可以做为第二电极 720的载体 ; (7) 剥离砷化镓生长衬底 400裸露出发光外延层, 在裸露出的发光外延层上 制作第一电极 710。
[0057] 在本发明的第三个实施例中, 参看图 7, 本实施例与实施例 1的区别在于反射层 500包括 DBR分布布拉格反射层, 或者由 DBR和金属反射层构成, DBR具有与透 明介质层 200开口 220对应的孔洞 510, 孔洞 510内由导电物质填充, 例如常用做 电接触的金属材料。 [0058] 在本发明的第四个实施例中, 参看图 8 , 本发明的设计应用在氮化镓基的芯片 上也可以取到良好的效果, 例如图中的芯片结构, 在本结构中, 芯片向上出光 , 具有实施例 1的发光外延层, 这里不再赘述, 如图所示, 主要的区别在于, 支 撑基板 600可以选用硅或者散热陶瓷, 反射层 500为金属层, 向外延伸形成第二 台阶 520, 在第二台阶 520上制作第二电极 720, 反射层 500与发光外延层之间具 有透明介质层 200, 透明介质层 200采用的材料例如二氧化硅或者氮化硅, 透明 介质层 200具有平台 210和用于电导通的一系列开口 220, 开口 220内具有两种导 电材料, 靠近发光外延层的导电材料为过渡层 320, 远离发光外延层的导电材料 为欧姆接触层 310, 其中过渡层 320的热迁移率低于欧姆接触层 310。 欧姆接触层 310为金属或者合金, 而过渡层 320为热迁移率小于欧姆接触层 310的导电金属氧 化物、 超薄金属氮化物或者热迁移率较低的金属, 在薄膜结构中金属氧化物或 者氮化物会因为隧穿而电导通, 上述氮化物例如氮化钛或者氮化铝。
[0059] 需要说明的是, 以上实施方式仅用于说明本发明, 而并非用于限定本发明, 本 领域的技术人员, 在不脱离本发明的精神和范围的情况下, 可以对本发明做出 各种修饰和变动, 因此所有等同的技术方案也属于本发明的范畴, 本发明的专 利保护范围应视权利要求书范围限定。

Claims

权利要求书
[权利要求 1] 一种发光二极管,包括: 发光外延层, 包括第一半导体层、 第二半导 体层及两者之间的发光层; 透明介质层, 至少形成在发光外延层的第 二半导体层一侧, 透明介质层具有平台和一系列开口, 开口露出发光 外延层; 透明介质层的开口内具有欧姆接触层, 其特征在于, 欧姆接 触层与发光外延层之间具有过渡层, 过渡层采用的材料热迁移率低于 欧姆接触层的材料。
[权利要求 2] 根据权利要求 1所述的一种发光二极管, 其特征在于, 开口露出的发 光外延层为第一半导体层或者第二半导体层。
[权利要求 3] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层为导电 氧化物层。
[权利要求 4] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层为 ITO
、 IZO、 GZO或者 AZO。
[权利要求 5] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层为金属 氧化物或者金属氮化物, 且呈薄膜或者颗粒状。
[权利要求 6] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层为 TiN 或者 A1N。
[权利要求 7] 根据权利要求 3至 6中任意一项所述的一种发光二极管, 其特征在于, 过渡层厚度为大于等于 10埃到小于等于 200埃。
[权利要求 8] 根据权利要求 3至 6中任意一项所述的一种发光二极管, 其特征在于, 过渡层厚度为大于等于 20埃到小于等于 50埃。
[权利要求 9] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层不阻止 欧姆接触层与第二半导体层电导通。
[权利要求 10] 根据权利要求 1所述的一种发光二极管, 其特征在于, 过渡层的电阻 率高于欧姆接触层。
[权利要求 11] 根据权利要求 1所述的一种发光二极管, 其特征在于, 欧姆接触层材 料为 AuBe、 AuGe或者 AuGeNi。
[权利要求 12] 根据权利要求 11所述的一种发光二极管, 其特征在于, 欧姆接触层材 料的厚度小于等于 200A。
[权利要求 13] 根据权利要求 1所述的一种发光二极管, 其特征在于, 欧姆接触层材 料为 ITO、 IZO、 GZO或者 AZO。
[权利要求 14] 根据权利要求 1所述的一种发光二极管, 其特征在于, 开口的孔径大 于等于 1.5微米至小于等于 2.5微米, 或者大于 2.5微米至小于等于 10微 米。
[权利要求 15] 根据权利要求 1所述的一种发光二极管, 其特征在于, 开口面积占透 明介质层总面积的比例大于等于 3%至小于等于 8%, 或者大于 8%至小 于等于 15%。
[权利要求 16] 根据权利要求 1所述的一种发光二极管, 其特征在于, 透明介质层材 料为氟化镁或者二氧化硅。
[权利要求 17] 根据权利要求 1所述的一种发光二极管, 其特征在于, 在平台与欧姆 接触层远离发光外延层的一侧具有反射层。
[权利要求 18] 根据权利要求 17所述的一种发光二极管, 其特征在于, 反射层为 Ag
、 Au或者 DBR。
[权利要求 19] 根据权利要求 1所述的一种发光二极管, 其特征在于, 平台与反射层 之间具有过渡层。
[权利要求 20] 根据权利要求 1所述的一种发光二极管, 其特征在于, 发光外延层为 氮化镓基或者砷化镓基。
[权利要求 21] 根据权利要求 1所述的一种发光二极管, 其特征在于, 第二半导体包 括磷化镓, 磷化镓与过渡层接触。
[权利要求 22] 一种发光二极管的制作方法, 包括步骤: (1) 在衬底上依次制作第 一半导体层、 发光层和第二半导体层; (2) 在第二半导体上, 制作 具有平台和一系列开口的透明介质层; (3) 在平台上制作牺牲层;
(4) 在牺牲层和开口处覆盖透明导电薄膜; (5) 在透明导电薄膜上 覆盖合金薄膜; (6) 去除牺牲层, 并去除牺牲层上的透明导电薄膜 和合金薄膜, 露出平台; (7) 在平台和合金金属薄膜上制作金属反 射层; (8) 在金属反射层面键合支撑基板, 支撑基板直接作为第二 电极, 或做为第二电极的载体; (9) 剥离衬底裸露出发光外延层, 在裸露出的发光外延层上制作第一电极。
[权利要求 23] 根据权利要求 22所述的一种发光二极管的制作方法, 其特征在于, 合 金薄膜的厚度小于等于 200A。
[权利要求 24] 一种发光二极管的制作方法, 包括步骤: (1) 在衬底上依次制作第 一半导体层、 发光层和第二半导体层; (2) 在第二半导体层上, 制 作具有平台和一系列开口的透明介质层; (3) 在平台和开口处覆盖 透明导电薄膜; (4) 在开口处的透明导电薄膜上覆盖合金薄膜; (5 ) 在平台和合金金属薄膜上制作金属反射层; (6) 在金属反射层面 键合支撑基板, 支撑基板直接作为第二电极, 或做为第二电极的载体 ; (7) 剥离衬底裸露出发光外延层, 在裸露出的发光外延层上制作 第一电极。
PCT/CN2018/123265 2018-12-24 2018-12-24 一种发光二极管及其制作方法 WO2020132843A1 (zh)

Priority Applications (7)

Application Number Priority Date Filing Date Title
PCT/CN2018/123265 WO2020132843A1 (zh) 2018-12-24 2018-12-24 一种发光二极管及其制作方法
CN202310753897.4A CN116825925A (zh) 2018-12-24 2018-12-24 一种发光二极管及其制作方法
EP18944919.2A EP3905344A4 (en) 2018-12-24 2018-12-24 LIGHT EMITTING DIODE AND MANUFACTURING METHOD THEREOF
JP2021546032A JP7154429B2 (ja) 2018-12-24 2018-12-24 発光ダイオード及びその製作方法
CN201880035523.6A CN110710002B (zh) 2018-12-24 2018-12-24 一种发光二极管及其制作方法
TW108115851A TWI695520B (zh) 2018-12-24 2019-05-08 發光二極體及其製作方法
US17/226,082 US20210226095A1 (en) 2018-12-24 2021-04-09 Light-emitting diode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/123265 WO2020132843A1 (zh) 2018-12-24 2018-12-24 一种发光二极管及其制作方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/226,082 Continuation US20210226095A1 (en) 2018-12-24 2021-04-09 Light-emitting diode and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020132843A1 true WO2020132843A1 (zh) 2020-07-02

Family

ID=69192369

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/123265 WO2020132843A1 (zh) 2018-12-24 2018-12-24 一种发光二极管及其制作方法

Country Status (6)

Country Link
US (1) US20210226095A1 (zh)
EP (1) EP3905344A4 (zh)
JP (1) JP7154429B2 (zh)
CN (2) CN110710002B (zh)
TW (1) TWI695520B (zh)
WO (1) WO2020132843A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113889559A (zh) * 2020-07-02 2022-01-04 山东浪潮华光光电子股份有限公司 一种高亮度近红外发光二极管及其制备方法
WO2022257061A1 (zh) * 2021-06-10 2022-12-15 天津三安光电有限公司 发光二极管及制作方法
CN113299808B (zh) * 2021-07-05 2022-05-17 扬州乾照光电有限公司 一种led芯片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449060A (zh) * 2002-04-04 2003-10-15 国联光电科技股份有限公司 发光二极管的结构及其制造方法
CN101882658A (zh) * 2009-05-04 2010-11-10 Lg伊诺特有限公司 发光器件、发光器件封装和包括该封装的照明系统
CN102969414A (zh) * 2011-08-31 2013-03-13 日亚化学工业株式会社 半导体发光元件
CN105489732A (zh) * 2015-12-08 2016-04-13 天津三安光电有限公司 垂直发光二极管的制作方法
JP6134420B1 (ja) * 2016-03-09 2017-05-24 テ ギョン ユ, 半導体発光素子

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3497790B2 (ja) 1999-11-29 2004-02-16 星和電機株式会社 P型窒化ガリウム系半導体の製造方法及びp型窒化ガリウム系半導体を用いた発光素子
US20070267646A1 (en) * 2004-06-03 2007-11-22 Philips Lumileds Lighting Company, Llc Light Emitting Device Including a Photonic Crystal and a Luminescent Ceramic
CN100372137C (zh) * 2005-05-27 2008-02-27 晶能光电(江西)有限公司 具有上下电极结构的铟镓铝氮发光器件及其制造方法
US7795054B2 (en) 2006-12-08 2010-09-14 Samsung Led Co., Ltd. Vertical structure LED device and method of manufacturing the same
DE102007020291A1 (de) * 2007-01-31 2008-08-07 Osram Opto Semiconductors Gmbh Optoelektronischer Halbleiterchip und Verfahren zur Herstellung einer Kontaktstruktur für einen derartigen Chip
JP4985067B2 (ja) 2007-04-11 2012-07-25 日立電線株式会社 半導体発光素子
JP2008283096A (ja) 2007-05-14 2008-11-20 Hitachi Cable Ltd 半導体発光素子
GB2451334B (en) * 2007-07-19 2011-07-13 Photonstar Led Ltd Vertical led with conductive vias
JP4985260B2 (ja) * 2007-09-18 2012-07-25 日立電線株式会社 発光装置
US8368100B2 (en) * 2007-11-14 2013-02-05 Cree, Inc. Semiconductor light emitting diodes having reflective structures and methods of fabricating same
JP2010114337A (ja) 2008-11-10 2010-05-20 Hitachi Cable Ltd 発光素子
JP5298927B2 (ja) 2009-02-18 2013-09-25 日立電線株式会社 発光素子
JP2011165800A (ja) 2010-02-08 2011-08-25 Showa Denko Kk 発光ダイオード及びその製造方法、並びに発光ダイオードランプ
KR101125025B1 (ko) * 2010-07-23 2012-03-27 엘지이노텍 주식회사 발광소자 및 그 제조방법
US8802461B2 (en) * 2011-03-22 2014-08-12 Micron Technology, Inc. Vertical light emitting devices with nickel silicide bonding and methods of manufacturing
JP5957358B2 (ja) 2012-10-16 2016-07-27 昭和電工株式会社 発光ダイオード、発光ダイオードランプ及び照明装置
US20180130926A1 (en) * 2015-02-17 2018-05-10 Genesis Photonics Inc. Light emitting diode
CN104638078B (zh) * 2015-03-05 2017-05-10 天津三安光电有限公司 发光二极管及其制作方法
US10950747B2 (en) * 2015-07-01 2021-03-16 Sensor Electronic Technology, Inc. Heterostructure for an optoelectronic device
JP6826395B2 (ja) 2016-08-26 2021-02-03 ローム株式会社 半導体発光素子
JP6608352B2 (ja) * 2016-12-20 2019-11-20 Dowaエレクトロニクス株式会社 半導体発光素子およびその製造方法
TWI620352B (zh) * 2017-01-20 2018-04-01 大光能源科技有限公司 覆晶發光二極體及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1449060A (zh) * 2002-04-04 2003-10-15 国联光电科技股份有限公司 发光二极管的结构及其制造方法
CN101882658A (zh) * 2009-05-04 2010-11-10 Lg伊诺特有限公司 发光器件、发光器件封装和包括该封装的照明系统
CN102969414A (zh) * 2011-08-31 2013-03-13 日亚化学工业株式会社 半导体发光元件
CN105489732A (zh) * 2015-12-08 2016-04-13 天津三安光电有限公司 垂直发光二极管的制作方法
JP6134420B1 (ja) * 2016-03-09 2017-05-24 テ ギョン ユ, 半導体発光素子

Also Published As

Publication number Publication date
CN110710002A (zh) 2020-01-17
EP3905344A4 (en) 2022-08-03
US20210226095A1 (en) 2021-07-22
JP7154429B2 (ja) 2022-10-17
CN110710002B (zh) 2023-06-30
EP3905344A1 (en) 2021-11-03
JP2022508781A (ja) 2022-01-19
TW202025514A (zh) 2020-07-01
TWI695520B (zh) 2020-06-01
CN116825925A (zh) 2023-09-29

Similar Documents

Publication Publication Date Title
TWI445205B (zh) Semiconductor light emitting element
JP4024994B2 (ja) 半導体発光素子
JP5179766B2 (ja) 半導体発光装置およびその製造方法
US6900068B2 (en) Light emitting diode and method of making the same
TWI616001B (zh) 具溝槽及一頂部接點之發光裝置
JP4655920B2 (ja) 半導体発光素子
US6458612B1 (en) Method of fabricating high efficiency light-emitting diode with a transparent substrate
US7384808B2 (en) Fabrication method of high-brightness light emitting diode having reflective layer
US8399906B2 (en) AlGaInP-based light-emitting diode with double reflective layers and fabrication method thereof
TW201946294A (zh) 發光二極體、其製作方法及發光裝置
TWI695520B (zh) 發光二極體及其製作方法
US20020145147A1 (en) Light emitting diode and manufacturing method thereof
JP2012248795A (ja) 半導体発光素子およびその製造方法
US20130240937A1 (en) Semiconductor light-emitting diode chip, light-emitting device, and manufacturing method thereof
JP2002185038A (ja) 発光ダイオード及びその製造方法
CN209374473U (zh) 一种半导体发光元件
CN214313231U (zh) 反射结构及GaN基薄膜型结构LED芯片
TW201541663A (zh) 點光源發光二極體
TWI583025B (zh) 具雙基座之薄膜式覆晶發光二極體及其製造方法
WO2020097792A1 (zh) 发光二极管
JP5400943B2 (ja) 半導体発光素子
US11522107B2 (en) Light emitting diode and fabrication method thereof
US10707381B2 (en) Light emitting diode and fabrication method thereof
CN111710768A (zh) 一种led芯片的制作方法
TWI631733B (zh) 發光裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944919

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546032

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018944919

Country of ref document: EP

Effective date: 20210726