WO2020129424A1 - 誘電体膜、その製造方法及びそれを用いた光学部材 - Google Patents

誘電体膜、その製造方法及びそれを用いた光学部材 Download PDF

Info

Publication number
WO2020129424A1
WO2020129424A1 PCT/JP2019/042794 JP2019042794W WO2020129424A1 WO 2020129424 A1 WO2020129424 A1 WO 2020129424A1 JP 2019042794 W JP2019042794 W JP 2019042794W WO 2020129424 A1 WO2020129424 A1 WO 2020129424A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric film
layer
film
uppermost layer
refractive index
Prior art date
Application number
PCT/JP2019/042794
Other languages
English (en)
French (fr)
Inventor
仁一 粕谷
一成 多田
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to US17/312,925 priority Critical patent/US20220010422A1/en
Priority to CN201980083534.6A priority patent/CN113196111A/zh
Priority to JP2020561196A priority patent/JP7415949B2/ja
Priority to EP19900306.2A priority patent/EP3875997A4/en
Publication of WO2020129424A1 publication Critical patent/WO2020129424A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/081Oxides of aluminium, magnesium or beryllium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/221Ion beam deposition
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/16Optical coatings produced by application to, or surface treatment of, optical elements having an anti-static effect, e.g. electrically conducting coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0006Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means to keep optical surfaces clean, e.g. by preventing or removing dirt, stains, contamination, condensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B2207/00Coding scheme for general features or characteristics of optical elements and systems of subclass G02B, but not including elements and systems which would be classified in G02B6/00 and subgroups
    • G02B2207/107Porous materials, e.g. for reducing the refractive index

Definitions

  • the present invention relates to a dielectric film, a method for manufacturing the dielectric film, and an optical member using the dielectric film. More specifically, it relates to a dielectric film or the like which has excellent salt water resistance and scratch resistance on the surface and can maintain a low water contact angle for a long period under a high temperature and high humidity environment.
  • vehicle-mounted cameras have been installed to support driving of vehicles. More specifically, a camera that captures the rear or side of the vehicle is mounted on the body of the automobile, and the image captured by this camera is displayed at a position where the driver can see it, thereby reducing the blind spot. Can contribute to safe driving.
  • SiO 2 silicon oxide
  • dirt such as water droplets and mud often adheres to the lens.
  • the image captured by the camera may be unclear depending on the degree of water droplets or dirt attached to the lens.
  • Patent Document 1 an antifogging antifouling material for an organic base material containing a specific alcohol solvent and an organosilica sol is contacted with or applied to the organic base material, and the surface of the organic base material is swollen by the solvent, A method is disclosed in which an organosilica sol is introduced into the swollen surface to form a hydrophilic silica film. According to the document, an organic base material having a low water contact angle and excellent in antifouling property, antifogging property, adhesiveness and durability can be obtained.
  • silica film formed on the surface is applied to an in-vehicle camera, surface deterioration or deterioration due to salt water contained in sea breeze, acid rain, chemicals such as detergents and waxes used during car washing, etc. May occur.
  • a coating type silica (SiO 2 ) film as disclosed in Patent Document 1 the surface is porous and brittle, so SiO 2 is dissolved in a salt spray test, resulting in a thin film and maintaining the above performance. Things are difficult.
  • the silica coating has a porous surface, there is a problem that a low water contact angle (hydrophilicity) cannot be maintained for a long period of time under a high temperature and high humidity (85° C., 85% RH) environment.
  • the present invention has been made in view of the above problems and circumstances, and a problem to be solved is a dielectric film having excellent surface salt water resistance and scratch resistance, which can maintain a low water contact angle for a long period under a high temperature and high humidity environment.
  • a method of manufacturing the same and an optical member using the same is a problem to be solved.
  • the present inventor in the process of studying the cause of the above problems, the uppermost layer of the dielectric film having an antireflection function has a specific film density, at least SiO 2 and a specific film density.
  • the surface of the dielectric film has excellent salt water resistance and scratch resistance, Moreover, they have found that a low water contact angle can be maintained for a long period of time in a high temperature and high humidity environment, and have reached the present invention.
  • a dielectric film provided on a transparent substrate comprising: The dielectric film has at least one low refractive index layer, The uppermost layer of the dielectric film is a layer containing SiO 2 and having a film density of 92% or more, and the uppermost layer contains an element having an electronegativity smaller than Si.
  • the content of the sodium, calcium, potassium and magnesium is in the range of 0.5 to 10% by mass, and the layer thickness is 1 ⁇ m or less.
  • a method of manufacturing a dielectric film comprising: manufacturing a dielectric film provided on a transparent substrate, Forming at least one low refractive index layer as the dielectric film; And a step of forming a layer containing SiO 2 and an element selected from sodium, calcium, potassium and magnesium as an uppermost layer of the dielectric film.
  • a step of forming a functional layer containing a metal oxide having a photocatalytic function as a main component 9.
  • An optical member comprising the dielectric film according to any one of items 1 to 7.
  • a dielectric film having excellent surface salt water resistance and scratch resistance and capable of maintaining a low water contact angle for a long period under a high temperature and high humidity environment, a method for producing the same, and an optical member using the same are provided. be able to.
  • the uppermost layer according to the present invention contains an element whose electronegativity is smaller than Si.
  • the hydrophilic function is further improved.
  • SiO 2 incorporating an alkali metal element is considered to develop polarity in the arrangement of electrons, and this is considered to have affinity with H 2 O, which is a polar molecule.
  • the electronegativity difference between the sodium element and O is larger than the electronegativity difference between Si and O, and an electric bias is generated.
  • Na 2 O is inter alia a sodium oxide, melting point since relatively close to the melting point of SiO 2, there is SiO 2 and simultaneously formed as likely benefit as a mixed vapor deposition material. There is little variation in the composition ratio of the deposited film.
  • sodium-derived NaOH since sodium-derived NaOH has deliquescent properties, it has the property of taking in water from the external environment to become an aqueous solution, and thus taking in water in a high temperature and high humidity environment. It is presumed that the hydrophilicity can be maintained for a long time.
  • the SiO 2 -containing layer forming the uppermost layer is When a salt spray test as described below is carried out, a phenomenon in which the SiO 2 containing layer is dissolved in salt water and the light reflectance changes is observed. Due to such changes, for example, when the uppermost layer of the antireflection layer (dielectric film) on the lens is melted and peeled off due to the external environment (salt water), flare or ghost occurs, which deteriorates from the initial performance. Conceivable.
  • the SiO 2 -containing layer according to the present invention is easily dissolved in salt water because the surface of the coating type silica (SiO 2 ) is porous and brittle, but is ion-assisted deposition (Ion Assisted Deposition, hereinafter also simply referred to as “IAD”). It is presumed that salt water resistance and scratch resistance were improved by forming a high-density SiO 2 -containing layer in which the film density was adjusted to 92% or more by film formation by sputtering or sputtering.
  • IAD ion-assisted deposition
  • IAD is a method of applying a high kinetic energy of ions during film formation to form a high-density film and enhancing the adhesion between the film and the substrate, and as a means for improving the durability of the uppermost layer. It is preferably applied.
  • Sectional drawing which shows an example of the structure of the dielectric film of this invention.
  • Schematic diagram of a vacuum evaporation system used for IAD Schematic diagram showing the functional layer according to the present invention and the uppermost layer having pores
  • Schematic diagram showing the functional layer according to the present invention and the uppermost layer having pores Schematic diagram showing the functional layer according to the present invention and the uppermost layer having pores
  • Flow chart of the process of forming pores on the top layer surface Conceptual diagram illustrating the step of forming a particulate metal mask to form pores
  • the dielectric film of the present invention is a dielectric film provided on a transparent substrate, wherein the dielectric film has at least one low refractive index layer, and the uppermost layer of the dielectric film is SiO 2 And a film density of 92% or more, and the uppermost layer contains an element having an electronegativity smaller than Si.
  • This feature is a technical feature common to or corresponding to the following embodiments.
  • the uppermost layer contains an element selected from sodium, calcium, potassium and magnesium, and in addition, the content thereof is the uppermost layer, It is preferable that the layer thickness is in the range of 0.5 to 10% by mass and the layer thickness is 1 ⁇ m or less, since an excellent hydrophilicity maintaining effect is exhibited for long-term storage in a high temperature and high humidity environment. In addition, the said content is the range which shows the total amount, when two or more types are contained.
  • the content is 0.5% by mass or more, the effect of maintaining low hydrophilicity under the high temperature and high humidity environment according to the present invention is exhibited, and when the content is 10% by mass or less, the dissolution of SiO 2 It is in the range where the antireflection property is not affected without being generated.
  • the film density of the uppermost layer is 98% or more, since excellent salt water resistance and scratch resistance are exhibited.
  • the film density is preferably in the range of 98 to 100% from the viewpoint of salt water resistance and scratch resistance.
  • the water contact angle of the uppermost layer is preferably 30° or less after storage for 1000 hours in an environment of 85° C. and 85% RH, and hydrophilicity can be exhibited for a long period of time.
  • hydrophilicity as used in the present invention means that the water contact angle is 30° or less, preferably 15° or less. The case of 15° or less is defined as “superhydrophilic” in the present invention.
  • a functional layer containing a metal oxide having a photocatalytic function as a main component on the transparent substrate side of the uppermost layer from the viewpoint of self-cleaning stains attached to the uppermost layer by the photocatalytic function.
  • the uppermost layer has a plurality of pores that partially expose the surface of the functional layer, from the viewpoint of effectively exhibiting the self-cleaning effect.
  • the film becomes brittle and can be solved by a salt water test.
  • the salt water resistance and the photocatalytic function are compatible and both are improved.
  • a method of manufacturing a dielectric film according to the present invention comprises a step of forming at least one low refractive index layer as the dielectric film, and SiO 2 as the uppermost layer of the dielectric film, sodium, calcium, potassium and And a step of forming a layer containing an element selected from magnesium.
  • a step of forming a functional layer containing a metal oxide having a photocatalytic function as a main component on the transparent substrate side of the uppermost layer, and a plurality of pores partially exposing the surface of the functional layer in the uppermost layer is preferable to have a step of forming.
  • a step of forming a film by ion-assisted vapor deposition or sputtering when manufacturing the dielectric film from the viewpoint of forming the uppermost layer as a high-density film and improving salt water resistance and scratch resistance. It is an embodiment.
  • the dielectric film of the present invention is preferably provided in an optical member, and the optical member is preferably a vehicle-mounted lens.
  • the present invention its components, and modes and modes for carrying out the present invention will be described in detail.
  • "to” is used to mean that the numerical values described before and after it are included as the lower limit value and the upper limit value.
  • the dielectric film of the present invention is a dielectric film provided on a transparent substrate, wherein the dielectric film has at least one low refractive index layer, and the uppermost layer of the dielectric film is SiO 2 And a film density of 92% or more, and the uppermost layer contains an element having an electronegativity smaller than Si.
  • the element having an electronegativity smaller than Si is preferably an element selected from sodium, calcium, potassium and magnesium, and the content thereof is preferably in the range of 0.5 to 10 mass %, The range of 1.0 to 5.0% by mass is more preferable.
  • the film density of the uppermost layer is 98% or more.
  • the “low refractive index layer” means a layer having a refractive index of less than 1.7 at the d-line.
  • the high refractive index layer is a layer having a refractive index of 1.7 or more at d-line.
  • the substrate is an optical member made of resin or glass and may have any shape.
  • the transmittance at a light wavelength of 550 nm is preferably 90% or more.
  • the film density of the uppermost layer of the dielectric film is high, the surface is excellent in salt water resistance and scratch resistance, and since the specific element can be contained and the hydrophilicity of the surface can be maintained, a high temperature and high humidity environment It is possible to provide a dielectric film that can maintain a low water contact angle for a long period of time.
  • composition analysis of the uppermost layer can be measured using the following X-ray photoelectron spectroscopy analyzer (XPS).
  • XPS composition analysis ⁇ Device name: X-ray photoelectron spectroscopy analyzer (XPS) ⁇ Device type: Quantera SXM ⁇ Device manufacturer: ULVAC-PHI ⁇ Measurement condition: X-ray source: Monochromatic AlK ⁇ ray 25W-15kV ⁇ Degree of vacuum: 5.0 ⁇ 10 -8 Pa Depth analysis is performed by argon ion etching. For data processing, MultiPak manufactured by ULVAC-PHI, Inc. is used.
  • the “film density” means a space filling density and is defined as a value p represented by the following formula (1).
  • Space filling density p (volume of solid portion of membrane)/(total volume of membrane) (1)
  • the total volume of the membrane is the sum of the volume of the solid portion of the membrane and the volume of the micropore portion of the membrane.
  • the film density of the uppermost layer of the dielectric multilayer film of the present invention By setting the film density of the uppermost layer of the dielectric multilayer film of the present invention to 92% or more, the resistance to salt water can be further improved.
  • the film density can be measured by the following method, and the film density is more preferably in the range of 98% to 100%.
  • ⁇ Measurement method of water contact angle> By allowing the sample to stand in a high temperature and high humidity (85° C., 85% RH) environment for a long time, the time for which the water contact angle can be maintained at 30° or less by the following measurement is measured. When it is 400 hours or more, it is judged that the durability against hydrophilicity is present, and when it is 1000 hours or more, it is judged that the durability against hydrophilicity is extremely excellent. When the water contact angle is 15° or less at the time of storage for 1000 hours, it is determined that “superhydrophilicity” can be maintained for a long time.
  • a known method can be used for measuring the contact angle.
  • the contact angle between the standard liquid (pure water is preferred) and the surface of the uppermost layer is measured according to the method specified in JIS R3257.
  • the measurement conditions are a temperature of 23 ⁇ 5° C., a humidity of 50 ⁇ 10%, a standard liquid drop volume of 1 to 10 ⁇ L, and a time from the standard liquid drop to the contact angle measurement within 1 minute.
  • a specific operation procedure at a temperature of 23° C., about 10 ⁇ L of pure water as the standard liquid was dropped on the sample, and 5 points on the sample were measured by a G-1 device manufactured by Elma Co., The average contact angle is obtained from the average of the measured values. The time until the contact angle is measured is measured within 1 minute after dropping the standard liquid.
  • FIG. 1 is a cross-sectional view showing an example of the structure of the dielectric film of the present invention.
  • the layer structure of the dielectric film of the present invention may be a “single layer” (also referred to as “single film” in this case) or “plural layers” (in this case, “dielectric multilayer film” or “multilayer film”). Also called).
  • FIG. 1 shows an embodiment of a “dielectric multilayer film” having a plurality of layers, but the number of low-refractive index layers and high-refractive index layers is an example, and the present invention is not limited to this. Further, as described above, from the viewpoint of exhibiting the effect of the present invention, the low refractive index layer or the uppermost layer according to the present invention includes a case of having a single layer structure.
  • the dielectric film 100 having an antireflection function includes, for example, high refractive index layers 103 and 105a having a refractive index higher than that of the glass substrate 101 forming the lens, and a refractive index lower than the high refractive index layer.
  • Low refractive index layers 102, 104 having a refractive index. It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated.
  • the dielectric film of the present invention has an average light reflectance of 2% or less with respect to light incident from the normal direction in the light wavelength range of 420 to 680 nm. From the viewpoint of improvement, it is preferable.
  • the dielectric film 100 is also called an optical member.
  • the uppermost layer 106 is a layer containing SiO 2 , and is characterized in that the uppermost layer contains an element having an electronegativity smaller than Si, and the electronegativity is smaller than Si.
  • the element is preferably any element of sodium, calcium, potassium and magnesium.
  • the refractive index of the uppermost layer with respect to the light wavelength of 587.56 nm is 1.6 or less, which is a preferable range of the refractive index of the light reflecting layer because it does not change the light reflectance of the lower layer.
  • a functional layer 105b containing a metal oxide having a photocatalytic function as a main component may be arranged on the substrate side of the uppermost layer 106, and from the viewpoint of self-cleaning stains attached to the uppermost layer by the photocatalytic function, preferable.
  • a photocatalytic function can be effectively exhibited, and by using a metal oxide having a photocatalytic effect and a photoactive effect, organic substances on the surface are removed to remove the uppermost layer 106. This is a preferred embodiment because it can contribute to maintenance of hydrophilicity.
  • the function of the uppermost layer is a low refractive index layer, and it is preferable that SiO 2 is the main component.
  • the “main component” means that 51% by mass or more of the total mass of the uppermost layer is SiO 2 , preferably 70% by mass or more, particularly preferably 90% by mass or more.
  • the functional layer 105b is preferably a layer containing TiO 2 having a photocatalytic function as described later, and in that case, it can be arranged as a substitute layer for the high refractive index layer 105a in view of the refractive index. ..
  • a low refractive index layer, a high refractive index layer and the uppermost layer 106 according to the present invention are laminated on a substrate 101 to form a dielectric film.
  • the uppermost layer according to the present invention may be formed on both sides of 101. That is, it is a preferred embodiment that the uppermost layer according to the present invention is on the side exposed to the external environment, but not on the exposed side, for example, on the inner side opposite to the exposed side, the internal environment In order to prevent the influence of the above, the uppermost layer according to the present invention may be formed.
  • the optical member of the present invention can be applied to an optical member such as an antireflection member or a heat shield member.
  • a dielectric film having an antireflection function has a high refractive index layer having a refractive index higher than that of the substrate and a refractive index lower than the high refractive index layer.
  • a low refractive index layer It is preferable to have a multilayer structure in which these high refractive index layers and low refractive index layers are alternately laminated.
  • the number of layers is not particularly limited, but it is preferably 12 or less from the viewpoint of maintaining high productivity and obtaining an antireflection layer. That is, the number of layers depends on the required optical performance, but by stacking approximately 3 to 8 layers, the reflectance in the entire visible region can be lowered, and the upper limit is 12 layers or less. However, it is preferable in that the film can be prevented from peeling off due to the increased stress of the film.
  • the material used for the dielectric film (high refractive index layer, low refractive index layer) according to the present invention is preferably, for example, Ti, Ta, Nb, Zr, Ce, La, Al, Si, or Hf. Oxides, or oxide compounds combining these and MgF 2 are suitable. Also, by stacking a plurality of layers of different dielectric materials, it is possible to add a function of reducing the reflectance in the entire visible range.
  • the low refractive index layer is made of a material having a refractive index of less than 1.7, and is a layer containing SiO 2 in the present invention.
  • the high refractive index layer is made of a material having a refractive index of 1.7 or more, and for example, a mixture of an oxide of Ta and an oxide of Ti, a Ti oxide, a Ta oxide, and a La oxide. And a mixture of Ti oxides are preferred.
  • Ta 2 O 5 or TiO 2 is preferable, and Ta 2 O 5 is more preferable.
  • the total thickness of the dielectric film is preferably in the range of 50 nm to 5 ⁇ m. When the thickness is 50 nm or more, antireflection optical characteristics can be exhibited, and when the thickness is 5 ⁇ m or less, surface deformation due to film stress of the multilayer film itself can be prevented.
  • the film formation method for forming the dielectric film of the present invention is preferably an ion assisted vapor deposition method (hereinafter, also referred to as IAD in the present invention) or a sputtering method, and the uppermost layer is ion assisted. It is preferable to form a high-density film by using a vapor deposition method.
  • Each of the other layers of the dielectric film is formed by a vapor deposition method, and it is preferable that one of the layers is formed by IAD.
  • the scratch resistance of the entire dielectric film can be further improved by the film formation by IAD.
  • the uppermost layer 106 can be formed with an IAD or a sputtering method to increase the film density.
  • the film density of the uppermost layer 106 is 92% or more, preferably 98% or more.
  • the film density means the space filling density as described above.
  • IAD is a method of applying a high kinetic energy of ions during film formation to form a dense film or enhancing the adhesion of the film.
  • an ion beam method is an ionized gas irradiated from an ion source. This is a method of accelerating the deposition material by molecules and forming a film on the substrate surface.
  • FIG. 2 is a schematic diagram showing an example of a vacuum vapor deposition apparatus using IAD.
  • a vacuum vapor deposition apparatus 1 using IAD (hereinafter also referred to as an IAD vapor deposition apparatus in the present invention) includes a dome 3 inside a chamber 2, and a substrate 4 is arranged along the dome 3.
  • the vapor deposition source 5 is equipped with an electron gun or a resistance heating device that evaporates the vapor deposition substance, and the vapor deposition substance 6 is scattered from the vapor deposition source 5 toward the substrate 4, and is condensed and solidified on the substrate 4.
  • the ion beam 8 is radiated from the IAD ion source 7 toward the substrate, and the high kinetic energy of the ions is applied during the film formation to form a dense film or increase the adhesion of the film.
  • the substrate 4 used in the present invention may be a resin such as glass or a polycarbonate resin or a cycloolefin resin, and is preferably an on-vehicle lens.
  • a plurality of vapor deposition sources 5 may be arranged at the bottom of the chamber 2. Here, one evaporation source is shown as the evaporation source 5, but the number of the evaporation sources 5 may be plural.
  • a film-forming material (vapor-depositing material) of the vapor-deposition source 5 is generated by an electron gun to generate a vapor-depositing substance 6, and the film-forming material is scattered and attached to a substrate 4 (for example, a lens) installed in the chamber 2 to form a film.
  • a layer of material for example, SiO 2 , MgF 2 or Al 2 O 3 which is a low refractive index material, Ta 2 O 5 or TiO 2 which is a high refractive index material
  • SiO 2 , MgF 2 or Al 2 O 3 which is a low refractive index material
  • Ta 2 O 5 or TiO 2 which is a high refractive index material
  • a SiO 2 target and a target containing any element of sodium, calcium, potassium and magnesium are arranged in the vapor deposition source 5, and the vapor deposition material 6 in which these substances are mixed is placed. Can be generated and used. Further, a target in which SiO 2 and the above elements are mixed can be used. In order to improve the accuracy of the composition of the uppermost layer, it is preferable to use the latter mixed target.
  • Na 2 O sodium
  • CaO calcium
  • K 2 O potassium
  • MgO magnesium
  • the chamber 2 is provided with a vacuum exhaust system (not shown), so that the chamber 2 is evacuated.
  • the degree of reduced pressure in the chamber is usually in the range of 1 ⁇ 10 ⁇ 4 to 1 Pa, preferably 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 Pa.
  • the dome 3 holds at least one holder (not shown) that holds the substrate 4, and is also called a vapor deposition umbrella.
  • the dome 3 has an arcuate cross section, and has a rotationally symmetric shape in which the dome 3 passes through the center of a chord connecting both ends of the arc and rotates about an axis perpendicular to the chord as a rotational symmetry axis.
  • the dome 3 rotates about the axis at a constant speed, for example, the substrate 4 held by the dome 3 via the holder revolves around the axis at a constant speed.
  • This dome 3 can hold a plurality of holders arranged side by side in the rotation radius direction (revolution radius direction) and the rotation direction (revolution direction). As a result, it becomes possible to simultaneously form a film on the plurality of substrates 4 held by the plurality of holders, and it is possible to improve the manufacturing efficiency of the element.
  • the IAD ion source 7 is a device that introduces argon and oxygen gas into the main body to ionize them and irradiates the ionized gas molecules (ion beam 8) toward the substrate 4.
  • a Kauffman type (filament), a hollow cathode type, an RF type, a bucket type, a duoplasmatron type, or the like can be applied.
  • molecules of a film-forming material that evaporates from a plurality of evaporation sources can be pressed against the substrate 4, and a film having high adhesion and denseness can be formed on the substrate. 4 can be deposited.
  • the IAD ion source 7 is installed so as to face the substrate 4 at the bottom of the chamber 2, but may be installed at a position offset from the facing axis.
  • the ion beam used in IAD is used at a lower degree of vacuum and the acceleration voltage tends to be lower than the ion beam used in the ion beam sputtering method.
  • an ion beam with an acceleration voltage of 100 to 2000 V, an ion beam with a current density of 1 to 120 ⁇ A/cm 2 , or an ion beam with an acceleration voltage of 500 to 1500 V and a current density of 1 to 120 ⁇ A/cm 2 can be used.
  • the irradiation time of the ion beam can be set to, for example, 1 to 800 seconds, and the irradiation number of particles of the ion beam can be set to, for example, 1 ⁇ 10 13 to 5 ⁇ 10 17 particles/cm 2 .
  • the ion beam used in the film formation step can be an oxygen ion beam, an argon ion beam, or an oxygen/argon mixed gas ion beam.
  • the oxygen introduction amount is within a range of 30 to 60 sccm and the argon introduction amount is within a range of 0 to 10 sccm.
  • SCCM is an abbreviation for standard cc/min, and is a unit indicating how many cc flows per minute at 1 atm (atmospheric pressure 10 13 hPa) and 0° C.
  • the monitor system (not shown) is a system that monitors the wavelength characteristics of the layer formed on the substrate 4 by monitoring the layer evaporated from each vapor deposition source 5 and attached to itself during vacuum film formation. .. With this monitor system, the optical characteristics of the layer formed on the substrate 4 (for example, spectral transmittance, light reflectance, optical layer thickness, etc.) can be grasped.
  • the monitor system also includes a crystal layer thickness monitor, and can monitor the physical layer thickness of the layer formed on the substrate 4. This monitor system also functions as a control unit that controls ON/OFF switching of the plurality of evaporation sources 5 and ON/OFF switching of the IAD ion source 7 according to the monitoring result of the layer.
  • bipolar sputtering, magnetron sputtering, dual magnetron sputtering (DMS) using an intermediate frequency region, ion beam sputtering, ECR sputtering, etc. may be used alone or in combination of two or more. it can.
  • the target application method is appropriately selected according to the target type, and either DC (direct current) sputtering or RF (high frequency) sputtering may be used.
  • the sputtering method may be multi-source simultaneous sputtering using multiple sputtering targets.
  • the method for producing these sputtering targets and the method for producing a thin film using these sputtering targets for example, JP-A-2000-160331, JP-A-2004-068109, and JP-A-2013-047361. The description such as can be appropriately referred to.
  • SiO 2 is used as the main component in the uppermost layer 106
  • heat treatment at 200° C. or higher for 2 hours after the film formation is preferable because the salt water resistance and the scratch resistance are further improved.
  • a layer containing TiO 2 as a photocatalyst layer having a self-cleaning function, as a layer immediately below the uppermost layer 106.
  • the self-cleaning function of TiO 2 means an organic substance decomposition effect by a photocatalyst. This is because when TiO 2 is irradiated with ultraviolet light, ⁇ OH radicals are generated after electrons are emitted, and organic substances are decomposed by the strong oxidizing power of the ⁇ OH radicals.
  • the upper SiO 2 -containing layer has a slightly rough film quality because the OH radicals are easily moved and the antifouling property of the surface of the optical member can be improved. This is because it is possible to control the film quality by controlling the IAD conditions when forming the upper SiO 2 -containing layer. Further, by forming the uppermost layer 106 as a dense film and forming pores in the uppermost layer 106 so as to partially expose the functional layer 105b, it becomes easier for OH radicals to move, and the effect of the photocatalytic effect is obtained. Can be easily expressed, and further salt water resistance can be provided.
  • the dielectric film 100 of the present invention desirably satisfies the following conditional expression.
  • TL represents the film thickness of the uppermost layer 106.
  • Tcat represents the film thickness of the high refractive index layer 105a or the functional layer 105b adjacent to the uppermost layer 106.
  • conditional expression (1) When the value of the conditional expression (1) is less than or equal to the upper limit, a photocatalytic effect can be exhibited by exchanging active oxygen excited by UV light through the plurality of pores 30 provided in the uppermost layer 106.
  • the dielectric film 100 preferably satisfies the following formula (1b).
  • the film thickness of the functional layer 105b can be secured, and a sufficient photocatalytic effect can be expected.
  • the value of the conditional expression (2) is less than or equal to the upper limit. It is desirable to do.
  • the functional layer 105b preferably satisfies the following expression (2b).
  • the functional layer 105b adjacent to the uppermost layer 106 is formed of an oxide containing Ti as a main component (for example, TiO 2 ).
  • Ti oxides such as TiO 2 have a very high photocatalytic effect.
  • anatase type TiO 2 is desirable as a material for the functional layer 105b because it has a high photocatalytic effect.
  • the uppermost layer 106 is mainly formed of, for example, SiO 2 .
  • the uppermost layer 106 preferably contains 90% or more of SiO 2 .
  • UV light is hard to enter at night or outdoors, and the hydrophilic effect is reduced with an oxide containing Ti as a main component, but even in such a case, the hydrophilic effect can be exhibited by forming the uppermost layer 106 from SiO 2 . Saltwater tolerance is also increased.
  • Having hydrophilicity means that the contact angle of 10 ⁇ L of water droplets on the dielectric film 100 is 30° or less, preferably 15° or less.
  • the uppermost layer 106 may be formed of a mixture of SiO 2 and Al 2 O 3 (however, the composition ratio of SiO 2 is 90 mass% or more). As a result, the hydrophilic effect can be exhibited at night or outdoors, and the scratch resistance can be further enhanced by using a mixture of SiO 2 and Al 2 O 3 . When a mixture of SiO 2 and Al 2 O 3 is used for the uppermost layer 106, heat resistance at 200° C. or higher for 2 hours after film formation can improve scratch resistance.
  • the dielectric film 100 preferably satisfies the following conditional expression.
  • NL d-line refractive index of the material of the low refractive index layer.
  • the dielectric film 100 having desired optical characteristics can be obtained.
  • the d-line refers to light having a wavelength of 587.56 nm.
  • SiO 2 having a refractive index of 1.48 at the d-line or MgF 2 having a refractive index of 1.385 at the d-line can be used.
  • the dielectric film 100 preferably satisfies the following conditional expression.
  • Ns Refractive index of d-line of base material
  • conditional expression (4) As the refractive index of d-line of the base material, the dielectric film 100 is made compact while having a compact structure. The optical performance can be improved.
  • the dielectric film of the present embodiment By forming the dielectric film of the present embodiment on a glass base material satisfying the conditional expression (4), it can be used for a lens exposed to the outside world and has excellent environmental resistance and optical performance. can do.
  • a functional layer containing a metal oxide having a photocatalytic function as a main component is arranged, and the uppermost layer has a plurality of pores that partially expose the surface of the functional layer. It is preferable to have
  • 3A to 3D are schematic views showing the functional layer according to the present invention and the uppermost layer having pores.
  • FIG. 3A is a diagram schematically showing a cross section of a dielectric film 100 formed by forming a metal mask having particulate pores
  • B is a leaf vein-shaped pore in which adjacent pores are connected. It is a figure which shows typically the cross section of the dielectric film produced by forming the metal mask which has, C is a SEM image of the surface of the uppermost layer of B, D is a metal mask which has a porous pore. It is a figure which shows typically the cross section of the dielectric film produced by forming.
  • the uppermost layer 106 has a plurality of pores 30 for exhibiting a photocatalytic function in the adjacent functional layer 105b serving as a high refractive index layer.
  • the pores 30 are formed by dry etching.
  • the ratio of the total area of the cross-sections of the plurality of pores 30 (the total area of the pores 30 when the top layer 106 is viewed from above) to the surface area of the uppermost layer 106 (hereinafter, referred to as the pore density or the film falling rate) is For example, when the fine pores 30 are formed by using the vein-shaped metal mask 50 described later, the film drop-out rate is preferably about 50%.
  • the cross section of the pore 30 has a shape in which the size and size of the hole are varied and the pores are connected on the network.
  • FIG. 4 is a flowchart of the process of forming pores on the surface of the uppermost layer according to the present invention.
  • 5A to 5E are conceptual diagrams illustrating a process of forming a particulate metal mask and forming pores on the surface of the uppermost layer according to the present invention.
  • 6A to 6D are SEM images of the surface of the uppermost layer according to the present invention in which each metal mask is formed.
  • 7A to 7C are SEM images and enlarged views when the uppermost layer surface according to the present invention is processed into a vein pattern.
  • a low refractive index layer and a high refractive index layer as a multilayer film are alternately laminated on a base material (substrate) (multilayer film forming step: step S11).
  • step S11 the layers except the uppermost layer 106 and the functional layer 105b in the multilayer film are formed. That is, the low refractive index layer adjacent to the lower side of the functional layer 105b is formed.
  • the multilayer film is formed by using various vapor deposition methods, IADs, sputtering methods, or the like. The formation of the multilayer film in step S11 may be omitted depending on the configuration of the dielectric film 100.
  • step 12 the functional layer 105 is formed, and subsequently, in step 13, the uppermost layer 106 is formed.
  • the film is preferably formed by IAD.
  • the metal mask 50 is formed on the surface of the uppermost layer 106 (mask forming step: step S14). As shown in FIGS. 5A and 6A, the metal mask 50 is formed in a particle shape on the surface of the uppermost layer 106. Thereby, the nano-sized metal mask 50 can be formed on the uppermost layer 106. Note that, as shown in FIGS. 5D and 6C, the metal mask 50 may be formed to have vein-shaped fine pores. Further, as shown in FIGS. 5E and 6D, the metal mask 50 may be formed to have porous pores.
  • the porous shape means a state in which there are a plurality of pores, for example, a plurality of pores having a diameter of several tens nm in terms of a circle of the projected area.
  • the metal mask 50 is composed of a metal portion 50a and an exposed portion 50b.
  • the film thickness of the metal mask 50 is in the range of 1 to 30 nm. Although it depends on the film forming conditions, when the metal mask 50 is formed to have a film thickness of 2 nm by using, for example, a vapor deposition method, the metal mask 50 is likely to have a particle shape (FIG. 6A). Further, for example, when the metal mask 50 is formed to have a film thickness of 12 nm to 15 nm by using the vapor deposition method, the metal mask 50 tends to have a vein pattern (FIG. 6C).
  • the metal mask 50 tends to have a porous shape (FIG. 6D).
  • the metal mask 50 is formed of, for example, Ag or Al.
  • a plurality of pores 30 are formed in the uppermost layer 106 (pore forming step: step S15).
  • pore forming step step S15
  • dry etching using an etching device (not shown) is used for etching.
  • the film forming apparatus used for forming the above-described multilayer film or forming the metal mask 50 may be used.
  • the pore forming step a plurality of pores are formed by using a material that reacts with the material of the uppermost layer 106, specifically, SiO 2 . In this case, the SiO 2 of the uppermost layer 106 can be removed without damaging the metal mask 50.
  • the etching gas for example, CHF 3 , CF 4 , COF 2, SF 6 or the like is used.
  • a plurality of pores 30 that expose the surface of the functional layer 105b in the uppermost layer 106 are formed. That is, the uppermost layer 106 corresponding to the exposed portion 50b of the metal mask 50 is etched to form the pores 30, and the surface of the functional layer 105b is partially exposed.
  • the metal mask 50 is removed (mask removing step: step S16). Specifically, the metal mask 50 is removed by wet etching using acetic acid or the like. The metal mask 50 may be removed by dry etching using Ar or O 2 as an etching gas, for example. If the metal mask 50 is etched by dry etching, a series of steps from the formation of the multilayer film MC to the etching of the metal mask 50 can be performed in the same film forming apparatus.
  • the dielectric film 100 having the plurality of pores 30 in the uppermost layer 106 can be obtained.
  • both superhydrophilicity and photocatalytic function are achieved.
  • the pores 30 are of a size that allows the functional layer 105b to exhibit a photocatalytic function, are not visually recognized by the user, and have resistance to salt water.
  • the functional layer 105b exhibits a photocatalytic function, it is a high refractive index layer. Therefore, in order to maintain the antireflection property of the dielectric film 100, the uppermost layer 106, which is a low refractive index layer, is provided on the functional layer 105b. It is necessary to provide. Therefore, when the density of the uppermost layer 106 is high, there is a problem that the photocatalytic function of the functional layer 105b is not exhibited. On the other hand, when the film density of the uppermost layer 106 is lowered, there is a problem that the saltwater resistance and the scratch resistance of the uppermost layer 106 are lowered.
  • the photocatalytic function of the functional layer 105b is maintained while maintaining antireflection properties, hydrophilicity, saltwater resistance, and scratch resistance. Can be expressed.
  • the dielectric film 100 has a multilayer film having antireflection properties and excellent salt water resistance and scratch resistance, and can exhibit superhydrophilicity and a photocatalytic effect.
  • it is preferably used as a building material, and particularly suitable as an on-vehicle lens.
  • Example 1 In order to evaluate the uppermost layer included in the dielectric film of the present invention, the single film shown in Table I was prepared and evaluated.
  • the above-mentioned substrate is installed in a vacuum vapor deposition apparatus, the first evaporation source is charged with the above film-forming material, and the film is vapor-deposited by IAD at a film-forming rate of 3 ⁇ /sec so that the sodium content becomes 5% by mass. Then, a single film 1 having a thickness of 100 nm was formed on the substrate.
  • ⁇ Film forming conditions> Heating temperature 370°C Starting vacuum degree 1.33 ⁇ 10 -3 Pa (Evaporation source of film forming material)
  • the electron gun IAD has an accelerating voltage of 1200 V, an accelerating current of 1000 mA, and a neutralizing current of 1500 mA, and uses an apparatus of RF ion source "OIS One" manufactured by Optolan.
  • IAD introduced gas was carried out by O 2 50 sccm, Ar gas 10 sccm, the neutral gas O 2 50 sccm conditions.
  • composition analysis of the uppermost layer was measured using the following X-ray photoelectron spectroscopy analyzer (XPS).
  • XPS composition analysis ⁇ Device name: X-ray photoelectron spectroscopy analyzer (XPS) ⁇ Device type: Quantera SXM ⁇ Device manufacturer: ULVAC-PHI ⁇ Measurement condition: X-ray source: Monochromatic AlK ⁇ ray 25W-15kV ⁇ Degree of vacuum: 5.0 ⁇ 10 -8 Pa Depth analysis is performed by argon ion etching. For data processing, MultiPak manufactured by ULVAC-PHI, Inc. was used.
  • the single film 8 was prepared in the same manner as the single film 1 except that heating at 370° C. was not performed during vapor deposition by IAD to obtain the single film 8.
  • a single film 11 was obtained in the same manner as in the production of the single film 1 except that the film was formed by a sputtering method.
  • a magnetron sputtering device manufactured by Canon Anelva: Model EB1100 was used.
  • the process gas with the Ar and O 2 by the magnetron sputtering apparatus, a film was formed by the RF method.
  • the sputtering power source power was 5.0 W/cm 2
  • the film formation pressure was 0.4 Pa.
  • the oxygen partial pressure was adjusted appropriately.
  • the data of the layer thickness change with respect to the film formation time was taken in advance, the layer thickness formed per unit time was calculated, and then the film formation time was set so as to reach the set layer thickness.
  • ⁇ Single Film 12 Fabrication of Dielectric Multilayer Film 1>
  • a low refractive index layer using SiO 2 (manufactured by Merck) on a glass substrate TAFD5G (manufactured by HOYA Co., Ltd.: refractive index 1.835), OA600 (material manufactured by Canon Optron Co., Ltd.: Ta 2 O 5 ) was laminated to the layer numbers 1 to 4 in Table I at a predetermined film thickness using IAD under the following conditions.
  • the uppermost layer layer number 5 similar to the single film 1 of Example 1, SiO 2 and Na 2 O (TOYOSHIMA MFG. CO., LTD. trade name SiO 2 —Na 2 O) were mixed at a mass ratio of 95:5.
  • the prepared particles were prepared.
  • the above base material is installed in a vacuum vapor deposition apparatus, the third evaporation source is charged with the above film forming material, and the film is deposited at a film forming rate of 3 ⁇ /sec, and the uppermost layer (layer having a thickness of 88 nm) is formed on the functional layer. 5) was formed.
  • the formation of the functional layer was similarly performed under IAD and 370° C. heating conditions.
  • IAD As the IAD, an accelerating voltage of 1200 V, an accelerating current of 1000 mA, and a neutralizing current of 1500 mA were used, and an apparatus of RF ion source “OIS One” manufactured by Optolan was used. IAD introduced gas was carried out by O 2 50 sccm, Ar gas 0 sccm, the neutral gas O 2 50 sccm conditions.
  • Film forming material for high refractive index layer OA600 (material manufactured by Canon Optron Co., Ltd.: mixture of Ta 2 O 5 , TiO, and Ti 2 O 5 )
  • the above-mentioned substrate is installed in a vacuum vapor deposition apparatus, the above-mentioned film forming material is loaded into a second evaporation source, vapor deposition is carried out at a film forming rate of 3 ⁇ /sec, and a thickness of 30.8 nm is formed on the above low refractive index layer.
  • a high refractive index layer was formed.
  • the formation of the high refractive index layer was similarly performed by IAD.
  • a low refractive index layer, a high refractive index layer and an uppermost layer are formed under the layer thickness conditions shown in Table II.
  • Laminated films were formed in the same manner as in 1. to produce a total of 5 layers of dielectric multilayer film 1.
  • ⁇ Single Film 13 Fabrication of Dielectric Multilayer Film 2>
  • a TiO 2 -containing layer as a photocatalytic layer was formed by IAD with a layer thickness of 113 nm.
  • the TiO 2 used was a product manufactured by Fuji Titanium Co., Ltd. (trade name: Ti 3 O 5 ).
  • an uppermost layer having a thickness of 88 nm is formed thereon by IAD in the same manner as in the preparation of the low refractive index layer, the high refractive index layer, and the dielectric film 1, and the dielectric multilayer is formed.
  • a membrane 2 was obtained.
  • ⁇ Single Film 14 Fabrication of Mirror Film 3 with Dielectric Multilayer Film>
  • a polycarbonate resin film (PC: trade name Pure Ace manufactured by Teijin Limited) was used as a substrate, and Al 2 O 3 (trade name Al 2 O 3 manufactured by Merck) was used as shown in Table II.
  • Ag, and H4 (trade name “H4” manufactured by Merck: LaTiO 3 ) were laminated in total for a total of 8 layers to prepare a mirror film 3 with a dielectric multilayer film.
  • the light absorption coefficient of Ag in the table at a light wavelength of 550 nm was calculated by the following formula.
  • 4 ⁇ k/ ⁇
  • is a light absorption coefficient
  • k is an extinction coefficient
  • is a wavelength.
  • the "extinction coefficient at the wavelength was measured by ellipsometry.
  • ⁇ Single Film 15 Fabrication of Dielectric Multilayer Film 4>
  • a dielectric multilayer film 4 was produced in the same manner except that a cycloolefin resin film (trade name APEL manufactured by Mitsui Chemicals, Inc.) was used as a substrate and the layer thickness of each layer was changed.
  • a cycloolefin resin film (trade name APEL manufactured by Mitsui Chemicals, Inc.) was used as a substrate and the layer thickness of each layer was changed.
  • ⁇ Measurement of water contact angle> The contact angle between the standard liquid (pure water) and the surface of the uppermost layer was measured according to the method defined in JIS R3257. About 10 ⁇ L of pure water, which is the standard liquid, was dropped onto the sample at a temperature of 23° C. and a humidity of 50% RH, and five points on the sample were measured by a G-1 device manufactured by Elma Co., The average contact angle was obtained from the average of the measured values. The time until the contact angle is measured is measured within 1 minute after dropping the standard liquid.
  • the light reflectance of the sample was measured with a reflectance measuring instrument (USPM-RUIII) (manufactured by Olympus Corporation), and when the light reflectance did not change (reflectance change was 0%), the evaluation was signed.
  • USPM-RUIII reflectance measuring instrument
  • the surface of the dielectric film sample was subjected to a 250 reciprocating rubbing test using a tortoise shell with a load of 2 kg, and when the light reflectance was less than 0.5%, the evaluation was ⁇ .
  • the scratch resistance was evaluated as ⁇ when the reflectance change was 0.5 to less than 2.0% and as ⁇ when the reflectance change was 2.0% or more.
  • composition and evaluation results of the above single film are shown in Tables I and II.
  • the single films 1 to 15 corresponding to the uppermost layer according to the present invention have high film density, hydrophilicity under high temperature and high humidity environment, and salt water. It is clear that it has excellent resistance and scratch resistance.
  • Example 2 In order to evaluate the light reflectivity and photocatalytic property of the dielectric multilayer film 2, pores were formed in the uppermost layer by the following procedure, and the dielectric multilayer film 2 with pores was produced and evaluated.
  • FIGS. 4 and 5 Ag was used as a mask material, vapor deposition was used as a mask film, mask thickness was 12 nm, veins were used as a mask structure, etching gas CHF 3 , and etching time was 60 sec.
  • the pores shown in FIG. 6C were formed in the uppermost layer to prepare the dielectric multilayer film 2 with pores.
  • a film forming apparatus (BES-1300) (manufactured by Syncron Co., Ltd.) was used for Ag film formation under the following conditions. By changing the film thickness at the time of film formation, a leaf vein-shaped, porous-shaped, or particle-shaped Ag mask can be formed.
  • the reflectance of the sample was measured at the maximum reflectance in the wavelength range of 420 nm to 670 nm using a reflectance measuring device (USPM-RUIII) (manufactured by Olympus Corporation). evaluated.
  • USPM-RUIII reflectance measuring device
  • Table III shows the structure of the dielectric film and the above evaluation results.
  • the dielectric multilayer films 1 and 2 are excellent in hydrophilicity, salt water resistance, and light reflectance in long-term storage under a high temperature and high humidity environment. In addition, it was found that the electric multilayer film 2 has a photocatalytic effect and is excellent in self-cleaning property.
  • the dielectric film of the present invention has antireflection properties, is excellent in surface salt water resistance and scratch resistance, and can maintain a low water contact angle for a long period under a high temperature and high humidity environment. It is suitable for use as an application lens, a communication lens, or a building material, and is particularly suitable as an on-vehicle lens.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明の課題は、表面の塩水耐性や耐傷性に優れ、かつ高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜、その製造方法及びそれを用いた光学部材を提供することである。 本発明の誘電体膜は、透明基板上に具備された誘電体膜であって、前記誘電体膜は、少なくとも1層の低屈折率層を有し、前記誘電体膜の最上層がSiO2を含有し、膜密度が92%以上である層であり、かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することを特徴とすることを特徴とする。

Description

誘電体膜、その製造方法及びそれを用いた光学部材
 本発明は、誘電体膜、その製造方法及びそれを用いた光学部材に関する。より詳しくは、表面の塩水耐性や耐傷性に優れ、かつ高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜等に関する。
 近年、車両の運転支援のため、車両に車載カメラを搭載することが行われている。より具体的には、車両の後方や側方を撮像するカメラを自動車の車体に搭載し、このカメラによって撮像された映像を運転者が視認可能な位置に表示することによって死角を減らし、これにより安全運転に貢献できる。
 ところで、車載カメラは車外に取り付けられる場合が多く、用いられるレンズについては、耐環境性への保証要求が厳しい。例えば、レンズへの塩水噴霧試験において、レンズ表面にある反射防止層の成分である酸化ケイ素(以下、SiO2と表記)が塩水に溶解することで光反射率が変化すると、ゴーストやフレアの発生の原因となる。
 また、当該レンズ上に水滴や泥等の汚れがしばしば付着する。レンズに付着した水滴や汚れの度合によっては、カメラで撮像された画像が不鮮明となるおそれがある。
 特許文献1には、特定のアルコール系溶剤とオルガノシリカゾルを含有する有機基材用防曇防汚材を有機基材に接触又は塗布して、当該溶剤により有機基材の表面を膨潤させ、その膨潤面にオルガノシリカゾルを侵入させて、親水性を示すシリカ皮膜を形成する方法が開示されている。当該文献によれば、水接触角が低く、防汚性、防曇性、密着性及び耐久性に優れる有機基材が得られるとある。
 しかしながら、表面に形成される当該シリカ皮膜を、車載カメラに適用しようとすると、潮風に含まれる塩水、酸性雨、洗車等の際に使用される洗剤やワックス等の薬剤等による表面劣化や変質を生ずるおそれがある。例えば、引用文献1に開示されているような塗布系のシリカ(SiO2)皮膜では表面がポーラスで脆いため、塩水噴霧試験でSiO2が溶解し、結果皮膜が薄くなり、上記性能を維持することは困難である。また、当該シリカ皮膜はポーラスな表面のため、高温高湿(85℃・85%RH)環境下では、低い水接触角(親水性)を長期にわたって維持することができないという問題もある。
特開2013-203774号公報
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、表面の塩水耐性や耐傷性に優れ、高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜、その製造方法及びそれを用いた光学部材を提供することである。
 本発明者は、上記課題を解決すべく、上記問題の原因等について検討する過程において、反射防止機能を有する誘電体膜の最上層が、特定の膜密度を有し、少なくともSiO2及び特定の元素を含有することで、当該誘電体膜表面が優れた塩水耐性や耐傷性を有し、

かつ高温高湿環境下で長期にわたり低い水接触角を維持できることを見出し、本発明に至った。
 すなわち、本発明に係る上記課題は、以下の手段により解決される。
 1.透明基板上に具備された誘電体膜であって、
 前記誘電体膜は、少なくとも1層の低屈折率層を有し、
 前記誘電体膜の最上層がSiO2を含有するし、膜密度が92%以上である層であり、かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することを特徴とすることを特徴とする誘電体膜。
 2.前記最上層が、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素を含有することを特徴とする第1項に記載の誘電体膜。
 3.前記最上層において、前記ナトリウム、カルシウム、カリウム及びマグネシウムの含有量が、0.5~10質量%の範囲内であり、層厚が1μm以下であることを特徴とする第1項又は第2項に記載の誘電体膜。
 4.前記最上層の膜密度が、98%以上であることを特徴とする第1項から第3項までのいずれか一項に記載の誘電体膜。
 5.前記最上層の水接触角が、85℃・85%RH環境下で1000時間保存後、30°以下であることを特徴とする第1項から第3項までのいずれか一項に記載の誘電体膜。
 6.前記最上層の透明基板側に、光触媒機能を有する金属酸化物を主成分とする機能層を有することを特徴とする第1項から第5項までのいずれか一項に記載の誘電体膜。
 7.前記最上層が、前記機能層の表面を部分的に露出させる複数の細孔を有することを特徴とする第6項に記載の誘電体膜。
 8.透明基板上に具備された誘電体膜を製造する誘電体膜の製造方法であって、
 前記誘電体膜として、少なくとも1層の低屈折率層を形成する工程と、
 前記誘電体膜の最上層として、SiO2と、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素とを含有する層を形成する工程と、を有することを特徴とする誘電体膜の製造方法。
 9.前記最上層の透明基板側に、光触媒機能を有する金属酸化物を主成分とする機能層を形成する工程と、
 前記最上層に、前記機能層の表面を部分的に露出させる複数の細孔を形成する工程と、を有することを特徴とする第8項に記載の誘電体膜の製造方法。
 10.前記誘電体膜を、イオンアシスト蒸着又はスパッタリングで成膜する工程を有することを特徴とする第8項又は第9項に記載の誘電体膜の製造方法。
 11.第1項から第7項までのいずれか一項に記載の誘電体膜を具備することを特徴とする光学部材。
 12.前記光学部材が、車載用レンズであることを特徴とする第11項に記載の光学部材。
 本発明の上記手段により、表面の塩水耐性や耐傷性に優れ、かつ高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜、その製造方法及びそれを用いた光学部材を提供することができる。
 本発明の効果の発現機構ないし作用機構については、明確にはなっていないが、以下のように推察している。
 高温高湿(85℃・85%RH)環境下でのSiO2含有層の耐久性(親水性の維持)に関しては、本発明に係る最上層は、電気陰性度がSiより小さい元素を含有することによって、親水機能がより向上する。純粋なSiO2の場合に比べ、アルカリ金属元素を取り込んだSiO2は電子の配置に極性が発現してくるものと考えられ、これが極性分子であるH2Oと親和すると考えられる。なかでも、SiとOの電気陰性度差分より、ナトリウム元素とOの電気陰性度差分の方が大きく電気的な偏りが発生する。このナトリウム元素の含有量としては0.1~10質量%の範囲が最も良く電気的な偏りを発生させ、極性分子である水を引き付けるものと推察される。中でもナトリウム酸化物であるNa2Oは、融点がSiO2の融点と比較的近い為、混合蒸着材としてSiO2と同時成膜しやすい利点がある。蒸着された膜の組成比の点でも狂いが少ない。
 また、例えば、ナトリウムを含有させた場合は、ナトリウム由来のNaOHは潮解性があるため、外部環境の水分を取り込んで水溶液になろうとする性質が有り、高温高湿環境下で水を取り込むために親水性を長期間維持できるものと推察される。
 さらに、従来の高屈折率層(Ta25)/低屈折率層(SiO2)含有層が複数交互に積層された誘電体膜の構成において、最上層を形成するSiO2含有層は、下記のような塩水噴霧試験を実施すると、当該SiO2含有層が塩水に溶解し光反射率が変化する現象がみられる。このような変化によって、例えば、レンズ上の反射防止層(誘電体膜)の最上層が外的環境(塩水)によって溶解剥離したときには、フレアやゴーストが発生し、製造当初性能から劣化するものと考えられる。
 <塩水噴霧試験>
 以下の(a)~(c)を1サイクルとし、8サイクル実施する。
 (a)35±2℃の噴霧槽内温度にて、25±2℃の下記溶剤を2時間試料表面に噴霧する(塩水濃度5%)。
 (b)噴霧終了後40±2℃、95%RHにて22時間放置する。
 (c)(a)及び(b)を4回繰り返した後に、25℃、55%RHに72時間放置する。
 〈溶剤〉
 使用溶質:NaCl、MgCl2、CaCl2
 溶質濃度:5±1%(質量比)
 これは、SiO2含有層の上記塩水噴霧試験では、塩水の25℃でのpHが7程度(弱アルカリ性)であるのでSi-O結合が切断されやすくなり、SiO2含有層が徐々に塩水に溶解し剥離していくものと推察される。
 本発明に係るSiO2含有層は、塗布系のシリカ(SiO2)では表面がポーラスで脆いため塩水に溶解しやすいが、イオンアシスト蒸着(Ion Assisted Deposition、以下、単に「IAD」ともいう。)やスパッタリングによる成膜をし、膜密度を92%以上に調整した高密度なSiO2含有層を形成することで、塩水耐性や耐傷性が向上したものと推察される。IADは、成膜中にイオンの持つ高い運動エネルギーを作用させて高密度な膜を形成し、かつ、膜と基材の密着力を高める方法であり、最上層の耐久性を向上する手段として適用することが好ましい。
本発明の誘電体膜の構造の一例を示す断面図 IADに用いる真空蒸着装置の模式図 本発明に係る機能層と細孔を有する最上層を示す模式図 本発明に係る機能層と細孔を有する最上層を示す模式図 本発明に係る機能層と細孔を有する最上層を示す模式図 本発明に係る機能層と細孔を有する最上層を示す模式図 最上層表面に細孔を形成する工程のフローチャート 粒子状の金属マスクを形成して細孔を形成する工程を説明する概念図 粒子状の金属マスクを形成して細孔を形成する工程を説明する概念図 粒子状の金属マスクを形成して細孔を形成する工程を説明する概念図 粒子状の金属マスクを形成して細孔を形成する工程を説明する概念図 粒子状の金属マスクを形成して細孔を形成する工程を説明する概念図 各金属マスクを形成した試料のSEM画像 各金属マスクを形成した試料のSEM画像 各金属マスクを形成した試料のSEM画像 各金属マスクを形成した試料のSEM画像 最上層が葉脈状に加工された誘電体膜のSEM画像と拡大図 最上層が葉脈状に加工された誘電体膜のSEM画像と拡大図 最上層が葉脈状に加工された誘電体膜のSEM画像と拡大図
 本発明の誘電体膜は、透明基板上に具備された誘電体膜であって、前記誘電体膜は、少なくとも1層の低屈折率層を有し、前記誘電体膜の最上層がSiO2を含有し、膜密度が92%以上である層であり、かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することを特徴とすることを特徴とする。この特徴は、下記実施態様に共通する又は対応する技術的特徴である。
 本発明の実施態様としては、本発明の効果発現の観点から、前記最上層が、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素を含有すること、加えて、その含有量が前記最上層において、0.5~10質量%の範囲内であり、層厚が1μm以下であることが、高温高湿環境下での長期保存に対して、優れた親水性維持効果を発現することから好ましい。なお、当該含有量は2種以上含まれる場合は、合計量を示す範囲である。
 前記含有量は、0.5質量%以上であると本発明に係る高温高湿環境下での低い親水性の維持効果を発現し、また10質量%以内であることにより、SiO2の溶解が発生せずに反射防止性に影響がない範囲となる。
 また、前記最上層の膜密度が、98%以上であることが、優れた塩水耐性や耐傷性を発現することから、好ましい。膜密度は98~100%の範囲であることが、塩水耐性や耐傷性の観点から好ましい。
 また、前記最上層の水接触角が、85℃・85%RH環境下で1000時間保存後、30°以下であることが好ましく、長期にわたって親水性を発現することができる。本発明でいう親水性とは水接触角が30°以下であることをいい、好ましくは15°以下である。15°以下である場合を、本発明では「超親水性」と定義する。
 さらに、前記最上層の透明基板側に、光触媒機能を有する金属酸化物を主成分とする機能層を有することが、当該光触媒機能によって最上層に付着した汚れをセルフクリーニングする観点から、好ましい。
 その場合は、前記最上層が、前記機能層の表面を部分的に露出させる複数の細孔を有することが、セルフクリーニング効果を有効に発現する観点から、好ましい。従来の塗布等の条件で成膜すると膜が脆くなり塩水試験で解けてしまう。一方、緻密で硬いSiO2含有層に最上層を貫通して機能層に届く細孔を空けると、塩水耐性と光触媒機能が両立し、ともに向上する。
 本発明の誘電体膜の製造方法は、前記誘電体膜として、少なくとも1層の低屈折率層を形成する工程と、前記誘電体膜の最上層として、SiO2と、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素とを含有する層を形成する工程と、を有することを特徴とする。
 さらに、前記最上層の透明基板側に光触媒機能を有する金属酸化物を主成分とする機能層を形成する工程と、前記最上層に前記機能層の表面を部分的に露出させる複数の細孔を形成する工程と、を有することが、塩水耐性とセルフクリーニングの効果発現の観点から、好ましい。
 また、前記誘電体膜を製造する際に、イオンアシスト蒸着又はスパッタリングで成膜する工程を有することが、前記最上層を高密度な膜として形成し塩水耐性や耐傷性を向上する観点から、好ましい実施態様である。
 本発明の誘電膜は、光学部材に好適に具備され、当該光学部材が車載用レンズであることが、好ましい。
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。
 ≪本発明の誘電多層膜の概要≫
 本発明の誘電体膜は、透明基板上に具備された誘電体膜であって、前記誘電体膜は、少なくとも1層の低屈折率層を有し、前記誘電体膜の最上層がSiO2を含有し、膜密度が92%以上である層であり、かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することを特徴とする。
 前記電気陰性度がSiより小さい元素とは、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素であることが好ましく、その含有量が、0.5~10質量%の範囲内であることが好ましく、1.0~5.0質量%の範囲であることが、より好ましい。
 さらに、前記最上層の膜密度が、98%以上であることが、好ましい。
 ここで、「低屈折率層」とはd線における屈折率が1.7より小さい層をいう。高屈折率層とはd線における屈折率が1.7以上の層をいう。基板とは、樹脂又はガラスでできた光学部材で形状は問わない。光波長550nmにおける透過率は90%以上が望ましい。
 当該構成により、誘電体膜の最上層の膜密度が高いことから、表面の塩水耐性や耐傷性に優れ、かつ、前記特定の元素を含有し表面の親水性を維持できることから、高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜を提供できる。
 〈最上層の組成分析〉
 最上層の組成分析は、下記X線光電子分光分析装置(XPS)を用いて測定することができる。
 (XPS組成分析)
 ・装置名称:X線光電子分光分析装置(XPS)
 ・装置型式:Quantera SXM
 ・装置メーカー:アルバック・ファイ
 ・測定条件:X線源:単色化AlKα線25W-15kV
 ・真空度:5.0×10-8Pa
 アルゴンイオンエッチングにより深さ方向分析を行う。データ処理は、アルバック・ファイ社製のMultiPakを用いる。
 〈膜密度の測定方法〉
 ここで、本発明において「膜密度」は、空間充填密度を意味し、下記式(1)で表される値pと定義する。
 空間充填密度p=(膜の固体部分の体積)/(膜の総体積)・・・(1)
 ここで、膜の総体積には膜の固体部分の体積と膜の微小孔部分の体積の総和である。
 本発明の誘電多層膜の最上層の膜密度を92%以上とすることで、塩水に対する耐性をより向上させることができる。膜密度は以下の方法によって測定することができ、膜密度は98%~100%の範囲であることがより好ましい。
 (i)白板ガラスBK7(SCHOTT社製)(φ(直径)=30mm、t(厚さ)=2mm)からなる基板上に、SiO2とナトリウム、カルシウム、カリウム及びマグネシウムのいずれかの元素とを含有する層(本発明に係る最上層に該当)のみを形成し、当該最上層の光反射率を測定する。一方、(ii)薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)にて、当該最上層と同一の材料からなる層の光反射率の理論値を算出する。そして、(ii)で算出した光反射率の理論値と(i)で測定された光反射率との比較によって、最上層の膜密度を特定する。
 〈水接触角の測定方法〉
 高温高湿(85℃・85%RH)環境下に試料を長時間放置することによって、下記測定による水接触角が30°以下に維持できる時間を測定する。400時間以上である場合を親水性に対する耐久性有りと判断し、1000時間以上である場合を親水性に対する耐久性が極めて優れると判断する。なお、1000時間保存時点で、水接触角が15°以下である場合は、「超親水性」が長期間維持できると判断する。
 接触角の測定方法は、公知の方法を用いることができる。例えば、標準液体(純水が好ましい。)と、最上層表面との接触角を、JIS R3257で規定される方法に準拠して測定する。測定条件は、温度23±5℃、湿度50±10%、標準液体の滴下液滴量1~10μL、標準液体の滴下から接触角測定までの時間は1分以内とする。具体的な操作の手順としては、温度23℃において、前記標準液体である純水をサンプル上に約10μL滴下して、エルマ株式会社製G-1装置によりサンプル上の5か所を測定し、測定値の平均から平均接触角を得る。接触角測定までの時間は標準液体を滴下してから1分以内に測定する。
 以下、図1は、本発明の誘電体膜の構造の一例を示す断面図である。
 本発明の誘電体膜の層構成は、「単層」(この場合は、「単膜」ともいう。)でも「複数の層」(この場合は、「誘電体多層膜」又は「多層膜」ともいう。)でもよい。
 図1には、複数の層を有する「誘電体多層膜」の実施形態を示すが、低屈折率層及び高屈折率層の層数は一例であって、これに限定されるものではない。また、前述のとおり、本発明の効果を発現する観点において、本発明に係る低屈折率層又は最上層は単層構成である場合も含むものである。
 反射防止機能を有する誘電体膜100は、例えば、レンズを構成するガラス製の基板101の屈折率よりも高い屈折率を有する高屈折率層103、105aと、前記高屈折率層よりも低い屈折率を有する低屈折率層102、104とを有する。これら高屈折率層と、低屈折率層とが交互に積層された多層構造を有することが好ましい。本発明の誘電体膜は、光波長420~680nmの範囲において、法線方向からの光入射に対する光反射率が平均2%以下であることが、車載用レンズとして撮像された映像の視認性を向上する観点から、好ましい。本発明では、誘電体膜100は、光学部材ともいう。
 本発明に係る最上層106は、SiO2を含有する層であり、かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することが特徴であり、当該電気陰性度がSiより小さい元素とは、ナトリウム、カルシウム、カリウム及びマグネシウムのいずれかの元素であることが好ましい。当該最上層の光波長587.56nmに対する屈折率は、1.6以下であることが、光反射層として、下層の光反射率を変化させないことから好ましい屈折率の範囲である。
 図1において、最上層106の基板側に光触媒機能を有する金属酸化物を主成分とする機能層105bを配置してもよく、当該光触媒機能によって最上層に付着した汚れをセルフクリーニングする観点から、好ましい。最上層106に隣接して機能層105bを設けることで、例えば光触媒機能を有効に発揮でき、光触媒効果、光活性効果を持つ金属酸化物を用いることで、表面の有機物を除去し最上層106の親水性の維持に寄与できることから好ましい態様である。
 最上層の機能は低屈折率層であり、主成分としてSiO2であることが好ましい。ここで、「主成分」とは、前記最上層の全体の質量のうち、51質量%以上がSiO2であることをいい、好ましくは70質量%以上、特に好ましくは90質量%以上であることをいう。但し、その他の金属酸化物を含有することも好ましく、SiO2と一部Al23の混合物やMgF2などであることも光反射率の観点から好ましい。
 また、前記機能層105bは、後述するように光触媒機能を有するTiO2を含有する層であることが好ましく、その場合屈折率の関係から、高屈折率層105aの代替え層として配置することができる。
 なお、図1で示す本発明の誘電体膜は、基板101上に低屈折率層、高屈折率層及び本発明に係る最上層106が積層されて誘電体膜を構成しているが、基板101の両側に本発明に係る最上層が形成されていてもよい。すなわち、本発明に係る最上層は外部環境に曝露される側にあることが好ましい態様であるが、曝露される側ではなく、例えば、暴露される側とは反対側となる内側においても内部環境の影響を防止するために、本発明に係る最上層とが形成されていてもよい。また、本発明の光学部材は、レンズ以外に、例えば反射防止部材や遮熱部材などの光学部材に適用することができる。
 〔1〕誘電体膜の構成と製造方法
 反射防止機能を有する誘電体膜は、基板の屈折率よりも高い屈折率を有する高屈折率層と、前記高屈折率層よりも低い屈折率を有する低屈折率層とを有する。これら高屈折率層と、低屈折率層とが交互に積層された多層構造を有することが好ましい。層数に関しては特に制限されるものではないが、12層以内であることが高い生産性を維持して反射防止層を得る観点から、好ましい。すなわち、積層数は、要求される光学性能によるが、おおむね3~8層程度の積層をすることで、可視域全体の反射率を低下させることができ、上限数としては12層以下であることが、膜の応力が大きくなって膜が剥がれたりすることを防止できる点で好ましい。
 本発明に係る誘電体膜(高屈折率層、低屈折率層)に用いられる材料としては、好ましくは、例えば、Ti、Ta、Nb、Zr、Ce、La、Al、Si、及びHfなどの酸化物、又はこれらを組み合わせた酸化化合物及びMgF2が適している。また、異なる誘電体材料を複数層積み重ねることで、可視域全体の反射率を低下させた機能を付加することができる。
 前記低屈折率層は、屈折率1.7より小さい材料から構成され、本発明においては、SiO2を含有する層である。但し、その他の金属酸化物を含有することも好ましく、SiO2と一部Al23の混合物などであることも光反射率の観点から好ましい。
 前記高屈折率層は、屈折率1.7以上の材料から構成され、例えば、Taの酸化物とTiの酸化物の混合物や、その他、Tiの酸化物、Taの酸化物、Laの酸化物とTiの酸化物の混合物などであることが好ましい。本発明においては、Ta25やTiO2であることが好ましく、より好ましくはTa25である。
 誘電体膜の全体の厚さは、好ましくは、50nm~5μmの範囲内である。厚さが50nm以上であれば、反射防止の光学特性を発揮させることができ、厚さが5μm以下であれば、多層膜自体の膜応力による面変形が発生するのを防止することができる。
 基板上に金属酸化物等の薄膜を形成する方法として、蒸着系では真空蒸着法、イオンビーム蒸着法、イオンプレーティング法等、スパッタ系ではスパッタリング法、イオンビームスパッタリング法、マグネトロンスパッタリング法等が知られているが、本発明の誘電体膜を形成する成膜方法としては、イオンアシスト蒸着法(以下、本発明ではIADともいう。)又はスパッタリング法であることが好ましく、特に最上層はイオンアシスト蒸着法を用いて高密度な膜を形成することが好ましい。
 誘電体膜の他の各層は蒸着法で成膜されており、各層のうちいずれかの層はIADで成膜されていることが好ましい。IADによる成膜で誘電体膜全体の耐傷性をより向上できる。
 特に、最上層106は、IAD又はスパッタリング法等で成膜されることにより、膜密度を高めることができる。
 最上層106の膜密度は、92%以上であり、さらに98%以上であることが好ましい。ここで、膜密度は、前述のとおり空間充填密度を意味する。最上層106の膜密度を98~100%の範囲とすることで、塩水耐性や耐傷性をより向上させることができる。
 IADは、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高める方法であり、例えばイオンビームによる方法は、イオンソースから照射されるイオン化されたガス分子により被着材料を加速し、基板表面に成膜する方法である。
 図2は、IADを用いた真空蒸着装置の一例を示す模式図である。
 IADを用いた真空蒸着装置1(以下、本発明ではIAD蒸着装置ともいう。)は、チャンバー2内にドーム3を具備し、ドーム3に沿って基板4が配置される。蒸着源5は蒸着物質を蒸発させる電子銃、又は抵抗加熱装置を具備し、蒸着源5から蒸着物質6が、基板4に向けて飛散し、基板4上で凝結、固化する。その際、IADイオンソース7より基板に向けてイオンビーム8を照射し、成膜中にイオンの持つ高い運動エネルギーを作用させて緻密な膜としたり、膜の密着力を高めたりする。
 ここで本発明に用いられる基板4は、ガラス、ポリカーボネート樹脂やシクロオレフィン樹脂等の樹脂が挙げられ、車載用レンズであることが好ましい。
 チャンバー2の底部には、複数の蒸着源5が配置されうる。ここでは、蒸着源5として1個の蒸着源を示しているが、蒸着源5の個数は複数あってもよい。蒸着源5の成膜材料(蒸着材料)を電子銃によって蒸着物質6を発生させ、チャンバー2内に設置される基板4(例えば、レンズ)に成膜材料を飛散、付着させることにより、成膜材料からなる層(例えば、低屈折率素材である、SiO2、MgF2、又はAl23や、高屈折率素材である、Ta25やTiO2など)が基板4上に成膜される。
 本発明に係る最上層を形成する場合は、蒸着源5にSiO2ターゲットとナトリウム、カルシウム、カリウム及びマグネシウムのいずれかの元素を含有するターゲットを配置し、それらの物質が混合された蒸着物質6を発生し用いることができる。また、SiO2と前記元素が混合されたターゲットを用いることができる。最上層の組成の精度を高めるためには、後者の混合ターゲットを用いることが好ましい。
 ナトリウムとしては、Na2O、カルシウムとしてはCaO、カリウムとしては、K2O及びマグネシウムとしてはMgOを用いることが好ましく、いずれもMerck社製より入手が可能である。
 また、チャンバー2には、図示しない真空排気系が設けられており、これによってチャンバー2内が真空引きされる。チャンバー内の減圧度は、通常1×10-4~1Pa、好ましくは1×10-3~1×10-2Paの範囲である。
 ドーム3は、基板4を保持するホルダー(不図示)を、少なくとも1個保持するものであり、蒸着傘とも呼ばれる。このドーム3は、断面円弧状であり、円弧の両端を結ぶ弦の中心を通り、その弦に垂直な軸を回転対称軸として回転する回転対称形状となっている。ドーム3が軸を中心に例えば一定速度で回転することにより、ホルダーを介してドーム3に保持された基板4は、軸の周りに一定速度で公転する。
 このドーム3は、複数のホルダーを回転半径方向(公転半径方向)及び回転方向(公転方向)に並べて保持することが可能である。これにより、複数のホルダーによって保持された複数の基板4上に同時に成膜することが可能となり、素子の製造効率を向上させることができる。
 IADイオンソース7は、本体内部にアルゴンや酸素ガスを導入してこれらをイオン化させ、イオン化されたガス分子(イオンビーム8)を基板4に向けて照射する機器である。イオン源としては、カウフマン型(フィラメント)、ホローカソード型、RF型、バケット型、デュオプラズマトロン型等を適用することができる。IADイオンソース7から上記のガス分子を基板4に照射することにより、例えば複数の蒸発源から蒸発する成膜材料の分子を基板4に押し付けることができ、密着性及び緻密性の高い膜を基板4上に成膜することができる。IADイオンソース7は、チャンバー2の底部において基板4に対向するように設置されているが、対向軸からずれた位置に設置されていても構わない。
 IADで用いるイオンビームは、イオンビームスパッタリング法で用いられるイオンビームよりは、低真空度で用いられ、加速電圧も低い傾向にある。例えば加速電圧が100~2000Vのイオンビーム、電流密度が1~120μA/cm2のイオンビーム、又は加速電圧が500~1500Vで電流密度が1~120μA/cm2のイオンビームを用いることができる。成膜工程において、イオンビームの照射時間は例えば1~800秒とすることができ、またイオンビームの粒子照射数は例えば1×1013~5×1017個/cm2とすることができる。成膜工程に用いられるイオンビームは、酸素のイオンビーム、アルゴンのイオンビーム、又は酸素とアルゴンの混合ガスのイオンビームとすることができる。例えば、酸素導入量30~60sccm、アルゴン導入量0~10sccmの範囲内とすることが好ましい。「SCCM」は、standard cc/minの略であり、1気圧(大気圧1013hPa)、0℃で1分間あたりに何cc流れたかを示す単位である。
 モニターシステム(不図示)は、真空成膜中に各蒸着源5から蒸発して自身に付着する層を監視することにより、基板4上に成膜される層の波長特性を監視するシステムである。このモニターシステムにより、基板4上に成膜される層の光学特性(例えば分光透過率、光反射率、光学層厚など)を把握することができる。また、モニターシステムは、水晶層厚モニターも含んでおり、基板4上に成膜される層の物理層厚を監視することもできる。このモニターシステムは、層の監視結果に応じて、複数の蒸発源5のON/OFFの切り替えやIADイオンソース7のON/OFFの切り替え等を制御する制御部としても機能する。
 また、スパッタリング法による成膜は、2極スパッタリング、マグネトロンスパッタリング、中間的な周波数領域を用いたデュアルマグネトロンスパッタリング(DMS)、イオンビームスパッタリング、ECRスパッタリングなどを単独で又は2種以上組み合わせて用いることができる。また、ターゲットの印加方式はターゲット種に応じて適宜選択され、DC(直流)スパッタリング、及びRF(高周波)スパッタリングのいずれを用いてもよい。
 スパッタリング法は、複数のスパッタリングターゲットを用いた多元同時スパッタリングであってもよい。これらのスパッタリングターゲットを作製する方法や、これらのスパッタリングターゲットを用いて薄膜を作製する方法については、例えば、特開2000-160331号公報、特開2004-068109号公報、特開2013-047361号公報などの記載が適宜参照されうる。
 また、最上層106にSiO2を主成分として用いる場合、成膜後に200℃以上で2時間の加熱処理を施すことで、塩水耐性や耐傷性がより向上し、好ましい。
 なお、本発明の誘電体膜において、前記最上層106の直下層として、TiO2を含有する層を、セルフクリーニング機能を有する光触媒層として用いることが好ましい。TiO2のセルフクリーニング機能とは、光触媒による有機物分解効果をいう。これは、TiO2に紫外光が照射されたときに、電子が放出された後に・OHラジカルが生じ、当該・OHラジカルの強い酸化力によって有機物を分解するものである。本発明の誘電体膜にTiO2含有層を加えることで、光学部材に付着した有機物等が汚れとして光学系を汚染するのを防止することができる。その際は、上層のSiO2含有層は、やや粗である膜質であることが、・OHラジカルが移動しやすく、光学部材表面の防汚性を向上できるため好ましい。これは、上層のSiO2含有層を成膜する際のIAD条件を制御することで、膜質を制御することが可能である。また、最上層106を緻密な膜として形成し、最上層106に機能層105bを部分的に露出するような細孔を形成することが、・OHラジカルがより移動しやすくなり、光触媒効果の効果を発現しやすく、さらに塩水耐性を具備することができる。
 本発明の誘電体膜100は、望ましくは以下の条件式を満たす。
 10nm≦TL≦350nm…… (1)
 50nm≦Tcat≦700nm…(2)
 ここで、TL:最上層106の膜厚を表す。Tcat:最上層106に隣接した高屈折率層105a又は機能層105bの膜厚を表す。
 条件式(1)の値が上限以下であると、最上層106に設けた複数の細孔30を通じてUV光で励起した活性酸素をやり取りすることにより光触媒効果を発揮できる。
 一方、条件式(1)の値が下限以上であると、最上層106の親水性機能を維持しやすく、かつ強固な最上膜を形成できるため十分な塩水耐性や耐傷性を確保できる。なお、誘電体膜100は、以下の式(1b)を満たすことが好ましい。
 60nm≦TL≦250nm… (1b)
 条件式(2)の値が下限以上であると、機能層105bの膜厚を確保できるため十分な光触媒効果を期待できる。一方、機能層105bの厚さが増大すればするほど光触媒効果を期待できるが、その代わり多層膜に要求される所望の分光特性を得にくくなるため、条件式(2)の値は上限以下とすることが望ましい。なお、機能層105bは、以下の式(2b)を満たすことが好ましい。
 50nm≦Tcat≦600nm…(2b)
 最上層106に隣接した機能層105bは、Tiを主成分とする酸化物(例えばTiO2)から形成されている。TiO2等のTi酸化物は光触媒効果が非常に高いものとなっている。特に、アナターゼ型のTiO2は、光触媒効果が高いため機能層105bの材料として望ましい。
 最上層106は例えば主にSiO2から形成されている。最上層106において、SiO2は90%以上含有されていることが好ましい。夜間や屋外等ではUV光が入射しにくく、Tiを主成分とする酸化物では親水効果が低下するが、かかる場合でも最上層106をSiO2から形成することで親水効果を発揮でき、また、塩水耐性もより高められる。親水性を有するとは、誘電体膜100上の水滴10μLの接触角が30°以下、望ましくは15°以下になることを意味する。
 また、耐傷性をより高めるには最上層106にSiO2を用いる場合、成膜後に500℃で2時間の加熱処理を施すことが好ましい。
 なお、最上層106はSiO2とAl23との混合物(ただし、SiO2の組成比が90質量%以上)から形成されてもよい。これにより夜間や屋外等でも親水効果を発揮でき、また、SiO2とAl23との混合物とすることで耐傷性もより高められる。最上層106にSiO2とAl23との混合物を用いる場合、成膜後に200℃以上で2時間の加熱処理を施すことで、耐傷性を向上することができる。
 誘電体膜100は以下の条件式を満たすと好ましい。
 1.35≦NL≦1.55…(3)
 ここで、NL:低屈折率層の材料のd線での屈折率を表す。
 条件式(3)を満たすことで、所望の光学特性を有する誘電体膜100を得ることができる。ここで、d線とは波長587.56nmの波長の光をいう。低屈折率層の素材として、d線での屈折率が1.48であるSiO2や、d線での屈折率が1.385であるMgF2を用いることができる。
 誘電体膜100は以下の条件式を満たすことが好ましい。
 1.6≦Ns≦2.2…(4)
 ここで、Ns:基材のd線での屈折率
 光学設計上、基材のd線での屈折率として条件式(4)を満たすことで、コンパクトな構成とした上で誘電体膜100の光学性能を高めることができる。条件式(4)を満たすガラス基材に本実施形態の誘電体膜を成膜することで、外界に対して露出するレンズ等に用いることができ、優れた耐環境性能と光学性能とを両立することができる。
 本発明に係る最上層の直下層には、光触媒機能を有する金属酸化物を主成分とする機能層を配置し、当該最上層は、前記機能層の表面を部分的に露出させる複数の細孔を有することが、好ましい。
 図3A~Dは、本発明に係る機能層と細孔を有する最上層を示す模式図である。
 図3Aは、粒子状の細孔を有する金属マスクを形成して作製した誘電体膜100の断面を模式的に示す図であり、Bは、隣接する細孔がつながった葉脈状の細孔を有する金属マスクを形成して作製した誘電体膜の断面を模式的に示す図であり、Cは、Bの最上層の表面のSEM画像であり、Dは、ポーラス状の細孔を有する金属マスクを形成して作製した誘電体膜の断面を模式的に示す図である。
 図3A~Dに示すように、最上層106は、隣接する高屈折率層となる機能層105bに光触媒機能を発現させるための複数の細孔30を有している。細孔30は、ドライエッチングで形成される。最上層106の表面積に対する複数の細孔30の横断面の総面積(最上層106を上から見たときの細孔30の総面積)の割合(以下、細孔密度又は膜抜け落ち率という)は、例えば後述する葉脈状金属マスク50を用いて細孔30を形成した場合、膜抜け落ち率は50%程度となることが好ましい。また、細孔30の横断面は、穴の寸法サイズが様々ありネットワーク上に繋がった形状を有している。
 以下、図4、図5、図6及び図7を参照しつつ、誘電体膜100及び最上層に細孔を形成する製造方法について説明する。
 図4は、本発明に係る最上層表面に細孔を形成する工程のフローチャートである。
 図5A~Eは、粒子状の金属マスクを形成して、本発明に係る最上層表面に細孔を形成する工程を説明する概念図である。
 図6A~Dは、各金属マスクを形成した本発明に係る最上層表面のSEM画像である。
 図7A~Cは、本発明に係る最上層表面が葉脈状に加工されたときのSEM画像と拡大図である。
 まず、図4において、基材(基板)上に多層膜としての低屈折率層と高屈折率層とを交互に積層する(多層膜形成工程:ステップS11)。ただし、ステップS11においては、多層膜のうち最上層106と機能層105bとを除いた層を形成する。つまり、機能層105bの下側に隣接する低屈折率層まで形成する。多層膜は、各種の蒸着法、IAD又はスパッタリング法等を用いて形成する。なお、誘電体膜100の構成に応じて、ステップS11での多層膜の形成を省略してもよい。
 次いでステップ12として機能層105を形成し、引き続きステップ13として最上層106を形成する。形成方法は、IADで成膜することが好ましい。
 最上層形成工程後、最上層106の表面に金属マスク50を成膜する(マスク形成工程:ステップS14)。図5A及び図6Aに示すように、金属マスク50は、最上層106の表面に粒子状に形成される。これにより、最上層106にナノサイズの金属マスク50を形成することができる。なお、図5D及び図6Cに示すように、金属マスク50を葉脈状の細孔を有するように形成してもよい。また、図5E及び図6Dに示すように、金属マスク50をポーラス状の細孔を有するように形成してもよい。ポーラス状とは細孔が複数ある状態で、例えば投影面積の円換算で直径数十nm位の孔が複数空いている状態をいう。
 金属マスク50は、金属部50aと、露出部50bとで構成される。金属マスク50の膜厚は、1~30nmの範囲となっている。成膜条件にもよるが、例えば蒸着法を用いて膜厚を2nmとなるように金属マスク50を成膜すると、金属マスク50は粒子状になりやすい(図6A)。また、例えば、蒸着法を用いて膜厚を12nm~15nmとなるように金属マスク50を成膜すると、金属マスク50は葉脈状になりやすい(図6C)。さらに、例えばスパッタリング法を用いて膜厚を10nmとなるように成膜すると、金属マスク50はポーラス状になりやすい(図6D)。金属を上記範囲の厚さに薄く成膜することで、粒子状、葉脈状、又はポーラス状の最適な金属マスク50を容易に形成することができる。金属マスク50は、例えばAgやAl等で形成される。
 次に、最上層106に複数の細孔30を形成する(細孔形成工程:ステップS15)。図5B及び図6Bに示すように、エッチングには、不図示のエッチング装置を用いたドライエッチングを用いる。また、上述の多層膜の成膜や金属マスク50の成膜に用いた成膜装置を用いてもよい。細孔形成工程において、最上層106の材料、具体的にはSiO2と反応するガスを用いて複数の細孔を形成する。この場合、金属マスク50に損傷を与えず、最上層106のSiO2を削ることができる。エッチングガスとしては、例えばCHF3、CF4、COF2及びSF6等を用いる。これにより、最上層106において機能層105bの表面を露出させる複数の細孔30が形成される。つまり、金属マスク50の露出部50bに対応する最上層106がエッチングされて細孔30が形成され、部分的に機能層105bの表面が露出した状態となる。
 細孔形成工程後、図5Cに示すように、金属マスク50を除去する(マスク除去工程:ステップS16)。具体的には、金属マスク50は、酢酸等を用いたウェットエッチングによって除去される。また、金属マスク50は、例えばArやO2をエッチングガスとして用いたドライエッチングによって除去してもよい。金属マスク50のエッチングをドライエッチングを用いて行えば、多層膜MCの形成から金属マスク50のエッチングまでの一連の工程を同じ成膜装置内で行うことができる。
 以上の工程により、最上層106に複数の細孔30を有する誘電体膜100を得ることができる。
 上記誘電体膜の製造方法によれば、最上層106を成膜後、機能層105bに光触媒機能を発現させるための複数の細孔30を形成することにより、超親水性と光触媒機能とを両立させることができる。細孔30は、機能層105bに光触媒機能を発現させる程度の大きさであり、ユーザーに視認されることがなく、かつ塩水耐性も有する。
 機能層105bは光触媒機能を発現するが、高屈折率層であるため、誘電体膜100の反射防止特性を維持するためには、機能層105bの上に低屈折率層である最上層106を設ける必要がある。そのため、最上層106の密度が高い場合、機能層105bの光触媒機能が発現されなくなるという問題がある。一方、最上層106の膜密度を低くすると、最上層106の塩水耐性や耐傷性が低くなるという問題がある。本実施形態にかかる誘電体膜100のように、最上層106に複数の細孔30を設けることにより、反射防止特性、親水性、及び塩水耐性や耐傷性を保ちつつ、機能層105bの光触媒機能を発現させることができる。
 このように、誘電体膜100は、反射防止特性を有する耐塩水性及び対傷性に優れた多層膜を有し、超親水性及び光触媒効果を発揮することができ、車載用レンズや通信用レンズ、或いは建材に好適に用いられ、中でも車載用レンズとして好適である。
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」又は「%」の表示を用いるが、特に断りがない限り「質量部」又は「質量%」を表す。
 〔実施例1〕
 本発明の誘電体膜に具備される最上層を評価するために、表Iに記載の単膜を作製し評価した。
 <単膜1の作製>
 ガラス基材TAFD5G(HOYA株式会社製:屈折率1.835)上に、本発明に係る最上層として、SiO2とNa2O(株式会社豊島製作所 商品名 SiO2-Na2O)を質量比で95:5に混合した粒子を調製し、以下の蒸着を行った。
 上記の基材を真空蒸着装置に設置して、第1蒸発源に前記成膜材料を装填し、IADにて、成膜速度3Å/secで蒸着し、ナトリウム含有量が5質量%になるようにして、基材上に厚さが100nmの単膜1を作製した。
 <成膜条件>
 (チャンバー内条件)
 加熱温度   370℃
 開始真空度  1.33×10-3Pa
 (成膜材料の蒸発源)
  電子銃
 IADは、加速電圧1200V、加速電流1000mA、中和電流1500mAで、オプトラン社RFイオンソース「OIS One」の装置を用いた。IAD導入ガスはO250sccm、Arガス10sccm、ニュートラルガスO250sccmの条件で行った。
 なお、最上層の組成分析は、下記X線光電子分光分析装置(XPS)を用いて測定した。
 (XPS組成分析)
 ・装置名称:X線光電子分光分析装置(XPS)
 ・装置型式:Quantera SXM
 ・装置メーカー:アルバック・ファイ
 ・測定条件:X線源:単色化AlKα線25W-15kV
 ・真空度:5.0×10-8Pa
 アルゴンイオンエッチングにより深さ方向分析を行う。データ処理は、アルバック・ファイ社製のMultiPakを用いた。
 <単膜2~9の作製>
 成膜処方は表Iに示す通りであるが、単膜1の作製において、蒸着条件の変化によるNa2Oを用いたナトリウムの含有量変化、K2O、CaO、Fe23及びMgO(いずれもMerck社製)によるカリウム、カルシウム、鉄及びマグネシウムを含有した本発明に係る最上層をIADにて蒸着成膜して、単膜2~9を得た。
 なお、単膜8の作製は、単膜1の作製において、IADによる蒸着時に370℃の加熱をしなかった以外は同様にして成膜し、単膜8を得た。
 <単膜10の作製>
 単膜1の作製において、成膜材料として、Na2O、K2O及びCaOを質量比で1:1:1で混合し、合計含有量が5質量%になるようにした以外は同様にして、単膜9を得た。
 <単膜11の作製>
 単膜1の作製において、スパッタ法で成膜した以外は同様にして、単膜11を得た。
 スパッタ装置としては、マグネトロンスパッタ装置(キヤノンアネルバ社製:型式EB1100)を用いた。
 プロセスガスにはArとO2とを用いて、上記マグネトロンスパッタ装置により、RF方式による成膜を行った。スパッタ電源パワーは5.0W/cm2とし、成膜圧力は0.4Paとした。また、酸素分圧は適宜調整した。なお、事前に成膜時間に対する層厚変化のデータを取り、単位時間当たりに成膜される層厚を算出した後、設定層厚となるように成膜時間を設定した。
 <単膜12:誘電体多層膜1の作製>
 ガラス基材TAFD5G(HOYA株式会社製:屈折率1.835)上に、SiO2(Merck社製製)を用いた低屈折率層、OA600(キヤノンオプトロン株式会社製の素材:Ta25、TiO、Ti25の混合物)を用いた高屈折率層を表Iの層番号1~4まで、下記条件のIADを用いて所定の膜厚にて積層した。次いで、実施例1の単膜1と同様な最上層(層番号5)として、SiO2とNa2O(株式会社豊島製作所 商品
名 SiO2-Na2O)を質量比で95:5に混合した粒子を調製した。
 上記の基材を真空蒸着装置に設置して、第3蒸発源に前記成膜材料を装填し、成膜速度3Å/secで蒸着し、上記機能層上に厚さが88nmの最上層(層5)を形成した。当該機能層の形成は、同様にIAD、370℃加熱条件によって行った。
 <成膜条件>
 (チャンバー内条件)
 加熱温度   370℃
 開始真空度  1.33×10-3Pa
 (成膜材料の蒸発源)
  電子銃
 (低屈折率層及び高屈折率層の成膜)
 低屈折率層の成膜材料:SiO2(Merck社製 商品名 SIO2
 上記の基材をIAD真空蒸着装置に設置して、第1蒸発源に前記成膜材料を装填し、成膜速度3Å/secで蒸着し、基材上に厚さが31.7nmの低屈折率層を形成した。
 IADは、加速電圧1200V、加速電流1000mA、中和電流1500mAで、オプトラン社RFイオンソース「OIS One」の装置を用いた。IAD導入ガスはO250sccm、Arガス0sccm、ニュートラルガスO250sccmの条件で行った。
 高屈折率層の成膜材料:OA600(キヤノンオプトロン株式会社製の素材:Ta25、TiO、Ti25の混合物)
 上記の基材を真空蒸着装置に設置して、第2蒸発源に前記成膜材料を装填し、成膜速度3Å/secで蒸着し、上記低屈折率層上に厚さが30.8nmの高屈折率層を形成した。当該高屈折率層の形成は、同様にIADによって行った。
 上記形成した高屈折率層上に、表IIに記載の層厚条件で低屈折率層、高屈折率層及び最上層(実施例1の単膜1相当)を前記低屈折率層の形成条件と同様にして積層成膜し、合計5層の誘電体多層膜1を作製した。
 <単膜13:誘電体多層膜2の作製>
 誘電体膜1の作製において、第4層のOA600含有層の代わりに、光触媒層としてTiO2含有層を113nmの層厚でIADにて成膜した。なお、TiO2は富士チタン社製(商品名 Ti35)を用いた。次いで、その上に、表II記載のように、低屈折率層、高屈折率層及び誘電体膜1の作製と同様にして厚さ88nmの最上層をIADにて成膜し、誘電体多層膜2を得た。
 <単膜14:誘電体多層膜付きミラー膜3の作製>
 誘電体膜1の作製において、基板としてポリカーボネート樹脂フィルム(PC:帝人社製 商品名 ピュアエース)を用いて、表II記載のように、Al23(Merck社製 商品名 Al23)、Ag、H4(Merck社製の商品名「H4」:LaTiO3)の各含有層を計8層積層し、誘電体多層膜付きミラー膜3を作製した。
 なお、表中のAgの光波長550nmにおける光吸収係数は次式で算出した。
  α=4πk/λ
 ここで、αは光吸収係数、kは消光係数、λは波長である。また、当該「波長における消光係数はエリプソメトリーにより計測を行った。
 <単膜15:誘電体多層膜4の作製>
 誘電体膜2の作製において、基板としてシクロオレフィン樹脂フィルム(三井化学社製 商品名 APEL)を用い、各層の層厚を変化させた以外は同様にして、誘電体多層膜4を作製した。
 <単膜16の作製:比較例>
 特開2013-203774号公報実施例段落〔0026〕の調製においてNa2O(株式会社豊島製作所 商品名Na2O)を添加し、かつ〔0038〕に従いSiO2とナトリウム含有量が5質量%となるよう塗布にて最上層を形成し、単膜16を得た。
 <単膜17の作製:比較例>
 単膜1の作製において、最上層にナトリウムを含有しない最上層を形成した以外は同様にして、単膜17を得た。
 ≪評価≫
 (1)最上層の膜密度の測定
 各誘電体膜の最上層の膜密度は、以下の方法で測定した。
 (i)白板ガラスBK7(SCHOTT社製)(φ(直径)=30mm、t(厚さ)=2mm)からなる基板上に、最上層のみを形成し、当該高屈折率層の光反射率を測定する。一方、(ii)薄膜計算ソフト(Essential Macleod)(シグマ光機株式会社)にて、最上層と同一の材料からなる層の光反射率の理論値を算出する。そして、(ii)で算出した光反射率の理論値と(i)で測定された光反射率との比較によって、最上層の膜密度を特定した。
 (2)光反射率の測定
 反射率測定機(USPM-RUIII)(オリンパス株式会社製)によって、波長420
~670nmの試料の平均光反射率を測定した。
 (3)高温高湿環境下での親水性評価
 高温高湿(85℃・85%RH)環境下に試料を長時間放置することによって、下記測定による水接触角が30°以下を維持できる時間を測定した。15時間にて水接触角が30°を超えた場合を×、400時間経過後で超えた場合を〇、1000時間経過後で超えた場合を◎とした。◎の評価試料の1000時間保存時時点の水接触角値を測定したところ、いずれも15°以下であり、本発明の誘電体膜を具備する試料は、「超親水性」が長期間維持できることが分かった。
 〈水接触角の測定〉
 接触角の測定方法は、標準液体(純水)と最上層表面との接触角を、JIS R3257で規定される方法に準拠して測定した。測定条件は、温度23℃、湿度50%RHにおいて、前記標準液体である純水をサンプル上に約10μL滴下して、エルマ株式会社製G-1装置によりサンプル上の5か所を測定し、測定値の平均から平均接触角を得た。接触角測定までの時間は標準液体を滴下してから1分以内に測定する。
 (4)塩水耐性の評価
 「塩水耐性」については、塩乾湿複合サイクル試験機(CYP-90)(スガ試験機株式会社製)を用いて、塩水噴霧試験を行って評価した。試験は、以下の工程(a)~(c)を1サイクルとし、8サイクル実施した。
(a)35℃±2℃の噴霧層内温度にて、25±2℃の塩水濃度5%の溶剤(NaCl、MgCl2、CaCl2、濃度(質量比)5%±1%)を試料に2時間噴霧する。
(b)噴霧終了後、40℃±2℃、95%RHの環境下に試料を22時間放置する。
(c)工程(a)及び(b)を4回繰り返した後、常温(20℃±15℃)及び常湿(45%RH~85%RH)の環境下に試料を72時間放置する。
 上記試験後、反射率測定機(USPM-RUIII)(オリンパス株式会社製)によって、試料の光反射率を測定し、光反射率に変化がない(反射率変化が0%)場合、評価を符号○とし、反射率変化が2%未満である場合、評価を符号△とし、反射率変化が2%以上である場合、評価を符号×とした。
 (5)耐傷性の評価
 誘電体膜試料の表面を、亀の甲たわしを用いて、2kgの荷重で250往復擦り試験を行い、光反射率が0.5%未満の変化である場合、評価を○とし、反射率変化が0.5~2.0%未満である場合、評価を△とし、反射率変化が2.0%以上である場合、評価を×として耐傷性を評価した。
 以上の単膜の構成及び評価結果を表I及び表IIに示した。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表Iの結果から、比較例の単膜16及び17に対して、本発明に係る最上層に該当する単膜1~15は、膜密度が高く、高温高湿環境下での親水性、塩水耐性及び耐傷性に優れていることが明らかである。
 〔実施例2〕
 誘電体多層膜2において、光反射性及び光触媒性を評価するために、最上層に下記手順にて細孔を形成し、細孔付きの誘電体多層膜2を作製し評価した。
 図4及び図5に示した細孔形成方法にしたがい、マスク材料としてAg、マスク成膜として蒸着法、マスク厚さ12nm、マスク構造として葉脈状、エッチングガスCHF3、及びエッチング時間60secの条件で、図6Cで示される細孔を上記最上層に形成し、細孔付きの誘電体多層膜2を作製した。
 詳細な細孔形成条件は以下のとおりである。
 Ag成膜には成膜装置(BES-1300)(株式会社シンクロン製)を用い、下記の条件で成膜した。成膜時の膜厚を変えることで、葉脈状、ポーラス状及び粒子状のAgマスクを形成できる。
 加熱温度   25℃
 開始真空度  1.33×10-3Pa
 成膜レート  7Å/sec
 エッチングにはエッチング装置(CE-300I)(アルバック社製)を用い、下記の条件で成膜した。エッチング時間を変更することで、細孔の幅長、深さを調整した。
 アンテナRF  400W
 バイアスRF  38W
 APC圧力   0.5Pa
 CHF3流量  20sccm
 エッチング時間 60sec
 <マスクの剥離>
 細孔を形成した後、エッチング装置(CE-300I)(アルバック社製)を用いて、O2プラズマを照射することでマスク材料Agを剥離した。剥離は下記の条件で行った。
 アンテナRF  400W
 バイアスRF  38W
 APC圧力   0.5Pa
 O2流量    50sccm
 エッチング時間 600sec
 ≪評価≫
 実施例1の評価に加えて、以下の評価をそれぞれ実施した。
 (4)光反射率の評価
 「光反射率」については、反射率測定機(USPM-RUIII)(オリンパス株式会社製)を用いて、波長域420nm~670nmの最大反射率で試料の反射率を評価した。ここで、反射率が1%以下である場合、評価を符号○とし、反射率が1%を超え2%以下である場合、評価を符号△とした。
 (5)光触媒効果の評価
 「光触媒効果」については、20℃80%の環境下において、ペンで色づけした試料に対してUV照射で積算20J照射し、ペンの色変化を段階的に評価した。具体的には、ペンとしてThe visualiser(inkintelligent社製)を用いた。ここで、色変化度が大のもの(又は色が消える)は光触媒効果が十分にあるとして評価〇とし、やや色が残る場合は光触媒効果があるとして評価△、はっきりと色が残る(光触媒効果が失活する)場合を×と評価した。
 誘電体膜の構成及び上記評価結果を表IIIに示す。
Figure JPOXMLDOC01-appb-T000003
 誘電体多層膜1及び2は、高温高湿環境下での長期保存における親水性、塩水耐性、及び光反射率に優れている。加えて、電体多層膜2は光触媒効果を有し、セルフクリーニング性に優れていることが分かった。
 本発明の誘電体膜は、反射防止性を有し、表面の塩水耐性や耐傷性に優れ、かつ高温高湿環境下で長期にわたり低い水接触角を維持できる誘電体膜であることから、車載用レンズや通信用レンズ、或いは建材に好適に用いられ、中でも車載用レンズとして好適である。
 1 IAD蒸着装置
 2 チャンバー
 3 ドーム
 4 基板
 5 蒸着源
 6 蒸着物質
 7 IADイオンソース
 8 イオンビーム
 30 細孔
 50 金属マスク
 50a 金属部
 50b 露出部
 100 誘電体膜(光学部材)
 101 基板
 102、104 低屈折率層
 103、105a 高屈折率層
 105b 機能層
 106 最上層

Claims (12)

  1.  透明基板上に具備された誘電体膜であって、
     前記誘電体膜は、少なくとも1層の低屈折率層を有し、
     前記誘電体膜の最上層がSiO2を含有し、膜密度が92%以上である層であり、
    かつ、当該最上層が、電気陰性度がSiより小さい元素を含有することを特徴とすることを特徴とする誘電体膜。
  2.  前記最上層が、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素を含有することを特徴とする請求項1に記載の誘電体膜。
  3.  前記最上層において、前記ナトリウム、カルシウム、カリウム及びマグネシウムの含有量が、0.5~10質量%の範囲内であり、層厚が1μm以下であることを特徴とする請求項1又は請求項2に記載の誘電体膜。
  4.  前記最上層の膜密度が、98%以上であることを特徴とする請求項1から請求項3までのいずれか一項に記載の誘電体膜。
  5.  前記最上層の水接触角が、85℃・85%RH環境下で1000時間保存後、30°以下であることを特徴とする請求項1から請求項3までのいずれか一項に記載の誘電体膜。
  6.  前記最上層の透明基板側に、光触媒機能を有する金属酸化物を主成分とする機能層を有することを特徴とする請求項1から請求項5までのいずれか一項に記載の誘電体膜。
  7.  前記最上層が、前記機能層の表面を部分的に露出させる複数の細孔を有することを特徴とする請求項6に記載の誘電体膜。
  8.  透明基板上に形成された誘電体膜を製造する誘電体膜の製造方法であって、
     前記誘電体膜として、少なくとも1層の低屈折率層を形成する工程と、
     前記誘電体膜の最上層として、SiO2と、ナトリウム、カルシウム、カリウム及びマグネシウムから選ばれる元素とを含有する層を形成する工程と、を有することを特徴とする誘電体膜の製造方法。
  9.  前記最上層の透明基板側に、光触媒機能を有する金属酸化物を主成分とする機能層を形成する工程と、
     前記最上層に、前記機能層の表面を部分的に露出させる複数の細孔を形成する工程と、を有することを特徴とする請求項8に記載の誘電体膜の製造方法。
  10.  前記誘電体膜を、イオンアシスト蒸着又はスパッタリングで成膜する工程を有することを特徴とする請求項8又は請求項9に記載の誘電体膜の製造方法。
  11.  請求項1から請求項7までのいずれか一項に記載の誘電体膜を具備することを特徴とする光学部材。
  12.  前記光学部材が、車載用レンズであることを特徴とする請求項11に記載の光学部材。
PCT/JP2019/042794 2018-12-21 2019-10-31 誘電体膜、その製造方法及びそれを用いた光学部材 WO2020129424A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/312,925 US20220010422A1 (en) 2018-12-21 2019-10-31 Dielectric film, method for producing same and optical member using same
CN201980083534.6A CN113196111A (zh) 2018-12-21 2019-10-31 电介质膜、其制造方法和使用其的光学构件
JP2020561196A JP7415949B2 (ja) 2018-12-21 2019-10-31 誘電体膜、その製造方法及びそれを用いた光学部材
EP19900306.2A EP3875997A4 (en) 2018-12-21 2019-10-31 DIELECTRIC FILM, ITS MANUFACTURING PROCESS AND OPTICAL ELEMENT USING IT

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018239799 2018-12-21
JP2018-239799 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129424A1 true WO2020129424A1 (ja) 2020-06-25

Family

ID=71101113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/042794 WO2020129424A1 (ja) 2018-12-21 2019-10-31 誘電体膜、その製造方法及びそれを用いた光学部材

Country Status (5)

Country Link
US (1) US20220010422A1 (ja)
EP (1) EP3875997A4 (ja)
JP (1) JP7415949B2 (ja)
CN (1) CN113196111A (ja)
WO (1) WO2020129424A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3128032A1 (fr) * 2021-10-13 2023-04-14 Safran Electronics & Defense Elément optique antireflet

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160331A (ja) 1998-02-16 2000-06-13 Asahi Glass Co Ltd 酸化物膜、その形成方法、スパッタリングタ―ゲットおよび積層体
JP2001033607A (ja) * 1999-07-23 2001-02-09 Toto Ltd 親水性鏡、その形成用組成物、及びその製造方法
JP2002338306A (ja) * 2001-05-14 2002-11-27 Tohpe Corp ガラスの親水化方法、親水化ガラスおよびその製造方法ならびに親水化ガラス製品
JP2004068109A (ja) 2002-08-08 2004-03-04 Nippon Sheet Glass Co Ltd 反応性スパッタリング用ターゲットおよびそれを用いて成膜した光学薄膜
JP2013047361A (ja) 2011-08-29 2013-03-07 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP2013203774A (ja) 2012-03-27 2013-10-07 Central Automotive Products Ltd 有機基材用防曇防汚剤及び当該防曇防汚剤で有機基材を被覆する方法
JP2018197171A (ja) * 2017-05-23 2018-12-13 Hoya株式会社 親水性反射防止膜付きレンズ及びその製造方法
JP2019002036A (ja) * 2017-06-13 2019-01-10 株式会社 高千穂 酸化物被膜及びその酸化物被膜を備える構造体

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2793889B1 (fr) * 1999-05-20 2002-06-28 Saint Gobain Vitrage Substrat transparent a revetement anti-reflets
JP2008109063A (ja) 2006-09-27 2008-05-08 Kyocera Corp セラミック多層基板
JP2010167744A (ja) * 2009-01-26 2010-08-05 Sumitomo Osaka Cement Co Ltd 耐指紋性に優れた製品およびその製造方法
DE102014013528B4 (de) * 2014-09-12 2022-06-23 Schott Ag Beschichtetes Glas-oder Glaskeramiksubstrat mit beständigen multifunktionellen Oberflächeneigenschaften, Verfahren zu dessen Herstellung und dessen Verwendung
WO2017056598A1 (ja) * 2015-09-29 2017-04-06 富士フイルム株式会社 親水性多層膜及びその製造方法、並びに、撮像システム
JP2020024238A (ja) * 2016-12-14 2020-02-13 コニカミノルタ株式会社 光学素子
JP2018180429A (ja) 2017-04-20 2018-11-15 キヤノン電子株式会社 光学フィルタ及び光量調整装置並びに撮像装置
JP7375772B2 (ja) * 2018-12-21 2023-11-08 コニカミノルタ株式会社 誘電体多層膜、その製造方法及びそれを用いた光学部材
JP7310360B2 (ja) * 2019-06-27 2023-07-19 コニカミノルタ株式会社 薄膜の製造方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000160331A (ja) 1998-02-16 2000-06-13 Asahi Glass Co Ltd 酸化物膜、その形成方法、スパッタリングタ―ゲットおよび積層体
JP2001033607A (ja) * 1999-07-23 2001-02-09 Toto Ltd 親水性鏡、その形成用組成物、及びその製造方法
JP2002338306A (ja) * 2001-05-14 2002-11-27 Tohpe Corp ガラスの親水化方法、親水化ガラスおよびその製造方法ならびに親水化ガラス製品
JP2004068109A (ja) 2002-08-08 2004-03-04 Nippon Sheet Glass Co Ltd 反応性スパッタリング用ターゲットおよびそれを用いて成膜した光学薄膜
JP2013047361A (ja) 2011-08-29 2013-03-07 Mitsubishi Materials Corp スパッタリングターゲット及びその製造方法並びに該ターゲットを用いた薄膜、該薄膜を備える薄膜シート、積層シート
JP2013203774A (ja) 2012-03-27 2013-10-07 Central Automotive Products Ltd 有機基材用防曇防汚剤及び当該防曇防汚剤で有機基材を被覆する方法
JP2018197171A (ja) * 2017-05-23 2018-12-13 Hoya株式会社 親水性反射防止膜付きレンズ及びその製造方法
JP2019002036A (ja) * 2017-06-13 2019-01-10 株式会社 高千穂 酸化物被膜及びその酸化物被膜を備える構造体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3875997A4

Also Published As

Publication number Publication date
EP3875997A1 (en) 2021-09-08
EP3875997A4 (en) 2022-03-02
JP7415949B2 (ja) 2024-01-17
JPWO2020129424A1 (ja) 2021-11-11
CN113196111A (zh) 2021-07-30
US20220010422A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5622468B2 (ja) レンズの製造方法及びレンズ
JP7375772B2 (ja) 誘電体多層膜、その製造方法及びそれを用いた光学部材
WO2021111813A1 (ja) 光学部材及びその製造方法
EP3757246A1 (en) Forming method of thin layer
WO2020129424A1 (ja) 誘電体膜、その製造方法及びそれを用いた光学部材
CN111221057A (zh) 光学构件及光学构件的制造方法
JP2007310335A (ja) 表面鏡
JP7279713B2 (ja) 光学薄膜、光学部材及び光学薄膜の製造方法
JP7476564B2 (ja) 超親水膜とその製造方法及び光学部材
WO2021261225A1 (ja) 親水性膜の製造方法、親水性膜及び光学部材
WO2018216540A1 (ja) 親水性反射防止膜付きレンズ及びその製造方法
TWI750642B (zh) 微結構體之製造方法及微結構體之製造裝置
US20200165716A1 (en) Film forming method and film forming apparatus
WO2019240039A1 (ja) 光学素子及び光学素子の製造方法
JP2007154274A (ja) クラスタビームを用いた弗化物膜形成方法およびこれによって得られた弗化物膜を用いた光学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900306

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561196

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019900306

Country of ref document: EP

Effective date: 20210531

NENP Non-entry into the national phase

Ref country code: DE