WO2020129211A1 - 内燃機関用補機歯車 - Google Patents

内燃機関用補機歯車 Download PDF

Info

Publication number
WO2020129211A1
WO2020129211A1 PCT/JP2018/046974 JP2018046974W WO2020129211A1 WO 2020129211 A1 WO2020129211 A1 WO 2020129211A1 JP 2018046974 W JP2018046974 W JP 2018046974W WO 2020129211 A1 WO2020129211 A1 WO 2020129211A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
internal combustion
combustion engine
auxiliary
auxiliary gear
Prior art date
Application number
PCT/JP2018/046974
Other languages
English (en)
French (fr)
Inventor
淳志 山田
平山 周二
真 深川
健太 岩田
隆洋 土田
篤 近藤
智行 松村
純平 上野
亮平 細谷
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to CN201880100347.XA priority Critical patent/CN113195942A/zh
Priority to JP2020560723A priority patent/JP7058350B2/ja
Priority to PCT/JP2018/046974 priority patent/WO2020129211A1/ja
Priority to BR112021010161-6A priority patent/BR112021010161A2/pt
Publication of WO2020129211A1 publication Critical patent/WO2020129211A1/ja
Priority to PH12021551162A priority patent/PH12021551162A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/06Use of materials; Use of treatments of toothed members or worms to affect their intrinsic material properties

Definitions

  • the present invention relates to an auxiliary gear for an internal combustion engine made of resin, which does not include a reinforcing material such as fiber.
  • Patent Documents 1 and 2 Conventionally, as a method for reducing the dimensional change of a resin gear and increasing the strength, there is a metal insert or a resin composite (two-layer) structure as shown in Patent Documents 1 and 2 below, and a reinforcing material such as fiber is used.
  • a metal insert or a resin composite (two-layer) structure as shown in Patent Documents 1 and 2 below, and a reinforcing material such as fiber is used.
  • the present invention has been made in view of the above-mentioned prior art, and a metal material that meshes with the lubricating oil inside the crankcase, the blow-by component contained in the lubricating oil, and the influence of moisture due to dew condensation inside the crankcase. It is an object of the present invention to provide a resin-made auxiliary gear for an internal combustion engine capable of obtaining a desired backlash with a power transmission gear consisting of, and reducing the gear cost, improving the durability, and reducing the engagement noise. To do.
  • the power transmission gear is made of an iron-based metal material, and is provided so as to rotate integrally with the crankshaft
  • the auxiliary gear for an internal combustion engine is a resin gear made by injection molding with a single composition of heat-resistant resin containing no reinforcing material such as fibers, and is rotatably supported in a crankcase supporting the crankshaft.
  • the tooth profile of the internal combustion engine accessory gear in an absolutely dry state before the initial use has a predetermined minimum backlash with the power transmission gear in the maximum swelling state in which the internal combustion engine accessory gear absorbs water.
  • an accessory gear for an internal combustion engine which is set to be larger than the state.
  • the auxiliary gear for the internal combustion engine of the present invention Since the auxiliary gear for internal combustion engine is a resin gear made by injection molding with a single composition of heat-resistant resin that does not contain reinforcing materials such as fibers, the material of the gear is uniform, the accuracy of the gear shape is high and the deformation due to swelling is also uniform.
  • the power transmission gear made of a metal material and the auxiliary gear for the internal combustion engine which is a resin gear it is possible to change only one of the auxiliary gear for the internal combustion engine due to swelling, which causes backlash. By limiting the influence of the above, it is possible to easily set the specifications of the auxiliary gear for the internal combustion engine before the initial use.
  • the amount of backlash in the direction between the gear shafts of the internal combustion engine accessory drive gear in an absolutely dry state before initial use with respect to the power transmission gear is a gear shaft of the internal combustion engine accessory drive gear and the power transmission gear. It is equivalent to minus 3% with respect to the distance D. Therefore, even after the auxiliary machine drive gear for the internal combustion engine has swollen, a desired backlash is obtained between the drive gear and the power transmission gear.
  • the auxiliary gear for the internal combustion engine is lubricated by the lubricating oil stored in the oil reservoir of the crankcase, and is used for the internal combustion engine at the storage level of the oil reservoir of the lubricating oil when the internal combustion engine is stopped. At least a part of the lower half of the auxiliary gear is immersed in the lubricating oil, and the upper part thereof is arranged at a position exposed above the lubricating oil. Therefore, the auxiliary gear for the internal combustion engine is held in the maximum swelling state by the water mixed in the lubricating oil by partially immersing the lower half part in the lubricating oil in the oil sump portion, and the desired back gear is maintained. Rush can be obtained, reduction of gear friction can be maintained, and durability can be improved.
  • the backlash in the maximum swelling state in which water is absorbed is the backlash in a state in which the auxiliary gear for the internal combustion engine is swollen by the lubricating oil in which the mixing ratio R of oil and water is 9:1. .. Therefore, the absorption of water in the lubricating oil of the auxiliary gear for an internal combustion engine, which is a resin gear, is almost maximum when the lubricating oil mixed with the mixing ratio R of oil and water is 9:1. In that case, if the backlash in the maximum swelling state is larger than the predetermined minimum state, the friction of the gear can be surely reduced.
  • the resin material of the auxiliary gear for the internal combustion engine is a soft resin having an elastic modulus of 4500 MPa or less and 500 MPa or more. That is, even after the auxiliary gear for internal combustion engine, which is a resin gear, is swollen, a desired backlash is obtained between the auxiliary gear and the power transmission gear. Therefore, a relatively soft elastic modulus of 4500 MPa or less and a softness of 500 MPa or more are relatively soft.
  • a resin is used, the durability of the auxiliary gear for the internal combustion engine can be improved, the meshing noise can be reduced, and the strength and performance of the auxiliary gear for the internal combustion engine do not cause a problem.
  • the pressure angle error C of the tooth profile in the initial dry state before use is larger than -70 ⁇ , which is the tip of the tooth, and the pressure angle error C in the maximum swelling state is -200 ⁇ or more.
  • a soft resin material having a low elastic modulus was used. Therefore, as the pressure angle error C of the gear becomes smaller, the tooth tip shape becomes thicker and strength is obtained, but the backlash becomes smaller, which is disadvantageous in terms of pronunciation.
  • the pressure angle error C in an absolutely dry state before the initial use is ⁇
  • a noisy accessory gear for an internal combustion engine is obtained.
  • the auxiliary gear for the internal combustion engine of the present invention Since the auxiliary gear for internal combustion engine is a resin gear made by injection molding with a single composition of heat-resistant resin that does not contain reinforcing materials such as fibers, the material of the gear is uniform, the accuracy of the gear shape is high and the deformation due to swelling is also uniform.
  • the power transmission gear made of a metal material and the auxiliary gear for the internal combustion engine which is a resin gear it is possible to cause only one of the auxiliary gears for the internal combustion engine to undergo a dimensional change due to swelling, which causes backlash.
  • FIG. 1 is a schematic left side view of a motorcycle equipped with an internal combustion engine equipped with an auxiliary gear for internal combustion engine according to an embodiment of the present invention.
  • FIG. 2 is a right side view of the power unit in FIG. 1 with a partial cross section.
  • FIG. 3 is a cross-sectional exploded view of the main part of the power unit taken along the line III-III in FIG. 2, mainly showing a part of the internal combustion engine.
  • FIG. 4 is an elevational sectional view including a crank shaft center of a crank shaft of the power unit, taken along the line IV-IV in FIG. 2.
  • FIG. 5 is an enlarged elevational cross-sectional view around the oil pump in FIG. 4.
  • FIG. 5 is an enlarged view of an internal combustion engine portion in a right side view showing a partial cross section of the power unit shown in FIG. 2, and corresponds to a VI-VI arrow direction in FIG. 4.
  • the relation between the water content ratio R of the lubricating oil and the maximum water absorption weight change rate Wx of the resin gear (for example, material PA66) immersed only in the lubricating oil and formed only of the resin not containing the reinforcing material such as fibers is shown.
  • FIG. 7 is a graph showing a relationship of a change in pressure angle error C with respect to a water absorption weight change rate W of a resin gear (for example, a material PA66) formed only of a resin not including a reinforcing material such as fibers.
  • a resin gear for example, a material PA66
  • auxiliary gear for an internal combustion engine will be described with reference to FIGS. 1 to 10.
  • the directions such as front, rear, left, right, up, and down in the description and claims of the present specification depend on the orientation of the vehicle when the internal combustion engine including the auxiliary gears for internal combustion engine according to the present embodiment is mounted on the vehicle.
  • the vehicle is a saddle riding type vehicle, and is specifically a scooter type motorcycle (hereinafter, simply referred to as “motorcycle”).
  • motorcycle scooter type motorcycle
  • arrow FR indicates the front of the vehicle
  • LH indicates the left side of the vehicle
  • RH indicates the right side of the vehicle
  • UP indicates the upper side of the vehicle.
  • FIG. 1 is a left side view of a motorcycle 1 equipped with an internal combustion engine 4 equipped with an auxiliary gear 82 for an internal combustion engine of the present embodiment.
  • the vehicle body front portion 1A and the vehicle body rear portion 1B are connected via the low floor portion 1C
  • the vehicle body frame 2 forming the skeleton of the vehicle body generally includes the down tube 21 and the main pipe. It consists of 22 and. That is, the down tube 21 extends downward from the head pipe 20 of the vehicle body front part 1A, the down tube 21 bends horizontally at the lower end and extends rearward below the floor part 1C, and the rear end thereof is oriented in the vehicle width direction.
  • a pair of left and right main pipes 22 are connected via a frame 23, and the main pipe 22 forms an inclined portion 22a extending obliquely rearward and upward from the connecting portion, and the upper portion of the inclined portion 22a is further bent to be substantially horizontal rearward. To form a horizontal portion 22b.
  • a storage box 11 and a fuel tank 12 are supported between the pair of main pipes 22 in the front-rear direction, and an occupant seat 13 is arranged above the storage box 11 and the fuel tank 12 so as to cover the same.
  • a handle 14 is pivotally supported by a head pipe 20 and is provided above, and a front fork 15 extends downwardly, and a front wheel 16 is pivotally supported at a lower end thereof.
  • a support bracket 24 is provided on the front end of the main pipe 22 so as to project rearward, and the power unit 3 is connected to the support bracket 24 via a link member 25 so as to be vertically swingable.
  • the vertical direction portions of the head pipe 20 and the down tube 21 are covered from the front and rear by the front cover 1a and the leg shield 1b, and in the floor portion 1C, the front and rear direction portions of the down tube 21 are covered by the floor cover 1c.
  • the main pipe 22 is covered by the body cover 1d on the left and right sides and the rear side.
  • FIG. 2 is a right side view showing the power unit 3 in FIG.
  • the power unit 3 is a water-cooled SOHC type internal combustion engine 4 having a single-cylinder four-stroke cycle in its front portion, and is in a posture in which the cylinder axis Y of the cylinder is largely tilted forward to a substantially horizontal state.
  • a belt type continuously variable transmission 5 is configured from the internal combustion engine 4 to the rear, and a rear wheel 51 is provided on a rear axle 51a which is an output shaft of a reduction gear mechanism 51 provided at the rear portion.
  • a rear cushion 18 is interposed between the rear portion of the power unit 3 having the reduction gear mechanism 51 and the horizontal portion 22b at the rear portion of the main pipe 22.
  • the internal combustion engine 4 rotatably supports the crankshaft 31 by orienting the crankshaft center X in the unit case 30 in the vehicle width direction, that is, the left-right direction, and the cylinder block 41 and the cylinder head 42 in front of the unit case 30.
  • the head covers 43 are sequentially stacked and fastened by inclining the cylinder axis Y substantially horizontally and substantially horizontally.
  • 2 shows the left unit case 30L which is the transmission case 52 that houses the belt type continuously variable transmission 5 in the unit case 30, but the belt type continuously variable transmission 5 itself is inside the left unit case 30L. It is stored and not shown (see FIG. 3).
  • the intake pipe 61 extends from the intake port 65 inlet of the upper part of the cylinder head 42, which is largely inclined forward of the internal combustion engine 4, and curves backward, and the throttle body 62 connected to the intake pipe 61 is connected to the cylinder block.
  • An air cleaner 63 located above 41 and connected to the throttle body 62 via a connecting tube (not shown) is arranged above the belt type continuously variable transmission 5.
  • An injector 64 that injects fuel toward the intake port 65 is attached to the intake pipe 61.
  • An exhaust pipe (not shown) extending downward from the outlet of the exhaust port 66 at the lower part of the cylinder head 42 is bent rearward, is biased to the right and extends rearward, and is connected to a muffler (not shown) on the right side of the rear wheel 17.
  • FIG. 3 is a cross-sectional development view of the main part of the power unit 3 taken along the line III-III in FIG. 2, mainly showing the internal combustion engine 4.
  • a connecting rod hereinafter, simply referred to as “connecting rod” 45 connects a piston 44 that reciprocates in a cylinder liner 41 a of a cylinder block 41 and a crank pin 32 of a crank shaft 31.
  • a combustion chamber 40 is formed in the cylinder head 42 so as to face the top surface of the piston 44.
  • the unit case 30 is configured by tightening a left unit case 30L and a right unit case 30R, which are made of aluminum alloy and divided into left and right parts, and the right unit case 30R includes the crankcase portion 35 (the "crankcase in the present invention”. )), the left unit case 30L has a front part forming the left half of the crankcase part 35 and extends rearward to accommodate the long belt type continuously variable transmission 5 in the front and rear. Also serves as the transmission case 52.
  • the front left and right long open surfaces of the transmission case 52 (left unit case 30L) are covered with a transmission case cover 52a, and a transmission chamber 50 in which the belt type continuously variable transmission 5 is housed is formed inside.
  • the right side open surface of the rear portion is covered with a reduction gear cover 58 (see FIG. 2), and the reduction gear mechanism 51 is housed inside.
  • a crankshaft 31 is formed in the left and right unit cases 30L and 30R in the crankcase part 35 by combining the front part of the left unit case 30L and the right unit case 30R.
  • the left and right side walls 35a of the portion 35 are rotatably supported by left and right main bearings 36L and 36R.
  • the cam chain drive sprocket 46 and a metal oil pump drive the right outer shaft portion 31R.
  • a gear (“power transmission gear” in the present invention) 47 is fitted, an AC generator 48 is provided at the right end, and a centrifugal weight 53 and a drive pulley of the belt type continuously variable transmission 5 are provided on the left outer shaft portion 71L. 54 is provided.
  • the internal combustion engine 4 of this embodiment employs a SOHC type two-valve system, and a valve mechanism 9 including a camshaft 91 and the like is provided in the cylinder head 42.
  • a head cover 43 is overlaid on the cylinder head 42 so as to cover the valve mechanism 9.
  • a cam chain 92 for transmitting power to the valve operating mechanism 9 in the head cover 43 is installed between the cam shaft 91 and the crank shaft 71, and a cam chain chamber 49 therefor includes a right unit case 30R, a cylinder block 41, It is provided in communication with the cylinder head 42 (see FIG. 2).
  • the cam chain 92 is fitted between the cam chain driven sprocket 93 fitted to the right end of the cam shaft 91 oriented in the horizontal direction and the cam chain drive sprocket 46 fitted to the crankshaft 31.
  • the camshaft 91 is bridged through the inside, and the camshaft 91 is synchronously driven to rotate at half the rotation speed of the crankshaft 31.
  • an ignition plug 40a is inserted from the side (left side) opposite to the cam chain chamber 49 toward the combustion chamber 40.
  • the belt type continuously variable transmission 5 on the left side of the power unit 3 is one in which the V-belt 55 is stretched over a driving pulley 54 and a driven pulley (not shown) to transmit power from the crankshaft 31, depending on the engine speed.
  • the centrifugal weight 53 With the centrifugal weight 53, the winding diameter of the V-belt 55 on the drive pulley 54 changes, and the winding diameter on the driven pulley also changes at the same time, so that the gear ratio is automatically changed and continuously variable transmission is performed.
  • the reduction gear mechanism 51 further reduces the speed, and the rotational power is transmitted to the rear axle 51a to drive the rear wheels 17 (see FIG. 2).
  • the speed change transmission mechanism itself including the belt type continuously variable transmission 5 and the reduction gear mechanism 51 in the present embodiment is widely known in the related art, and therefore, a detailed description of the speed change transmission mechanism will be omitted below.
  • FIG. 4 is a vertical cross-sectional view including the crank axis X of the crank shaft 31 of the power unit 3, taken along the line IV-IV in FIG.
  • an oil pump driven by an oil pump driven gear (“auxiliary gear for internal combustion engine” in the present invention) 82 meshing with and driven by an oil pump drive gear 47. 8 are provided (see FIG. 2).
  • An oil sump 83 is provided at the bottom of the unit case 30, and the lubricating oil that has passed from the oil sump 83 through the oil filter 84 is sucked into the suction port 86 of the oil pump 8 via the oil suction passage 85, Lubricating oil discharged from the discharge port 87 passes through an oil supply passage (not shown) and is supplied to predetermined lubricating points and cooling points.
  • FIG. 6 is an enlarged view of the internal combustion engine 4 portion in the right side view of the power unit 3 shown in FIG. 2 as a partial cross section.
  • the lubricating oil that lubricates and cools the valve mechanism 9 and the like provided on the cylinder head 42 inside the head cover 43 flows down toward the crankcase portion 35 in the cam chain chamber 49.
  • the cam chain chamber 49 surrounds the crankshaft 31 and the cam chain drive sprocket 46 on the upper side on the right side of the side wall 35a on the right side of the crank case portion 35 (see FIG. 3), and encloses the oil pump driven gear 82 on the lower side. It is defined by being surrounded by a peripheral wall 37 that is continuously erected.
  • the front side of the peripheral wall 37 is open to the side of the Linda block 41 to form a cam chain chamber 35 which is continuous with the side of the Linda block 41 (see FIGS. 2 and 6).
  • the cam chain chamber 49 of the crankcase portion 35 surrounded by the peripheral wall 37 is mounted by inserting the crankshaft 31 from the right side in FIG. 3 (FIG. 4) (front side in FIG. 6) through the oil seal 38a. It is closed by a partition wall 38 made of aluminum alloy. Therefore, the lubricating oil that has flowed down the cam chain chamber 49 of the cylinder head 42 and the cylinder block 41 toward the crank case portion 35 has a downward concave shape formed by the peripheral wall 37 below the cam chain chamber 49 in the crank case portion 35. It flows into and is stored in the oil reservoir 70, and a part of the lower portion of the oil pump driven gear 82 is immersed. The stored lubricating oil overflows from the opening 35b (see FIG. 6) of the side wall 35a and returns to the oil sump 83 formed in the lower portion of the crankcase portion 35.
  • the oil sump portion 70 of the cam chain chamber 49 is A storage level L (see FIG. 6) filled with a constant amount of lubricating oil can be obtained in both the operating state and the stopped state. Therefore, a part of the lower half part of the oil pump driven gear 82 is always immersed in the lubricating oil, and the immersed portion changes at any time between the operating state and the stopped state, so that the oil pump driven gear 82 is uniformly maintained in the lubricating oil immersed state. Will be.
  • the oil pump driven gear 82 meshes with the oil pump drive gear 47.
  • the oil pump drive gear 47 is made of an iron-based metallic material and is provided so as to rotate integrally with the crankshaft 31.
  • the oil pump driven gear 82 is a resin gear made by injection molding with a single composition of heat-resistant resin containing no reinforcing material such as fibers, and is rotatably supported in the crankcase portion 35 supporting the crankshaft 31. Is provided on the rotary shaft 88.
  • FIG. 5 which is an enlarged vertical sectional view of the periphery of the oil pump 8 in FIG. 4, a gear stop pin 88a provided perpendicularly to the shaft core on one end side of the rotary shaft 88 is fitted to the rotary shaft 88.
  • the rotating shaft 88 is integrally rotated by the oil pump driven gear 82.
  • a rotor stop pin 88b provided perpendicularly to the shaft core engages with the inner rotor 8a of the oil pump 8 fitted into the rotary shaft 88, and the inner rotor 8a is integrated by the rotary shaft 88. Rotate to.
  • the oil pump 8 includes a pump casing 8b which is formed on the side wall 35a of the crankcase portion 35 and which houses the inner rotor 8a, and a pump lid 8c which closes the pump casing 8b.
  • the pump lid 8c faces the partition wall 35a and forms an oil reservoir 70 above the lower peripheral wall 37 of the cam chain chamber 49.
  • the rotary shaft 88 is rotatably supported in the crankcase portion 35 by the pump lid 8c and the partition wall 38.
  • the oil pump driven gear 82 is located between the pump lid 8c and the partition wall 38, and a part of the lower half thereof is immersed in the oil sump portion 70 as described above.
  • resin gears made of resin only can be manufactured at low cost, so they have been used for printers of office equipment and other devices that have a relatively light load, but for gears for driving auxiliary machinery of internal combustion engines, etc.
  • metal inserts were used, resin composite structures were used, and reinforcing materials such as fibers were included.
  • the resin gear has a property of absorbing and swelling water including the oil in the lubricating oil, and a material containing a reinforcing material such as fiber was used to suppress it, but the material containing the fiber is used.
  • the composition was not uniform.
  • the oil pump driven gear 82 which is the resin gear according to the present invention, is a resin gear that is injection-molded with a single composition of heat-resistant resin that does not include reinforcing materials such as fibers as described above.
  • the present inventors have found that when a resin-made gear (for example, material PA66) formed only of a resin containing no reinforcing material such as fiber swells in a gas containing moisture and a lubricating oil containing moisture, It was also found that the maximum swelling state Sx is reached relatively quickly, for example, in about 10 hours, and does not swell any more with only water and only lubricating oil. Swelling amount of the water content ratio R of the lubricating oil and the maximum swelling state Sx of the resin gear (for example, the material PA66) that is immersed in the lubricating oil having the same water content ratio R and is formed only of the resin that does not include the reinforcing material such as fibers.
  • a resin-made gear for example, material PA66
  • FIG. 7 a graph of the relationship with the maximum water absorption weight change rate Wx is shown in FIG.
  • a resin gear for example, material PA66
  • the dimensional change rate G of the gear is plotted by a black dot with respect to the spanning tooth thickness, and is shown by connecting with a solid line.
  • the outer diameter of the gear is plotted by a white square point and is shown by connecting with a broken line.
  • the amount of backlash of the oil pump driven gear 82 with respect to the oil pump drive gear 47 in the direction between the gear shafts in an absolutely dry state before initial use is 2.7% or more as a guideline.
  • the distance D between the gears and the pump drive gear 47 is equivalent to minus 3%. Therefore, even after the oil pump driven gear 82 swells, a desired uniform backlash with the oil pump drive gear 47 is obtained.
  • a fiber-reinforced resin gear it is difficult to set a uniform clearance because the fibers contained in the gear vary and the swelling is not uniform.
  • the oil pump driven gear 82 of the present embodiment is a resin gear made by injection molding with a single composition of heat-resistant resin that does not include a reinforcing material such as fiber, the material of the gear is uniform and the gear shape is highly accurate and deformed by swelling. Is also uniform, and the meshing noise can be reduced because the gear is made of resin. Further, by combining the oil pump drive gear 47 made of a metal material and the oil pump driven gear 82 which is a resin gear, it is possible to change only one of the oil pump driven gears 82 due to a dimensional change due to swelling. By limiting the influence, it is possible to easily set the specifications of the oil pump driven gear 82 before the initial use.
  • the oil pump driven gear 82 of the present embodiment can reduce gear costs, improve durability, and reduce meshing noise.
  • the pressure angle error C (micron) is the deviation of the tooth tip side position within the pressure angle evaluation range D of the tooth profile evaluation line B, and the pressure angle error C is the tooth tip. Decrease is positive and tooth rise is negative.
  • the tooth tips become thicker and the pressure angle error C changes to the negative side.
  • the gear dries, the tip of the tooth becomes thinner, and the pressure angle error C changes to the plus side.
  • the gear generally has a larger blade edge and a smaller pressure angle error C (a larger negative value) is more disadvantageous in terms of sound generation.
  • a resin-made gear for example, material PA66
  • PA66 resin-made gear
  • the allowable range of pressure angle error C was at least -200 microns. Therefore, it was found that the pressure angle error C of the resin gear not containing the reinforcing material such as fibers in the maximum swelling state Sx should be -200 microns or more (the negative value should be small).
  • FIG. 10 is a graph showing the relationship of the change of the pressure angle error C with respect to the water absorption weight change rate W of the resin gear (for example, the material PA66) made of only the resin not containing the reinforcing material such as the fiber of the present embodiment. is there.
  • the maximum swelling occurs.
  • the maximum water absorption weight change rate Wx 10%
  • the pressure angle error C was ⁇ 89 ⁇ m.
  • the change amount of the pressure angle error C during that time is 126 microns.
  • the pressure angle error C at the maximum water absorption weight change rate Wx 10% in the maximum swelling state Sx of the resin gear (for example, the material PA66) made of only the resin not containing the reinforcing material such as the fiber of the present embodiment.
  • the resin gear for example, the material PA66
  • it is necessary to use a resin gear that does not include a reinforcing material such as fiber in the initial dry condition (water absorption weight change rate 0%) before initial use. It is necessary to set the pressure angle error C to (-200+126 )-74 microns or more.
  • the pressure angle error C in the initial absolutely dry state before use is set to -70 microns or more as a design value. Therefore, the meshing noise is suppressed when meshing with the metal oil pump drive gear 47.
  • the oil pump driven gear 82 is partially immersed in the lower half portion of the oil sump portion 70 formed so as to surround the oil pump driven gear 82 as described above.
  • the oil pump driven gear 82 is held in the maximum swelling state Sx by the water mixed in the lubricating oil by immersing a part of the lower half portion in the lubricating oil, and a desired backlash is obtained. Since the obtained backlash does not become negative from the predetermined minimum state, the friction reduction of the oil pump driven gear 82 is maintained and the durability can be improved.
  • an oil pump driven gear in which a part of the lower half is immersed in an oil sump 70 that is filled with a constant amount of lubricating oil in both operating and stopped states.
  • the internal combustion engine auxiliary gear is another internal combustion engine auxiliary gear that meshes with a metallic auxiliary drive gear, and is a resin containing no reinforcing material such as fibers.
  • it may be another auxiliary machine for internal combustion machines, for example, a driven gear of a cooling water pump.
  • the oil sump portion 70 in which a part of the lower half portion of the auxiliary gear for the internal combustion engine is immersed has a different position and structure from the present embodiment. It may be one. Further, at the storage level of the lubricating oil when the internal combustion engine 4 is stopped, the oil sump portion 70 in which at least a part of the lower half portion of the auxiliary gear for the internal combustion engine, such as the oil pump driven gear 82, is immersed, Depending on the position of the auxiliary machine for the internal combustion engine, it may be the oil sump 83 provided in the crankcase part 35, or depending on the structure of the internal combustion engine, it may be an oil pan attached in communication with the crankcase part. May be.
  • the auxiliary gear for the internal combustion engine of the present invention is lubricated by the lubricating oil stored in the oil sump portion 70 in the crankcase portion 35, and the lubricating oil sump of the oil sump portion 70 is stored when the internal combustion engine 4 is stopped.
  • the auxiliary gear for the internal combustion engine is arranged such that at least a part of the lower half part thereof is immersed in the lubricating oil and the upper part thereof is exposed on the lubricating oil. Therefore, the auxiliary gear for the internal combustion engine is held in the maximum swelling state Sx by the water mixed in the lubricating oil by immersing a part of the lower half portion in the lubricating oil, and a desired backlash is obtained. Therefore, the backlash does not become less than the predetermined minimum state, so that the friction reduction of the gear is maintained and the durability can be improved.
  • the backlash in the maximum swelling state Sx that absorbs water is the state in which the oil pump driven gear 82 is swollen by the lubricating oil mixed with the mixing ratio of oil and water of 9:1. It is a backlash. That is, the absorption of water in the lubricating oil of the oil pump driven gear 82, which is a resin gear that does not include a reinforcing material such as fibers, is due to the case where the lubricating oil is a mixture of oil and water at a mixing ratio of 9:1. Is approximately the maximum, and if the backlash in the maximum swelling state Sx in that case is larger than the predetermined minimum state, the friction reduction of the oil pump driven gear 82 can be reliably achieved.
  • the resin material of the oil pump driven gear 82 which is an auxiliary gear for an internal combustion engine, is a soft resin having an elastic modulus of 4500 MPa or less and 500 MPa or more (eg, material PA66), and a resin gear that does not include a reinforcing material such as fiber. Even after the oil pump driven gear 82, which is swelled, has a desired backlash with the oil pump drive gear 47, which is a metal power transmission gear, is obtained.
  • the elastic modulus is 500 Mp or less (for example, although it drops to 485 Mp), there is no problem in the strength and performance of the oil pump driven gear 82 even with the lowered elastic modulus, and it is sufficient that the elastic modulus is 500 Mp or more. Therefore, when a relatively soft elastic resin having a modulus of elasticity of 4500 MPa or less and 500 MPa or more is used, the durability of the oil pump driven gear 82 can be improved, the meshing noise can be reduced, and the oil pump can be reduced. No problem occurs in the strength and performance of the driven gear 82.
  • the pressure angle error C of the tooth profile in the initial absolutely dry state before use is larger than -70 ⁇ which is the tip of the tooth, and the pressure angle error C of the maximum swelling state Sx is large.
  • a soft resin material having a low elastic modulus in the range of ⁇ 200 ⁇ or more is used.
  • the pressure angle error C in the absolutely dry state before the initial use is larger than -70 ⁇ .
  • the inner oil pump driven gear 82 made of a soft resin material having a low elastic modulus in which the pressure angle error C in the maximum swelling state is ⁇ 200 ⁇ or more, the sound is suppressed and the noise is reduced while obtaining strength. It is the pump driven gear 82.
  • the present invention is not limited to the above-mentioned embodiment, and various modifications can be made within the scope of the present invention.
  • the internal combustion engine of the present invention is not limited to that provided in the swing type power unit, and is not limited to air cooling or water cooling.
  • the saddle type vehicle is not limited to motorcycles and is widely applied to other types.
  • the auxiliary gear for the internal combustion engine is not limited to the oil pump driven gear, but may be another auxiliary gear for the internal combustion engine, for example, a driven gear such as a cooling water pump. Note that, for convenience of explanation, the left and right arrangement of the device has been described according to the illustrated embodiment, but the present invention is not limited to this, and the left and right arrangement may be reversed.
  • Cam chain chamber 70... Oil sump, 82... Oil pump driven gear ("auxiliary gear for internal combustion engine” in the present invention), 83... Oil sump, 84... Oil filter, 85... Oil suction passage, 86... Suction port, 87... Discharge port, 88... Rotation shaft, 88a... Gear stop pin, 88b... Rotor stop pin, 91... Cam shaft, 92... Cam chain, 93... Cam chain driven sprocket, Y... Cylinder axis, X... Crank axis, R... Moisture content of lubricating oil, Sx... Maximum swelling state, W... Water absorption weight change rate, Wx... Maximum water absorption weight change rate, G... Gear size change rate, C... Pressure angle Error, D... Distance between gear shafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Gears, Cams (AREA)
  • Gear Transmission (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • General Details Of Gearings (AREA)

Abstract

ブローバイガスや結露水が含まれる潤滑オイルに浸された後でも、噛合する金属材料からなる動力伝達歯車との間に所望のバックラッシュが得られ、歯車コストの低減、耐久性の向上、噛合い音の低減が図れる樹脂製の内燃機関用補機歯車。 内燃機関3の補機8に対してクランク軸31の駆動力を伝達する動力伝達歯車47に噛合する内燃機関用補機歯車82において、動力伝達歯車は鉄系の金属材料からなり、クランク軸に一体に回転するように設けられ、内燃機関用補機歯車は繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車であって、クランク軸を支持したクランクケース35内に回転自在に支持された回転軸88に設けられ、初期の使用前の絶乾状態における内燃機関用補機歯車の歯形形状は、内燃機関用補機歯車が水分を吸収した最大膨潤状態における、動力伝達歯車とのバックラッシュが所定の最小状態より大きくなるように設定された。

Description

内燃機関用補機歯車
 本発明は、繊維等の補強材を含まない樹脂製の内燃機関用補機歯車に関する。
 樹脂製歯車の寸法変化の低減と強度アップの手法として従来は、例えば下記特許文献1、2に示されるように、金属インサートや樹脂複合(二層)構造があり、また繊維等の補強材を含めるものがあるが、コストや耐久性等の課題があり、樹脂製の内燃機関用補機歯車において生産性を高めつつコスト低減が可能で従来同等の耐久性が得られる軽量で安価な構造が求められていた。
特開2007-132483号公報(図1~図3) 特許第6254853号公報(図1、図2)
 本発明は、上記従来技術に鑑みなされたものであり、クランクケース内部の潤滑オイルと、潤滑オイルに含まれるブローバイ成分や、クランクケース内の結露に伴う湿気の影響に対して、噛合する金属材料からなる動力伝達歯車との間に所望のバックラッシュが得られ、歯車コストの低減、耐久性の向上、噛合い音の低減が図れる樹脂製の内燃機関用補機歯車を提供することを課題とする。
 上記の課題を解決するために、本発明によれば、
内燃機関に備わる補機に対してクランク軸の駆動力を伝達する動力伝達歯車に噛合する内燃機関用補機歯車において、
前記動力伝達歯車は、鉄系の金属材料からなり、前記クランク軸に一体に回転するように設けられ、
前記内燃機関用補機歯車は、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車であって、前記クランク軸を支持したクランクケース内に回転自在に支持された回転軸に設けられ、
初期の使用前の絶乾状態における前記内燃機関用補機歯車の歯形形状は、同内燃機関用補機歯車が水分を吸収した最大膨潤状態における、前記動力伝達歯車とのバックラッシュが所定の最小状態より大きくなるように設定されたものであることを特徴とする内燃機関用補機歯車が提供される。
 本発明の内燃機関用補機歯車によれば、
内燃機関用補機歯車が、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車なので、歯車の材質が均一となり歯車形状の精度が高く膨潤による変形も均一化するとともに、金属材料からなる動力伝達歯車と樹脂製歯車である内燃機関用補機歯車との組合せにより、膨潤による寸法変化を一方の内燃機関用補機歯車のみとすることができ、バックラッシュへの影響を限定的なものとして、内燃機関用補機歯車の初期の使用前の仕様設定を容易化できる。また、クランクケース内部の潤滑オイルに含まれるブローバイ成分の水分系が吸収され内燃機関用補機歯車が膨潤した後でも、動力伝達歯車との間に所望のバックラッシュが得られ、クランクケース内で使用される内燃機関用補機歯車の耐久性を向上させることができる。また、内燃機関用補機歯車の歯車コストの低減、噛合い音の低減が図れる。
 本発明の好適な実施形態によれば、
前記内燃機関用補機駆動歯車の前記動力伝達歯車に対する初期の使用前の絶乾状態の歯車軸間方向におけるバックラッシュ量は、前記内燃機関用補機駆動歯車と前記動力伝達歯車との歯車軸間距離Dに対しマイナス3%相当である。
 そのため、内燃機関用補機駆動歯車が膨潤した後でも、動力伝達歯車との間に所望のバックラッシュが得られる。
 本発明の好適な実施形態によれば、
前記内燃機関用補機歯車は、前記クランクケース内のオイル溜り部に貯留された潤滑オイルによって潤滑され、前記内燃機関の停止状態での潤滑オイルのオイル溜り部の貯留レベルにおいて、前記内燃機関用補機歯車は、下半部の少なくとも一部が潤滑オイルに浸漬され、その上部が潤滑オイル上に露出する位置に配置される。
 そのため、内燃機関用補機歯車は、下半部の一部がオイル溜り部の潤滑オイルに浸漬されることで、潤滑オイル中に混入している水分によって最大膨潤状態に保持されて所望のバックラッシュが得られ、歯車のフリクション低減が維持され、耐久性を向上できる。
 本発明の好適な実施形態によれば、
水分を吸収した最大膨潤状態における前記バックラッシュは、オイルと水との混合割合Rが9:1の割合で混合した潤滑オイルによって前記内燃機関用補機歯車を膨潤させた状態のバックラッシュである。
 そのため、樹脂製歯車である内燃機関用補機歯車の潤滑オイル中の水分の吸収は、オイルと水との混合割合Rが9:1の割合で混合した潤滑オイルによる場合が略最大であるので、その場合の最大膨潤状態におけるバックラッシュが所定の最小状態より大きければ、歯車のフリクション低減が確実に図られる。
 本発明の好適な実施形態によれば、
前記内燃機関用補機歯車の樹脂材料は、弾性率4500MPa以下、500MPa以上の軟質樹脂である。
 すなわち、樹脂製歯車である内燃機関用補機歯車が膨潤した後でも、動力伝達歯車との間に所望のバックラッシュが得られているので、比較的軟質な弾性率4500MPa以下、500MPa以上の軟質樹脂を使用すると、内燃機関用補機歯車の耐久性を向上させることができるとともに、噛合い音の低減を図ることができ、且つ内燃機関用補機歯車の強度、性能に問題を生じない。
 本発明の好適な実施形態によれば、
前記内燃機関用補機歯車は、歯形形状における初期の使用前の絶乾状態の圧力角誤差Cが歯先太となる-70μより大きく、最大膨潤状態の圧力角誤差Cが-200μ以上の範囲となる低弾性率の軟質樹脂材料を用いた。
 そのため、歯車は、圧力角誤差Cが小さくなるほど歯先形状が太く強度が得られる一方バックラッシュが小さくなり、発音上不利となるが、初期の使用前の絶乾状態の圧力角誤差Cが-70μより大きく、最大膨潤状態の圧力角誤差Cが-200μ以上となる低弾性率の軟質樹脂材料を用いた内燃機関用補機歯車においては、強度を得たうえで、発音が抑制され、低騒音の内燃機関用補機歯車が得られる。
 本発明の内燃機関用補機歯車によれば、
内燃機関用補機歯車が、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車なので、歯車の材質が均一となり歯車形状の精度が高く膨潤による変形も均一化するとともに、金属材料からなる動力伝達歯車と樹脂製歯車である内燃機関用補機歯車との組合せにより、膨潤による寸法変化を一方の内燃機関用補機歯車のみとすることができ、バックラッシュへの影響を限定的なものとして、内燃機関用補機歯車の初期の使用前の仕様設定を容易化できる。また、クランクケース内部の潤滑オイルに含まれるブローバイ成分の水分系が吸収され内燃機関用補機歯車が膨潤した後でも、動力伝達歯車との間に所望のバックラッシュが得られ、クランクケース内で使用される内燃機関用補機歯車の耐久性を向上させることができる。また、内燃機関用補機歯車の歯車コストの低減、噛合い音の低減が図れる。
本発明の一実施形態に係る内燃機関用補機歯車を備えた内燃機関を搭載した自動二輪車の左側面概要図である。 図1中のパワーユニットの、一部断面とする右側面図である。 図2中III-III矢視による、パワーユニットの要部断面展開図であり、内燃機関の部分を主に示す。 図2中IV-IV矢視による、パワーユニットのクランク軸のクランク軸心を含む立面断面図である。 図4中の、オイルポンプ周辺の拡大立面断面図である。 図2に示すパワーユニットの一部断面とする右側面図のうち、内燃機関部分の拡大図であり、図4中VI-VI矢視に相当する。 潤滑オイルの含水割合Rと、同潤滑オイルに浸漬した、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の最大吸水重量変化率Wxとの関係を示すグラフである。 繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)における、吸水重量変化率Wと歯車の寸法変化率Gとの関係を示すグラフである。 歯形理論における圧力角誤差Cの説明図である。 繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の吸水重量変化率Wに対する圧力角誤差Cの変化の関係を示すグラフである。
 図1から図10に基づき、本発明の一実施形態に係る内燃機関用補機歯車につき説明する。
 なお、本明細書の説明および特許請求の範囲における前後左右上下等の向きは、本実施形態に係る内燃機関用補機歯車を備えた内燃機関を、車両に搭載した状態での車両の向きに従うものとする。本実施形態において車両は鞍乗型車両であり、具体的にはスクータ型自動二輪車(以下、単に「自動二輪車」という)である。
 また、図中矢印FRは車両前方を、LHは車両左方を、RHは車両右方を、UPは車両上方を、それぞれ示す。
 図1から図10は、本発明の一実施形態に係るものであり、図1に、本実施形態の内燃機関用補機歯車82を備えた内燃機関4を搭載した自動二輪車1の左側面概要を示す。
 本実施形態の自動二輪車1においては、車体前部1Aと車体後部1Bとが、低いフロア部1Cを介して連結されており、車体の骨格をなす車体フレーム2は、概ねダウンチューブ21とメインパイプ22とからなる。
 すなわち車体前部1Aのヘッドパイプ20からダウンチューブ21が下方へ延出し、ダウンチューブ21は下端で水平に屈曲してフロア部1Cの下方を後方へ延び、その後端において車幅方向に配向した連結フレーム23を介して左右一対のメインパイプ22が連結され、メインパイプ22は同連結部から後方斜め上に延びた傾斜部22aを形成し、傾斜部22aの上部がさらに屈曲して後方に略水平に延びた水平部22bを形成している。
 一対のメインパイプ22の間には前後に収納ボックス11と燃料タンク12が支持され、収納ボックス11と燃料タンク12の上方は乗員シート13が覆って配置されている。
 一方車体前部1Aにおいては、ヘッドパイプ20に軸支されて上方にハンドル14が設けられ、下方にフロントフォーク15が延びてその下端に前輪16が軸支されている。
 メインパイプ22の前端部に支持ブラケット24が後方に向けて突設され、支持ブラケット24にリンク部材25を介してパワーユニット3が上下揺動可能に連結支持される。
 車体前部1Aでは、ヘッドパイプ20およびダウンチューブ21の上下指向部がフロントカバー1aとレッグシールド1bにより前後から覆われ、フロア部1Cは、ダウンチューブ21の前後指向部がフロアカバー1cにより覆われ、車体後部1Bは、メインパイプ22がボデイカバー1dにより左右および後方が覆われる。
 図2は、図1中のパワーユニット3を取出して示し、一部断面とする右側面図である。
 図2に示すように、パワーユニット3は、その前部が単気筒4ストロークサイクルの水冷式SOHC型の内燃機関4であり、シリンダのシリンダ軸線Yを略水平に近い状態にまで大きく前傾した姿勢にあって、パワーユニット3のユニットケース30の下端から前方に突出したハンガーアーム39の端部が前記リンク部材25にピボット軸26を介して上下揺動自在に連結された、いわゆるスイング式パワーユニットである。
 パワーユニット3は、内燃機関4から後方にかけてベルト式無段変速機5が構成され、その後部に設けられた減速ギヤ機構51の出力軸である後車軸51aに後輪17が設けられている。
 減速ギヤ機構51のあるパワーユニット3の後部と、メインパイプ22後部の水平部22bとの間にリヤクッション18が介装されている。
 内燃機関4は、ユニットケース30にクランク軸心Xを車幅方向、すなわち左右方向に指向させて、クランク軸31を回転自在に支持し、ユニットケース30から前方に、シリンダブロック41、シリンダヘッド42、ヘッドカバー43が順次重ねられてシリンダ軸線Yを大きく略水平に近く前傾して締結されている。
 なお、図2においては、ユニットケース30においてベルト式無段変速機5を収容する伝動ケース52となる左ユニットケース30Lが示されるが、ベルト式無段変速機5自体は左ユニットケース30L内部に収納され図示されていない(図3参照)。
 パワーユニット3の上部では、内燃機関4の大きく前傾したシリンダヘッド42の上部の吸気ポート65入口から吸気管61が延出して後方に湾曲し、吸気管61に接続されたスロットルボディ62がシリンダブロック41の上方に位置し、スロットルボディ62に図示しないコネクティングチューブを介して連結されるエアクリーナ63(図1参照)がベルト式無段変速機5の上方に配設されている。吸気管61には吸気ポート65に向けて燃料を噴射するインジェクタ64が装着されている。
 また、シリンダヘッド42の下部の排気ポート66出口から下方に延出した図示されない排気管が、後方へ屈曲し右側に偏って後方に延びて後輪17の右側の図示されないマフラに接続される。
 図3は、図2中III-III矢視による、パワーユニット3の要部断面展開図であり、内燃機関4の部分を主に示す。
 内燃機関4は、シリンダブロック41のシリンダライナ41a内を往復動するピストン44とクランク軸31のクランクピン32とをコネクティングロッド(以下、単に「コンロッド」という)45が連結している。
 シリンダヘッド42には、ピストン44の頂面と相対して燃焼室40が形成されている。
 ユニットケース30は、アルミ合金製の左右割りの左ユニットケース30Lと右ユニットケース30Rとを締結合体して構成されるもので、右ユニットケース30Rは、クランクケース部35(本発明における「クランクケース」)の右半体をなし、左ユニットケース30Lは、前部がクランクケース部35の左半体をなすとともに、後方に延出して前後に長尺のベルト式無段変速機5を収容する伝動ケース52を兼ねる。
 伝動ケース52(左ユニットケース30L)の前後長尺の左側開放面は、伝動ケースカバー52aにより覆われ、内部にベルト式無段変速機5が収納される変速室50が形成される。後部の右側開放面は減速ギヤカバー58(図2参照)により覆われ、内部に減速ギヤ機構51が収納される。
 図3に示されるように、左ユニットケース30Lの前部と右ユニットケース30Rとの合体によるクランクケース部35内には、クランク軸31が左、右ユニットケース30L、30Rに形成されたクランクケース部35の左、右の側壁35aに左、右主軸受36L、36Rで回転自在に支持される。
 車幅方向(左右方向)に指向して配置されたクランク軸31の、左右水平方向に延びた外側軸部のうち、右外側軸部31Rにはカムチェーン駆動スプロケット46と金属製のオイルポンプ駆動ギヤ(本発明における「動力伝達歯車」)47が嵌着されるとともに、右端にAC発電機48が設けられ、左外側軸部71Lにはベルト式無段変速機5の遠心ウエイト53と駆動プーリ54が設けられる。
 本実施形態の内燃機関4は、SOHC型式の2バルブシステムを採用しており、シリンダヘッド42内にカムシャフト91等からなる動弁機構9が設けられている。
 なお、動弁機構9を覆うように、シリンダヘッド42にはヘッドカバー43が重ねられて被せられる。
 ヘッドカバー43内の動弁機構9に動力伝達を行うカムチェーン92がカムシャフト91とクランク軸71との間に架設されており、そのためのカムチェーン室49が、右ユニットケース30R、シリンダブロック41、シリンダヘッド42に連通して設けられている(図2参照)。
 すなわち左右水平方向に指向したカムシャフト91の右端に嵌着されたカムチェーン被動スプロケット93と、クランク軸31に嵌着されたカムチェーン駆動スプロケット46との間にカムチェーン92が、カムチェーン室49内を通って架渡され、クランク軸31の1/2の回転速度でカムシャフト91が同期して回転駆動される。
 一方、シリンダヘッド42においてカムチェーン室49と反対側(左側)から燃焼室40に向かって点火プラグ40aが嵌挿されている。
 パワーユニット3の左側のベルト式無段変速機5は、駆動プーリ54と図示しない被動プーリとにVベルト55が掛け渡されてクランク軸31からの動力が伝達されるもので、機関回転数に応じて遠心ウエイト53により駆動プーリ54におけるVベルト55の巻掛け径が変化し、これに伴い同時に被動プーリにおける巻掛け径が変化することにより変速比が自動的に変更されて無段変速されるものであって、さらに、減速ギヤ機構51によって減速されて後車軸51aに回転動力が伝達され、後輪17が駆動される(図2参照)。
 本実施形態におけるベルト式無段変速機5と減速ギヤ機構51からなる変速伝動機構自体は、従来広く公知のものであり、以下、変速伝動機構の詳細な説明は省略する。
 図4は、図2中IV-IV矢視による、パワーユニット3のクランク軸31のクランク軸心Xを含む立面断面図である。図4に示されるように、クランク軸31の下方には、オイルポンプ駆動ギヤ47と噛合し駆動されるオイルポンプ被動ギヤ(本発明における「内燃機関用補機歯車」)82により回転するオイルポンプ8が設けられている(図2参照)。
 ユニットケース30の底部にはオイル溜め83が設けられており、オイル溜め83からオイルフィルタ84を通った潤滑オイルは、オイル吸入路85を経由して、オイルポンプ8の吸入ポート86に吸入され、吐出ポート87から吐出した潤滑オイルは図示しない給油路を通り、所定の潤滑個所、冷却個所に供給される。
 図6は、図2に示すパワーユニット3の一部断面とする右側面図のうち、内燃機関4部分の拡大図である。
 ヘッドカバー43の内側でシリンダヘッド42に設けられた動弁機構9等を潤滑、冷却した潤滑オイルは、カムチェーン室49をクランクケース部35に向けて流下する。
 カムチェーン室49は、クランクケース部35の右側の側壁35aの右側においては(図3参照)、上側はクランク軸31とカムチェーン駆動スプロケット46を囲み、下側はオイルポンプ被動ギヤ82を囲むように連続して立設された周壁37で囲まれて画成されている。周壁37は前側が、リンダブロック41側に開いて、リンダブロック41側と連続したカムチェーン室35を形成している(図2、図6参照)。
 周壁37で囲まれたクランクケース部35のカムチェーン室49は、図3(図4)図示右方側(図6図示手前側)から、オイルシール38aを介してクランク軸31を挿通させて取付けられるアルミ合金製の隔壁38によって塞がれている。
 したがって、シリンダヘッド42、シリンダブロック41のカムチェーン室49をクランクケース部35に向けて流下した潤滑オイルは、クランクケース部35においてカムチェーン室49の下側の周壁37で形成された下向き凹状のオイル溜り部70に流れ込み貯留され、オイルポンプ被動ギヤ82の下部の一部が浸漬される。
 貯留された潤滑オイルは側壁35aの開口35b(図6参照)から溢流し、クランクケース部35の下部に形成されたオイル溜め83へ還流する。
 クランクケース部35内のオイル溜め83に貯留された潤滑オイルの貯留レベルは内燃機関4の運転状態で相対的に低く、停止状態で相対的に高くなるが、カムチェーン室49のオイル溜り部70は、運転状態においても停止状態においても一定の潤滑オイルで満たされた貯留レベルL(図6参照)が得られる。したがって、オイルポンプ被動ギヤ82の下半部の一部は常に潤滑オイルに浸漬され、浸漬部位は運転状態、停止状態とも随時変わるので、オイルポンプ被動ギヤ82は、満遍なく潤滑オイル浸漬状態が維持されることになる。
 オイルポンプ被動ギヤ82はオイルポンプ駆動ギヤ47と噛合するが、オイルポンプ駆動ギヤ47は鉄系の金属材料からなり、クランク軸31に一体に回転するように設けられている。
 オイルポンプ被動ギヤ82は、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車であって、クランク軸31を支持したクランクケース部35内に回転自在に支持された回転軸88に設けられている。
 図4中のオイルポンプ8周辺の拡大立面断面図である図5に示されるように、回転軸88の一端側に軸芯と垂直に設けられたギヤ止めピン88aが、回転軸88に嵌挿されたオイルポンプ被動ギヤ82に係合し、回転軸88はオイルポンプ被動ギヤ82によって一体に回転する。
 回転軸88の他端側には軸芯と垂直に設けられたロータ止めピン88bが、回転軸88に嵌挿されたオイルポンプ8のインナロータ8aに係合し、インナロータ8aは回転軸88によって一体に回転する。
 オイルポンプ8は、クランクケース部35の側壁35aに形成されインナロータ8aを収納するポンプケーシング8bと、ポンプケーシング8bを塞ぐポンプ蓋8cとを備えて構成される。
 ポンプ蓋8cは、隔壁35aと対峙して、カムチェーン室49の下側の周壁37上方にオイル溜り部70を形成する。
 回転軸88は、ポンプ蓋8cと隔壁38とによってクランクケース部35内に回転自在に支持される。オイルポンプ被動ギヤ82は、ポンプ蓋8cと隔壁38との間に位置し、上記のようにその下半部の一部がオイル溜り部70に浸漬される。
 従来、樹脂のみで形成された樹脂製歯車は安価に製造できるため、事務機器のプリンタ等比較的軽度の負荷が懸かるものに用いられたが、内燃機関の補機駆動用の歯車等、比較的負荷が高く強度を要する用途の樹脂製歯車は、その強度を増すために、金属製のインサートを用いたり、樹脂複合構造をとったり、繊維等の補強材を含むものとしていたが、コスト上の課題を生じていた。
 また、樹脂製歯車は、潤滑オイル中のオイルも含め水分を吸収し膨潤する性質があり、それを抑制するためにも繊維等の補強材を含むものが用いられたが、繊維を含むため材質、組成が不均一となる問題が生じた。
 しかしながら、本発明に係る樹脂製歯車であるオイルポンプ被動ギヤ82は、上記のように繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車である。
 本発明者らは、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)が、湿気を含む気体中と水分を含んだ潤滑オイル中において膨潤する場合、湿気および水分のみや潤滑オイルのみに対して、比較的速やかに、例えば10時間程度で最大膨潤状態Sxに達し、それ以上膨潤しないことを見出した。
 潤滑オイルの含水割合Rと、同含水割合Rの潤滑オイルに浸漬した、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の最大膨潤状態Sxの膨潤量、すなわち最大吸水重量変化率Wxとの関係のグラフを、図7に示す。
 図7に示されるように、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の最大吸水重量変化率Wxは、潤滑オイルの含水割合R=10%の場合が最も高く、その場合の最大吸水重量変化率Wx=10%であることを見出した。
 また、本発明者らが見出した、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)における、吸水重量変化率Wと歯車の寸法変化率Gとの関係を図8に示す。
 図8中、歯車の寸法変化率Gは、またぎ歯厚に関しては黒丸点でプロットされ、実線で結んで示されている。また、歯車外径に関しては白抜き四角点でプロットされ、破線で結んで示されている。
 それによると、またぎ歯厚、歯車外径ともに、最も高い最大膨潤状態Sxを生じる潤滑オイルの含水割合R=10%での最大吸水重量変化率Wx=10%において、歯車の寸法変化率Gは2.7パーセント増加であった。
 したがって、初期の使用前の絶乾状態(吸水重量変化率W=0%の時)における繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車であるオイルポンプ被動ギヤ82の歯形形状は、オイルポンプ被動ギヤ82が水分を吸収した最大膨潤状態Sxにおけるオイルポンプ駆動ギヤ47とのバックラッシュが、所定の最小状態より大きくなるように設定されたものである。
 すなわち、オイルポンプ被動ギヤ82の歯形形状が初期の使用前の絶乾状態に対し、最大吸水重量変化率Wx=10%において歯車の寸法変化率G=2.7%増加となった時に、オイルポンプ駆動ギヤ47とのバックラッシュが、所定の最小状態より大きくなるように設定されている。
 それに基づき、オイルポンプ被動ギヤ82のオイルポンプ駆動ギヤ47に対する初期の使用前の絶乾状態の歯車軸間方向におけるバックラッシュ量は、2.7%以上を目安とし、オイルポンプ被動ギヤ82とオイルポンプ駆動ギヤ47との歯車軸間距離Dに対しマイナス3%相当としている。
 そのため、オイルポンプ被動ギヤ82が膨潤した後でも、オイルポンプ駆動ギヤ47との間に所望の一様のバックラッシュが得られている。
 なお、繊維強化樹脂製歯車では、含まれる繊維にバラツキが生じて膨潤が一様でないため、一様にクリアランスを設定するのは困難である。
 本実施形態のオイルポンプ被動ギヤ82は、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車なので、歯車の材質が均一となり歯車形状の精度が高く膨潤による変形も均一化し、且つ、樹脂製歯車であるため噛合い音の低減も図れる。
 また、金属材料からなるオイルポンプ駆動ギヤ47と樹脂製歯車であるオイルポンプ被動ギヤ82との組合せにより、膨潤による寸法変化を一方のオイルポンプ被動ギヤ82のみとすることができ、バックラッシュへの影響を限定的なものとして、オイルポンプ被動ギヤ82の初期の使用前の仕様設定を容易化できる。
 また、クランクケース部35内部の潤滑オイルに含まれるブローバイ成分の水分系が吸収されオイルポンプ被動ギヤ82が膨潤した後でも、オイルポンプ駆動ギヤ47との間に所望のバックラッシュが得られ、クランクケース部35内で使用されるオイルポンプ被動ギヤ82の耐久性を向上させることができる。
 その結果、本実施形態のオイルポンプ被動ギヤ82は、歯車コストの低減、耐久性の向上、噛合い音の低減が図れる。
 図9に示すように、歯形理論において一般に、圧力角誤差C(ミクロン)は、歯形評価線Bの圧力角評価範囲D内での歯先側位置のずれをいい、圧力角誤差Cは歯先下がりをプラス、歯先上がりをマイナスとする。
 樹脂製歯車は、歯車が水を含んで膨潤すると歯先が太ってきて、圧力角誤差Cがマイナス側に変化する。
 反対に、歯車が乾くと歯先が細ってきて、圧力角誤差Cがプラス側に変化する。
 ここで噛合い音の観点で見ると、歯車は一般に、刃先が太って、圧力角誤差Cが小さくなる(マイナス値が大きくなる)ほど、発音の点で不利になる。
 本実施形態の繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)では、金属製の歯車と噛合する場合、低圧力角誤差Cでも発音しにくく、噛合い音の観点では圧力角誤差Cが最低-200ミクロンまでが許容範囲であった。
 したがって、最大膨潤状態Sxにおける繊維等の補強材を含まない樹脂製歯車の圧力角誤差Cを-200ミクロン以上に(マイナス値を小さく)すべきことが判明した。
 図10は、本実施形態の繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の吸水重量変化率Wに対する圧力角誤差Cの変化の関係を示すグラフである。
 図示のように、初期の使用前の絶乾状態(吸水重量変化率W=0%)における繊維等の補強材を含まない樹脂製歯車の圧力角誤Cが、+37ミクロンだった場合、最大膨潤状態Sxの最大吸水重量変化率Wx=10%で圧力角誤差Cは、-89ミクロンであった。その間の圧力角誤差Cの変化量は、126ミクロンである。
 したがって、本実施形態の繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車(例:材質PA66)の最大膨潤状態Sxの最大吸水重量変化率Wx=10%での圧力角誤差Cが、-200ミクロン以上となる(マイナス値が小さくなる)ようにするには、初期の使用前の絶乾状態(吸水重量変化率0%)における繊維等の補強材を含まない樹脂製歯車の圧力角誤差Cを、(-200+126=)-74ミクロン以上に設定する必要がある。
 そのため、本実施形態のオイルポンプ被動ギヤ82は、初期の使用前の絶乾状態における圧力角誤差Cが、設計値として-70ミクロン以上に設定されている。
 そのため、金属製のオイルポンプ駆動ギヤ47との噛合において、噛合い音が抑制されている。
 図6に示されるように、本実施形態では、オイルポンプ被動ギヤ82は、前記のようにオイルポンプ被動ギヤ82を囲むように形成されたオイル溜り部70にその下半部の一部が浸漬されており、オイルポンプ被動ギヤ82は、下半部の一部が潤滑オイルに浸漬されることで、潤滑オイル中に混入している水分によって最大膨潤状態Sxに保持されて所望のバックラッシュが得られ、バックラッシュが所定の最小状態よりマイナスとならないので、オイルポンプ被動ギヤ82のフリクション低減が維持され、耐久性を向上できる。
 本実施形態では、本発明の内燃機関用補機歯車として、運転状態においても停止状態においても一定の潤滑オイルで満たされるオイル溜り部70に下半部の一部が浸漬されたオイルポンプ被動ギヤ82が示されているが、本発明の内燃機関用補機歯車は、金属製の補機駆動歯車と噛合する他の内燃機関用補機歯車であって、繊維等の補強材を含まない樹脂のみで形成された樹脂製歯車であれば、他の内燃機用補機、例えば冷却水ポンプの被動歯車であってもよい。
 また、内燃機関4の停止状態での潤滑オイルの貯留レベルに於いて、内燃機関用補機歯車の下半部の一部が浸漬されるオイル溜り部70は、本実施形態と異なる位置、構造のものであってもよい。
 また、内燃機関4の停止状態での潤滑オイルの貯留レベルに於いて、オイルポンプ被動ギヤ82等の内燃機関用補機歯車の下半部の少なくとも一部が浸漬されるオイル溜り部70は、内燃機関用補機の位置に応じて、クランクケース部35に設けられたオイル溜め83であってもよく、また、内燃機関の構造によってはクランクケース部に連通して取付けられたオイルパンであってもよい。
 すなわち、本発明の内燃機関用補機歯車は、クランクケース部35内のオイル溜り部70に貯留された潤滑オイルによって潤滑され、内燃機関4の停止状態でのオイル溜り部70の潤滑オイルの貯留レベルにおいて、内燃機関用補機歯車は、下半部の少なくとも一部が潤滑オイルに浸漬され、その上部が潤滑オイル上に露出する位置に配置されている。
 そのため、内燃機関用補機歯車は、下半部の一部が潤滑オイルに浸漬されることで、潤滑オイル中に混入している水分によって最大膨潤状態Sxに保持されて所望のバックラッシュが得られ、バックラッシュが所定の最小状態よりマイナスとならないので、歯車のフリクション低減が維持され、耐久性を向上できる。
 また、本実施形態において、水分を吸収した最大膨潤状態Sxにおけるバックラッシュは、オイルと水との混合割合が9:1の割合で混合した潤滑オイルによってオイルポンプ被動ギヤ82を膨潤させた状態のバックラッシュである。
 すなわち、繊維等の補強材を含まない樹脂製歯車であるオイルポンプ被動ギヤ82の潤滑オイル中の水分の吸収は、オイルと水との混合割合が9:1の割合で混合した潤滑オイルによる場合が略最大であるため、その場合の最大膨潤状態Sxにおけるバックラッシュが所定の最小状態より大きければ、オイルポンプ被動ギヤ82のフリクション低減が確実に図られる。
 また、内燃機関用補機歯車であるオイルポンプ被動ギヤ82の樹脂材料は、弾性率4500MPa以下、500MPa以上の軟質樹脂(例:材質PA66)であり、繊維等の補強材を含まない樹脂製歯車であるオイルポンプ被動ギヤ82が膨潤した後でも、金属製の動力伝達歯車であるオイルポンプ駆動ギヤ47との間に所望のバックラッシュが得られている。
 また、繊維等の補強材を含まない樹脂製歯車であるオイルポンプ被動ギヤ82の樹脂材料(例:材質PA66)を、膨潤させたのち100℃程度の高温にした場合、弾性率は500Mp以下(例えば、485Mp)に落ちるが、その低下した弾性率でもオイルポンプ被動ギヤ82の強度、性能に問題はなく、弾性率は500Mp以上あれば十分である。
 したがって、比較的軟質な弾性率4500MPa以下、500MPa以上の軟質樹脂を使用すると、オイルポンプ被動ギヤ82の耐久性を向上させることができるとともに、噛合い音の低減を図ることができ、且つオイルポンプ被動ギヤ82の強度、性能に問題を生じない。
 また、本実施形態のオイルポンプ被動ギヤ82は、歯形形状における初期の使用前の絶乾状態の圧力角誤差Cが歯先太となる-70μより大きく、最大膨潤状態Sxの圧力角誤差Cが-200μ以上の範囲となる低弾性率の軟質樹脂材料を用いている。
 歯車は圧力角誤差Cが小さくなるほど歯先形状が太く強度が得られる一方バックラッシュが小さくなり、発音上不利となるが、初期の使用前の絶乾状態の圧力角誤差Cが-70μより大きく、最大膨潤状態の圧力角誤差Cが-200μ以上となる低弾性率の軟質樹脂材料を用いた内オイルポンプ被動ギヤ82においては、強度を得たうえで、発音が抑制され、低騒音のオイルポンプ被動ギヤ82となっている。
 以上、本発明の一実施形態について説明したが、本発明は前記した実施形態に限定されるものではなく、本発明の要旨の範囲でその他種々の変更が可能である。例えば、本発明の内燃機関はスイング式パワーユニットに備えられたものにかぎらず、空冷か水冷かに限定されず、また、鞍乗型車両は自動二輪車に限定されず他種のものにも幅広く適用されるものであってもよく、内燃機関用補機歯車はオイルポンプ被動ギヤに限らず他の内燃機関用補機、例えば冷却水ポンプ等の被動ギヤであってもよい。
 なお、説明の便宜上、装置の左右配置は図示の実施形態に沿って説明したが、それに限定されず、左右配置が逆であってもよい。
 1…自動二輪車、2…車体フレーム、3…パワーユニット、4……内燃機関、5…ベルト式無段変速機、8…オイルポンプ、9…動弁機構、22…メインパイプ、22a…傾斜部、24…支持ブラケット、25…リンク部材、26…ピボット軸、30…ユニットケース、30L…左ユニットケース、30R…右ユニットケース、31…クランク軸、35…クランクケース部(本発明における「クランクケース」)、35a…側壁、37…周壁、38…隔壁、41…シリンダブロック、42…シリンダヘッド、43…ヘッドカバー、44…ピストン、46…カムチェーン駆動スプロケット、47…オイルポンプ駆動ギヤ(本発明における「動力伝達歯車」)、49…カムチェーン室、70…オイル溜り部、82…オイルポンプ被動ギヤ(本発明における「内燃機関用補機歯車」)、83…オイル溜め、84…オイルフィルタ、85…オイル吸入路、86…吸入ポート、87…吐出ポート、88…回転軸、88a…ギヤ止めピン、88b…ロータ止めピン、91…カムシャフト、92…カムチェーン、93…カムチェーン被動スプロケット、Y…シリンダ軸線、X…クランク軸心、R…潤滑オイルの含水割合、Sx…最大膨潤状態、W…吸水重量変化率、Wx…最大吸水重量変化率、G…歯車の寸法変化率、C…圧力角誤差、D…歯車軸間距離

Claims (6)

  1.  内燃機関(3)に備わる補機(8)に対してクランク軸(31)の駆動力を伝達する動力伝達歯車(47)に噛合する内燃機関用補機歯車(82)において、
     前記動力伝達歯車(47)は、鉄系の金属材料からなり、前記クランク軸(31)に一体に回転するように設けられ、
     前記内燃機関用補機歯車(82)は、繊維等の補強材を含まない耐熱樹脂の単一組成としたインジェクション成型による樹脂製歯車であって、前記クランク軸(31)を支持したクランクケース(35)内に回転自在に支持された回転軸(88)に設けられ、
     初期の使用前の絶乾状態における前記内燃機関用補機歯車(82)の歯形形状は、同内燃機関用補機歯車(82)が水分を吸収した最大膨潤状態における、前記動力伝達歯車(47)とのバックラッシュが所定の最小状態より大きくなるように設定されたものであることを特徴とする内燃機関用補機歯車。
  2.  前記内燃機関用補機駆動歯車(82)の前記動力伝達歯車(47)に対する初期の使用前の絶乾状態の歯車軸間方向におけるバックラッシュ量は、前記内燃機関用補機駆動歯車(82)と前記動力伝達歯車(47)との歯車軸間距離(D)に対しマイナス3%相当であることを特徴とする請求項1に記載の内燃機関用補機歯車。
  3.  前記内燃機関用補機歯車(82)は、前記クランクケース(35)内のオイル溜り部(70)に貯留された潤滑オイルによって潤滑され、前記内燃機関(4)の停止状態でのオイル溜り部(70)の潤滑オイルの貯留レベルにおいて、前記内燃機関用補機歯車(82)は、下半部の少なくとも一部が潤滑オイルに浸漬され、その上部が潤滑オイル上に露出する位置に配置されたことを特徴とする請求項1または請求項2に記載の内燃機関用補機歯車。
  4.  水分を吸収した最大膨潤状態における前記バックラッシュは、オイルと水との混合割合(R)が9:1の割合で混合した潤滑オイルによって前記内燃機関用補機歯車(82)を膨潤させた状態のバックラッシュであることを特徴とする請求項1または請求項2に記載の内燃機関用補機歯車。
  5.  前記内燃機関用補機歯車(82)の樹脂材料は、弾性率4500MPa以下、500MPa以上の軟質樹脂であることを特徴とする請求項1ないし請求項4のいずれか一項に記載の内燃機関用補機歯車。
  6.  前記内燃機関用補機歯車(82)は、歯形形状における初期の使用前の絶乾状態の圧力角誤差(C)が歯先太となる-70μより大きく、最大膨潤状態の圧力角誤差(C)が-200μ以上の範囲となる低弾性率の軟質樹脂材料を用いたことを特徴とする請求項5に記載の内燃機関用補機歯車。
PCT/JP2018/046974 2018-12-20 2018-12-20 内燃機関用補機歯車 WO2020129211A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880100347.XA CN113195942A (zh) 2018-12-20 2018-12-20 内燃机用辅机齿轮
JP2020560723A JP7058350B2 (ja) 2018-12-20 2018-12-20 内燃機関用補機歯車
PCT/JP2018/046974 WO2020129211A1 (ja) 2018-12-20 2018-12-20 内燃機関用補機歯車
BR112021010161-6A BR112021010161A2 (pt) 2018-12-20 2018-12-20 engrenagem de dispositivo auxiliar para motor de combustão interna
PH12021551162A PH12021551162A1 (en) 2018-12-20 2021-05-20 Auxiliary device gear for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/046974 WO2020129211A1 (ja) 2018-12-20 2018-12-20 内燃機関用補機歯車

Publications (1)

Publication Number Publication Date
WO2020129211A1 true WO2020129211A1 (ja) 2020-06-25

Family

ID=71100701

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/046974 WO2020129211A1 (ja) 2018-12-20 2018-12-20 内燃機関用補機歯車

Country Status (5)

Country Link
JP (1) JP7058350B2 (ja)
CN (1) CN113195942A (ja)
BR (1) BR112021010161A2 (ja)
PH (1) PH12021551162A1 (ja)
WO (1) WO2020129211A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541273A (en) * 1978-09-19 1980-03-24 Daihatsu Motor Co Ltd Gear for following in engine
JPH0167371U (ja) * 1987-10-23 1989-04-28
JPH10110805A (ja) * 1996-10-04 1998-04-28 Polyplastics Co 摩耗低減樹脂歯車対
JP2003001662A (ja) * 2001-06-20 2003-01-08 Asahi Kasei Corp 歯車成形用金型とそれを用いた射出成形方法
JP2010180918A (ja) * 2009-02-04 2010-08-19 Shin Kobe Electric Mach Co Ltd 樹脂製歯車
WO2011118617A1 (ja) * 2010-03-26 2011-09-29 宇部興産株式会社 摺動部品用ポリアミド樹脂組成物、摺動部品並びに摺動部品及び自動車の製造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6038439A (ja) * 1983-08-12 1985-02-28 Ube Ind Ltd ポリアミド成形品の処理方法
JPH10317984A (ja) * 1997-05-21 1998-12-02 Honda Motor Co Ltd 2サイクル内燃機関
JP6038439B2 (ja) 2011-10-14 2016-12-07 ローム株式会社 チップ抵抗器、チップ抵抗器の実装構造
JP6185829B2 (ja) * 2013-12-11 2017-08-23 住友重機械工業株式会社 偏心揺動型減速装置のクランク軸および外歯歯車の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5541273A (en) * 1978-09-19 1980-03-24 Daihatsu Motor Co Ltd Gear for following in engine
JPH0167371U (ja) * 1987-10-23 1989-04-28
JPH10110805A (ja) * 1996-10-04 1998-04-28 Polyplastics Co 摩耗低減樹脂歯車対
JP2003001662A (ja) * 2001-06-20 2003-01-08 Asahi Kasei Corp 歯車成形用金型とそれを用いた射出成形方法
JP2010180918A (ja) * 2009-02-04 2010-08-19 Shin Kobe Electric Mach Co Ltd 樹脂製歯車
WO2011118617A1 (ja) * 2010-03-26 2011-09-29 宇部興産株式会社 摺動部品用ポリアミド樹脂組成物、摺動部品並びに摺動部品及び自動車の製造方法

Also Published As

Publication number Publication date
JPWO2020129211A1 (ja) 2021-10-21
BR112021010161A2 (pt) 2021-08-17
PH12021551162A1 (en) 2021-10-25
JP7058350B2 (ja) 2022-04-21
CN113195942A (zh) 2021-07-30

Similar Documents

Publication Publication Date Title
JP4754276B2 (ja) 自動二輪車
JP5699894B2 (ja) オイル通路構造
US7610987B2 (en) Power unit and saddle-ride type vehicle provided with the power unit
US8316816B2 (en) Internal combustion engine and vehicle having the internal combustion engine
JP4529642B2 (ja) スクーター型自動二輪車
KR100688221B1 (ko) 내연기관의 보조 기구 부착 구조
JP2010065668A (ja) 自動二輪車用エンジンのオイル通路構造
WO2020129211A1 (ja) 内燃機関用補機歯車
JP2010065667A (ja) 自動二輪車用エンジンのオイル供給装置
JP6601134B2 (ja) 4サイクル多気筒エンジン
JP2001123833A (ja) 強制空冷式筒内噴射エンジン
JP4682579B2 (ja) 自動二輪車のパワーユニット
JP3823727B2 (ja) 車両用並列多気筒エンジン
JP6788534B2 (ja) 内燃機関のクランク軸構造
JP2006090241A (ja) 自動二輪車の4サイクルエンジン
JP4556611B2 (ja) 自動二輪車のパワーユニット
JP5160264B2 (ja) エンジンのクランクシャフト機構
JP2017122420A (ja) 内燃機関のクランク室内圧低減機構
JPWO2003104621A1 (ja) 鞍乗型車両におけるエンジンのブローバイガス還元装置
JP2001130469A (ja) スクータ型車両
JP6601135B2 (ja) 4サイクルエンジンのクランクケース構造
JP2010090734A (ja) 自動二輪車用エンジンの潤滑装置及び自動二輪車
JP5197526B2 (ja) 車両用内燃機関のシリンダヘッド構造
JP2004026138A (ja) スクータ型車両
JPWO2020067172A1 (ja) 内燃機関

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943355

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020560723

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021010161

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112021010161

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210526

122 Ep: pct application non-entry in european phase

Ref document number: 18943355

Country of ref document: EP

Kind code of ref document: A1