WO2020125075A1 - 微波合成担载型分子筛膜的方法 - Google Patents

微波合成担载型分子筛膜的方法 Download PDF

Info

Publication number
WO2020125075A1
WO2020125075A1 PCT/CN2019/104962 CN2019104962W WO2020125075A1 WO 2020125075 A1 WO2020125075 A1 WO 2020125075A1 CN 2019104962 W CN2019104962 W CN 2019104962W WO 2020125075 A1 WO2020125075 A1 WO 2020125075A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthesis
molecular sieve
aging
temperature
sieve membrane
Prior art date
Application number
PCT/CN2019/104962
Other languages
English (en)
French (fr)
Inventor
李砚硕
陈晨
吴大朋
Original Assignee
浙江汇甬新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江汇甬新材料有限公司 filed Critical 浙江汇甬新材料有限公司
Priority to JP2021533366A priority Critical patent/JP7249415B2/ja
Priority to US17/414,182 priority patent/US11926530B2/en
Publication of WO2020125075A1 publication Critical patent/WO2020125075A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0081After-treatment of organic or inorganic membranes
    • B01D67/0083Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/105Support pretreatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/108Inorganic support material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/14Type A
    • C01B39/16Type A from aqueous solutions of an alkali metal aluminate and an alkali metal silicate excluding any other source of alumina or silica but seeds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/20Faujasite type, e.g. type X or Y
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5024Silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/14Ageing features
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/34Use of radiation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/448Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by pervaporation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen

Definitions

  • the invention belongs to the field of new separation technology, and particularly relates to a method for synthesizing a molecular sieve membrane by microwave and its product.
  • CN100337918 further provides an in-situ aging-microwave synthesis molecular sieve membrane synthesis method.
  • This method does not require pre-coating of the seed crystal on the surface of the carrier, but by letting the carrier and the synthesis liquid be at a temperature below the synthesis temperature in advance Under contact, the surface of the carrier grows quasi-crystal nuclei before synthesis, and then the molecular sieve crystals grow on the quasi-crystal nucleus by microwave energy supply.
  • the method replaces the seed coating process with an in-situ aging process, which effectively simplifies the production process.
  • the molecular sieve membranes produced by this method exhibit extremely strong intra-batch and inter-batch instability.
  • the present invention aims to provide improved technology and technology on the basis of in-situ aging-microwave synthesis to prepare molecular sieve membranes, and strive to solve the problem of poor product performance stability during synthesis, in order to further stably exert microwave functions in the field of molecular sieve membrane synthesis
  • the application of this technology will eventually push the technology to the forefront of industrial applications.
  • the present invention first provides a method for microwave synthesis of supported molecular sieve membranes, which is an improvement of existing in-situ aging-microwave synthesis technology.
  • the method for synthesizing a supported molecular sieve membrane according to the present invention includes the steps of aging, heating and synthesis: wherein the aging is to contact the support and the synthetic liquid at 25 to 70°C for 10 to 24 hours; The temperature increase mentioned above is to raise the completed aging system from the aging temperature to the synthesis temperature within 1 to 10 minutes; the synthesis is to synthesize at 80 to 120° C. for 2 to 15 minutes; Microwave power supply.
  • the technical solution of the present invention adopts the method of lowering the aging temperature, prolonging the aging time, and cooperating with the delaying heating method in the microwave synthesis stage, which effectively solves the problem of poor product stability during the production process and greatly improves the qualification rate
  • the high-quality product rate shortens the delivery period, and greatly reduces the time consumption and energy consumption of the microwave synthesis stage, thereby effectively reducing production costs, reducing resource consumption, and reducing waste emissions. It makes the large-scale industrial application of molecular sieve membrane separation technology practical.
  • FIG. 1 is a graph of X-ray diffraction detection results of a supported molecular sieve membrane product II.
  • FIG. 2 is a scanning electron microscope photograph of the supported molecular sieve membrane product II.
  • the present invention provides a new method of microwave synthesis-supported molecular sieve membrane, including the steps of aging, heating and synthesis, characterized in that the aging is to contact the support and the synthetic liquid at 25-70°C. ⁇ 24 hours; the temperature increase is to raise the completed aging system from aging temperature to synthesis temperature within 1-10 minutes; the synthesis is to synthesize at 80 ⁇ 120°C for 2-15 minutes; wherein, the temperature increase And the synthesis steps are powered by microwaves.
  • One of the technical features of the present invention is sufficient and high-quality aging. This is one of the important technical means to shorten the time and energy consumption of microwave synthesis in the subsequent steps.
  • the aging time generally does not exceed 10 hours, but prolonging the aging time may cause the performance of the prepared membrane to decrease.
  • long-term aging under low temperature conditions is adopted, preferably aging under 25-50°C, more preferably 30-45°C; aging time is preferably 12-20 hours, more preferably 16-20 hours. Reducing the aging temperature solves the problem of premature crystal growth that may be caused by prolonged aging time, ensuring sufficient aging and high quality.
  • the microwave energy supply process is designed of the microwave energy supply process.
  • the technical solution of rapid temperature increase to the synthesis temperature is avoided, but the microwave operation part is divided into two consecutive steps of temperature increase and synthesis.
  • the temperature increase is to increase the aging system from the aging temperature to the synthesis temperature within 1 to 10 minutes; preferably to complete the temperature increase within 2 to 10 minutes; more preferably to complete the temperature increase within 3 to 6 minutes.
  • the above-mentioned synthesis is carried out under the condition of 80 to 120°C for 2 to 15 minutes; in the preferred technical solution, it is synthesized for 6 to 10 minutes, and most preferably 7 to 9 minutes.
  • aging to completion of microwave synthesis is usually regarded as a round of synthesis operation, and the completion of finished products usually requires 2 to 3 rounds of synthesis operation.
  • the combination of the aging, heating and synthesis steps described in the present invention is considered a round operation.
  • the synthesis operation can be repeated 1 to 2 times, or the operation described in the present invention can be applied in combination with the synthesis operation in the prior art. Both can obtain the technical effects described in the present invention.
  • the support is a porous support.
  • a support body made of alumina, mullite or cordierite is preferred.
  • the support body made of alumina is most preferable.
  • the morphology of the support has no effect on the technical effect of the present invention.
  • the morphology of the carrier that is theoretically applicable to the existing microwave synthesis technology can be used in the technical solution of the present invention.
  • These morphologies of the carrier include but are not limited to tubular carriers, plate carriers, capillaries Carrier.
  • the technical solution of the present invention will bring higher synthesis stability, it is expected to be extended to the application of ultra-long and ultra-large carrier synthesis that cannot be applied in the prior art.
  • the synthesis liquid of the present invention contains 2 to 5 mol/L Na a O, 0.04 to 0.06 mol/L AL 2 O 3 , and 0.2 to 0.6 mol/L SiO 2 according to the molar ratio. .
  • the technical solution described in the present invention is particularly suitable for the synthesis of supported type A molecular sieve membranes.
  • the method of the present invention can improve the product pass rate to 98% and the excellent product rate to more than 70%. Greatly reduces the cost of technology application.
  • the present invention provides a synthesis method specifically applicable to a supported type A molecular sieve membrane.
  • the method includes the following steps:
  • 1Synthetic liquid is prepared with deionized water as the solvent.
  • the synthetic liquid contains 2 ⁇ 5mol/L Na a O, 0.04 ⁇ 0.06mol/L AL 2 O 3 and 0.2 ⁇ 0.6mol/L SiO 2 in terms of molar concentration.
  • Heating up Use microwave oven to supply energy, and slowly warm up to synthesis temperature in 3 ⁇ 6min;
  • the ratio of the relative contents of the two substances in the material before and after the molecular sieve membrane separation operation is defined as:
  • ⁇ i/j represents the separation coefficient of the molecular sieve membrane for the i (preferentially permeable membrane) and j components
  • x i,p (x j,p ) represents the mass fraction of the i(j) component in the permeate
  • X i,f (x j,f ) represents the mass fraction of i(j) component in the raw material.
  • the mass of the material permeating the unit membrane area in a unit time is defined as:
  • the raw material liquid is an ethanol aqueous solution containing 90% of ethanol (mass fraction, the same below).
  • the permeation flux of pervaporation and dehydration of the molecular sieve membrane is not less than 0.5kgm -2 h -1 .
  • Grade) Separation coefficient should be greater than 3000, Grade B molecular sieve membrane separation coefficient should be greater than 1500, Grade C molecular sieve membrane separation coefficient should be greater than 500, Grade D molecular sieve membrane (qualified product) separation coefficient should be greater than 150, the separation coefficient is less than 150 It is an E-grade molecular sieve membrane (unqualified product).
  • the preparation of LTA molecular sieve membrane product I includes the following steps
  • solution A 1 15.0 g of NaOH was dissolved in 100 ml of deionized water, then 0.54 g of metal aluminum foil was added, and dissolved to obtain solution A 1 ;
  • Solution B 1 25.0 g of NaOH is dissolved in 75 ml of deionized water, and then 10 ml of silica sol is added (the mass percentage of which contains SiO 2 is 30%), and the solution B 1 is dissolved;
  • the solution A 1 and the solution B 1 are thoroughly mixed to obtain a homogeneous and clear synthetic solution I.
  • the contained substances were converted into 50Na 2 O:Al 2 O 3 :5SiO 2 :1010H 2 O in molar ratio.
  • the corresponding converted molar concentrations are: Na 2 O, 2.64 mol/L; Al 2 O 3 , 0.053 mol/L; SiO 2 , 0.263 mol/L.
  • the supported molecular sieve membrane product I prepared in Example 1 was subjected to pervaporation separation performance test. When the permeation temperature was 65°C, the separation results of different alcohol/water systems are shown in Table 1.
  • solution B 2 429 grams of NaOH is dissolved in 2000 ml of deionized water, then add 343 grams of sodium silicate nonahydrate to dissolve to obtain solution B 2 ;
  • the solution A 2 and the solution B 2 are thoroughly mixed to obtain a homogeneous and clear synthetic liquid II.
  • the contained substances were converted in a molar ratio: 51Na 2 O:Al 2 O 3 :5SiO 2 :1030H 2 O.
  • the corresponding molar concentrations are: Na 2 O, 2.64 mol/L; Al 2 O 3 , 0.053 mol/L; SiO 2 , 0.263 mol/L.
  • Membrane tube serial number Separation factor Throughput (g/m 2 .hr) 1 10000 820 2 10000 780 3 10000 810 4 10000 780 5 10000 820
  • Solution A 3 30.0 g of NaOH is dissolved in 220 ml of deionized water, then 0.675 g of metal aluminum foil is added to dissolve to obtain solution A 3 ;
  • Solution B 3 40.0 g of NaOH was dissolved in 200 ml of deionized water, and then 50 ml of silica sol (including SiO 2 with a mass percentage of 30%) was added to dissolve to obtain solution B 3 ;
  • the solution A 3 and the solution B 3 are thoroughly mixed to obtain a homogeneous and clear synthetic liquid III.
  • the contained substances were converted according to the molar ratio: 70Na 2 O: Al 2 O 3 : 20SiO 2 : 2020H 2 O.
  • the corresponding molar concentrations are: Na 2 O, 1.94 mol/L; Al 2 O 3 , 0.028 mol/L; SiO 2 , 0.56 mol/L.
  • the obtained molecular sieve membrane product III was subjected to pervaporation separation study.
  • the permeation temperature was 65°C
  • the separation results of different alcohol/water systems are shown in Table 3.
  • a tubular support with a length of 1030 mm was used, and the synthesis liquid was scaled up in equal proportions according to the method of Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

一种微波合成担载型分子筛膜的方法,包括老化、升温和合成的步骤,其中老化是将支撑体与合成液于25-70℃条件下接触10-24小时;升温是将完成老化的体系在1-10min内从老化温度升至合成温度;合成是在80-120℃条件下合成2-15min;其中,升温和合成的步骤由微波供能。与现有技术相比,该方法解决了生产过程中产品稳定性差的问题,提高了产品的合格率和优品率。

Description

微波合成担载型分子筛膜的方法 技术领域
本发明属于新型分离技术领域,尤其涉及以微波合成分子筛膜的方法及其产品。
背景技术
从上个世纪末开始,分子筛膜的合成一直是世界各国学术界、工业界的研究热点之一,有许多的相关专利和文献的报道。预涂晶种的二次生长法、凝胶合成法等多种方法在实验室研究阶段均表现出良好的应用前景(JP08,318,141)。然而,这些方法在工业应用的放大合成需求面前,往往都需要面对传热过程中出现的温度梯度和重力影响下的沉降现象等放大问题,导致合成的分子筛膜的质量严重下降,难以实现规模化扩大生产。这也是分子筛膜经过了多年发张却至今难以实现工业化的原因之一。
随后微波合成技术在分子筛膜合成方法中的应用,解决了常规传热过程中出现的温度梯度和重力影响下的沉降现象等放大问题。同时由于微波功能的高效,大大缩短了合成的时间(CN 99112751.X)。这进一步为分子筛膜的工业化合成应用奠定了基础。
在此基础上,CN100337918进一步提供了一种原位老化-微波合成的分子筛膜合成方法,该方法无需在载体表面预涂晶种,而是通过让载体与合成液预先在低于合成温度的条件下接触,使得载体表面在合成前生长出准晶核,然后通过微波供能在准晶核上生长出分子筛晶体。该方法以原位老化的工序替代了晶种涂覆工序,有效地简化生产过程。然而,在实际的工业应用过程中,该方法所生产的分子筛膜性能表现出极强的批次内和批次间的不稳定性。以管状氧化铝载体担载的A型分子筛膜合成为例,成品率往往低于80%,优品率更是低于45%。这给工业化生产带来不可克服的成本问题。成为限制分子筛膜工业化应用的瓶颈问题。
发明内容
本发明旨在原位老化-微波合成制备分子筛膜方法的基础上,进一步提供改进的技术及工艺,力求解决合成中产品性能稳定性差的问题,以进一步稳定地发挥微波功能方式在分子筛膜合成领域的应用,最终将该项技术推向工业应用的前沿。
为此,本发明首先提供一种微波合成担载型分子筛膜的方法,该方法是对现有原位老化-微波合成技术的改进。本发明所述的微波合成担载型分子筛膜的方法包括老 化、升温和合成的步骤:其中,所述的老化是将支撑体与合成液于25~70℃条件下接触10~24小时;所述的升温是将完成老化的体系在1~10min内从老化温度升至合成温度;所述的合成是在80~120℃条件下合成2~15min;其中,所述的升温和合成的步骤由微波供能。
与现有技术相比,本发明的技术方案采用降低老化温度,延长老化时间,并配合微波合成阶段的延滞升温手段,有效解决了生产过程中产品稳定性差的问题,大大提高了产品的合格率和优品率,缩短供货期,并大大降低了微波合成阶段的耗时,减少能耗,进而有效地降低生产成本,减少资源消耗,减少废物排放。使得分子筛膜分离技术的大规模工业应用具备实际可操作性。
附图说明
附图1是担载型分子筛膜产品II的X-射线衍射检测结果图。
附图2是担载型分子筛膜产品II的的扫描电子显微镜照片。
具体实施方式
本发明提供了一种微波合成担载型分子筛膜的新方法,包括老化、升温和合成的步骤,其特征在于:所述的老化是将支撑体与合成液于25~70℃条件下接触10~24小时;所述的升温是将完成老化的体系在1~10min内从老化温度升至合成温度;所述的合成是在80~120℃条件下合成2~15min;其中,所述的升温和合成的步骤由微波供能。
本发明技术特征之一,在于充分的且优质的老化。这是后续步骤中缩短微波合成耗时与能耗的重要技术手段之一。然而在现有技术中,老化的时间一般不超过10个小时,老化时间延长反而可能导致所制备的膜性能下降。在本发明的具体实施方式中,采用低温条件下的长时间老化,优选在25~50℃条件下老化,更优选30~45℃;老化时间优选12~20小时,更优选16~20小时。降低老化温度很好地解决了老化时间延长所可能导致的晶体过早生长的问题,保证老化充分且优质。
本发明的另一重要技术特征,在于对微波供能过程的设计。本发明中避免采用急速升温至合成温度的技术方案,而是将微波操作部分分为升温和合成两个连续的步骤。其中,所述的升温是将完成老化的体系在1~10min内从老化温度升至合成温度;优选在2~10min内完成升温;更优选在3~6min内完成升温。所述的合成是在80~120℃条件下合成2~15min;优选的技术方案中,是合成6~10min,最优选合成7~9min。
本领域中,通常将从老化到完成微波合成视为一轮合成操作,成品的完成通常需要2~3轮合成操作。本发明中所描述的老化、升温和合成步骤的组合则视为一轮操作。实际应用中,可以重复该合成操作1~2次,或者将本发明所述的操作与现有技术中的合成操作组合应用。均可以获得本发明所述的技术效果。
本发明的具体实施方式中,所述的支撑体是多孔支撑体。优选以氧化铝、莫来石或堇青石为材质的支撑体。最优选氧化铝材质的支撑体。支撑体的形貌对本发明的技术效果没有影响,理论上适用于现有微波合成技术的载体形貌都可用于本发明的技术方案,这些载体形貌包括但不限于管状载体、板式载体、毛细管载体。此外,由于本发明的技术方案会带来更高的合成稳定性,有望拓展应用于现有技术中无法实现应用的超长、超大载体合成。
另一具体的实施方式中,本发明所述的合成液中按照摩尔比,含有2~5mol/L Na aO,0.04~0.06mol/L AL 2O 3,以及0.2~0.6mol/L SiO 2
更加具体的实施方式中,本发明所述的技术方案尤其适用于于担载型A型分子筛膜的合成。在氧化铝材质的支撑体担载的A型分子筛膜的合成试验中,按照相同的产品评价标准,本发明的方法可将产品的合格率提高至98%,优品率提高至70%以上,大大降低了技术应用的成本。
作为优选的实施方式,本发明提供一种具体适用于担载型A型分子筛膜的合成方法,该方法包括如下步骤:
①以去离子水为溶剂配制合成液,合成液中按照摩尔浓度折算,含有2~5mol/L Na aO,0.04~0.06mol/L AL 2O 3,以及0.2~0.6mol/L SiO 2
②老化:将氧化铝材质的管状支撑体与合成液放置于反应釜内,至于合成用微波炉内,在30~45℃条件下静止16~20小时,充分老化;
③升温:使用微波炉供能,在3~6min缓慢升温至合成温度;
④合成:使用微波炉供能,在80~120℃条件下合成7~9分钟;
⑤洗涤干燥;
⑥重复上述操作①~⑤,2~3遍。
以下结合具体实施例对本发明的内容作进一步的说明,这些非限制性实施例不应当以任何形式被理解为对本发明的限定。如无特殊说明,本说明书中所述及的材料与原料均为普通的市售商品。
对合成所得的担载型分子筛膜产品的测试和评价参照如下若干定义:
1、分离系数(separation factor)
表示物料中的两种物质在经过分子筛膜分离操作前后相对含量的比值。其定义为:
Figure PCTCN2019104962-appb-000001
式中,α i/j代表分子筛膜对于i(优先透过膜)和j组分的分离系数;x i,p(x j,p)代表i(j)组分在渗透物中的质量分数;x i,f(x j,f)代表i(j)组分在原料中的质量分数。
2、渗透通量permeation flux
按规定温度、压力,物料在单位时间内透过单位膜面积的质量。其定义为:
Figure PCTCN2019104962-appb-000002
其中,J代表渗透通量(kgm -2h -1);W代表渗透组分的质量(kg);Δt代表取样间隔时间(h);A代表膜表面发挥分离作用的有效面积(m 2)。
3、分子筛膜脱水性能测试和分级标准
原料液为含乙醇90%(质量分数,下同)的乙醇水溶液,操作温度为65℃时,分子筛膜渗透汽化脱水的渗透通量不小于0.5kgm -2h -1,A级分子筛膜(优级品)分离系数应大于3000,B级分子筛膜分离系数应大于1500,C级分子筛膜分离系数应大于500,D级分子筛膜(合格品)的分离系数应大于150,分离系数小于150的记为E级分子筛膜(不合格品)。
实施例1
LTA型分子筛膜产品I的制备,包括如下步骤
(1)按照如下方法配制合成液I;
制备溶液A 1:15.0克NaOH溶于100ml去离子水中,然后加入0.54克金属铝箔,溶解即得溶液A 1
溶液B 1:25.0克NaOH溶于75ml去离子水中,然后加入10ml硅溶胶(其中含SiO 2的质量百分含量为30%),溶解即得溶液B 1
将溶液A 1和溶液B 1充分混合,得均匀澄清的合成液I。所得合成液I中,所含物质按照摩尔比折算50Na 2O:Al 2O 3:5SiO 2:1010H 2O。对应的折算摩尔浓度分别为:Na 2O,2.64mol/L;Al 2O 3,0.053mol/L;SiO 2,0.263mol/L。
(2)将长度为10cm直径为1.2cm的管状多孔氧化铝陶瓷支撑体用支架固定,垂直放置于聚四氟乙烯合成釜中,然后将合成液转入合成釜之中;在微波合成之前,将合成釜置于45℃烘箱中,使得支撑体在合成液存在条件下老化18小时;老化之后,将合成釜置于微波炉中,在4分钟内匀速升温至100℃;然后维持体系温度100℃,反应8分钟。完成合成后的分子筛膜管经洗涤处理,放置干燥。
(3)重复上述步骤(1)~(2)的操作一次,得担载型分子筛膜产品I。
将实施例1所制得的担载型分子筛膜产品I进行渗透汽化分离性能测试,在渗透温度为65℃时,对不同的醇/水体系的分离结果如表1。
表1
体系 甲醇/水 乙醇/水 异丙醇/水
原料液浓(wt.%) 90% 90% 90%
分离系数 5000 10000 10000
透量(g/m 2.hr) 860 1250 1500
由表1可以看出,通过本方法合成出的LTA型分子筛膜具有优秀的醇/水分离性能。
实施例2
LTA型分子筛膜产品II的制备
(1)按照如下方法配制合成液II:
配制溶液A 2:429克NaOH溶于2000ml去离子水中,然后加入42.3克偏铝酸钠,溶解即得溶液A 2
配制溶液B 2:429克NaOH溶于2000ml去离子水中,然后加入343克九水硅酸钠,溶解即得溶液B 2
将溶液A 2和溶液B 2充分混合,得均匀澄清的合成液II。所得合成液II中,所含物质按照摩尔比折算:51Na 2O:Al 2O 3:5SiO 2:1030H 2O。对应的摩尔浓度为:Na 2O,2.64mol/L;Al 2O 3,0.053mol/L;SiO 2,0.263mol/L。
(2)将长度为1030mm直径为1.2cm的管状多孔氧化铝陶瓷支撑体用支架固定,垂直放置于聚四氟乙烯合成釜中,然后将合成液转入合成釜之中;在微波合成之前,将合成釜置于45℃烘箱中,使得支撑体在合成液存在条件下老化18小时;老化之后,将合成釜置于微波炉中,在4分钟内可控延滞升温至98℃,然后维持温度在98℃,反 应8.5分钟,完成合成后的分子筛膜管经洗涤处理,放置干燥。
(3)重复上述步骤(1)~(2)的操作一次,得担载型分子筛膜产品II。经检测为LTA型分子筛膜。
对所制备得到的产品II进行X-射线衍射检测,结果如附图1所示,证明上述方法所制得产品II为LTA型分子筛膜。产品II的扫描电子显微镜照片如附图2所示,可以看出基膜表面形成了连续均匀的分子筛膜。
同一批使用实施例2的方法合成得到5根LTA型分子筛膜,分别进行渗透汽化分离研究,在渗透温度为65℃时,对乙醇/水体系的渗透汽化分离性能见表2。
表2
膜管序号 分离系数 透量(g/m 2.hr)
1 10000 820
2 10000 780
3 10000 810
4 10000 780
5 10000 820
由表2可以看出,通过本方法合成出的长管LTA型分子筛膜具有优秀的醇/水分离性能及良好的稳定性。
实施例3
FAU型分子筛膜产品III的制备
(1)按照如下方法配制合成液III:
溶液A 3:30.0克NaOH溶于220ml去离子水中,然后加入0.675克金属铝箔,溶解即得溶液A 3
溶液B 3:40.0克NaOH溶于200ml去离子水中,然后加入50ml硅溶胶(其中含SiO 2质量百分含量为30%),溶解即得溶液B 3
将溶液A 3和溶液B 3充分混合,得均匀澄清的合成液III。所得合成液III中,所含物质按照摩尔比折算:70Na 2O:Al 2O 3:20SiO 2:2020H 2O。对应的摩尔浓度为:Na 2O,1.94mol/L;Al 2O 3,0.028mol/L;SiO 2,0.56mol/L。
(2)将长度为10cm直径为1.2cm的管状多孔氧化铝陶瓷支撑体用支架固定,垂直放 置于聚四氟乙烯合成釜中,然后将合成液转入合成釜之中;在微波合成之前,将合成釜置于45℃烘箱中,使得支撑体在合成液存在条件下老化20小时;老化之后,将合成釜置于微波炉中,在6分钟内可控延滞升温至102℃,然后维持温度在102℃,反应9分钟;完成合成后的分子筛膜管经洗涤处理,放置干燥。
(3)重复上述步骤(1)~(2)的操作一次,得担载型分子筛膜产品III。经检测为FAU型分子筛膜。
将所制得的分子筛膜产品III进行渗透汽化分离研究,在渗透温度为65℃时,对不同的醇/水体系的分离结果如表3所示。
表3
体系 乙醇/水 异丙醇/水
原料液浓(wt.%) 90% 90%
分离系数 10000 10000
透量(g/m 2.hr) 1350 1600
由表3可以看出,通过本方法合成出的长管LTA型分子筛膜具有优秀的醇/水分离性能及良好的稳定性。
实施例4
LTA型分子筛膜合成的放大合成和重复性实验
采用管状支撑体,长度为1030mm,按照实施例2的方法等比例放大进行合成液的配置,共进行三批次(每批次3组,每组40根)总计360个平行试验。测试结果如表4。从表4的结果可以看出,该测试条件下,每一批次的产品合格率均为100%,优品率均超过90%。产品质量具备良好的批内及批间重复性。是切实满足大规模工业化生产和应用的产品。
作为对比,采用管状支撑体,长度为1030mm,参照CN100337918实施例1的方法进行一个批次(分3组,每组40根)总计120根分子筛膜管的平行试验,实验结果如表5所示。从表5的结果可以看出,该测试条件下,每一批次的产品合格率均较低,平均不合格产品率高达29.17%,优品率则在7.5%~25%之间摆动,产品质量组间重复性差。无法满足大规模工业化生产和应用的需求。 表4
Figure PCTCN2019104962-appb-000003
表5
Figure PCTCN2019104962-appb-000004

Claims (9)

  1. 微波合成担载型分子筛膜的方法,包括老化、升温和合成的步骤,其特征在于:
    所述的老化是将支撑体与合成液于25~70℃条件下接触10~24小时;
    所述的升温是将完成老化的体系在1~10min内从老化温度升至合成温度;
    所述的合成是在80~120℃条件下合成2~15min;
    其中,所述的升温和合成的步骤由微波供能。
  2. 根据权利要求1所述的方法,其特征在于,所述的老化步骤的温度是25~50℃。
  3. 根据权利要求2所述的方法,其特征在于,所述的老化步骤的时间是16~20小时。
  4. 根据权利要求1所述的方法,其特征在于,所述的升温步骤是将体系在2~10min内从老化温度升至合成温度。
  5. 根据权利要求1所述的方法,其特征在于,所述的合成是在80~120℃条件下合成6~10min。
  6. 根据权利要求1所述的方法,其特征在于,所述的支撑体是多孔支撑体。
  7. 根据权利要求6所述的方法,其特征在于,所述的支撑体选自以氧化铝、莫来石或堇青石为材质的支撑体。
  8. 根据权利要求1所述的方法,其特征在于,所述的合成液中按照摩尔比,含有2~5mol/L Na aO,0.04~0.06mol/L AL 2O 3,以及0.2~0.6mol/L SiO 2
  9. 根据权利要求1所述的方法,其特征在于,所述的担载型分子筛膜是担载型A型分子筛膜。
PCT/CN2019/104962 2018-12-16 2019-09-09 微波合成担载型分子筛膜的方法 WO2020125075A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021533366A JP7249415B2 (ja) 2018-12-16 2019-09-09 マイクロ波による担持型分子ふるい膜の合成方法
US17/414,182 US11926530B2 (en) 2018-12-16 2019-09-09 Method for synthesizing supported molecular sieve membrane by microwaves

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811538507.7A CN109534853A (zh) 2018-12-16 2018-12-16 微波合成担载型分子筛膜的方法
CN201811538507.7 2018-12-16

Publications (1)

Publication Number Publication Date
WO2020125075A1 true WO2020125075A1 (zh) 2020-06-25

Family

ID=65854778

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104962 WO2020125075A1 (zh) 2018-12-16 2019-09-09 微波合成担载型分子筛膜的方法

Country Status (4)

Country Link
US (1) US11926530B2 (zh)
JP (1) JP7249415B2 (zh)
CN (1) CN109534853A (zh)
WO (1) WO2020125075A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109534853A (zh) * 2018-12-16 2019-03-29 浙江汇甬新材料有限公司 微波合成担载型分子筛膜的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267566A (zh) * 1999-03-17 2000-09-27 中国科学院大连化学物理研究所 微波加热合成分子筛膜
CN1778677A (zh) * 2004-11-17 2006-05-31 中国科学院大连化学物理研究所 一种原位老化-微波加热合成分子筛膜的方法
US20180015420A1 (en) * 2015-02-03 2018-01-18 Shanghai Advanced Research Institute, Chinese Academy Of Sciences Method for the Pervaporation and Vapor-Permeation Separation of Gas-Liquid Mixtures and Liquid Mixtures by SAPO-34 Molecular Sieve Membrane
CN109534853A (zh) * 2018-12-16 2019-03-29 浙江汇甬新材料有限公司 微波合成担载型分子筛膜的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3667384B2 (ja) 1995-05-25 2005-07-06 三井造船株式会社 液体混合物分離膜
US6793911B2 (en) * 2002-02-05 2004-09-21 Abb Lummus Global Inc. Nanocrystalline inorganic based zeolite and method for making same
US8105548B2 (en) * 2005-06-10 2012-01-31 Mitsubishi Chemical Corporation Manufacturing device for zeolite membrane
CN100463714C (zh) 2005-12-26 2009-02-25 浙江师范大学 催化-分离一体化微型膜反应器的制造方法
CN101643218B (zh) * 2009-08-27 2011-02-09 浙江大学 一种微波加热合成取向性mfi型分子筛膜的方法
CN101746776A (zh) 2009-10-27 2010-06-23 华南理工大学 一种在α-Al2O3中空纤维表面合成NaA型分子筛膜的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1267566A (zh) * 1999-03-17 2000-09-27 中国科学院大连化学物理研究所 微波加热合成分子筛膜
CN1778677A (zh) * 2004-11-17 2006-05-31 中国科学院大连化学物理研究所 一种原位老化-微波加热合成分子筛膜的方法
US20180015420A1 (en) * 2015-02-03 2018-01-18 Shanghai Advanced Research Institute, Chinese Academy Of Sciences Method for the Pervaporation and Vapor-Permeation Separation of Gas-Liquid Mixtures and Liquid Mixtures by SAPO-34 Molecular Sieve Membrane
CN109534853A (zh) * 2018-12-16 2019-03-29 浙江汇甬新材料有限公司 微波合成担载型分子筛膜的方法

Also Published As

Publication number Publication date
US20220024774A1 (en) 2022-01-27
CN109534853A (zh) 2019-03-29
US11926530B2 (en) 2024-03-12
JP7249415B2 (ja) 2023-03-30
JP2022514490A (ja) 2022-02-14

Similar Documents

Publication Publication Date Title
CN103130241B (zh) 一种低硅纳米sapo-34分子筛的合成方法
CN101643218B (zh) 一种微波加热合成取向性mfi型分子筛膜的方法
CN102580568B (zh) 一种中空纤维分子筛膜的批量化制备方法
CN109850913A (zh) 一种支撑型超薄二维分子筛膜的制备方法及应用
Zhou et al. Microwave-assisted hydrothermal synthesis of a&b-oriented zeolite T membranes and their pervaporation properties
CN101254930B (zh) 一种微波加热法合成t型分子筛膜的方法
CN104888618A (zh) 一种在稀合成液中制备高性能b-zsm-5分子筛膜的方法
Xu et al. Preparation of a non-hydrothermal NaA zeolite membrane and defect elimination by vacuum-inhalation repair method
CN110683559A (zh) 一种超薄ssz-13分子筛膜的绿色合成方法
CN111056560B (zh) 一种超薄ssz-13分子筛膜的经济合成方法
CN103599709A (zh) 一种高成膜率合成NaA沸石膜的方法
WO2022166509A1 (zh) 一种合成高水渗透性的分子筛膜的方法
WO2020125075A1 (zh) 微波合成担载型分子筛膜的方法
Wu et al. Preparation of chabazite zeolite membranes by a two-stage varying-temperature hydrothermal synthesis for water-ethanol separation
CN107349955B (zh) 一种多孔石墨烯/分子筛复合薄膜酸催化剂及其制备方法与应用
CN112619448A (zh) 焙烧辅助的分子筛膜继代合成方法
CN114394612B (zh) 一种耐高温、低密度氧化铝纳米棒气凝胶及其制备方法
CN111054222B (zh) 分子筛膜的继代合成方法
CN111530302B (zh) 一种全硅和高硅cha分子筛膜的可控合成方法
CN114307689A (zh) 一种湿凝胶转化合成a型沸石膜的制备方法
CN107055567B (zh) 一种纳米y沸石积聚体的制备方法
CN111013404B (zh) 一种超薄mfi分子筛膜的快速经济的合成方法
CN111943221A (zh) K-f型沸石及其制备方法和在羟醛缩合反应中的应用
CN1778677A (zh) 一种原位老化-微波加热合成分子筛膜的方法
EP1980314A1 (en) Process for production of zeolite separation membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19900125

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021533366

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19900125

Country of ref document: EP

Kind code of ref document: A1