WO2022166509A1 - 一种合成高水渗透性的分子筛膜的方法 - Google Patents

一种合成高水渗透性的分子筛膜的方法 Download PDF

Info

Publication number
WO2022166509A1
WO2022166509A1 PCT/CN2022/070198 CN2022070198W WO2022166509A1 WO 2022166509 A1 WO2022166509 A1 WO 2022166509A1 CN 2022070198 W CN2022070198 W CN 2022070198W WO 2022166509 A1 WO2022166509 A1 WO 2022166509A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
synthesizing
high water
water permeability
source
Prior art date
Application number
PCT/CN2022/070198
Other languages
English (en)
French (fr)
Inventor
李良清
李佳佳
李良松
Original Assignee
黄山学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄山学院 filed Critical 黄山学院
Priority to ZA2022/03882A priority Critical patent/ZA202203882B/en
Publication of WO2022166509A1 publication Critical patent/WO2022166509A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • B01D61/362Pervaporation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/36Pervaporation; Membrane distillation; Liquid permeation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/028Molecular sieves

Definitions

  • the invention relates to the technical field of synthesis and application of a zeolite molecular sieve membrane, in particular to a method for synthesizing a molecular sieve membrane with high water permeability.
  • Zeolite molecular sieve membrane is a new type of inorganic membrane material that can be used in pervaporation process. It not only has the inherent physical and chemical properties of general inorganic membrane materials, but more excellently, its uniform and regular crystallographic channel system with specific spatial orientation and adjustable framework Si/Al ratio and other characteristics endow zeolite molecular sieves.
  • Membrane has sieving, shape-selective functional properties and adjustable membrane surface properties, making it an excellent porous membrane material for efficient separation at the molecular level and integration of membrane catalytic reactions, and is the most promising membrane material. one.
  • the acid resistance and hydrophilicity of zeolite molecular sieve membranes are affected by the framework Si/Al ratio. With the increase of framework Si/Al ratio, the acid resistance of zeolite molecular sieve membranes increases, but the hydrophilicity decreases. (Proposed by American Mobil Oil Company in the late 1960s) the Si/Al ratio of zeolite molecular sieve is generally 3 to ⁇ , and it has rich and adjustable acid resistance and hydrophilicity. Therefore, zeolite molecular sieve membranes have broad application prospects not only in organic dehydration, but also in acidic systems.
  • the zeolite molecular sieve membrane was also used for the separation of isopropanol water, acetone water or ethanol aqueous solution, wherein the separation factor for 90wt% isopropanol aqueous solution was 3100, and the permeation flux was 3.24 kg/m 2 ⁇ h ( J. Membr. Sci., 415-416 (2012) 57-65).
  • the research group of Zhu Guangshan of Jilin University prepared a hydrophilic zeolite molecular sieve membrane on a stainless steel mesh by hydrothermal synthesis of 45d at 100 °C. kg/m 2 ⁇ h (Chem. Commun., 49 (2013) 8839-8841).
  • the object of the present invention is to provide a method for synthesizing a molecular sieve membrane with high water permeability to solve the above-mentioned deficiencies in the prior art.
  • the present invention provides the following technical solutions: a method for synthesizing a molecular sieve membrane with high water permeability, comprising the following steps:
  • Step 1 Disperse the zeolite molecular sieve crystal seeds in deionized water to obtain crystal seed liquid;
  • Step 2 using the seed liquid obtained in step 1 to introduce a seed layer on the surface of the porous carrier;
  • Step 3 Dissolving NaOH, Al source, Si source and NaF in deionized water to prepare a synthetic solution, and stirring at 25-50 ° C for 2-24 h, the molar ratio of each component in the synthetic solution is:
  • NaOH:Al source:Si source:H 2 O:NaF 0.05 ⁇ 0.9:0.01 ⁇ 6:0.5 ⁇ 5:20 ⁇ 400:0.05 ⁇ 2;
  • Step 4 Immerse the porous carrier loaded with crystal seeds obtained in step 2 in the synthesis solution obtained in step 3 for 1 to 200 s, take it out, and transfer the porous carrier directly to the stainless steel reaction kettle until no synthetic droplets drop from the porous carrier Direct crystallization is carried out in the reactor, no other solvent is added to the reaction kettle, the synthesis temperature is 100-200 °C, and the synthesis time is 1-100 h. After the synthesis, the tube is taken out and washed to neutrality, and dried at 50-100 °C. Dry for 1 to 2 days.
  • the zeolite molecular sieve seeds selected in the first step are one of CHA zeolite molecular sieve seeds, Mordenite zeolite molecular sieve seeds, T-type zeolite molecular sieve seeds and ZSM-5 zeolite molecular sieve seeds.
  • the content of the zeolite molecular sieve seed crystals in the seed crystal liquid obtained in the first step is 0.025-15 wt%, and the crystal particle size in the seed crystal liquid is 50 nm-4 ⁇ m.
  • the molar ratio of each component in the synthetic solution in the step 3 is:
  • NaOH:Al source:Si source:H 2 O:NaF 0.05 ⁇ 0.9:0.01 ⁇ 6:0.5 ⁇ 5:25 ⁇ 350:0.05 ⁇ 2.
  • the method for introducing the seed liquid into the seed layer on the surface of the porous carrier selected in the second step is dipping, hot dipping, variable temperature thermal dipping, vacuum coating, spraying, wiping or spinning One of the coating methods.
  • the porous carrier used in the second step is selected from one or more of tubular, flat, hollow fiber or multi-channel carriers.
  • the Al source selected in the third step is one of Al(NO 3 ) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , Al 2 O 3 or Al(OCH(CH 3 ) 2 ) 3 kind.
  • the Si source selected in the step 3 is one of white carbon black, silica sol, ethyl orthosilicate or sodium silicate.
  • the zeolite molecular sieve membrane synthesized in the step 4 can be used for pervaporation and steam permeation, can also be used for ethanol, isopropanol, n-propanol, butanol, acetone solvent dehydration, and can also be used for acetic acid, acrylic acid and esters Solvent dehydration can also be used for organic solvent dehydration in acidic environment.
  • the zeolite molecular sieve membrane synthesized by the present invention can be used for pervaporation and steam permeation, and can be used for dehydration of ethanol, isopropanol, n-propanol, butanol and acetone solvents; it can also be used for dehydration of acetic acid, acrylic acid and ester solvents;
  • the synthesis time is greatly shortened while maintaining the high separation performance of the molecular sieve membrane.
  • the porous carrier impregnated with the synthetic liquid is crystallized, it is directly put into the reaction kettle for direct crystallization. It greatly reduces the use of medicines, avoids the waste of
  • a method for synthesizing a molecular sieve membrane with high water permeability comprising the following steps:
  • Step 2 Use the crystal seed solution obtained in Step 1 to introduce a seed crystal layer on the surface of the porous carrier.
  • the porous carrier used for synthesizing the molecular sieve membrane is an ⁇ -Al 2 O 3 carrier tube with an average pore diameter of 2-3 ⁇ m and a porosity of 30 % ⁇ 40%.
  • the ⁇ -Al 2 O 3 carrier tube was polished with sandpaper to be smooth and smooth before coating, and then ultrasonically cleaned with deionized water.
  • Step 3 Dissolving NaOH, Al source, Si source and NaF in deionized water to prepare a synthetic solution, and stirring at 25-50 ° C for 2-24 h, the molar ratio of each component in the synthetic solution is:
  • NaOH:Al source:Si source:H 2 O:NaF 0.05 ⁇ 0.9:0.01 ⁇ 6:0.5 ⁇ 5:20 ⁇ 400:0.05 ⁇ 2;
  • Step 4 Immerse the porous carrier loaded with crystal seeds obtained in step 2 in the synthesis solution obtained in step 3 for 1 to 200 s, take it out, and transfer the porous carrier directly to the stainless steel reaction kettle until no synthetic droplets drop from the porous carrier Direct crystallization is carried out in the reactor, no other solvent is added to the reaction kettle, the synthesis temperature is 100-200 °C, and the synthesis time is 1-100 h. After the synthesis, the tube is taken out and washed to neutrality, and dried at 50-100 °C. Dry for 1 to 2 days.
  • the zeolite molecular sieve crystal seed selected in the step 1 is one of the CHA zeolite molecular sieve crystal seeds, the Mordenite zeolite molecular sieve crystal seeds, the T-type zeolite molecular sieve crystal seeds and the ZSM-5 zeolite molecular sieve crystal seeds.
  • ZSM-5 zeolite molecular sieve seeds are preferably used.
  • the content of the zeolite molecular sieve seeds in the seed liquid obtained in the first step is 0.025-15wt%, and the crystal particle size in the seed liquid is 50nm-4 ⁇ m.
  • the mol ratio of each component in the synthetic solution in the step 3 is:
  • NaOH:Al source:Si source:H 2 O:NaF 0.05 ⁇ 0.9:0.01 ⁇ 6:0.5 ⁇ 5:25 ⁇ 350:0.05 ⁇ 2.
  • the method for introducing the seed liquid into the surface of the porous carrier with the seed crystal selected in the second step is dipping method, hot dipping method, variable temperature thermal dipping method, vacuum coating crystal method, spraying method. , one of wipe coating or spin coating.
  • the porous carrier used in the second step is selected from one or more of tubular, flat, hollow fiber or multi-channel carriers.
  • the Al source selected in the step 3 is Al(NO 3 ) 3 , Al 2 (SO 4 ) 3 , AlCl 3 , Al 2 O 3 or Al(OCH(CH 3 ) 2 ) one of 3 .
  • the Si source selected in the step 3 is one of white carbon black, silica sol, ethyl orthosilicate or sodium silicate.
  • the zeolite molecular sieve membrane synthesized in the step 4 can be used for pervaporation and steam permeation, and can also be used for ethanol, isopropanol, n-propanol, butanol, acetone solvent dehydration, and can also be used for Dehydration of acetic acid, acrylic acid and ester solvents, and can also be used for dehydration of organic solvents in acidic environments.
  • the synthesized zeolite molecular sieve membrane also has good pervaporation separation performance.
  • the permeation fluxes were 0.6 kg/m 2 ⁇ h and 3.1 kg/m 2 ⁇ h, respectively, and the separation factors were 1200 and 3100, respectively.
  • the pervaporation separation performance of the synthesized zeolite molecular sieve membrane is better than that of Example 2, dehydration of 90wt% acetic acid and 90wt% acetic acid respectively Isopropanol was dehydrated, the permeation fluxes were 0.7 kg/m 2 ⁇ h and 3.5 kg/m 2 ⁇ h, and the separation factors were 1700 and 4300, respectively.
  • Example 1 The zeolite molecular sieve membrane synthesized repeatedly under the conditions of Example 1 was applied to an organic solvent dehydration separation system in an acidic environment, and the pervaporation separation performance of the membrane in an acidic environment was investigated. The results are shown in Table 1.
  • the method of the membrane compared with the conventional traditional heating synthesis of zeolite molecular sieve membrane, greatly shortens the synthesis time while maintaining the high separation performance of the molecular sieve membrane. It is put into the reaction kettle for direct crystallization, which greatly reduces the use of medicines, avoids the waste of synthetic liquid, and is more environmentally friendly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

一种合成高水渗透性的分子筛膜的方法,包括以下步骤:将沸石分子筛晶种分散在去离子水中,得晶种液;用晶种液在多孔载体表面引入晶种层,将NaOH、Al源、Si源和NaF溶解在去离子水中配制得到合成液,将负载有晶种的多孔载体浸渍在得到的合成液中1~200s,再直接晶化。

Description

一种合成高水渗透性的分子筛膜的方法 技术领域
本发明涉及沸石分子筛膜的合成和应用技术领域,具体涉及一种合成高水渗透性的分子筛膜的方法。
背景技术
在石油化工、精细化工、医药化工和新能源等领域中,有机溶剂的制备及提纯是必不可少的过程。然而传统分离手段对有机溶剂的精制常常具有能耗高,分离效果差,设备投资大,产生二次污染等缺点,沸石分子筛膜是可用于渗透汽化过程中的一种新型无机膜材料。其不仅具有一般无机膜材料的固有的物理和化学特性,更为优异的是,其均一规则的、具有特定的空间走向的结晶孔道系统以及可调变的骨架Si/Al比等特性赋予沸石分子筛膜拥有筛分、择形功能特性和可调变的膜的表面特性,使其成为实现分子水平上高效分离及膜催化反应一体化的优良多孔膜材料,是最具潜力最有前途的膜材料之一。
一般来说,沸石分子筛膜的耐酸和亲水性受骨架Si/Al比影响。随骨架Si/Al比增大,沸石分子筛膜的耐酸性增高,但亲水性降低。(美国美孚石油公司于上个世纪六十年代末提出)沸石分子筛的Si/Al比一般为3~∞,具有丰富可调的耐酸和亲水性。因而沸石分子筛膜在不仅在有机物脱水方面具有广阔的应用前景,同时在酸性体系中也有潜在应用前景。
目前为止,制备的沸石分子筛膜大多采用常规水热合成法。日本山口大学的HidetoshiKita教授(Micropor.Mesopor.Mater.,181(2013)47-53)和XiansenLi等(J.Membr.Sci.,339(2009)224-232)分别通过常规水热合成法于180℃晶化48h和72h合成了沸石分子筛膜,均对乙酸脱水分离显现出较好的分离性能。此外,沸石分子筛膜还被用于异丙醇水、丙酮水或乙醇水溶液的分离,其中,对90wt%的异丙醇水溶液的分离因子为3100,渗透通量为3.24kg/m 2·h(J.Membr.Sci.,415-416(2012)57-65)。近期,吉林大学朱广山课题组于100℃水热合成45d在不锈钢网制备了亲水性沸石分子筛膜,对异丙醇水或乙醇水溶液的分离渗透通量分别高达6.88kg/m 2·h和5.96kg/m 2·h(Chem.Commun.,49(2013)8839-8841)。
技术问题
但是他们的方法合成时间都较长,且在常规传热过程中易出现温度梯度的影响,同时合成时使用药品较多,造成了一定的资源浪费。
本发明的目的是提供一种合成高水渗透性的分子筛膜的方法,以解决现有技术中的上述不足之处。
技术解决方案
为了实现上述目的,本发明提供如下技术方案:一种合成高水渗透性的分子筛膜的方法,包括以下步骤:
步骤一、将沸石分子筛晶种分散在去离子水中,得晶种液;
步骤二、用步骤一中得到的晶种液在多孔载体表面引入晶种层;
步骤三、将NaOH、Al源、Si源和NaF溶解在去离子水中配制得到合成液,并在25~50℃下搅拌2~24h,所述合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:20~400:0.05~2;
步骤四、将步骤二得到的负载有晶种的多孔载体浸渍在步骤三得到的合成液中1~200s,取出后,直至多孔载体无合成液滴落,再将多孔载体直接转移至不锈钢反应釜中进行直接晶化,反应釜中不再加入其它溶剂,合成温度为100~200℃,合成时间为1~100h,合成结束后,取出管并洗涤至中性,置于50~100℃下烘干1~2天。
优选的,所述步骤一中选用的沸石分子筛晶种为CHA沸石分子筛晶种、Mordenite沸石分子筛晶种、T-type沸石分子筛晶种和ZSM-5沸石分子筛晶种中的其中一种。
优选的,所述步骤一中制得晶种液中的沸石分子筛晶种的含量为0.025~15wt%,在晶种液中晶体颗粒大小为50nm~4μm。
优选的,所述步骤三中合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:25~350:0.05~2。
优选的,所述步骤二中选用的晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法中的其中一种。
优选的,所述步骤二中采用的多孔载体选用管状、平板、中空纤维或多通道载体中的一种或多种。
优选的,所述步骤三中选用的Al源为Al(NO 3) 3、Al 2(SO 4) 3、AlCl 3、Al 2O 3或Al(OCH(CH 3) 2) 3中的其中一种。
优选的,所述步骤三中选用的Si源为白炭黑、硅溶胶、正硅酸乙酯或硅酸钠中的其中一种。
优选的,所述步骤四合成得到的沸石分子筛膜可用于渗透汽化和蒸汽渗透,也可用于乙醇、异丙醇、正丙醇、丁醇、丙酮溶剂脱水,还可用于乙酸、丙烯酸和酯类溶剂脱水,同时也可以用于酸性环境下有机溶剂脱水。
有益效果
在上述技术方案中,本发明提供的技术效果和优点:
本发明合成得到的沸石分子筛膜可用于渗透汽化和蒸汽渗透,可用于乙醇、异丙醇、正丙醇、丁醇、丙酮溶剂脱水;也可用于乙酸、丙烯酸和酯类溶剂脱水;也可用于酸性环境下有机溶剂脱水,在pH=0~5的酸性条件下也呈现良好的分离性能,且本发明所开发的快速高效合成高分离性能的亲水性沸石分子筛膜的方法,与常规传统加热合成的沸石分子筛膜相比,在保持分子筛膜较高分离性能的同时大大缩短了合成时间,同时,在浸渍了合成液的多孔载体进行晶化时,直接将其投入至反应釜中进行直接晶化,大大的减少了药品使用,避免了合成液浪费,更加的环保。
本发明的实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面将对本发明作进一步的详细介绍。
实施例1
一种合成高水渗透性的分子筛膜的方法,包括以下步骤:
步骤一、将沸石分子筛晶种分散在去离子水中,得晶种液,取0.5g沸石分子筛(上海卓悦化工科技有限公司,SiO 2/Al 2O 3=15~45)加入100g去离子水,利用磁力搅拌器使溶液搅拌分散均匀,且过程中间隔置于超声波中震荡,配制得到质量分数为0.5wt%晶种液,将晶种液超声搅拌0.5h后备用;
步骤二、用步骤一中得到的晶种液在多孔载体表面引入晶种层,合成分子筛膜所用的多孔载体为α-Al 2O 3载体管,其平均孔径为2~3μm,孔隙率为30%~40%。α-Al 2O 3载体管在涂晶前先用砂纸打磨至平整光滑,然后用去离子水超声清洗,最后将其置于80℃烘箱中干燥过夜,取处理干燥后的α-Al 2O 3载体管,将管两端用聚四氟乙烯塞密封紧,随后将两端密封的α-Al 2O 3载体管缓慢放入步骤一得到的晶种液,30s后缓慢取出,之后立即取下管两端的聚四氟乙烯塞,室温晾干后,置于80℃烘箱中干燥过夜,得涂覆有晶种的α-Al 2O 3载体管;
步骤三、将NaOH、Al源、Si源和NaF溶解在去离子水中配制得到合成液,并在25~50℃下搅拌2~24h,所述合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:20~400:0.05~2;
步骤四、将步骤二得到的负载有晶种的多孔载体浸渍在步骤三得到的合成液中1~200s,取出后,直至多孔载体无合成液滴落,再将多孔载体直接转移至不锈钢反应釜中进行直接晶化,反应釜中不再加入其它溶剂,合成温度为100~200℃,合成时间为1~100h,合成结束后,取出管并洗涤至中性,置于50~100℃下烘干1~2天。
进一步的,在上述技术方案中,所述步骤一中选用的沸石分子筛晶种为CHA沸石分子筛晶种、Mordenite沸石分子筛晶种、T-type沸石分子筛晶种和ZSM-5沸石分子筛晶种中的其中一种,且本实施例中,优先选用ZSM-5沸石分子筛晶种。
进一步的,在上述技术方案中,所述步骤一中制得晶种液中的沸石分子筛晶种的含量为0.025~15wt%,在晶种液中晶体颗粒大小为50nm~4μm。
进一步的,在上述技术方案中,所述步骤三中合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:25~350:0.05~2。
进一步的,在上述技术方案中,所述步骤二中选用的晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法中的其中一种。
进一步的,在上述技术方案中,所述步骤二中采用的多孔载体选用管状、平板、中空纤维或多通道载体中的一种或多种。
进一步的,在上述技术方案中,所述步骤三中选用的Al源为Al(NO 3) 3、Al 2(SO 4) 3、AlCl 3、Al 2O 3或Al(OCH(CH 3) 2) 3中的其中一种。
进一步的,在上述技术方案中,所述步骤三中选用的Si源为白炭黑、硅溶胶、正硅酸乙酯或硅酸钠中的其中一种。
进一步的,在上述技术方案中,所述步骤四合成得到的沸石分子筛膜可用于渗透汽化和蒸汽渗透,也可用于乙醇、异丙醇、正丙醇、丁醇、丙酮溶剂脱水,还可用于乙酸、丙烯酸和酯类溶剂脱水,同时也可以用于酸性环境下有机溶剂脱水。
实施例2
按实施例1相同的操作,只是合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.4:0.08:1:120:0.8,合成所得的沸石分子筛膜也具有较好的渗透汽化分离性能。分别对90wt%乙酸脱水和90wt%异丙醇脱水,渗透通量分别为0.6kg/m 2·h和3.1kg/m 2·h,分离因子分别为1200和3100。
实施例3
按实施例1相同的操作,只是合成液中各组分的摩尔比为:
NaOH:Al源:Si源:H 2O:NaF=0.8:0.5:3:300:1.8,合成所得的沸石分子筛膜的渗透汽化分离性能优于实施例2,分别对90wt%乙酸脱水和90wt%异丙醇脱水,渗透通量分别为0.7kg/m 2·h和3.5kg/m 2·h,分离因子分别为1700和4300。
实施例4
按实施例1条件下重复合成的沸石分子筛膜应用到酸性环境下有机溶剂脱水分离体系,考察该膜在酸性环境下的渗透汽化分离性能。其结果如表1所示。
表1不同酸性环境下的渗透汽化分离性能
Figure 735771dest_path_image001
综上所述:本发明的技术方案合成得到的沸石分子筛膜可用于渗透汽化和蒸汽渗透,可用于乙醇、异丙醇、正丙醇、丁醇、丙酮溶剂脱水;也可用于乙酸、丙烯酸和酯类溶剂脱水;也可用于酸性环境下有机溶剂脱水,在pH=0~5的酸性条件下也呈现良好的分离性能,且本发明所开发的快速高效合成高分离性能的亲水性沸石分子筛膜的方法,与常规传统加热合成的沸石分子筛膜相比,在保持分子筛膜较高分离性能的同时大大缩短了合成时间,同时,在浸渍了合成液的多孔载体进行晶化时,直接将其投入至反应釜中进行直接晶化,大大的减少了药品使用,避免了合成液浪费,更加的环保。
以上只通过说明的方式描述了本发明的某些示范性实施例,毋庸置疑,对于本领域的普通技术人员,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,上述描述在本质上是说明性的,不应理解为对本发明权利要求保护范围的限制。

Claims (9)

  1. 一种合成高水渗透性的分子筛膜的方法,其特征在于,包括以下步骤:
    步骤一、将沸石分子筛晶种分散在去离子水中,得晶种液;
    步骤二、用步骤一中得到的晶种液在多孔载体表面引入晶种层;
    步骤三、将NaOH、Al源、Si源和NaF溶解在去离子水中配制得到合成液,并在25~50℃下搅拌2~24h,所述合成液中各组分的摩尔比为:
    NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:20~400:0.05~2;
    步骤四、将步骤二得到的负载有晶种的多孔载体浸渍在步骤三得到的合成液中1~200s,取出后,直至多孔载体无合成液滴落,再将多孔载体直接转移至不锈钢反应釜中进行直接晶化,反应釜中不再加入其它溶剂,合成温度为100~200℃,合成时间为1~100h,合成结束后,取出管并洗涤至中性,置于50~100℃下烘干1~2天。
  2. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤一中选用的沸石分子筛晶种为CHA沸石分子筛晶种、Mordenite沸石分子筛晶种、T-type沸石分子筛晶种和ZSM-5沸石分子筛晶种中的其中一种。
  3. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤一中制得晶种液中的沸石分子筛晶种的含量为0.025~15wt%,在晶种液中晶体颗粒大小为50nm~4μm。
  4. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤三中合成液中各组分的摩尔比为:
    NaOH:Al源:Si源:H 2O:NaF=0.05~0.9:0.01~6:0.5~5:25~350:0.05~2。
  5. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤二中选用的晶种液在多孔载体表面引入晶种层的方法为浸渍法、热浸渍法、变温热浸渍法、真空涂晶法、喷涂法、擦涂法或旋涂法中的其中一种。
  6. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤二中采用的多孔载体选用管状、平板、中空纤维或多通道载体中的一种或多种。
  7. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤三中选用的Al源为Al(NO 3) 3、Al 2(SO 4) 3、AlCl 3、Al 2O 3或Al(OCH(CH 3) 2) 3中的其中一种。
  8. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤三中选用的Si源为白炭黑、硅溶胶、正硅酸乙酯或硅酸钠中的其中一种。
  9. 根据权利要求1所述的一种合成高水渗透性的分子筛膜的方法,其特征在于:所述步骤四合成得到的沸石分子筛膜可用于渗透汽化和蒸汽渗透,也可用于乙醇、异丙醇、正丙醇、丁醇、丙酮溶剂脱水,还可用于乙酸、丙烯酸和酯类溶剂脱水,同时也可以用于酸性环境下有机溶剂脱水。
PCT/CN2022/070198 2021-02-02 2022-01-05 一种合成高水渗透性的分子筛膜的方法 WO2022166509A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
ZA2022/03882A ZA202203882B (en) 2021-02-02 2022-04-05 Method for synthesizing molecular sieve membrane with high water-permeability

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110144622.1 2021-02-02
CN202110144622.1A CN112933986A (zh) 2021-02-02 2021-02-02 一种合成高水渗透性的分子筛膜的方法

Publications (1)

Publication Number Publication Date
WO2022166509A1 true WO2022166509A1 (zh) 2022-08-11

Family

ID=76241797

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070198 WO2022166509A1 (zh) 2021-02-02 2022-01-05 一种合成高水渗透性的分子筛膜的方法

Country Status (3)

Country Link
CN (1) CN112933986A (zh)
WO (1) WO2022166509A1 (zh)
ZA (1) ZA202203882B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536038A (zh) * 2022-09-27 2022-12-30 浙江汇甬新材料有限公司 无模板剂离子交换晶种二次生长合成ssz-13分子筛膜的方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112933986A (zh) * 2021-02-02 2021-06-11 黄山学院 一种合成高水渗透性的分子筛膜的方法
CN114288871B (zh) * 2021-12-31 2023-06-16 武汉智宏思博环保科技有限公司 一种浸涂分子筛晶种法制备分子筛膜的方法
CN115286495A (zh) * 2022-08-23 2022-11-04 江西师范大学 一种采用zsm-5分子筛膜催化氧化甘油制备丙烯醛的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247768A (zh) * 2011-05-05 2011-11-23 武汉科技大学 利用热浸渍晶种法制备NaA分子筛膜的方法
CN105311972A (zh) * 2015-11-14 2016-02-10 大连理工大学 一种合成亲水性zsm-5沸石分子筛膜的方法
CN105363352A (zh) * 2015-11-14 2016-03-02 大连理工大学 一种含氟稀溶液合成高耐酸mor沸石分子筛膜的方法
CN107570018A (zh) * 2017-10-25 2018-01-12 大连理工大学 一种快速合成ssz‑13沸石分子筛膜的方法
CN108114613A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 晶种法制备耐酸性沸石分子筛膜的方法
CN109999676A (zh) * 2019-05-05 2019-07-12 大连理工大学 T型沸石分子筛膜的制备方法
CN112933986A (zh) * 2021-02-02 2021-06-11 黄山学院 一种合成高水渗透性的分子筛膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102247768A (zh) * 2011-05-05 2011-11-23 武汉科技大学 利用热浸渍晶种法制备NaA分子筛膜的方法
CN105311972A (zh) * 2015-11-14 2016-02-10 大连理工大学 一种合成亲水性zsm-5沸石分子筛膜的方法
CN105363352A (zh) * 2015-11-14 2016-03-02 大连理工大学 一种含氟稀溶液合成高耐酸mor沸石分子筛膜的方法
CN108114613A (zh) * 2016-11-26 2018-06-05 中国科学院大连化学物理研究所 晶种法制备耐酸性沸石分子筛膜的方法
CN107570018A (zh) * 2017-10-25 2018-01-12 大连理工大学 一种快速合成ssz‑13沸石分子筛膜的方法
CN109999676A (zh) * 2019-05-05 2019-07-12 大连理工大学 T型沸石分子筛膜的制备方法
CN112933986A (zh) * 2021-02-02 2021-06-11 黄山学院 一种合成高水渗透性的分子筛膜的方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115536038A (zh) * 2022-09-27 2022-12-30 浙江汇甬新材料有限公司 无模板剂离子交换晶种二次生长合成ssz-13分子筛膜的方法

Also Published As

Publication number Publication date
ZA202203882B (en) 2023-07-26
CN112933986A (zh) 2021-06-11

Similar Documents

Publication Publication Date Title
WO2022166509A1 (zh) 一种合成高水渗透性的分子筛膜的方法
CN102139188B (zh) 分子筛/有机复合渗透汽化分离膜的制备方法及其应用
CN109999676B (zh) T型沸石分子筛膜的制备方法
CN101890306B (zh) 一种在大孔载体上NaA沸石分子筛膜的合成方法
CN109224879B (zh) 一种cha分子筛膜的制备方法
CN112426891B (zh) 一种cha型沸石分子筛膜的制备方法
JP6158437B2 (ja) 高強度の中空糸型分子ふるい膜及びその製造方法
CN110683559A (zh) 一种超薄ssz-13分子筛膜的绿色合成方法
Yuan et al. Synthesis and characterization of high performance NaA zeolite-polyimide composite membranes on a ceramic hollow fiber by dip-coating deposition
CN110627491B (zh) 三明治结构分子筛膜的合成方法以及膜的用途
CN112744826B (zh) 一种全硅高硅分子筛膜及其快速制备方法
CN106582319A (zh) 一种在无纺布支撑体上制备晶体膜的方法
US8263179B2 (en) Process for producing zeolite separation membrane
Ma et al. Seeding-free synthesis of high-performance MFI zeolite membranes on superhydrophobic supports inspired by “like grows like” principle
Luo et al. Recent advances in acid-resistant zeolite T membranes for dehydration of organics
CN111760467A (zh) 一种t型沸石分子筛膜的制备方法
CN110605029A (zh) 一种合成ddr分子筛膜的方法
CN111054222B (zh) 分子筛膜的继代合成方法
CN111137904A (zh) 一种cha型分子筛及其合成方法与应用
CN108529639B (zh) 一种晶相转变制备菱沸石膜的方法
CN109970075B (zh) 一种低温合成a型分子筛膜的方法
CN106830195B (zh) 一种采用NaA沸石膜进行渗透蒸发脱盐的方法
CN109574034A (zh) 一种超声辅助快速合成超细eri型分子筛的方法
CN105366689B (zh) 一种稀溶液用微波辅助合成mor沸石分子筛膜的方法
JP7249415B2 (ja) マイクロ波による担持型分子ふるい膜の合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748788

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22748788

Country of ref document: EP

Kind code of ref document: A1