WO2020122507A1 - 토종닭의 유전적 배경 또는 품종을 판별하기 위한 snp 마커 세트 및 이의 용도 - Google Patents

토종닭의 유전적 배경 또는 품종을 판별하기 위한 snp 마커 세트 및 이의 용도 Download PDF

Info

Publication number
WO2020122507A1
WO2020122507A1 PCT/KR2019/017153 KR2019017153W WO2020122507A1 WO 2020122507 A1 WO2020122507 A1 WO 2020122507A1 KR 2019017153 W KR2019017153 W KR 2019017153W WO 2020122507 A1 WO2020122507 A1 WO 2020122507A1
Authority
WO
WIPO (PCT)
Prior art keywords
snp
chicken
broiler
polynucleotide
genetic background
Prior art date
Application number
PCT/KR2019/017153
Other languages
English (en)
French (fr)
Inventor
이준헌
이승환
서동원
김형용
Original Assignee
충남대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 충남대학교산학협력단 filed Critical 충남대학교산학협력단
Priority to CN201980048942.8A priority Critical patent/CN112513298B/zh
Publication of WO2020122507A1 publication Critical patent/WO2020122507A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers

Definitions

  • the present invention relates to a set of SNP markers and their use for discriminating the genetic background or variety of native chickens.
  • Poultry meat accounts for more than 20% of Korea's total meat production and plays an important role in farm income and rural economy.
  • the chickens which account for the highest proportion, depend mostly on imports from developed countries (United States, United Kingdom, France, Germany, Denmark, etc.).
  • the production history system has been promoted to secure reliability by separating domestic and imported species, whereas in traditional chickens, preservation and development have not been made much. Since the name and classification are not clear, it is urgent to secure reliability as a domestic species.
  • the Korean government has planned the Golden Seed Project to develop native chicken varieties to lower the dependence on poultry meat imports and to realize a seed power that leads future agriculture.
  • the new breed of native chicken developed through the project is progressing with a goal of over 30% of the domestic market share and export of over 1 million dollars to overseas markets. Therefore, in the case of native chicken varieties to be developed in the future, there is a need for a method capable of quickly and accurately identifying individual identification methods using genotypes.
  • domains that can identify individuals on chicken genes vary depending on the breed of chicken, so for identification of chickens, marker genes based on specific genetic patterns of chickens are selected, and gene identification using them It is important to establish the technique.
  • Korean Registered Patent No. 1751932 discloses a'new DNA labeling factor and a screening method using the same', which can predict and discriminate the genetic ability for daily gain of Korean native chickens
  • Korean Patent No. 2018 -0050470 discloses a'supersatellite marker for identification of a native chicken and a method for identifying the individual of a native chicken using the same', but the SNP marker and its use for discriminating the genetic background or variety of the native chicken of the present invention There is no description.
  • the present invention has been derived by the above-mentioned needs, and the present inventors developed a combination of SNP markers that are specific and optimized for breed-specific and optimized identification of new breed native chickens. Genotyping information of a total of 283 chickens of 6 chickens and 5 meat and spawning chickens was obtained using a 600K high-density SNP chip, and principal component analysis (Principal Coordinates Analysis, PcoA) based on the obtained genotype SNP information. As a result, it was confirmed that most of the varieties, except for some varieties, form clusters and are well distinguished.
  • PcoA Principal component analysis
  • the present inventor selected a total of 107 SNPs to select a combination of SNPs that can clearly distinguish the HH, HF, and HY strains of the Hanhyup, which are mainly used for producing new breed chickens in the Golden Seed project, and selected 107
  • the present invention was completed by confirming that each group was well distinguished.
  • SNP single nucleotide polymorphism
  • the present invention provides a microarray for discriminating a genetic background of a native chicken or a new breed of broiler chicken, including a polynucleotide containing the single nucleotide polymorphism (SNP) base or a cDNA thereof.
  • SNP single nucleotide polymorphism
  • the present invention comprises the steps of separating genomic DNA from a suspected native chicken or a new breeder broiler; And determining the genotype of a single nucleotide polymorphism (SNP) position base of the polynucleotide according to the present invention from the isolated genomic DNA. It provides a genetic background or breed discrimination method of a new breed of native chicken or broiler.
  • SNP single nucleotide polymorphism
  • the present invention provides a primer set for genetic background or breed discrimination of a new breed of native chicken or broiler for amplifying a polynucleotide comprising the single nucleotide polymorphism (SNP) base.
  • SNP single nucleotide polymorphism
  • the present invention is the primer set; And it provides a kit for determining the genetic background or breed of native chicken or broiler new breeds, including reagents for performing an amplification reaction.
  • the SNP marker composition according to the present invention can be used as a means to prevent illegal acts occurring in the distribution process of native chickens, and it is possible to accurately determine the genetic background for native chickens or new broilers, so consumers for native chickens It is expected to help increase the credibility of farmers and increase the income of poultry producers.
  • 1 is a result of performing principal component analysis (Principal Coordinates Analysis) of 283 chickens based on genotype information of SNPs obtained using a 600K high density SNP chip.
  • 3 is a result of performing a principal component analysis by generating a virtual progeny using a genotype secured to simulate the identification ability of 107 selected SNPs, yellow means a control group, and blue means a case group.
  • FIG. 6 shows the results of selecting SNPs that substantially affect the classification of varieties among 107 SNPs for the optimization of the marker combination based on the feature importance (FI) for each machine learning model.
  • the present invention SEQ ID NO: 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67,
  • the SNP marker composition SEQ ID NO: 1 to 13, 15 to 17, 19 to 24, 27 to 29, 31 to 36, 40, 42 to 45, 47 to 51, 53, 55, 58 to 61, In the polynucleotide consisting of the base sequence of 65, 66, 70, 72, 75 to 77, 80, 81, 83, 84, 87 to 91, 94, 96, 99, 101, 102, 104, 106 and 107, respectively Genetic genetics of a free-range chicken, further comprising at least one polynucleotide selected from the group consisting of 8 or more consecutive nucleotides comprising the SNP base located at the 36th of the nucleotide sequence and a complementary polynucleotide thereof An SNP marker composition for discriminating a new breed of background or broiler is provided.
  • the continuous nucleotide may be 8 to 100 consecutive nucleotides, but is not limited thereto.
  • nucleotide is a deoxyribonucleotide or ribonucleotide present in single-stranded or double-stranded form, and includes analogs of nucleotides in nature, unless specifically stated otherwise.
  • polymorphism refers to a case in which an organism of the same species has various appearances or unique characteristics, or two or more alleles exist in one locus.
  • a single base that differs depending on the individual is referred to as "single nucleotide polymorphism (SNP)".
  • SNP single nucleotide polymorphism
  • Various studies using SNP DNA analysis using a single base polymorphism have been conducted for research on native genetic resources in Korea and conservation of genetic resources, but studies related to native chickens have been limited.
  • the polymorphic marker for identifying the polymorphism may be one having two or more alleles showing a frequency of occurrence of 1% or more, preferably 5% or more, or 10% or more in a selected population.
  • native chicken in the present specification is intended to include purely native chickens, and varieties originating in foreign countries, but having a clear introduction and improved and stably settled in the climate and climate of Korea for at least 7 generations.
  • the native chicken may be a Hankyob variety H, F or Y, but is not limited thereto, and the new breed of broiler breeds using the Hankyob variety H, F or Y It can be a breed or offspring.
  • the Hanhyup variety H, F, or Y is a group that is utilized as a core system for the development of a new seed GSP (golden seed project) native chicken, and the SNP marker composition according to the present invention is a genotype between the Hanhye variety H, F or Y and other chicken varieties. Since it can be distinguished with high accuracy, it can be usefully used to secure and protect the rights of native chicken resources.
  • the SNP position base is the 36th base sequence of SEQ ID NOs: 1 to 107, and the polymorphic base information is [/] in the SNP sequence information of Tables 2 to 5 Was marked.
  • SNP composition according to the present invention SEQ ID NO: 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71 , 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103, and 36 polynucleotides consisting of a base sequence of 105 may be included as a minimum marker combination, and
  • the present invention also provides a microarray for discriminating a genetic background of a native chicken or a new breed of broiler chicken, comprising a polynucleotide comprising a single nucleotide polymorphism (SNP) base or cDNA thereof.
  • the polynucleotide may preferably be immobilized on an amino-silane, poly-L-lysine or aldehyde active group coated substrate, but is not limited thereto.
  • a micropipetting method using a piezoelectric method, a method using a pin type potter, etc. may be used, but is not limited thereto.
  • the substrate may be a silicon wafer, glass, quartz, metal or plastic, but is not limited thereto.
  • the microarray according to the present invention comprises the SNP base in the base sequence as described above, SEQ ID NO: 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62 36 polynucleotides consisting of nucleotide sequences 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 and 105 It may be composed of a minimum combination of nucleotides, and SEQ ID NOs: 1 to 13, 15 to 17, 19 to 24, 27 to 29, 31 to 36, 40, 42 to 45, 47 to 51, 53 , 55, 58 to 61, 65, 66, 70, 72, 75 to 77, 80, 81, 83, 84, 87 to 91, 94, 96, 99, 101, 102, 104, 106 and 107 It may be configured to further include one or more polynu
  • the microarray according to the present invention is a native chicken, particularly, Hankyo breed H, F, or Y. It can be useful to discriminate from varieties.
  • the present invention also comprises the steps of isolating genomic DNA from a suspected chicken or a new broiler chicken; And determining the genotype of a single nucleotide polymorphism (SNP) position base of the polynucleotide according to the present invention from the isolated genomic DNA. It provides a genetic background or breed discrimination method of a new breed of native chicken or broiler.
  • SNP single nucleotide polymorphism
  • the genotype of the SNP site is as shown in Tables 2 to 5.
  • the genetic background or breed discrimination method of a native chicken or broiler chicken of the present invention is determined by genotyping from genomic DNA isolated from a subject (a suspected chicken or a broiler chicken), so that the subject is a cooperative breed H, F or It is possible to determine whether it is Y, or whether it is a breed that has been bred using H, F or Y.
  • a method of separating genomic DNA from a subject can be accomplished through conventional methods known in the art. For example, it can be achieved by directly purifying DNA from tissue or cells or by specifically amplifying and isolating a specific region using an amplification method such as PCR.
  • DNA includes not only DNA, but also cDNA synthesized from mRNA.
  • the step of obtaining a nucleic acid from a subject is, for example, PCR amplification, ligase chain reaction, transcription amplification, self-sustained sequence replication system; Guatelli et al., Proc. Natl. Acad. Sci. USA (1990) 87:1874-1878) and nucleic acid sequence-based amplification may be used, but is not limited thereto.
  • a polymorphic site can be obtained by determining the nucleotide sequence of a direct nucleic acid by dideoxy method, or by hybridizing a probe comprising the sequence of the SNP site or a probe complementary thereto with the DNA and measuring the degree of hybridization obtained therefrom. Methods for determining/analyzing the nucleotide sequence may be used, but are not limited thereto.
  • the degree of hybridization may be achieved, for example, by labeling a target DNA with a detectable label, thereby specifically detecting only the hybridized target DNA, and other methods for detecting electrical signals may be used, but are not limited thereto.
  • the method comprising detecting a hybridization result after hybridizing the nucleic acid sample isolated from the suspected chicken or new broiler chicken with a polynucleotide comprising SNP according to the present invention, or a complementary polynucleotide thereof, or a polynucleotide hybridizing the same. can do.
  • probe refers to a single-stranded nucleic acid molecule comprising a site or sites that are substantially complementary to a target nucleic acid sequence.
  • hybridization means that complementary single-stranded nucleic acids form double-stranded nucleic acids. Hybridization can occur between two nucleic acid strands that are either fully matched or substantially matched with some mismatch. Complementarity for hybridization can vary depending on hybridization conditions, particularly temperature.
  • the genetic background or breed discrimination method of the native chicken according to the present invention can verify the accuracy and specificity of the genotyping results of each individual through a machine learning model, and the machine learning model includes AdaBoost, Decision Tree or Random. Forest model, but is not limited thereto.
  • the present invention also provides a primer set for genetic background or breed discrimination of a new breed of native chicken or broiler for amplifying a polynucleotide containing a single nucleotide polymorphism (SNP) base according to the present invention.
  • SNP single nucleotide polymorphism
  • the polynucleotide containing the SNP base may be composed of the base sequences of SEQ ID NOs: 1 to 107, and detailed information is as described above.
  • primer refers to a single-stranded oligonucleotide sequence complementary to the nucleic acid strand to be copied, and may serve as a starting point for the synthesis of primer extension products.
  • the length and sequence of the primer should allow the synthesis of the extension product to begin.
  • the specific length and sequence of the primer will depend on the desired DNA or RNA target complexity, as well as the conditions of primer use, such as temperature and ionic strength.
  • forward and reverse primers may form one primer set, and two allele specific forward primers and one reverse primer may form one primer set, or ASP (SNPtype assay) Allele specific primer (1), ASP2, LSP (SNPtype assay locus specific primer) and STA (SNPtype assay specific target amplification primer) primers may be a set of primers for fluidigm SNP genotyping that forms one primer set, but are not limited thereto.
  • the oligonucleotide primer set of the present invention can amplify a target sequence through an amplification reaction.
  • Methods for amplifying the target nucleic acid include polymerase chain reaction (PCR), ligase chain reaction, nucleic acid sequence-based amplification, and transcription-based amplification system. amplification system, strand displacement amplification or amplification via Q ⁇ -replicase or any other suitable method for amplifying nucleic acid molecules known in the art.
  • PCR is a method of amplifying a target nucleic acid from a primer pair that specifically binds to the target nucleic acid using a polymerase. Such PCR methods are well known in the art, and commercially available kits may be used.
  • the present invention also provides the primer set; And it provides a kit for determining the genetic background or breed of native chicken or broiler new breeds, including reagents for performing an amplification reaction.
  • reagents for performing the amplification reaction may include DNA polymerase, dNTPs, buffers, and the like.
  • the kit of the present invention may further include a user guide describing optimal conditions for performing the reaction.
  • the guide is a printout that explains how to use the kit, for example, how to make PCR buffers, and the reaction conditions presented.
  • the guide includes brochures in the form of brochures or flyers, labels attached to the kit, and descriptions on the surface of the package containing the kit.
  • the handbook includes information that is disclosed or provided through electronic media, such as the Internet.
  • the Korean chicken group consists of 9 strains (HH: 23, HF: 23, HG: 23, HS: 23, HV: 23, HW: 23, HA: 20, HY) : 21 animals, HZ: 15 animals) and 6 lines (NC: 6 animals, ND: 6 animals, NH: 6 animals, NS: 6 animals) provided by The National Institute of Animal Science (NIAS) NR: 6 animals, NY: 5 animals, and the utility group consists of 3 types of Cobb, Arbor Acre, Ross broiler (Cobb: 12, Ab: 10, Ross: 12) and 2 It consists of the spawning systems (HL: 10, LO: 10) of the species Hyline brown and Lohman brown.
  • the genomic DNA was extracted through the blood of the public axis using PrimePrep TM DNA Isolation Kit (GenetBio, Deajeon, Korea). The quality and concentration of the extracted gDNA was measured using a NanoDrop spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). The extracted DNA was stored frozen at -20°C until the experiment.
  • the obtained gDNA confirmed genotyping information of 580,954 SNPs (Single Nucleotide Polymorphism) using an Axiom 600K chicken array SNP chip (Affymetrix, Santa Clara, CA, USA). The identified genotype information uses the PLINK software (ver.
  • the group that is being used as the core system for the development of new breed native chicken is set as the case group (HH, HF, HY), and the rest of the group except HH, HF and HY All were set as a control group, and in order to secure a specific SNP of the case group, a Genome-Wide Association Study (GWAS) was conducted between the two groups.
  • GSP new breed native chicken
  • GWAS Genome-Wide Association Study
  • LD blocks were calculated to utilize the linkage disequilibrium (LD) diversity information and the shortcomings of most of the upper SNPs on the large chromosome, and based on the calculation results, 1, SNPs per 50 and 100 LD were selected, and three SNP combination sets (sets 1, 2, and 3) including 107 SNPs per set were constructed.
  • LD linkage disequilibrium
  • a Fluidigm's Biomark 96.96 Dynamic Array (Fluidigm Corporation, CA, USA) was prepared to generate a total of 182 chicken samples. Genotyping was performed. The genotyping analysis was carried out by the Hanhyup breeder company, which will be used as a case group.
  • GSP_CC HFHY
  • FHFY 10 animals
  • commercial broilers Ross: 20 animals, Cobb: 8 animals, Abor Acres: 11 animals
  • laying eggs Lihmann brown: 5 animals
  • Korean chickens Three types of practical broiler chickens (WM2: 10, Yelim: 5, Hyunin: 5) were used.
  • Sensitivity refers to the accuracy of the probability that an individual expected to be a test group by the SNP marker of the present invention is actually a test group.
  • Specificity refers to the accuracy of the probability that an individual expected to be a non-test group by the SNP marker of the present invention is actually a non-test group.
  • SNP genotype information was obtained using a 600K high-density SNP chip, respectively, and as a result of performing PcoA based on the genotype information of the acquired SNPs, most varieties except for some varieties form clusters and are well distinguished. It was confirmed (Fig. 1).
  • HH, HF, and HY are produced in a three-way hybrid method. It corresponds to the native chicken variety, and the HH and HF strains are used as a sub-family of meat characteristics, and the HY strain is used as a parent system of spawning characteristics. Therefore, it was selected as the main variety of SNP selection.
  • HH, HF, and HY are grouped using PLINK, a statistical analysis tool, for genotyping information of SNPs with 10% or more genotyping errors identified.
  • the rest of the native chicken group and the utility group were set as the control group, and then the case and control group were analyzed. After obtaining a significant difference in the result, the X2 (Chi-Squre) p-value was sorted in the lowest order, the sex chromosome Z chromosome SNP was removed, and the specific homozygous locus of the case population was selected.
  • the result of selecting one marker per 50 LD blocks by analyzing linkage disequilibrium (LD) block information of the population (set 2), 37 and 2 on chromosome 1 And 10 on chromosome 5, 8 on chromosome 6, 7 on chromosome 3 and 15, 6 on chromosome 24, 5 on chromosome 10, 4 on chromosome 20 and 26, respectively
  • LD linkage disequilibrium
  • SNP information for Set2 Chromosome number SNP number Chromosome number SNP number One 37 26 4 2 10 7 2 5 10 18 2 6 8 11 One 3 7 13 One 15 7 22 One 24 6 25 One 10 5 28 One 20 4
  • a fluidigm genotyping chip was manufactured and commercially available broilers (Ross, Cobb, Abor Acres) and lean broiler (Lohmann Brown), domestic chicken broiler broiler (WM) ) And a total of 182 additional genotypes were analyzed, including the Hanhyup Prototype (GPS) hybrid.
  • the overall call rate was 99.85%, confirming that genotyping was well done. That is not a part of the data call has been determined that affect the analysis was performed an analysis by replacing the total average value.
  • MDS multidimensional scaling
  • the discriminative ability was quantified by performing machine learning based on the variance information obtained through MDS analysis.
  • Machine learning used a total of 771 data including 283 numbers obtained from the existing 600K data and 488 virtual descendants as a learning data set, and 182 newly acquired genotype information as a test data set using ROC (Receiver) operating characteristic) curve.
  • the accuracy Ana Under Curve
  • the most optimal machine learning model for this variance information was selected based on the accuracy value (FIG. 5, Table 6).
  • a total of seven machine learning models (AdaBoost, Decision Tree, Linear Discriminant Analysis, Naive Bayes, Nearest Neighbors, Quadratic Discriminant Analysis, Random Forest) were applied to measure the varieties of 107 SNP markers.
  • AdaBoost machine learning models
  • Linear Discriminant Analysis a model that most models can classify varieties with a high level of accuracy.
  • GSP varieties HF, HH, HY, YH, FH, FY, CH, CF
  • other varieties can be classified with 99.45% probability.
  • a minimum combination marker was selected based on Feature Importance (FI) of SNPs, which substantially affects the classification of varieties, among 107 SNPs.
  • FI Feature Importance
  • 8 SNP markers were selected from the Decision Tree model, 44 from the Random Forest model, and 36 from the AdaBoost model.
  • the SNPs selected for each model's feature importance had some overlapping values, and consisted of a total of 61 SNPs selected from the three learning models. Therefore, 61 SNPs judged to have a substantial influence on cultivar classification were selected as optimal SNP marker combinations (FIG. 6, Tables 7, 8 and 9).
  • a validation test was conducted based on 61 selected optimal marker combinations.
  • a total of 771 data including 283 numbers and 488 virtual descendants obtained from the existing 600K data were used as the training data set, and 182 newly acquired genotype information was used as the test data set.
  • the accuracy of the marker combination was evaluated using (Table 10).
  • the linear discriminant analysis model showed the highest accuracy with 100% accuracy.
  • the AdaBoost model also showed a high level of accuracy at 99.45% (Table 11).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 토종닭의 유전적 배경 또는 품종을 판별하기 위한 SNP 마커 조성물 및 이의 용도에 관한 것으로, 본 발명의 SNP 마커 조성물은 신품종 토종닭을 정확하게 식별하기 위한 품종 특이적이고 최적화된 SNP 마커의 조합으로, 토종닭의 유통과정에서 부정행위를 방지하는 수단으로 활용될 수 있으며, 토종닭에 대한 소비자의 신뢰도를 상승시켜 가금 생산 농가의 소득 증대에 도움을 줄 수 있을 것으로 기대된다.

Description

토종닭의 유전적 배경 또는 품종을 판별하기 위한 SNP 마커 세트 및 이의 용도
본 발명은 토종닭의 유전적 배경 또는 품종을 판별하기 위한 SNP 마커 세트 및 이의 용도에 관한 것이다.
가금육은 우리나라 전체 육류생산량의 20% 이상을 차지하여 농가 소득 및 농촌 경제에 중요한 역할을 담당하고 있다. 그 중에서 가장 높은 비율을 차지하는 닭은 그 종자를 대부분 축산선진국(미국, 영국, 프랑스, 독일, 덴마크 등)으로부터 수입에 의존하고 있는 실정이다. 또한, 소(2008년), 돼지(2014년)의 경우 생산이력제 사업이 추진되어 국내종과 수입종의 구분으로 신뢰성을 확보해 나가고 있는 반면, 재래닭의 경우 보존 및 개발이 많이 이루어져 있지 않은 상태에 있고 그 명칭이나 구분이 명확하지 않아 국내종으로서의 신뢰성 확보가 시급한 실정이다. 농림축산식품부는 닭, 오리고기, 계란 등 가금산물의 유통경로를 소비자들이 한눈에 확인할 수 있도록 2019년 하반기 '가금 및 가금산물 이력제' 도입을 목표로 2018년 11월 시범사업을 추진하는 계획을 발표하였다.
한국 정부는 가금육의 수입 의존도를 낮추고 미래농업을 선도하는 종자강국 실현을 위해 토종닭 품종을 개발하는 골든씨드 프로젝트(Golden Seed Project)를 기획하였다. 상기 프로젝트를 통해 개발되는 토종닭 신품종은 국내시장 점유율 30% 이상, 해외시장 수출 100만 달러의 목표로 진행되고 있다. 따라서, 앞으로 개발될 토종닭 품종의 경우 유전자형을 이용한 개체식별 방법을 확립하여 신속하고 정확하게 식별할 수 있는 방법이 필요하다. 그러나, 닭의 유전자 상에서 개체 식별이 가능한 도메인(domain)은 닭의 품종에 따라 다양하게 나타나기 때문에, 닭의 개체 식별을 위해서는 닭의 특이적인 유전양상에 근거한 표지 유전자를 선정하고, 이들을 활용한 유전자 감식기법을 설정하는 것이 중요하다.
한편, 한국등록특허 제1751932호에는 한국산 재래닭의 일당 증체량에 대한 유전능력을 조기에 예측하고 식별할 수 있는 '신규한 DNA 표지인자 및 이를 이용한 선별방법'이 개시되어 있고, 한국공개특허 제2018-0050470호에는 '재래닭 개체 식별용 초위성체 마커 및 이를 이용한 재래닭의 개체 식별 방법'이 개시되어 있으나, 본 발명의 토종닭의 유전적 배경 또는 품종을 판별하기 위한 SNP 마커 및 이의 용도에 대해서는 기재된 바가 없다.
본 발명은 상기와 같은 요구에 의해 도출된 것으로서, 본 발명자들은 신품종 토종닭을 정확하게 식별하기 위한 품종 특이적이고 최적화된 SNP 마커의 조합을 개발하기 위해서, 한협의 토종닭 9계통, 국립축산과학원의 토종닭 6계통, 및 육용 및 산란 실용계 5계통의 총 283마리 닭의 유전자형 정보를 600K 고밀도 SNP 칩을 이용하여 획득하였고, 획득된 유전자형의 SNP들의 정보를 바탕으로 주성분 분석(Principal Coordinates Analysis, PcoA)을 실시한 결과, 일부 품종을 제외하고는 대부분의 품종이 클러스터를 형성하며 구분이 잘 이뤄지는 것을 확인하였다. 또한, 본 발명자는 골든씨드프로젝트에서 신품종 토종닭을 생산하기 위해 주로 사용되는 한협의 HH, HF 및 HY 계통을 명확하게 구분할 수 있는 SNP 조합을 선발하기 위해 총 107개의 SNP를 선발하였고, 선발된 107개의 SNP 조합을 이용하여 600K 칩으로 유전자형 분석을 수행한 동일한 샘플로 다시 주성분 분석을 수행한 결과, 각 집단의 구분이 잘 되는 것을 확인함으로써, 본 발명을 완성하였다.
상기 과제를 해결하기 위해, 본 발명은 서열번호 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 및 105의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 36번째에 위치한 SNP(single nucleotide polymorphism) 염기를 포함하는 8개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드 또는 이의 상보적인 폴리뉴클레오티드를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종을 판별하기 위한 SNP 마커 조성물을 제공한다.
또한, 본 발명은 상기 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드 또는 이의 cDNA를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종 판별용 마이크로어레이를 제공한다.
또한, 본 발명은 토종닭 의심 개체 또는 육계 신품종 개체에서 게놈 DNA를 분리하는 단계; 및 상기 분리된 게놈 DNA에서 본 발명에 따른 폴리뉴클레오티드의 SNP(single nucleotide polymorphism) 위치 염기의 유전자형을 결정하는 단계;를 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별 방법을 제공한다.
또한, 본 발명은 상기 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드를 증폭하기 위한, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별용 프라이머 세트를 제공한다.
또한, 본 발명은 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종을 판별하기 위한 키트를 제공한다.
본 발명에 따른 SNP 마커 조성물은 토종닭의 유통과정에서 발생하는 부정행위를 방지하는 수단으로 활용될 수 있으며, 토종닭 또는 육계 신품종에 대한 유전적 배경을 정확하게 판별할 수 있으므로, 토종닭에 대한 소비자의 신뢰도를 상승시켜 가금 생산 농가의 소득 증대에 도움을 줄 수 있을 것으로 기대된다.
도 1은 600K 고밀도 SNP 칩을 이용하여 획득된 SNP들의 유전자형 정보를 바탕으로 닭 283마리의 주성분 분석(Principal Coordinates Analysis)을 실시한 결과이다.
도 2는 선발된 107개의 SNP 조합을 이용하여 600K 칩으로 유전자형 분석을 수행한 동일한 샘플로 다시 주성분 분석을 수행한 결과로, HH, HF, HY 품종이 Case이고, 다른 계통의 품종은 Control이다.
도 3은 선발된 107개의 SNP들의 식별능력을 시뮬레이션하기 위해 확보된 유전자형을 이용하여 가상의 자손을 생성하여 주성분 분석을 수행한 결과로, 노란색은 Control 그룹을 파란색은 Case 그룹을 의미한다.
도 4는 가상의 집단과 실제 집단 182마리의 유전자형 정보를 이용하여 MDS(Multidimensional scaling) 분석을 실시한 결과이다.
도 5는 MDS 분석을 통해 얻은 분산 정보를 바탕으로 기존의 600K 데이터에서 획득한 283 수와 가상자손 488 수를 포함한 총 771 수의 데이터를 학습 데이터 세트로 사용하였고, 새롭게 획득한 192 수의 유전자형 정보를 테스트 데이터 세트로 사용하여 기계학습 모델별 ROC(Receiver operating characteristic) 커브를 도출한 결과이다.
도 6는 마커 조합의 최적화를 위해 전체 107개의 SNP 중 품종 구분에 실질적으로 영향을 주는 SNP를 각 기계학습의 모델별 특징 중요도(Feature Importance; FI)에 기초하여 선발한 결과이다.
본 발명의 목적을 달성하기 위하여, 본 발명은 서열번호 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 및 105의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 36번째에 위치한 SNP(single nucleotide polymorphism) 염기를 포함하는 8개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드 또는 이의 상보적인 폴리뉴클레오티드를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종을 판별하기 위한 SNP 마커 조성물을 제공한다.
또한, 본 발명은 상기 SNP 마커 조성물에 서열번호 1 내지 13, 15 내지 17, 19 내지 24, 27 내지 29, 31 내지 36, 40, 42 내지 45, 47 내지 51, 53, 55, 58 내지 61, 65, 66, 70, 72, 75 내지 77, 80, 81, 83, 84, 87 내지 91, 94, 96, 99, 101, 102, 104, 106 및 107의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 36번째에 위치한 SNP 염기를 포함하는 8개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드 및 이의 상보적인 폴리뉴클레오티드로 이루어진 군으로부터 선택되는 하나 이상의 폴리뉴클레오티드를 추가로 포함하는, 토종닭의 유전적 배경 또는 육계 신품종을 판별하기 위한 SNP 마커 조성물을 제공한다.
본 발명의 SNP 마커 조성물에 있어서, 상기 연속된 뉴클레오티드는 8 내지 100개의 연속된 뉴클레오티드일 수 있으나, 이에 제한되지 않는다.
본 명세서에서 용어, "뉴클레오티드"는 단일 가닥 또는 이중 가닥 형태로 존재하는 디옥시리보뉴클레오티드 또는 리보뉴클레오티드이며, 특별하게 다르게 언급되어 있지 않은 한 자연의 뉴클레오티드의 유사체를 포함한다.
용어 "다형성(polymorphism)"이란 같은 종의 생물이라도 모습이나 고유한 특징이 다양하게 나타나는 것 또는 하나의 유전자 좌(locus)에 두 가지 이상의 대립 유전자(allele)가 존재하는 경우를 말하며, 다형성 부위 중에서 개체에 따라 단일 염기만 다른 것을 "단일염기다형성(single nucleotide polymorphism, SNP)"이라 한다. 우리나라 고유 유전자원에 대한 연구와 유전자원의 보전을 위해 단일염기다형성을 이용한 SNP DNA 분석법을 이용한 다양한 연구가 수행되고 있으나, 토종닭과 관련된 연구는 제한적으로 진행되고 있는 실정이다. 상기 다형성을 확인하기 위한 다형성 마커는 선택된 집단에서 1% 이상, 바람직하게는 5% 이상 또는 10% 이상의 발생빈도를 나타내는 두 가지 이상의 대립유전자를 가지는 것일 수 있다.
본 명세서에서 용어 "토종닭"은 순수 혈통의 재래닭과, 외국에서 유래하였으나 도입 경위가 명확하고 개량을 거쳐 최소 7세대 이상 우리나라의 기후와 풍토에 안정적으로 정착한 품종을 포함하는 의미이다.
본 발명의 일 구현 예에 따른 SNP 마커 조성물에 있어서, 상기 토종닭은 한협 품종 H, F 또는 Y 일 수 있으나, 이에 제한되지 않으며, 상기 육계 신품종은 한협 품종 H, F 또는 Y를 이용하여 육종한 품종 혹은 자손 개체일 수 있다. 상기 한협 품종 H, F 또는 Y는 GSP(golden seed project) 신품종 토종닭 개발의 핵심계통으로 활용되고 있는 집단으로, 본 발명에 따른 SNP 마커 조성물은 한협 품종 H, F 또는 Y와 다른 닭 품종간의 유전형을 높은 정확도로 구별할 수 있으므로, 토종닭 자원에 대한 권리확보 및 보호에 유용하게 사용될 수 있을 것이다.
본 발명의 일 구현 예에 따른 SNP 마커 조성물에 있어서, 상기 SNP 위치 염기는 서열번호 1 내지 107의 염기서열 모두 36번째로, 다형성 염기 정보는 표 2 내지 5의 SNP 염기서열 정보에 [/]로 표시하였다.
본 발명에 따른 SNP 조성물은 서열번호 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 및 105의 염기서열로 이루어진 36개의 폴리뉴클레오티드를 최소 마커 조합으로 포함할 수 있고, 상기 외에 서열번호 1 내지 13, 15 내지 17, 19 내지 24, 27 내지 29, 31 내지 36, 40, 42 내지 45, 47 내지 51, 53, 55, 58 내지 61, 65, 66, 70, 72, 75 내지 77, 80, 81, 83, 84, 87 내지 91, 94, 96, 99, 101, 102, 104, 106 및 107의 염기서열로 이루어진 폴리뉴클레오티드로 이루어진 군으로부터 선택되는 하나 이상의 폴리뉴클레오티드를 추가로 포함할 수 있다. 상기 36개의 폴리뉴클레오티드로 이루어진 SNP 마커 조합은 특징 중요도(Feature Importance; FI)를 기준으로 선발되었으며 AdaBoost 기계 학습 모델에서 토종닭과 그 외의 닭 품종을 높은 정확도로 구별할 수 있는 최소의 마커 조합이다.
본 발명은 또한, 상술한 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드 또는 이의 cDNA를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종 판별용 마이크로어레이를 제공한다. 상기 폴리뉴클레오티드는 바람직하게는, 아미노-실란(amino-silane), 폴리-L-라이신 또는 알데히드 활성기가 코팅된 기판에 고정될 수 있으나, 이에 제한되지는 않는다. 상기 폴리뉴클레오티드를 기판에 고정화시키는 방법으로는 피에조일렉트릭(piezoelectric) 방식을 이용한 마이크로피펫팅법(micropipetting), 핀(pin) 형태의 폿터(spotter)를 이용한 방법 등을 사용할 수 있으나, 이에 한정되지 않으며, 당업계에 공지된 다양한 방법을 이용할 수 있다. 또한, 상기 기판은 실리콘 웨이퍼(silicon wafer), 유리, 석영(quartz), 금속 또는 플라스틱일 수 있으나, 이에 제한되지는 않는다.
본 발명에 따른 마이크로어레이는 전술한 것과 같이 염기서열 내에 SNP 염기를 포함하는 서열번호 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 및 105의 염기서열로 이루어진 36개의 폴리뉴클레오티드를 최소 조합으로 하여 구성될 수도 있고, 상기 36개의 폴리뉴클레오티드에 서열번호 1 내지 13, 15 내지 17, 19 내지 24, 27 내지 29, 31 내지 36, 40, 42 내지 45, 47 내지 51, 53, 55, 58 내지 61, 65, 66, 70, 72, 75 내지 77, 80, 81, 83, 84, 87 내지 91, 94, 96, 99, 101, 102, 104, 106 및 107의 염기서열로 이루어진 SNP 염기를 포함하는 폴리뉴클레오티드로 이루어진 군으로부터 선택되는 하나 이상의 폴리뉴클레오티드를 추가로 포함하여 구성될 수도 있다. 상기 폴리뉴클레오티드는 토종닭인 한협 품종 H, F 또는 Y와 다른 닭 품종간에 다형성을 나타내는 SNP 염기를 포함하고 있으므로, 본 발명에 따른 마이크로어레이는 토종닭 특히, 한협 품종 H, F 또는 Y를 다른 닭 품종들로부터 판별하는데 유용하게 활용될 수 있다.
본 발명은 또한, 토종닭 의심 개체 또는 육계 신품종 개체에서 게놈 DNA를 분리하는 단계; 및 상기 분리된 게놈 DNA에서 본 발명에 따른 폴리뉴클레오티드의 SNP(single nucleotide polymorphism) 위치 염기의 유전자형을 결정하는 단계;를 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별 방법을 제공한다.
본 발명의 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 방법에 있어서, 상기 SNP 위치의 유전자형은 표 2 내지 5에 개시된 것과 같다.
본 발명의 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별 방법은 피검체(토종닭 의심 개체 또는 육계 신품종 개체)로부터 분리한 게놈 DNA에서 유전자형의 결정을 통해, 피검체가 한협 품종 H, F 또는 Y인지, 혹은 한협 품종 H, F 또는 Y를 이용하여 육성된 품종인지를 판별할 수 있게 되는 것이다.
본 발명의 방법에 있어서, 피검체(토종닭 의심 개체 또는 육계 신품종 개체)로부터 게놈 DNA를 분리하는 방법은 당업계에 알려진 통상적인 방법을 통하여 이루어질 수 있다. 예를 들면, 조직 또는 세포로부터 DNA를 직접적으로 정제하거나 PCR과 같은 증폭 방법을 사용하여 특정한 영역을 특이적으로 증폭하고 이를 분리함으로써 이루어질 수 있다. 본 발명에 있어서, DNA란 DNA 뿐만 아니라 mRNA로부터 합성되는 cDNA도 포함한다. 피검체로부터 핵산을 얻는 단계는 예를 들면, PCR 증폭법, 리가제 연쇄 반응(ligase chain reaction), 전사증폭(transcription amplification), 자가유지 서열복제(self-sustained sequence replication system; Guatelli 등, Proc. Natl. Acad. Sci. USA (1990) 87:1874-1878) 및 핵산 서열 기재 증폭(nucleic acid sequence-based amplification)이 사용될 수 있으나, 이에 제한되지는 않는다.
분리된 DNA의 염기서열의 분석은 당업계에 알려진 다양한 방법에 의하여 이루어질 수 있다. 예를 들면, 디데옥시법에 의한 직접적인 핵산의 뉴클레오티드 서열의 결정을 통하여 이루어지거나, SNP 부위의 서열을 포함하는 프로브 또는 그에 상보적인 프로브를 상기 DNA와 혼성화시키고 그로부터 얻어지는 혼성화 정도를 측정함으로써 다형성 부위의 뉴클레오티드 서열을 결정/분석하는 방법 등이 이용될 수 있으나, 이에 제한되지는 않는다. 상기 혼성화의 정도는 예를 들면, 검출가능한 표지를 표적 DNA에 표지하여, 혼성화된 표적 DNA 만을 특이적으로 검출함으로써 이루어질 수 있으며, 그외 전기적 신호 검출방법 등이 사용될 수 있으나, 이에 제한되지는 않는다.
상기 토종닭 의심 개체 또는 육계 신품종 개체로부터 분리한 핵산 시료를 본 발명에 따른 SNP를 포함하는 폴리뉴클레오티드 또는 이의 상보적 폴리뉴클레오티드, 또는 이와 혼성화하는 폴리뉴클레오티드와 혼성화시킨 후 혼성화 결과를 검출하는 단계를 포함할 수 있다.
본 명세서에서 용어 "프로브(probe)"는 타겟 핵산 서열에 실질적으로 상보적인 부위 또는 부위들을 포함하는 단일-가닥 핵산 분자를 의미한다. 또한, 용어 "혼성화(hybridization)"는 상보적인 단일 가닥 핵산들이 이중-가닥 핵산을 형성하는 것을 의미한다. 혼성화는 완전히 매칭되거나 일부 미스매치로 실질적으로 매칭되는 2개의 핵산 가닥 사이에서 일어날 수 있다. 혼성화를 위한 상보성은 혼성화 조건, 특히 온도에 따라 달라질 수 있다.
또한, 본 발명에 따른 토종닭의 유전적 배경 또는 품종 판별 방법은 각 개체의 유전자형 분석 결과를 기계학습 모델을 통해 정확도 및 특이도를 검증할 수 있고, 상기 기계학습 모델은 AdaBoost, Decision Tree 또는 Random Forest 모델일 수 있으나, 이에 제한되지 않는다.
본 발명은 또한, 본 발명에 따른 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드를 증폭하기 위한, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별용 프라이머 세트를 제공한다.
본 발명의 프라이머 세트에 있어서, 상기 SNP 염기를 포함하는 폴리뉴클레오디드는 서열번호 1 내지 107의 염기서열로 이루어진 것일 수 있으며, 자세한 정보는 전술한 것과 같다.
본 명세서에서, 용어 "프라이머"는 카피하려는 핵산 가닥에 상보적인 단일 가닥 올리고뉴클레오티드 서열을 말하며, 프라이머 연장 산물의 합성을 위한 개시점으로서 작용할 수 있다. 상기 프라이머의 길이 및 서열은 연장 산물의 합성을 시작하도록 허용해야 한다. 프라이머의 구체적인 길이 및 서열은 요구되는 DNA 또는 RNA 표적의 복합도(complexity) 뿐만 아니라 온도 및 이온 강도와 같은 프라이머 이용 조건에 의존할 것이다. 본 발명에 따른 프라이머 세트는 정방향 및 역방향 프라이머가 하나의 프라이머 세트를 이룰 수 있고, 대립유전자(allele) 특이적 정방향 프라이머 2개와 역방향 프라이머 1개가 하나의 프라이머 세트를 이룰 수도 있으며, 또는 ASP(SNPtype assay allele specific primer)1, ASP2, LSP(SNPtype assay locus specific primer) 및 STA(SNPtype assay specific target amplification primer) 프라이머가 하나의 프라이머 세트를 이루는 Fluidigm SNP 유전형 분석용 프라이머 세트일 수 있으나, 이에 제한되지 않는다.
본 발명의 올리고뉴클레오티드 프라이머 세트는 증폭 반응을 통해 표적 서열을 증폭할 수 있다. 표적 핵산을 증폭하는 방법은 중합효소연쇄반응(polymerase chain reaction, PCR), 리가아제 연쇄반응(ligase chain reaction), 핵산 서열 기재 증폭(nucleic acid sequence-based amplification), 전사 기재 증폭 시스템(transcription-based amplification system), 가닥 치환 증폭(strand displacement amplification) 또는 Qβ-복제효소(replicase)를 통한 증폭 또는 당업계에 알려진 핵산 분자를 증폭하기 위한 임의의 기타 적당한 방법이 있다. 이 중에서, PCR이란 중합효소(polymerase)를 이용하여 표적 핵산에 특이적으로 결합하는 프라이머 쌍으로부터 표적 핵산을 증폭하는 방법이다. 이러한 PCR 방법은 당업계에 잘 알려져 있으며, 상업적으로 이용가능한 키트를 이용할 수도 있다.
본 발명은 또한, 상기 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종을 판별하기 위한 키트를 제공한다. 본 발명의 키트에서, 상기 증폭 반응을 수행하기 위한 시약은 DNA 폴리머라제, dNTPs, 버퍼 등을 포함할 수 있다. 또한, 본 발명의 키트는 최적의 반응 수행 조건을 기재한 사용자 안내서를 추가로 포함할 수 있다. 안내서는 키트 사용법, 예를 들면, PCR 완충액 제조 방법, 제시되는 반응 조건 등을 설명하는 인쇄물이다. 안내서는 팜플렛 또는 전단지 형태의 안내 책자, 키트에 부착된 라벨, 및 키트를 포함하는 패키지의 표면상에 설명을 포함한다. 또한, 안내서는 인터넷과 같이 전기 매체를 통해 공개되거나 제공되는 정보를 포함한다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 한정되는 것은 아니다.
1. SNP 마커 선별을 위한 재료 및 방법
공시축은 15계통의 한국 토종닭 집단과 5계통의 실용계 집단으로 구성된 총 283마리의 닭 샘플을 실험에 이용하였다. 한국 토종닭 집단은 한협 종계회사가 보유한 순계 9계통(HH: 23마리, HF: 23마리, HG: 23마리, HS: 23마리, HV: 23마리, HW: 23마리, HA: 20마리, HY: 21마리, HZ: 15마리)과 국립축산과학원(The National Institute of Animal Science, NIAS)에서 제공한 순계 6계통(NC: 6마리, ND: 6마리, NH: 6마리, NS: 6마리, NR: 6마리, NY: 5마리)으로 구성되어 있으며, 실용계 집단은 3종의 Cobb, Arbor Acre, Ross 회사의 육용계(Cobb: 12마리, Ab: 10마리, Ross: 12마리)와 2종의 Hyline brown, Lohman brown 회사의 산란계(HL: 10마리, LO: 10마리)로 구성되어 있다.
게노믹 DNA(gDNA)는 PrimePrep TM DNA Isolation 키트(GenetBio, Deajeon, Korea)를 이용하여 공시축의 혈액을 통해 추출하였다. 추출된 gDNA의 품질과 농도는 NanoDrop 분광광도계(Thermo Fisher Scientific, Waltham, MA, USA)를 이용하여 측정하였다. 추출된 DNA는 실험 전까지 -20℃에서 냉동 보관하였다. 상기 확보한 gDNA는 Axiom 600K chicken array SNP chip(Affymetrix, Santa Clara, CA, USA)을 이용하여 580,954개의 SNP(Single Nucleotide Polymorphism)의 유전자형 정보를 확인하였다. 확인된 유전자형 정보는 더욱 정확한 결과 도출을 위해 PLINK 소프트웨어(ver. 1.91, http://zzz.bwh.harvard.edu/plink/)를 활용하여 geno 옵션으로 유전자형 분석 오류가 10% 이상인 SNP들을 제거하는 QC(quality control)를 수행하였다. QC 과정을 수행한 SNP 유전자형 정보를 바탕으로 PLINK 소프트웨어를 이용하여 주성분 분석(Principal Coordinates Analysis, PcoA)을 실시하였다. 이를 통해 얻어진 데이터는 R software package를 이용하여 plot을 시각화 하였다.
2. SNP 마커 후보 세트 구성
600K SNP 칩으로 유전형을 확인한 집단 중에서 GSP(golden seed project) 신품종 토종닭 개발의 핵심계통으로 활용되고 있는 집단은 case 그룹(HH, HF, HY)으로 설정하고 HH, HF 및 HY를 제외한 나머지 집단은 모두 control 그룹으로 설정하여 case 그룹의 특이적인 SNP를 확보하기 위해 두 집단간의 GWAS(Genome-Wide Association Study)를 실시하였다. 분석결과에서 case 및 control 그룹을 유의적으로 구분할 수 있는 SNP들은 chi-square p-value 값에 따라 우선순위를 설정하였다. GWAS 방법을 이용하여 도출한 SNP 순위 중 상위 SNP들의 대부분이 거대 염색체에 포진되어 있는 단점과 집단의 연관불평형(Linkage Disequilibrium, LD) 다양성 정보를 활용하기 위해 LD 블록을 계산하였으며 계산 결과를 토대로 1, 50, 100 LD당 SNP를 선발하여 세트 당 107개의 SNP를 포함한 3종의 SNP 조합 세트(set 1, 2, 3)를 구성하였다.
상기 3종의 SNP 조합 세트들의 품종 식별능을 평가하기 위하여 각각의 SNP 조합 세트를 이용하여 PLINK 소프트웨어를 이용하여 주성분 분석(PcoA)을 실시하였다. 그 결과, 도 2에 개시된 것과 같이 50 LD당 SNP를 선발한 set 2의 결과가 최적의 집합양상을 나타내었다. 비록 도 2에서 set 3이 set 2와 비슷한 패턴을 보이는 것처럼 확인되었으나, 이전의 분석에서 마커들 간의 LD 간격이 커질수록 set 2가 set 3에 비해 집단 클러스터링이 더 잘 되는 결과를 보인 바 있어, set 2를 최종적으로 선발하였다. 또한 50 LD당 SNP를 선별한 set 2의 SNP는, 107개 SNP의 대다수가 1번 염색체에 몰려있는 set 1의 결과와 달리 전반적으로 SNP들이 각각의 염색체에 고루 분포하였다(하기 표 1 참고).
3. 최적의 SNP 마커 세트 구성
조합이 구성된 SNP 세트 중에서 set 2의 효율이 좋은 것을 확인하여 검증실험을 수행하기에 앞서 품종 구분 가능성을 평가하기 위해 가상의 자손 488마리(F 1, F 2 및 F 3)를 생성하여 평가하였다. 가상의 자손은 아비(2n)와 어미(2n)로부터 유래한 반수체(n) 대립유전자(allele)들의 임의적 결합을 통해 생성하였다. 가상의 자손 생성시 부모 계통으로 한협 회사의 HH, HF 및 HY 계통이 이용된 경우 case 그룹으로 추가 지정하였고, 그 외의 가상의 자손들은 control 그룹으로 포함되었다. 세트들의 SNP 유전자형 정보를 PLINK 소프트웨어(ver. 1.91)를 이용하여 각각 PcoA를 실시하였다. 추가적으로 PcoA 결과를 바탕으로 집단들을 가장 잘 구분할 수 있는 최적의 분류 모델(classification model)을 확인하기 위해 9가지의 기계학습 알고리즘(Nearest Neighbors, Linear SVM, Radial-Basis-Function SVM, Random Forest, AdaBoost, Naive Bayes, Linear Discriminant Analysis, Quadratic Discriminant Analysis algorithm, Decision tree)을 적용하여 최적의 107개 SNP 조합 세트 및 분류 모델을 판별하였다.
선발된 107개 SNP 조합 세트의 SNP들을 이용하여 실제집단을 구분할 수 있는 최적의 SNP 개수를 확인하기 위해 Fluidigm's Biomark 96.96 Dynamic Array(Fluidigm Corporation, CA, USA)를 제작하여 총 182마리의 닭 샘플에 대한 유전자형 분석을 실시하였다. 유전자형 분석은 case 집단으로 이용될 한협 종계회사가 보유한 순계 3계통(HF: 36마리, HH: 36마리, HY: 26마리)과 GSP 신품종 토종 실용계 집단 2종(GSP_CC(HFHY): 10마리, GSP_CC2(FHFY): 10마리) 및 control 집단으로 이용될 시중에 유통 중인 육용계(Ross: 20마리, Cobb: 8마리. Abor Acres: 11마리)와 산란계(Lohmann brown: 5마리), 한국 토종닭 계통의 실용 육용계 3종(WM2: 10마리, Yelim: 5마리, Hyunin: 5마리)을 이용하였다.
이어서 SNP 마커 개수에 따른 품종 구분 가능 정도를 확률적으로 계산하였다. 민감도(sensitivity)는 본 발명의 SNP 마커에 의해 test 그룹으로 예상되는 개체가 실제로 test 그룹일 확률의 정확도를 의미한다.
Figure PCTKR2019017153-appb-img-000001
특이도(specificity)는 본 발명의 SNP 마커에 의해 non-test 그룹으로 예상되는 개체가 실제로 non-test 그룹일 확률의 정확도를 의미한다.
Figure PCTKR2019017153-appb-img-000002
실시예 1. 토종닭 구분을 위한 SNP 마커의 선별
283마리의 SNP 유전자형 정보를 600K 고밀도 SNP 칩을 이용하여 각각 획득하였고, 획득된 SNP들의 유전자형 정보를 바탕으로 PcoA를 실시한 결과 일부 품종을 제외하고는 대부분의 품종이 클러스터를 형성하며 구분이 잘 이뤄지는 것을 확인할 수 있었다(도 1).
GSP에서 신품종 토종닭을 생산하기 위해 주로 사용되는 품종은 HH, HF, HY의 3개의 계통이 3원교잡의 방법으로 생산되게 되는데, HH, HF, HY계통의 경우는 한협에서 특이적으로 보유하고 있는 재래닭 품종에 해당하며, HH 및 HF 계통은 육용특성의 부계통으로, HY 계통은 산란특성의 모계통으로 활용되고 있어 교배 계획 전반에 활용되고 있을뿐만 아니라, 유전성분과 특성으로도 충분한 독립성을 띄고 있기 때문에 SNP 선발 주요 품종으로 선택하였다. HH, HF와 HY 계통을 명확하게 구분할 수 있는 SNP 조합을 선발하기 위해 유전자형 분석 에러가 10%이상 확인된 SNP를 QC한 유전자형 정보를 통계분석 도구인 PLINK를 이용하여 HH, HF 및 HY를 Case 그룹으로 설정하고, 나머지 토종닭 집단 및 실용계 집단을 모두 Control 그룹으로 설정한 후 Case, Control 집단에 대한 연관 분석을 수행하였다. 그 결과의 유의미한 차이인 X2(Chi-Squre) p-값을 획득하여 낮은 순서로 정렬한 후 성염색체인 Z 염색체 SNP를 제거하고, Case 집단의 특이 동형접합 좌위를 선발하였다. 또한, 유전체 전체에서 SNP를 고르게 선발하고자 집단의 연관불평형(Linkage Disequilibrium; LD) 블럭 정보를 분석하여 LD 블럭 50개당 하나의 마커를 선발한 결과(set 2), 1번 염색체에서 37개, 2번 및 5번 염색체에서 각각 10개, 6번 염색체에서 8개, 3번 및 15번 염색체에서 각각 7개, 24번 염색체에서 6개, 10번 염색체에서 5개, 20번 및 26번 염색체에서 각각 4개, 7번 및 18번 염색체에서 각각 2개, 11번, 13번, 22번, 25번 및 28번 염색체에서 각각 1개씩 총 107개의 SNP 조합을 얻을 수 있었다. 선발된 107개의 SNP 조합을 이용하여 600K 칩으로 유전자형 분석을 수행한 동일한 샘플로 다시 주성분 분석을 수행한 결과 Case 집단 구분이 잘 되는 것을 확인할 수 있었다(도 2).
Set2의 SNP 정보
염색체 번호 SNP 수 염색체 번호 SNP 수
1 37 26 4
2 10 7 2
5 10 18 2
6 8 11 1
3 7 13 1
15 7 22 1
24 6 25 1
10 5 28 1
20 4
Figure PCTKR2019017153-appb-img-000003
Figure PCTKR2019017153-appb-img-000004
Figure PCTKR2019017153-appb-img-000005
Figure PCTKR2019017153-appb-img-000006
실시예 2. 선별된 SNP 마커의 집단 구별능 평가
선발된 107개 SNP들의 식별능력을 시뮬레이션하기 위해 확보된 유전자형을 이용하여 가상의 자손을 생성하여 주성분 분석을 수행한 결과에서도 case와 control 집단이 분리 가능한 것을 확인할 수 있었고, case 집단에서 유래된 가상의 자손의 경우 case와 control 사이에 위치한 결과까지 확인할 수 있어, 집단간의 명확한 분리를 유도할 수 있어 신품종 토종닭의 품종식별과 부정유통 방지용 검증수단으로 활용 가능할 것으로 예측되었다(도 3).
실시예 3. 선별된 SNP 마커의 토종닭 집단 구별 분석
앞서 확증된 107개 SNP 마커의 식별력을 검증하기 위해 Fluidigm genotyping chip을 제작하여 시중에 유통 중인 실용 육용계(Ross, Cobb, Abor Acres)와 난용계(Lohmann Brown), 국산 토종닭 실용 육용계(WM) 및 한협의 원종계(GPS) 교잡종을 포함한 총 182마리의 추가 유전자형 분석을 실시하였다. 유전자형 분석 결과 전체 call rate가 99.85%로 전반적으로 유전자형 분석이 잘 이루어졌음을 확인하였다. 일부 call이 되지 않은 데이터 분석 결과에 영향을 주지 않는다고 판단되어 전체 평균값으로 대체하여 분석을 진행하였다. 선발된 107개 SNP 마커의 식별능을 검증하기 위해 앞서, 생성한 가상의 집단과 식별능 검증을 위해 새로이 유전자형 정보를 획득한 실제 집단 182마리의 유전자형 정보를 이용하여 MDS(Multidimensional scaling) 분석을 실시하였다. MDS plot을 확인한 결과, 기존 결과와 유사한 결과를 확인할 수 있었다. 즉 case와 control이 잘 분리되는 것이 확인되어, 본 발명의 107개의 SNP 칩을 이용한 분석 결과의 신뢰성이 높음을 확인할 수 있었다(도 4).
107개 SNP 마커의 식별능 검증을 보다 정확하게 수행하기 위해 MDS 분석을 통해 얻은 분산 정보를 바탕으로 기계학습을 실시하여 식별능을 수치화하였다. 기계학습은 기존의 600K 데이터에서 획득한 283 수와 가상자손 488 수를 포함한 총 771 수의 데이터를 학습 데이터 세트로 사용하였고, 새롭게 획득한 182 수의 유전자형 정보를 테스트 데이터 세트로 이용하여 ROC(Receiver operating characteristic) curve를 도출하였다. 이때 정확도(Area Under Curve)는 기계학습의 모델에 따라 변하기 때문에, 본 분산 정보에 가장 최적의 기계학습 모델을 정확도 수치에 기반하여 선택하였다(도 5, 표 6).
Figure PCTKR2019017153-appb-img-000007
총 7가지의 기계학습 모델(AdaBoost, Decision Tree, Linear Discriminant Analysis, Naive Bayes, Nearest Neighbors, Quadratic Discriminant Analysis, Random Forest)을 적용하여 107개 SNP 마커의 품종 식별능을 측정하였다. 기계학습 모델별 정확도를 도출한 결과, 대부분의 모델에서 전반적으로 높은 수준의 정확도로 품종 구분이 가능함을 확인하였다. 특히, AdaBoost 및 Linear Discriminant Analysis 모델의 경우 GSP 품종(HF, HH, HY, YH, FH, FY, CH, CF)과 그 외 품종을 99.45% 확률로 구분가능한 것으로 확인되었다. 이 외에도 Nearest Neighbors, Decision Tree 모델에서도 각각 96.7%와 92.85%로 높은 수준의 정확도를 확인하였다. 더불어, 실제 거짓값을 거짓값으로 인지할 확률의 지표인 Specificity는 모든 모델에서 100%의 정확도를 나타내었다. 이는 임의의 개체가 GSP 품종이 아닐 경우 이를 GSP 품종이 아니라고 판단할 확률이 100%임을 의미한다. 위와 같이 전반적으로 높은 수준의 품종 구분력을 보인 이유는 앞서 선발한 107개 SNP 마커들이 본 발명의 주요 타겟인 HF, HH, HY의 특이적인 SNP를 잘 반영하였기 때문인 것으로 사료되었다.
마커 조합의 최소화 및 최적화를 위해 전체 107개의 SNP 중 품종 구분에 실질적으로 영향을 주는 SNP를 특징 중요도(Feature Importance; FI)를 기준으로 최소조합 마커를 선발하였다. 선발 결과 Decision Tree 모델에서 8개, Random Forest 모델에서 44개, AdaBoost 모델에서 36개의 SNP 마커가 각각 선별되었다. 모델별 특징 중요도로 선별된 SNP들은 일부 중복된 값을 가지고 있었으며, 상기 3개의 학습모델에서 선발된 총 61개의 SNP로 구성되어 있었다. 따라서, 품종 구분에 실질적으로 영향을 준다고 판단되는 61개의 SNP를 최적의 SNP 마커 조합으로 선발하였다(도 6, 표 7, 8 및 9).
Figure PCTKR2019017153-appb-img-000008
Figure PCTKR2019017153-appb-img-000009
Figure PCTKR2019017153-appb-img-000010
선발된 최적의 마커 조합 61개를 바탕으로 검증 시험(validation test)을 진행하였다. 검증 시험은 앞선 방법과 동일하게 기존의 600K 데이터에서 획득한 283 수와 가상자손 488 수를 포함한 총 771 수의 데이터를 학습 데이터 세트로 사용하였고, 새롭게 획득한 182 수의 유전자형 정보를 테스트 데이터 세트로 이용하여 마커 조합의 정확도를 평가하였다(표 10).
Figure PCTKR2019017153-appb-img-000011
최적의 SNP 마커 조합 61개에 대한 정확도 평가 결과 Linear Discriminant Analysis 모델에서 100%의 정확도로 가장 높은 정확도를 보였다. AdaBoost 모델 또한 99.45%으로 높은 수준의 정확도를 나타냈다(표 11).
Figure PCTKR2019017153-appb-img-000012
더불어, AdaBoost 모델에서 선발된 36개의 최소의 SNP 마커 조합으로도 99.45%의 높은 수준의 품종 구분이 가능한 것을 확인하였다(표 12). 상기 최소 마커 조합을 활용하면 일부 주요 PL 계통인 HY를 제외하고 모든 집단에서 정확한 구분이 가능하였다. PL 집단의 특성상 시중에서 유통되지 않는 점과 기계학습의 학습데이터가 축적될수록 정확도가 개선되는 점을 감안한다면 실제 현장에서 신품종 토종닭을 구분 가능한 마커로 활용 가능 할 것으로 사료된다.
Figure PCTKR2019017153-appb-img-000013

Claims (9)

  1. 서열번호 14, 18, 25, 26, 30, 37, 38, 39, 41, 46, 52, 54, 56, 57, 62, 63, 64, 67, 68, 69, 71, 73, 74, 78, 79, 82, 85, 86, 92, 93, 95, 97, 98, 100, 103 및 105의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 36번째에 위치한 SNP(single nucleotide polymorphism) 염기를 포함하는 8개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드 또는 이의 상보적인 폴리뉴클레오티드를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종을 판별하기 위한 SNP 마커 조성물.
  2. 제1항에 있어서,
    서열번호 1 내지 13, 15 내지 17, 19 내지 24, 27 내지 29, 31 내지 36, 40, 42 내지 45, 47 내지 51, 53, 55, 58 내지 61, 65, 66, 70, 72, 75 내지 77, 80, 81, 83, 84, 87 내지 91, 94, 96, 99, 101, 102, 104, 106 및 107의 염기서열로 이루어진 폴리뉴클레오티드에 있어서, 각각의 염기서열 중 36번째에 위치한 SNP(single nucleotide polymorphism) 염기를 포함하는 8개 이상의 연속된 뉴클레오티드로 구성된 폴리뉴클레오티드 및 이의 상보적인 폴리뉴클레오티드로 이루어진 군으로부터 선택되는 하나 이상의 폴리뉴클레오티드를 추가로 포함하는 것을 특징으로 하는, 토종닭의 유전적 배경 또는 육계 신품종을 판별하기 위한 SNP 마커 조성물.
  3. 제1항 또는 제2항에 있어서, 상기 연속된 뉴클레오티드는 8개 내지 100개의 연속된 뉴클레오티드인 것을 특징으로 하는 SNP 마커 조성물.
  4. 제1항 또는 제2항에 있어서, 상기 토종닭은 한협 품종 H, F 또는 Y인 것을 특징으로 하는 SNP 마커 조성물.
  5. 제1항 또는 제2항에 기재된 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드 또는 이의 cDNA를 포함하는, 토종닭의 유전적 배경 또는 육계 신품종 판별용 마이크로어레이.
  6. 토종닭 의심 개체 또는 육계 신품종 개체에서 게놈 DNA를 분리하는 단계; 및
    상기 분리된 게놈 DNA에서 제1항 또는 제2항에 기재된 폴리뉴클레오티드의 SNP(single nucleotide polymorphism) 위치 염기의 유전자형을 결정하는 단계;를 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별 방법.
  7. 제6항에 있어서, 상기 토종닭은 한협 품종 H, F 또는 Y인 것을 특징으로 하는 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별 방법.
  8. 제1항 또는 제2항에 기재된 SNP(single nucleotide polymorphism) 염기를 포함하는 폴리뉴클레오티드를 증폭하기 위한, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종 판별용 프라이머 세트.
  9. 제8항의 프라이머 세트; 및 증폭 반응을 수행하기 위한 시약을 포함하는, 토종닭 또는 육계 신품종의 유전적 배경 또는 품종을 판별하기 위한 키트.
PCT/KR2019/017153 2018-12-12 2019-12-06 토종닭의 유전적 배경 또는 품종을 판별하기 위한 snp 마커 세트 및 이의 용도 WO2020122507A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980048942.8A CN112513298B (zh) 2018-12-12 2019-12-06 用于辨别土鸡的遗传背景或品种的单核苷酸多态性标记集及其用途

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20180159746 2018-12-12
KR10-2018-0159746 2018-12-12

Publications (1)

Publication Number Publication Date
WO2020122507A1 true WO2020122507A1 (ko) 2020-06-18

Family

ID=71077452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/017153 WO2020122507A1 (ko) 2018-12-12 2019-12-06 토종닭의 유전적 배경 또는 품종을 판별하기 위한 snp 마커 세트 및 이의 용도

Country Status (3)

Country Link
KR (1) KR102141091B1 (ko)
CN (1) CN112513298B (ko)
WO (1) WO2020122507A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695098A (zh) * 2020-12-04 2021-04-23 江苏省家禽科学研究所 一种闽清毛脚鸡种的鉴定方法
CN112899372A (zh) * 2021-01-26 2021-06-04 河北工程大学 与鸡开产日龄和产蛋量相关的hsd3b1基因snp分子标记及应用
CN113151485A (zh) * 2020-12-04 2021-07-23 江苏省家禽科学研究所 用于济宁百日鸡鉴定的芯片、引物组合、试剂盒及其鉴定方法
CN115058522A (zh) * 2022-07-21 2022-09-16 江苏省家禽科学研究所 一种鉴定含有白洛克血缘的肉鸡品种的分子标记及应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220091223A (ko) 2020-12-23 2022-06-30 (주)인실리코젠 품종 식별이 가능한 유전마커 선발 시스템 및 이를 이용한 품종 식별방법
KR102439855B1 (ko) * 2020-12-23 2022-09-02 (주)인실리코젠 토종닭 또는 육계 신품종을 판별하기 위한 snp 마커 조성물 및 이의 용도

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186446B1 (ko) * 1996-10-25 1999-10-01 구자홍 냉장고의 방열방법 및 그 장치
KR101474284B1 (ko) * 2012-10-17 2014-12-24 충남대학교산학협력단 재래닭의 개체식별을 위한 마이크로새틀라이트 마커 및 이를 이용한 재래닭의 개체식별 방법
KR101686441B1 (ko) * 2015-05-26 2016-12-14 대한민국 한국 토착 흑색 코니쉬 계통 닭 품종 판단용 snp 마커 및 이의 용도

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148612A (ja) * 2006-12-15 2008-07-03 National Agriculture & Food Research Organization 鶏の品種識別のためのツールおよびその利用
CN101016565A (zh) * 2007-02-09 2007-08-15 江苏省家禽科学研究所 应用dna条形编码鉴定鸡品种的方法
CN101974647B (zh) * 2010-11-26 2012-03-21 现代新农业(集团)股份有限公司 一种皇佳吉鸡品种的分子生物学鉴定方法
CN103374629B (zh) * 2012-04-28 2014-08-06 中国农业科学院北京畜牧兽医研究所 利用微卫星标记鉴定北京油鸡的方法
KR101686443B1 (ko) * 2015-05-26 2016-12-14 대한민국 로드아일랜드레드 닭 품종 판단용 snp 마커 및 이의 용도
KR101686446B1 (ko) * 2015-05-26 2016-12-14 대한민국 연산 오계 닭 품종 판단용 snp 마커 및 이의 용도
KR101686440B1 (ko) * 2015-05-26 2016-12-14 대한민국 한국 토착 갈색 코니쉬 계통 닭 품종 판단용 snp 마커 및 이의 용도
CN105349637A (zh) * 2015-10-26 2016-02-24 中国农业大学 一种与鸡蛋蛋重相关的snp分子标记及其应用
CN107354220A (zh) * 2017-08-24 2017-11-17 中国农业大学 一种与鸡产蛋数性状相关的分子标记及其应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100186446B1 (ko) * 1996-10-25 1999-10-01 구자홍 냉장고의 방열방법 및 그 장치
KR101474284B1 (ko) * 2012-10-17 2014-12-24 충남대학교산학협력단 재래닭의 개체식별을 위한 마이크로새틀라이트 마커 및 이를 이용한 재래닭의 개체식별 방법
KR101686441B1 (ko) * 2015-05-26 2016-12-14 대한민국 한국 토착 흑색 코니쉬 계통 닭 품종 판단용 snp 마커 및 이의 용도

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SEO, D. ET AL.: "Estimation of linkage disequilibrium and analysis of genetic diversity in Korean chicken tines", PLOS ONE, vol. 13, no. 2, 9 February 2018 (2018-02-09), pages 1 - 16, XP055717685 *
SEO. DONGWON ET AL.: "DNA Markers for the Genetic Diversity in Korean Native Chicken Breeds : A Review", THE JOURNAL OF KOREAN SOCIETY OF POULTRY SCIENCE, vol. 43, no. 2, 2016, pages 63 - 76 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112695098A (zh) * 2020-12-04 2021-04-23 江苏省家禽科学研究所 一种闽清毛脚鸡种的鉴定方法
CN113151485A (zh) * 2020-12-04 2021-07-23 江苏省家禽科学研究所 用于济宁百日鸡鉴定的芯片、引物组合、试剂盒及其鉴定方法
CN112899372A (zh) * 2021-01-26 2021-06-04 河北工程大学 与鸡开产日龄和产蛋量相关的hsd3b1基因snp分子标记及应用
CN115058522A (zh) * 2022-07-21 2022-09-16 江苏省家禽科学研究所 一种鉴定含有白洛克血缘的肉鸡品种的分子标记及应用
CN115058522B (zh) * 2022-07-21 2023-06-13 江苏省家禽科学研究所 一种鉴定含有白洛克血缘的肉鸡品种的分子标记及应用

Also Published As

Publication number Publication date
CN112513298A (zh) 2021-03-16
KR20200072410A (ko) 2020-06-22
KR102141091B9 (ko) 2020-08-04
KR102141091B1 (ko) 2020-08-04
CN112513298B (zh) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2020122507A1 (ko) 토종닭의 유전적 배경 또는 품종을 판별하기 위한 snp 마커 세트 및 이의 용도
US9976191B2 (en) Rice whole genome breeding chip and application thereof
Borevitz et al. Large-scale identification of single-feature polymorphisms in complex genomes
CN106480228B (zh) 水稻镉低积累基因OsHMA3的SNP分子标记及其应用
KR101883117B1 (ko) 토마토 청고병 저항성 토마토 판별용 snp 마커
CN113913533B (zh) 与草鱼性状相关的snp分子标记及其应用
CN108998550A (zh) 用于水稻基因分型的snp分子标记及其应用
CN106906303A (zh) 一个影响猪肉品质性状的snp标记及其应用
CN110541041B (zh) 与中国家马矮小性状相关的snp标记及其应用
US20170283854A1 (en) Multiplexed pcr assay for high throughput genotyping
CN108913787A (zh) 与绵羊多羔相关的snp分子标记及其应用
CN115029444A (zh) 一种与绵羊生长性状相关的分子标记及其应用
Fan et al. Development and validation of a 1 K sika deer (Cervus nippon) SNP Chip
CN109234449A (zh) 一种黑麦通用2rl染色体特异共显性kasp分子标记及其应用
CN117683927A (zh) 水稻抗稻瘟病基因的功能性kasp分子标记及其应用
CN111944913A (zh) 一种半滑舌鳎抗病育种基因芯片及其应用
KR102439855B1 (ko) 토종닭 또는 육계 신품종을 판별하기 위한 snp 마커 조성물 및 이의 용도
CN114410817B (zh) 小麦每穗小穗数性状相关snp位点及其应用
CN106929570B (zh) 一种利用普通牛y染色体单核苷酸遗传标记鉴定公牛品种的方法
CN110373489B (zh) 与小麦籽粒蛋白含量相关的kasp标记及其应用
CN115927733B (zh) 分子标记及其应用
CN110616256B (zh) 一种基于SNaPshot技术的多位点半滑舌鳎真伪雄鱼甄别体系和应用
CN114875160B (zh) 一种检测与鸡热应激耐受力有关的snp分子标记的试剂的应用、引物组合及其检测鉴定方法
KR102380677B1 (ko) 오이 흰가루병 저항성 개체 선별용 마커 및 이를 이용한 선별 방법
KR20230082354A (ko) 동양계 호박의 순도검정 및 품종판별을 위한 단일염기 다형성 마커세트 및 이의 용도

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894701

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894701

Country of ref document: EP

Kind code of ref document: A1