WO2020121984A1 - 電子機器、および、フラットケーブル - Google Patents
電子機器、および、フラットケーブル Download PDFInfo
- Publication number
- WO2020121984A1 WO2020121984A1 PCT/JP2019/047979 JP2019047979W WO2020121984A1 WO 2020121984 A1 WO2020121984 A1 WO 2020121984A1 JP 2019047979 W JP2019047979 W JP 2019047979W WO 2020121984 A1 WO2020121984 A1 WO 2020121984A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flat cable
- substrate
- shape
- electronic device
- specific direction
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B11/00—Communication cables or conductors
- H01B11/18—Coaxial cables; Analogous cables having more than one inner conductor within a common outer conductor
- H01B11/20—Cables having a multiplicity of coaxial lines
- H01B11/203—Cables having a multiplicity of coaxial lines forming a flat arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/70—Coupling devices
- H01R12/77—Coupling devices for flexible printed circuits, flat or ribbon cables or like structures
- H01R12/79—Coupling devices for flexible printed circuits, flat or ribbon cables or like structures connecting to rigid printed circuits or like structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0213—Electrical arrangements not otherwise provided for
- H05K1/0216—Reduction of cross-talk, noise or electromagnetic interference
- H05K1/023—Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
- H05K1/0233—Filters, inductors or a magnetic substance
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/147—Structural association of two or more printed circuits at least one of the printed circuits being bent or folded, e.g. by using a flexible printed circuit
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/165—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/361—Assembling flexible printed circuits with other printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B7/00—Insulated conductors or cables characterised by their form
- H01B7/08—Flat or ribbon cables
- H01B7/0861—Flat or ribbon cables comprising one or more screens
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01R—ELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
- H01R12/00—Structural associations of a plurality of mutually-insulated electrical connecting elements, specially adapted for printed circuits, e.g. printed circuit boards [PCB], flat or ribbon cables, or like generally planar structures, e.g. terminal strips, terminal blocks; Coupling devices specially adapted for printed circuits, flat or ribbon cables, or like generally planar structures; Terminals specially adapted for contact with, or insertion into, printed circuits, flat or ribbon cables, or like generally planar structures
- H01R12/50—Fixed connections
- H01R12/59—Fixed connections for flexible printed circuits, flat or ribbon cables or like structures
- H01R12/62—Fixed connections for flexible printed circuits, flat or ribbon cables or like structures connecting to rigid printed circuits or like structures
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/144—Stacked arrangements of planar printed circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/04—Assemblies of printed circuits
- H05K2201/042—Stacked spaced PCBs; Planar parts of folded flexible circuits having mounted components in between or spaced from each other
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/05—Flexible printed circuits [FPCs]
- H05K2201/052—Branched
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/10—Details of components or other objects attached to or integrated in a printed circuit board
- H05K2201/10007—Types of components
- H05K2201/10189—Non-printed connector
Definitions
- the present invention relates to an electronic device including a plurality of circuit boards and a cable connecting the plurality of circuit boards.
- the optical communication device described in Patent Document 1 includes a plurality of circuit boards and a plurality of flexible boards.
- the plurality of circuit boards are connected to each other using a flexible board.
- three or more circuit boards may be arranged at equal intervals.
- three or more circuit boards are usually connected by a flat cable having the same shape.
- Patent Document 1 since an ordinary flat cable as shown in Patent Document 1 is easily deformed, it may be deformed in an unexpected direction when connected to a plurality of circuit boards. Therefore, the work of connecting the flat cable to the circuit board becomes complicated.
- This problem is not limited to flat cables, but if it is a cable that can be easily deformed (for example, a coaxial cable), it will also occur.
- an object of the present invention is to provide an electronic device and a cable that can eliminate the complexity when connecting a plurality of circuit boards with a cable.
- the electronic device of the present invention includes a plurality of circuit boards having the same shape and a plurality of flat cables having the same shape.
- the plurality of circuit boards are arranged in a predetermined array and are connected by a plurality of flat cables.
- the plurality of flat cables are semi-rigid type cables having a shape corresponding to the arrangement of the plurality of circuit boards.
- the shape of the flat cable is stable when connecting the flat cable to multiple circuit boards arranged in a predetermined array. Further, due to the semi-rigid property, some deformation can be made by external force at the time of connection, and the connection work becomes easy.
- the complexity of connecting a plurality of circuit boards with a cable can be eliminated.
- FIG. 1 is an external perspective view showing the configuration of the electronic device according to the first embodiment of the present invention.
- 2(A) is a first side view of the flat cable
- FIG. 2(B) is a second side view of the flat cable
- FIG. 2(C) is a cross-sectional view taken along the line AA of the flat cable
- 2D is an enlarged cross-sectional view of the flat cable taken along the line AA.
- FIG. 3 is a side view of the flat cable before forming the bent portion.
- FIG. 4 is a flowchart showing the first method for manufacturing a flat cable.
- FIG. 5: is a side view which shows the structure of the flat cable which concerns on the 2nd Embodiment of this invention.
- FIG. 6 is a side view showing the configuration of the flat cable according to the third embodiment of the present invention.
- FIG. 7(A) is a first side view of the flat cable
- FIG. 7(B) is a second side view of the flat cable
- FIG. 7(C) is an enlargement of the AA cross section of the flat cable.
- FIG. 8 is a side sectional view showing an example of the configuration of the electronic device according to the fourth embodiment of the present invention.
- FIG. 9 is an external perspective view showing the configuration of the electronic device according to the fifth embodiment of the present invention.
- FIG. 10 is an external perspective view showing the configuration of the electronic device according to the sixth embodiment of the present invention.
- 11A, 11B, 11C, and 11D are cross-sectional views each illustrating an example of a structure of a flat cable.
- FIG. 1 is an external perspective view showing the configuration of the electronic device according to the first embodiment of the present invention.
- the electronic device 90 includes a plurality of flat cables 10 and a plurality of circuit boards 91.
- the plurality of circuit boards 91 have a flat plate shape, and the outer shapes of the plurality of circuit boards 91 are the same. That is, the plurality of circuit boards 91 have the same shape.
- the same circuit elements are mounted on the plurality of circuit boards 91.
- the plurality of circuit boards 91 are provided with connectors for external connection at substantially the same positions on one main surface.
- the plurality of circuit boards 91 are arranged at intervals in the z direction shown in FIG. 1, for example.
- the plurality of circuit boards 91 are arranged at substantially equal intervals.
- the main surfaces of the plurality of circuit boards 91 are parallel to the x direction and the y direction orthogonal to the z direction.
- the main surfaces of the plurality of circuit boards 91 face each other.
- a plurality of circuit boards 91 are connected to each other by the flat cable 10. Specifically, the circuit board 91 and the flat cable 10 are connected by mounting the connector 13 of the flat cable 10 on a connector for external connection of the circuit board 91. Then, one flat cable 10 connects two adjacent circuit boards 91.
- FIG. 2A is a first side view of the flat cable
- FIG. 2B is a second side view of the flat cable
- 2C is a sectional view taken along the line AA of the flat cable
- FIG. 2D is an enlarged sectional view taken along the line AA of the flat cable.
- FIG. 3 is a side view of the flat cable before forming the bent portion.
- the flat cable 10 includes a base 11, a plurality of signal conductors 12, and a plurality of connectors. 13 is provided.
- the base 11 has a plate shape or a film shape having a first main surface 101 and a second main surface 102.
- the plate shape or the film shape means a shape in which the dimensions in two directions (length direction and width direction) orthogonal to the thickness direction are significantly larger than the dimensions in the thickness direction.
- the base body 11 is long in the length direction orthogonal to the thickness direction and short in the width direction orthogonal to the first direction and the thickness direction.
- the base 11 includes an insulator layer 111 and an insulator layer 112.
- the insulator layer 111 and the insulator layer 112 are laminated in the thickness direction of the base 11.
- the base 11 is a laminated body of the insulating layer 111 and the insulating layer 112.
- the insulator layer 111 and the insulator layer 112 are made of a thermoplastic material having a predetermined elastic modulus.
- the main material of the insulator layer 111 and the insulator layer 112 is, for example, liquid crystal polymer, fluororesin, or the like.
- the plurality of signal conductors 12 are linear conductors, and have a shape extending along the length direction of the base 11.
- the plurality of signal conductors 12 are arranged at intervals in the width direction of the base 11.
- the plurality of signal conductors 12 are arranged at intermediate positions in the thickness direction of the base 11, as shown in FIG. 2(C). For example, as illustrated in FIG. 2D, the plurality of signal conductors 12 are arranged near the contact surface between the insulating layers 111 and 112.
- the plurality of signal conductors 12 are materials that have high conductivity and are not easily broken by bending or bending.
- the main material of the plurality of signal conductors 12 is copper (Cu).
- the connectors 13 are arranged at both ends of the base 11 in the length direction.
- the connector 13 at one end is arranged on the first main surface 101 of the base 11.
- the connector 13 at the other end is arranged on the second main surface 102 of the base 11.
- the connector 13 at one end is connected to one end in the extending direction of the plurality of signal conductors 12.
- the connector 13 at the other end is connected to the other ends of the plurality of signal conductors 12 in the extending direction.
- the connector 13 is shown as a connector that fits in the vertical direction with the mating connector, it may be a connector that fits in the mating connector by sliding and inserting in the lateral direction. In this case, even if the space between the plurality of substrates is small, it is easy to connect the substrates and the flat cable, and thus it is easy to connect the substrates to each other. Further, in this example, the connection via the connector is shown, but the connection may not be via the connector. In this case, a plurality of substrates can be densely arranged without worrying about the connector thickness. However, for example, when high connection strength is required, it is preferable to use a connector.
- the base 11 has a first portion 21, a second portion 22, and a third portion 23 in the length direction.
- the first portion 21 includes a first end portion in the length direction of the base body 11, and the third portion 23 includes a second end portion in the length direction of the base body 11.
- the second portion 22 is located between the first portion 21 and the third portion 23 in the length direction, and is connected to the first portion 21 and the third portion 23.
- the first portion 21 and the third portion 23 correspond to the "connecting portion" of the present invention
- the second portion 22 corresponds to the "line portion” of the present invention.
- a portion that overlaps the surface of the circuit board 91 to which the flat cable 10 itself is connected corresponds to a “connecting portion”
- a portion that does not overlap corresponds to a “line portion”, using FIG. 1. ..
- the length of the first portion 21 and the length of the third portion 23 are substantially the same, and are substantially the same as the distance between the external connection connector of the circuit board 91 and the side surface.
- the length of the second portion 22 is substantially the same as the arrangement interval of the plurality of circuit boards 91.
- the base 11 and the plurality of signal conductors 12 have a first portion 21 in the length direction.
- the connection portion with the second portion 22 has a bent portion CV.
- the main surface of the first portion 21 and the main surface of the second portion 22 are substantially orthogonal to each other.
- the base body 11 and the plurality of signal conductors 12 have a bent portion CV at the connecting portion between the second portion 22 and the third portion in the length direction.
- the main surface of the second portion 22 and the main surface of the third portion 23 are substantially orthogonal to each other.
- the bent portion CV does not have to be a right angle, and may have a curved shape or the like. However, a shape close to a right angle is easier to maintain a three-dimensional shape, and the shape is more stable.
- the length directions of the first portion 21 and the third portion 23 are parallel to the xF direction of the flat cable 10.
- the width direction of the first portion 21 and the third portion 23 is parallel to the yF direction of the flat cable 10.
- the thickness directions of the first portion 21 and the third portion 23 are parallel to the zF direction of the flat cable 10.
- the length direction of the second portion 22 is parallel to the zF direction of the flat cable 10.
- the width direction of the second portion 22 is parallel to the yF direction of the flat cable 10.
- the thickness direction of the second portion 22 is parallel to the xF direction of the flat cable 10.
- the first portion 21 and the third portion 23 extend on the same side with respect to the second portion 22.
- the connector 13 of the first portion 21 is arranged on the second portion 22 side, and the connector 13 of the third portion 23 is arranged on the opposite side to the second portion 22 side.
- the flat cable 10 has such a shape, even if the connectors for external connection of the plurality of circuit boards 91 are arranged on the surfaces of the respective circuit boards 91 as shown in FIG. A plurality of circuit boards 91 can be easily connected by the cable 10.
- the flat cable 10 is a cable having semi-rigidity.
- the semi-rigid property means that a three-dimensional shape can be maintained and a shape can be relatively easily deformed by an external force when no external force is applied.
- the flat cable 10 can be easily connected to the plurality of circuit boards 91 arranged. Specifically, for example, when one connector 13 is connected to one circuit board 91 while the shape of the flat cable 10 is maintained, the other connector 13 is in the vicinity of the connection portion to the other circuit board 91. Located in. Thus, only by connecting the one connector 13 to the one circuit board 91, the other connector 13 and the connection position on the other circuit board 91 are close to each other, and the flat cable 10 has flexibility. That is, since it is easily bent, the other connector 13 can be easily connected to the other circuit board 91.
- the dimensions of the first portion 21, the second portion 22, and the third portion 23 of the base body 11 of the flat cable 10 are based on the outer shapes of the plurality of circuit boards 91 and the arrangement intervals. This further facilitates the work of connecting the plurality of circuit boards 91 with the flat cable 10.
- FIG. 4 is a flowchart showing the first method for manufacturing a flat cable.
- a plurality of insulating resins each made of thermoplastic resin for example, in the case of FIG. 2D, correspond to the insulating layer 111 and the insulating layer 112 are laminated. Yes (S11).
- the signal conductor 12 is formed on the predetermined insulating resin.
- the laminated body is heated and pressed to form a flat plate-shaped multilayer substrate (base body 11 before plastic deformation) as shown in FIG. 3 (S12).
- the connector 13 is mounted on the flat multilayer substrate (S13).
- step S13 and step S14 may be reversed.
- the flat cable 10 By cooling the flat cable 10 in this state, the flat cable 10 having a bent portion CV whose shape is maintained and having semi-rigidity is formed.
- FIG. 5 is a side view which shows the structure of the flat cable which concerns on the 2nd Embodiment of this invention.
- the flat cable 10A according to the second embodiment has the same outer shape as the flat cable 10 according to the first embodiment, and the configuration of the base 11A and the signal conductor 12A. Differ in.
- the other structure of the flat cable 10A, and the configurations and connection modes of the plurality of circuit boards 91 are the same as those in the first embodiment, and the same points are described, and the description of the same points is omitted.
- the base 11A includes a plurality of insulator layers 1131, a plurality of insulator layers 1132, and a plurality of insulator layers 1141.
- the number of insulator layers 1131 is two
- the number of insulator layers 1132 is eight
- the number of insulator layers 1141 is two.
- the plurality of insulator layers 1131 and the plurality of insulator layers 1141 correspond to the “first insulator layer” of the present invention
- the plurality of insulator layers 1132 correspond to the “second insulator layer of the present invention. ".
- the plurality of insulator layers 1131 and the plurality of insulator layers 1141 have the same length in the xF direction (the “specific direction” of the present invention) (the “first length” of the present invention). It is longer than the length of the insulator layer 1132 in the xF direction (the “second length” in the present invention).
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, and the plurality of insulator layers 1141 have the same length in the yF direction.
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, and the plurality of insulator layers 1141 are stacked along the zF direction. At this time, the portion formed of the plurality of insulator layers 1131 and the portion formed of the plurality of insulator layers 1141 sandwich the portion formed of the plurality of insulator layers 1132.
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, and the plurality of insulator layers 1141 are stacked so that one ends in the xF direction are aligned with each other.
- the flat cable 10A externally has two bent portions CV in the middle of the length direction, like the flat cable 10.
- the flat cable 10A having such a configuration is manufactured, for example, by the following method.
- the plurality of insulator layers 1131 and the plurality of insulator layers 1132 are stacked to form the first stacked body 113.
- the linear conductors 121 extending in the xF direction are formed on the contact surfaces of the plurality of insulator layers 1131.
- the interlayer connection conductor 122 including a through hole filled with a conductive paste is formed on each of the plurality of insulator layers 1132.
- the interlayer connection conductor 122 is connected to the linear conductor 121.
- a plurality of insulator layers 1141 are laminated to form the second laminated body 114.
- the linear conductors 121 extending in the xF direction are formed on the contact surfaces of the plurality of insulator layers 1141.
- an interlayer connection conductor 122 formed of a through hole filled with a conductive paste is formed in the insulator layer 1141 on the side connected to the first stacked body 113 rather than the linear conductor 121. To do.
- the interlayer connection conductor 122 is connected to the linear conductor 121.
- the first laminated body 113 and the second laminated body 114 are laminated and partially thermocompression bonded.
- This portion is a portion where all of the plurality of insulator layers 1131, the plurality of insulator layers 1132, and the plurality of insulator layers 1141 are laminated.
- the first stacked body 113 and the second stacked body 114 are bonded or adhered.
- the interlayer connection conductor 122 of the first stacked body 113 and the interlayer connection conductor 122 of the second stacked body 114 are joined to form the signal conductor 12A.
- the flat cable 10A can be manufactured without utilizing plastic deformation using bending as in the first embodiment.
- the distance between the two connectors 13 in the zF direction can be set by the number of insulating layers 1132. Thereby, the distance between the two connectors 13 can be set by the thickness of the circuit board 91 or the intervals between the plurality of circuit boards 91.
- FIG. 6 is a side view showing the configuration of the flat cable according to the third embodiment of the present invention.
- the flat cable 10B according to the third embodiment is different from the flat cable 10A according to the second embodiment in that a portion longer in the xF direction is added.
- the other configuration of the flat cable 10B is the same as that of the flat cable 10A according to the second embodiment, and the description of the similar portions will be omitted.
- the flat cable 10B includes a base 11B.
- the base body 11B includes a plurality of insulator layers 1131, a plurality of insulator layers 1132, a plurality of insulator layers 1141, a plurality of insulator layers 1151, and a plurality of insulator layers 1152.
- the number of insulator layers 1131 is two
- the number of insulator layers 1132 is eight
- the number of insulator layers 1141 is two
- the number of insulator layers 1151 is two.
- the number is 2, and the number of insulating layers 1152 is 5.
- the lengths of the plurality of insulator layers 1131, the plurality of insulator layers 1141, and the plurality of insulator layers 1151 in the xF direction are the same, and are longer than the length of the plurality of insulator layers 1132 in the xF direction.
- the length of the plurality of insulator layers 1152 in the xF direction is substantially the same as the length of the plurality of insulator layers 1132 in the xF direction.
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, the plurality of insulator layers 1141, the plurality of insulator layers 1151, and the plurality of insulator layers 1152 have the same length in the yF direction.
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, the plurality of insulator layers 1141, the plurality of insulator layers 1151, and the plurality of insulator layers 1152 are laminated along the zF direction. At this time, the portion formed of the plurality of insulator layers 1131 and the portion formed of the plurality of insulator layers 1141 sandwich the portion formed of the plurality of insulator layers 1132. The portion formed of the plurality of insulator layers 1141 and the portion formed of the plurality of insulator layers 1151 sandwich the portion formed of the plurality of insulator layers 1152.
- the plurality of insulator layers 1131, the plurality of insulator layers 1132, the plurality of insulator layers 1141, the plurality of insulator layers 1151, and the plurality of insulator layers 1152 have one ends in the xF direction which are the same. So that they are stacked.
- the flat cable 10B can have a shape having two bent portions CV in the middle of the length direction and a branch DV in the middle.
- three circuit boards 91 can be connected by one flat cable 10B. Note that this fraction can be further increased, and four or more circuit boards 91 can be connected by one flat cable.
- the flat cable 10B having such a configuration is manufactured, for example, by the following method.
- the steps up to formation of the first laminated body 113 and the second laminated body 114 are the same as those of the flat cable 10A.
- a plurality of insulator layers 1151 and a plurality of insulator layers 1152 are stacked to form a third stacked body 115.
- the linear conductors 121 extending in the xF direction are formed on the contact surfaces of the plurality of insulator layers 1151.
- the interlayer connection conductor 122 including a through hole filled with a conductive paste is formed on each of the plurality of insulator layers 1152.
- the interlayer connection conductor 122 including a through hole filled with a conductive paste is formed in the third stacked body 115.
- the interlayer connection conductor 122 is connected to the linear conductor 121.
- the first laminated body 113, the second laminated body 114, and the third laminated body 115 are laminated and partially thermocompression bonded.
- This portion is a portion where all of the plurality of insulator layers 1131, the plurality of insulator layers 1132, the plurality of insulator layers 1141, the plurality of insulator layers 1151, and the plurality of insulator layers 1152 are laminated. Is.
- the first stacked body 113, the second stacked body 114, and the third stacked body 115 are bonded or adhered.
- the interlayer connection conductor 122 of the first stacked body 113 and the interlayer connection conductor 122 of the second stacked body 114 are joined, and the interlayer connection conductor 122 of the second stacked body 114 and the interlayer connection conductor 122 of the third stacked body 115 are joined. Then, the signal conductor 12B is formed.
- FIG. 7(A) is a first side view of the flat cable
- FIG. 7(B) is a second side view of the flat cable
- FIG. 7C is an enlarged cross-sectional view of the AA cross section of the flat cable.
- the flat cable 10C according to the fourth embodiment is different from the flat cable 10 according to the first embodiment in circuit function. The difference is that it has a part 110.
- the other configuration of the flat cable 10C is the same as that of the flat cable 10, and the description of the similar portions will be omitted.
- the flat cable 10C includes a circuit function unit 110 on the second portion 22 of the base 11C.
- the circuit function unit 110 includes a plurality of inductor conductors 12L.
- the plurality of inductor conductors 12L form a part of each of the plurality of signal conductors 12.
- the plurality of inductor conductors 12L run in parallel at intervals. In this way, by running the plurality of inductor conductors 12L in parallel, it is possible to remove noise that is superimposed on the signals of the plurality of signal conductors 12. That is, the circuit function unit 110 functions as a noise removal circuit.
- the circuit function unit 110 has a structure in which an insulator layer 111, an insulator layer 112, an insulator layer 116, an insulator layer 117, and an insulator layer 118 are laminated.
- the insulator layer 117 and the insulator layer 118 sandwich the portion including the insulator layer 111, the insulator layer 112, and the insulator layer 116 in the stacking direction.
- the insulator layer 111, the insulator layer 112, and the insulator layer 116 do not include a magnetic filler, and the insulator layers 117 and 118 include a magnetic filler.
- the coupling degree of the plurality of inductor conductors 12L is improved. This improves the noise removal effect of the plurality of inductor conductors 12L.
- the circuit function unit 110 is thicker than the other portions in the second portion 22. As a result, the circuit function unit 110 is less likely to be deformed, and the characteristic change of the circuit function unit 110 due to deformation can be suppressed.
- the circuit function part 110 is formed from the inner surface of the second part 22 (the surface on which the first part 21 and the third part 23 project). It has a protruding portion protruding toward the first main surface 101 side. The protrusion is arranged in the space between the first portion 21 and the third portion 23.
- the flat cable 10C has the recessed portion DP11 formed on the first main surface 101 side.
- the second main surface 102 of the circuit function unit 110 is flush with the second main surface 102 of the other portion.
- FIG. 8 is a side sectional view showing an example of the configuration of the electronic device according to the fourth embodiment of the present invention.
- the electronic device 90C includes a plurality of circuit boards 91, a plurality of flat cables 10C, and a housing 92.
- the plurality of circuit boards 91 are arranged at intervals so that the flat plate surfaces face each other, as in the first embodiment described above.
- the flat cable 10C connects adjacent circuit boards 91.
- the circuit board 91 to which the first portion 21 of the flat cable 10C is connected is arranged inside the recess portion DP11 of the flat cable 10C.
- the outer shape of the circuit board 91 and the shape of the recess DP11 are substantially the same. This facilitates positioning of the flat cable 10C when connecting the flat cable 10C to the circuit board 91. This facilitates the work of connecting the flat cable 10C to the circuit board 91.
- the circuit function unit 110 even if the circuit function unit 110 is made thicker than other portions, the circuit function unit 110 does not project the second main surface 102 outward. Therefore, the unnecessary space between the inner wall surface 921 of the housing 92 and the flat cable 10C can be reduced. Thereby, the housing 92 can be made smaller.
- FIG. 9 is an external perspective view showing the configuration of the electronic device according to the fifth embodiment of the present invention.
- the electronic device 90E according to the fifth embodiment is different from the electronic device 90 according to the first embodiment in the arrangement direction of the circuit boards 91 and the shape of the flat cable 10E. ..
- the other configuration of the electronic device 90E is the same as that of the electronic device 90, and the description of the similar portions is omitted.
- the plurality of circuit boards 91 are arranged at intervals along the direction (x direction in FIG. 9) parallel to these principal surfaces.
- the plurality of flat cables 10E have a first end 31, a second end 32, and a third end 33.
- the connector 13 of the first end portion 31 and the connector 13 of the second end portion 32 are connected by a plurality of signal conductors.
- the connector 13 of the first end portion 31 and the connector 13 of the third end portion 33 are connected by a plurality of signal conductors.
- the flat cable 10E has a bent portion CV at an intermediate position in the extending direction of the signal conductor.
- the shape of the bent portion CV is matched with the shape of the circuit board 91.
- FIG. 10 is an external perspective view showing the configuration of the electronic device according to the sixth embodiment of the present invention.
- the electronic device 90F according to the sixth embodiment is different from the electronic device 90 according to the first embodiment in the shape of the flat cable 10F and the circuit board 911 and the circuit board 912.
- the connection mode differs.
- the other configuration of the electronic device 90F is the same as that of the electronic device 90, and the description of the similar portions will be omitted.
- the circuit board 911 and the circuit board 912 have the same outer shape, but the mounting position of the electronic component 991 on the circuit board 911 and the mounting position of the electronic component 992 on the circuit board 912 are different.
- the flat cable 10F includes a first portion 21F, a second portion 22, and a third portion 23F.
- the shape of the first portion 21F (outer shape when viewed in plan) and the shape of the third portion 23F (outer shape when viewed in plan) are different.
- the first portion 21F has a shape that avoids the electronic component 991 when the flat cable 10F is connected to the circuit board 911.
- the third portion 23F has a shape that avoids the electronic component 992 when the flat cable 10F is connected to the circuit board 912.
- the circuit board 911 and the circuit board 912 are connected by the flat cable 10F. 912 can be connected.
- the flat cable is provided with a plurality of signal conductors that individually transmit a single signal without having a ground.
- the configuration for transmitting signals formed on the flat cable is not limited to this, and may be, for example, the following configuration.
- 11A, 11B, 11C, and 11D are cross-sectional views each illustrating an example of a structure of a flat cable. Note that FIG. 11A, FIG. 11B, FIG. 11C, and FIG. 11D are cross-sectional views of the second portion, and the first portion and the third portion are the second portions. It has the same line configuration.
- two signal conductors 1211 and 1221 are arranged inside the base 11.
- the signal conductors 1211 and 1221 run in parallel.
- a ground conductor 123 is arranged on the first main surface 101 and the second main surface 102 of the base 11. It is preferable that the ground conductor 123 faces the signal conductors 1211 and 1221 and covers substantially the entire surfaces of the first main surface 101 and the second main surface 102.
- the flat cable 10G1 can realize a differential signal transmission line having a strip line structure.
- two signal conductors 1211 and 1221 are arranged on the second main surface 102 of the base 11.
- the signal conductors 1211 and 1221 run in parallel.
- a ground conductor 123 is arranged on the first main surface 101 of the base 11.
- the ground conductor 123 faces the signal conductors 1211 and 1221 and preferably covers substantially the entire first main surface 101.
- the flat cable 10G2 can realize a differential signal transmission line having a microstrip line structure.
- each signal conductor 1211, 1221, 1212, 1222 is arranged inside the base 11.
- the signal conductors 1211, 1221, 1212, 1222 run in parallel.
- a ground conductor 123 is arranged on the first main surface 101 and the second main surface 102 of the base 11. It is preferable that the ground conductor 123 faces the signal conductors 1211, 1221, 1212, 1222 and covers substantially the entire first main surface 101 and the second main surface 102.
- An interlayer connection conductor 124 is arranged at an intermediate position in the direction in which the plurality of signal conductors 1211, 1221, 1212, 1222 are arranged on the base 11.
- the interlayer connection conductor 124 is arranged between the set of signal conductors 1211 and 1221 and the set of signal conductors 1212 and 1222.
- the interlayer connection conductor 124 is connected to the ground conductor 123 of the first main surface 101 and the ground conductor 123 of the second main surface 102.
- the interlayer connection conductor 124 is formed by, for example, through hole plating, paste via, or the like.
- the flat cable 10G3 can realize a configuration including two differential signal transmission lines having a strip line structure.
- the interlayer connection conductor 124 connected to the ground conductor 123 is arranged between the two sets of differential signal lines. Therefore, the electromagnetic field coupling between the differential signal transmission line formed of the signal conductors 1211 and 1221 and the differential signal transmission line formed of the signal conductors 1212 and 1222 can be suppressed, and the isolation can be increased. That is, it is possible to realize a configuration in which the electromagnetic shield member is arranged between the plurality of differential signal transmission lines.
- FIG. 11D further includes an interlayer connection conductor 125 in addition to the configuration of FIG. 11C.
- the interlayer connection conductors 125 are arranged at both ends of the base 11 in the direction in which the signal conductors 1211, 1221, 1212, 1222 are arranged.
- the flat cable 10G4 can be provided with two differential signal transmission lines having a strip line structure, and each of the transmission lines can be individually shielded from the external electromagnetic field.
- the flat cable is provided with a plurality of signal conductors.
- the above-mentioned structural features can achieve the operational effects. You can
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Insulated Conductors (AREA)
- Structure Of Printed Boards (AREA)
- Combinations Of Printed Boards (AREA)
Abstract
電子機器(90)は、同一形状の複数の回路基板(91)と、同一形状の複数のフラットケーブル(10)と、を備える。複数の回路基板(91)は、所定の配列で配置され、複数のフラットケーブル(10)によって接続されている。複数のフラットケーブル(10)は、複数の回路基板(91)の配列に応じた形状のセミリジッド型ケーブルである。
Description
本発明は、複数の回路基板と、これらの複数の回路基板を接続するケーブルとを備える電子機器に関する。
特許文献1に記載の光通信機器は、複数の回路基板と、複数のフレキ基板とを備える。複数の回路基板は、それぞれにフレキ基板を用いて接続されている。
特許文献1に示すような複数の回路基板を用いる態様として、3個以上の回路基板を等間隔で配置することがある。この場合、3個以上の回路基板は、通常、同じ形状のフラットケーブルで接続される。
しかしながら、特許文献1に示すような通常のフラットケーブルでは、変形し易いために、複数の回路基板への接続時に、予測しない方向に変形してしまうことがある。このため、フラットケーブルを回路基板に接続する作業は、煩雑になってしまう。
この問題は、フラットケーブルに限るものではなく、変形が容易なケーブル(例えば、同軸ケーブル等)であれば、同様に生じてしまう。
したがって、本発明の目的は、複数の回路基板をケーブルで接続する際の煩雑さを解消できる電子機器やケーブルを提供することにある。
この発明の電子機器は、同一形状の複数の回路基板と、同一形状の複数のフラットケーブルと、を備える。複数の回路基板は、所定の配列で配置され、複数のフラットケーブルによって接続されている。複数のフラットケーブルは、複数の回路基板の配列に応じた形状のセミリジッド型ケーブルである。
この構成では、所定の配列で配置されている複数の回路基板にフラットケーブルを接続する際に、フラットケーブルの形状は安定している。また、セミリジッド性を有することによって、接続時に外力によって多少の変形は可能であり、接続作業は容易になる。
この発明によれば、複数の回路基板をケーブルで接続する際の煩雑さを解消できる。
(第1の実施形態)
本発明の第1の実施形態に係る電子機器について、図を参照して説明する。図1は、本発明の第1の実施形態に係る電子機器の構成を示す外観斜視図である。
本発明の第1の実施形態に係る電子機器について、図を参照して説明する。図1は、本発明の第1の実施形態に係る電子機器の構成を示す外観斜視図である。
(電子機器90の概略構成)
図1に示すように、電子機器90は、複数のフラットケーブル10、および、複数の回路基板91を備える。
図1に示すように、電子機器90は、複数のフラットケーブル10、および、複数の回路基板91を備える。
複数の回路基板91は、平板状であり、複数の回路基板91の外形形状は同じである。すなわち、複数の回路基板91は、同一形状である。複数の回路基板91には、略同じ回路素子が実装されている。複数の回路基板91は、一方主面の略同じ位置に外部接続用のコネクタを備える。
複数の回路基板91は、例えば、図1に示すz方向に間隔をおいて配置されている。複数の回路基板91の配置の間隔は、略等間隔である。複数の回路基板91の主面は、z方向に直交するx方向およびy方向に平行である。複数の回路基板91の主面は対向している。
複数の回路基板91は、それぞれにフラットケーブル10によって接続されている。具体的には、フラットケーブル10のコネクタ13が回路基板91の外部接続用のコネクタに装着されることによって、回路基板91とフラットケーブル10とは、接続される。そして、1つのフラットケーブル10は、隣り合う2個の回路基板91を接続している。
(フラットケーブル10の形状)
図2(A)は、フラットケーブルの第1側面図であり、図2(B)は、フラットケーブルの第2側面図である。図2(C)は、フラットケーブルのA-A断面図であり、図2(D)は、フラットケーブルのA-A断面の拡大断面図である。図3は、屈曲部を形成する前のフラットケーブルの側面図である。
図2(A)は、フラットケーブルの第1側面図であり、図2(B)は、フラットケーブルの第2側面図である。図2(C)は、フラットケーブルのA-A断面図であり、図2(D)は、フラットケーブルのA-A断面の拡大断面図である。図3は、屈曲部を形成する前のフラットケーブルの側面図である。
図2(A)、図2(B)、図2(C)、図2(D)、図3に示すように、フラットケーブル10は、基体11、複数の信号導体12、および、複数のコネクタ13を備える。
基体11は、第1主面101と第2主面102とを有する板状または膜状を有する。ここで、板状または膜状とは、厚み方向に直交する2方向(長さ方向および幅方向)の寸法が、厚み方向の寸法よりも大幅に大きい形状を意味する。基体11は、厚み方向に直交する長さ方向に長く、第1方向および厚み方向に直交する幅方向に短い。
基体11は、絶縁体層111と絶縁体層112とを備える。絶縁体層111と絶縁体層112とは、基体11の厚み方向に積層されている。言い換えれば、基体11は、絶縁体層111と絶縁体層112との積層体である。絶縁体層111と絶縁体層112とは、所定の弾性率を有する熱可塑性の材料からなる。絶縁体層111と絶縁体層112との主材料は、例えば、液晶ポリマ、フッ素樹脂等である。
複数の信号導体12は、それぞれに線状導体であり、基体11の長さ方向に沿って延びる形状である。複数の信号導体12は、基体11の幅方向に間隔を空けて配置されている。
複数の信号導体12は、図2(C)に示すように、基体11の厚み方向の途中位置に配置されている。例えば、図2(D)に示すように、複数の信号導体12は、絶縁体層111と絶縁体層112との当接面付近に配置されている。複数の信号導体12は、高い導電性を有し、湾曲や屈曲によって破断し難い材料である。例えば、複数の信号導体12の主材料は、銅(Cu)である。
コネクタ13は、基体11における長さ方向の両端に配置されている。一方端のコネクタ13は、基体11の第1主面101に配置されている。他方端のコネクタ13は、基体11の第2主面102に配置されている。一方端のコネクタ13は、複数の信号導体12における延びる方向の一方端に接続されている。他方端のコネクタ13は、複数の信号導体12における延びる方向の他方端に接続されている。
ここで、コネクタ13は、相手コネクタと上下方向に嵌合するコネクタで示したが、横方向にスライドして挿入することで相手コネクタと嵌合するコネクタであってもよい。この場合には、複数の基板間が狭い場合であっても、基板とフラットケーブルとを接続しやすく、したがって、基板同士を接続しやすい。また、この例では、コネクタを介した接続を示したが、コネクタを介さない接続でも良い。この場合には、コネクタ厚みを気にすることなく、複数の基板を密に配することができる。ただし、例えば、高い接続強度が必要となる場合には、コネクタを用いることが好ましい。
このような構成において、基体11は、長さ方向に、第1部分21、第2部分22、および、第3部分23を有する。第1部分21は、基体11の長さ方向の第1端部を含み、第3部分23は、基体11の長さ方向の第2端部を含む。第2部分22は、長さ方向において、第1部分21と第3部分23との間にあり、第1部分21と第3部分23とに繋がっている。例えば、第1部分21および第3部分23が、本発明の「接続部」に対応し、第2部分22が、本発明の「線路部」に対応する。また、別の言い方であれば、図1を用いて言えば、そのフラットケーブル10自体が接続する回路基板91の面と重なる部分が「接続部」、重ならない部分が「線路部」に対応する。
第1部分21の長さと第3部分23の長さは、略同じであり、回路基板91の外部接続用のコネクタと側面との距離と略同じである。第2部分22の長さは、複数の回路基板91の配列間隔と略同じである。
さらに、図2(A)、図2(B)、図2(C)、図2(D)に示すように、基体11および複数の信号導体12は、長さ方向において、第1部分21と第2部分22との接続部に屈曲部CVを有する。この屈曲部CVでは、第1部分21の主面と第2部分22の主面とは、略直交している。また、基体11および複数の信号導体12は、長さ方向において、第2部分22と第3部分との接続部に屈曲部CVを有する。この屈曲部CVでは、第2部分22の主面と第3部分23の主面とは、略直交している。なお、屈曲部CVは、厳密に直角でなくてもよく、湾曲形状等であってもよい。ただし、直角に近い形状の方が立体的な形状を維持しやすく形状が安定しやすい。
より具体的には、第1部分21および第3部分23の長さ方向は、フラットケーブル10としてのxF方向に平行である。第1部分21および第3部分23の幅方向は、フラットケーブル10としてのyF方向に平行である。第1部分21および第3部分23の厚み方向は、フラットケーブル10としてのzF方向に平行である。第2部分22の長さ方向は、フラットケーブル10としてのzF方向に平行である。第2部分22の幅方向は、フラットケーブル10としてのyF方向に平行である。第2部分22の厚み方向は、フラットケーブル10としてのxF方向に平行である。
また、図2(B)に示すように、第1部分21と第3部分23とは、第2部分22に対して同じ側に延びている。
この構成により、第1部分21のコネクタ13は、第2部分22側に配置され、第3部分23のコネクタ13は、第2部分22側と反対側に配置される。
そして、フラットケーブル10がこのような形状であることによって、図1に示すように、複数の回路基板91の外部接続用のコネクタが、それぞれの回路基板91の面に配置されていても、フラットケーブル10によって、複数の回路基板91を容易に接続できる。
さらに、基体11が上述の材料によって形成されていることから、フラットケーブル10は、セミリジッド性を有するケーブルとなる。セミリジッド性とは、外力を与えない状態において、立体的な形状を維持でき、且つ、外力によって比較的容易に変形が可能なことを意味する。
このセミリジッド性によって、配列されている複数の回路基板91に対して、フラットケーブル10を容易に接続できる。具体的には、例えば、フラットケーブル10の形状が保たれた状態で、一方のコネクタ13を一方の回路基板91に接続すると、他方のコネクタ13は、他方の回路基板91への接続部の付近に位置する。このように、一方の回路基板91に一方のコネクタ13を接続しただけで、他方のコネクタ13と他方の回路基板91における接続位置とが近接し、且つ、フラットケーブル10が可撓性を有する、すなわち湾曲し易いので、他方のコネクタ13を他方の回路基板91に容易に接続できる。
さらに、上述のように、フラットケーブル10の基体11の第1部分21、第2部分22、および、第3部分23の寸法は、複数の回路基板91の外形および配置間隔に基づいている。これによって、複数の回路基板91をフラットケーブル10で接続する作業は、さらに容易になる。
したがって、複数の回路基板91をフラットケーブル10で接続する際の煩雑さを解消できる。
(フラットケーブル10の製造方法)
図4は、フラットケーブルの第1の製造方法を示すフローチャートである。図4に示すように、まず、それぞれが熱可塑性からなる複数の絶縁性樹脂(例えば、図2(D)の場合であれば、絶縁体層111および絶縁体層112に対応する。)を積層する(S11)。この際、所定の絶縁性樹脂には、信号導体12が形成されている。
図4は、フラットケーブルの第1の製造方法を示すフローチャートである。図4に示すように、まず、それぞれが熱可塑性からなる複数の絶縁性樹脂(例えば、図2(D)の場合であれば、絶縁体層111および絶縁体層112に対応する。)を積層する(S11)。この際、所定の絶縁性樹脂には、信号導体12が形成されている。
次に、積層体を加熱、加圧することによって、図3に示すような平板状の多層基板(塑性変形前の基体11)を形成する(S12)。そして、平板状の多層基板にコネクタ13を実装する(S13)。
次に、平板状の多層基板における長さ方向の第1部分21と第2部分22との境界BP、第2部分22と第3部分23との境界BPに、角部を有する部材等を当接させた状態で、さらに加熱、加圧することで、境界BPにおいて塑性変形の加工を実行する(S14)。これにより、第1部分21と第2部分22との境界BP、第2部分22と第3部分23との境界BPに、屈曲部CVが形成される。なお、ステップS13とステップS14とは、順番が逆になってもよい。
この状態で、フラットケーブル10を冷却することによって、形状が維持された屈曲部CVを有し、セミリジッド性を有するフラットケーブル10が形成される。
(第2実施形態)
本発明の第2の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図5は、本発明の第2の実施形態に係るフラットケーブルの構成を示す側面図である。
本発明の第2の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図5は、本発明の第2の実施形態に係るフラットケーブルの構成を示す側面図である。
図5に示すように、第2の実施形態に係るフラットケーブル10Aは、第1の実施形態に係るフラットケーブル10に対して、同じ外形形状を有しており、基体11Aおよび信号導体12Aの構成において異なる。フラットケーブル10Aの他の構造、および、複数の回路基板91の構成、接続態様については、第1の実施形態と同様であり、同様の箇所の説明であり、同様の箇所の説明は省略する。
基体11Aは、複数の絶縁体層1131、複数の絶縁体層1132、および、複数の絶縁体層1141を備える。図5の例であれば、絶縁体層1131の層数は2であり、絶縁体層1132の層数は8であり、絶縁体層1141の層数は2である。複数の絶縁体層1131、および、複数の絶縁体層1141が、本発明の「第1の絶縁体層」に対応し、複数の絶縁体層1132が、本発明の「第2の絶縁体層」に対応する。
複数の絶縁体層1131および複数の絶縁体層1141のxF方向(本発明の「特定方向」。)の長さ(本発明の「第1の長さ」。)は、同じであり、複数の絶縁体層1132のxF方向の長さ(本発明の「第2の長さ」。)よりも長い。複数の絶縁体層1131、複数の絶縁体層1132、および、複数の絶縁体層1141のyF方向の長さは、同じである。
複数の絶縁体層1131、複数の絶縁体層1132、および、複数の絶縁体層1141は、zF方向に沿って積層されている。この際、複数の絶縁体層1131からなる部分と、複数の絶縁体層1141からなる部分とは、複数の絶縁体層1132からなる部分を挟んでいる。また、複数の絶縁体層1131、複数の絶縁体層1132、および、複数の絶縁体層1141は、xF方向の一方端が一致するように、積層されている。
このような構成によって、外形的には、フラットケーブル10Aは、フラットケーブル10と同様に、長さ方向の途中に2つの屈曲部CVを有する。
このような構成のフラットケーブル10Aは、例えば、次に示す方法によって製造される。複数の絶縁体層1131と複数の絶縁体層1132とを積層し、第1積層体113を形成する。この際、複数の絶縁体層1131の当接面には、xF方向に延びる線状導体121を形成する。また、複数の絶縁体層1132のそれぞれには、例えば、導電ペーストを充填した貫通孔等からなる層間接続導体122を形成する。第1積層体113において、層間接続導体122は、線状導体121に接続している。
また、複数の絶縁体層1141を積層し、第2積層体114を形成する。この際、複数の絶縁体層1141の当接面には、xF方向に延びる線状導体121を形成する。また、後に、zF方向において、線状導体121よりも、第1積層体113に接続される側の絶縁体層1141には、導電性ペーストを充填した貫通孔等からなる層間接続導体122を形成する。第2積層体114において、層間接続導体122は、線状導体121に接続している。
次に、第1積層体113と第2積層体114とを積層し、部分的に加熱圧着する。この部分は、複数の絶縁体層1131、複数の絶縁体層1132、および、複数の絶縁体層1141の全てが積層されている部分である。これにより、第1積層体113と第2積層体114とが接合または接着する。さらに、第1積層体113の層間接続導体122と第2積層体114の層間接続導体122とが接合し、信号導体12Aが形成される。
このような構成および製造方法を用いることによって、第1の実施形態のような曲げを用いた塑性変形を利用することなく、フラットケーブル10Aを製造できる。
また、この構成では、zF方向における2つのコネクタ13間の距離は、絶縁体層1132の層数によって設定できる。これにより、2つのコネクタ13間の距離を、回路基板91の厚みや、複数の回路基板91の間隔によって設定できる。
(第3の実施形態)
本発明の第3の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図6は、本発明の第3の実施形態に係るフラットケーブルの構成を示す側面図である。
本発明の第3の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図6は、本発明の第3の実施形態に係るフラットケーブルの構成を示す側面図である。
図6に示すように、第3の実施形態に係るフラットケーブル10Bは、第2の実施形態に係るフラットケーブル10Aに対して、xF方向に長い部分をさらに追加した点で異なる。フラットケーブル10Bの他の構成は、第2の実施形態に係るフラットケーブル10Aと同様であり、同様の箇所の説明は省略する。
フラットケーブル10Bは、基体11Bを備える。基体11Bは、複数の絶縁体層1131、複数の絶縁体層1132、複数の絶縁体層1141、および、複数の絶縁体層1151、および、複数の絶縁体層1152を備える。図6の例であれば、絶縁体層1131の層数は2であり、絶縁体層1132の層数は8であり、絶縁体層1141の層数は2であり、絶縁体層1151の層数は2であり、絶縁体層1152の層数は5である。
複数の絶縁体層1131、複数の絶縁体層1141、複数の絶縁体層1151のxF方向の長さは、同じであり、複数の絶縁体層1132のxF方向の長さよりも長い。複数の絶縁体層1152のxF方向の長さは、複数の絶縁体層1132のxF方向の長さと略同じである。複数の絶縁体層1131、複数の絶縁体層1132、複数の絶縁体層1141、複数の絶縁体層1151、および、複数の絶縁体層1152のyF方向の長さは、同じである。
複数の絶縁体層1131、複数の絶縁体層1132、複数の絶縁体層1141、および、複数の絶縁体層1151、および、複数の絶縁体層1152は、zF方向に沿って積層されている。この際、複数の絶縁体層1131からなる部分と、複数の絶縁体層1141からなる部分とは、複数の絶縁体層1132からなる部分を挟んでいる。複数の絶縁体層1141からなる部分と、複数の絶縁体層1151からなる部分とは、複数の絶縁体層1152からなる部分を挟んでいる。
また、複数の絶縁体層1131、複数の絶縁体層1132、複数の絶縁体層1141、および、複数の絶縁体層1151、および、複数の絶縁体層1152は、xF方向の一方端が一致するように、積層されている。
このような構成によって、外形的には、フラットケーブル10Bは、長さ方向の途中に2つの屈曲部CVを有し、途中で分岐DVを有する形状を実現できる。これにより、1つのフラットケーブル10Bによって、3つの回路基板91を接続できる。なお、この分数は、さらに増加させることもでき、4つ以上の回路基板91を1つのフラットケーブルによって接続することも可能である。
このような構成のフラットケーブル10Bは、例えば、次に示す方法によって製造される。第1積層体113、第2積層体114の形成までは、フラットケーブル10Aと同様である。
複数の絶縁体層1151と複数の絶縁体層1152とを積層し、第3積層体115を形成する。この際、複数の絶縁体層1151の当接面には、xF方向に延びる線状導体121を形成する。また、複数の絶縁体層1152のそれぞれには、例えば、導電ペーストを充填した貫通孔等からなる層間接続導体122を形成する。第3積層体115において、層間接続導体122は、線状導体121に接続している。
次に、第1積層体113、第2積層体114、および、第3積層体115を積層し、部分的に加熱圧着する。この部分は、複数の絶縁体層1131、複数の絶縁体層1132、複数の絶縁体層1141、および、複数の絶縁体層1151、および、複数の絶縁体層1152の全てが積層されている部分である。これにより、第1積層体113、第2積層体114、および、第3積層体115が接合または接着する。第1積層体113の層間接続導体122と第2積層体114の層間接続導体122とが接合し、第2積層体114の層間接続導体122と第3積層体115の層間接続導体122とが接合して、信号導体12Bが形成される。
(第4実施形態)
本発明の第4の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図7(A)は、フラットケーブルの第1側面図であり、図7(B)は、フラットケーブルの第2側面図である。図7(C)は、フラットケーブルのA-A断面の拡大断面図である。
本発明の第4の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図7(A)は、フラットケーブルの第1側面図であり、図7(B)は、フラットケーブルの第2側面図である。図7(C)は、フラットケーブルのA-A断面の拡大断面図である。
図7(A)、図7(B)、図7(C)に示すように、第4の実施形態に係るフラットケーブル10Cは、第1の実施形態に係るフラットケーブル10に対して、回路機能部110を有する点で異なる。フラットケーブル10Cの他の構成は、フラットケーブル10と同様であり、同様の箇所の説明は省略する。
フラットケーブル10Cは、基体11Cの第2部分22に回路機能部110を備える。図7(C)に示すように、回路機能部110は、複数のインダクタ導体12Lを備える。複数のインダクタ導体12Lは、複数の信号導体12のそれぞれの一部を成している。複数のインダクタ導体12Lは、間隔を空けて並走している。このように、複数のインダクタ導体12Lを並走させることによって、複数の信号導体12の信号に重畳するノイズを除去できる。すなわち、回路機能部110は、ノイズ除去回路として機能する。
回路機能部110は、絶縁体層111、絶縁体層112、絶縁体層116、絶縁体層117、および、絶縁体層118が積層された構成を有する。絶縁体層117と絶縁体層118とは、絶縁体層111、絶縁体層112、および、絶縁体層116からなる部分を積層方向において挟んでいる。
回路機能部110において、絶縁体層111、絶縁体層112、絶縁体層116には、磁性体フィラーは含まれておらず、絶縁体層117および絶縁体層118には、磁性体フィラーが含まれている。このように、磁性体フィラーが含まれる層によって複数のインダクタ導体12Lを挟みこむ構造を用いることによって、複数のインダクタ導体12Lの結合度は、向上する。これにより、複数のインダクタ導体12Lによるノイズ除去効果は、向上する。
また、図7(B)に示すように、回路機能部110は、第2部分22における他の部分よりも厚い。これにより、回路機能部110は変形し難く、変形による回路機能部110の特性変化を抑制できる。
また、図7(B)に示すように、回路機能部110は、第2部分22において、第2部分22の内側の面(第1部分21および第3部分23が突出する側の面)から第1主面101側に突出している突出部を有する。突出部は、第1部分21と第3部分23との間の空間内に配置される。この構成によって、フラットケーブル10Cには、第1主面101側に凹み部DP11が形成される。また、第2部分22において、回路機能部110の第2主面102は、他の部分の第2主面102と面一である。これらの構成によって、次のような作用効果が得られる。
図8は、本発明の第4の実施形態に係る電子機器の構成の一例を示す側面断面図である。図8に示すように、電子機器90Cは、複数の回路基板91、複数のフラットケーブル10C、および、筐体92を備える。
複数の回路基板91は、上述の第1の実施形態と同様に、平板面が互いに対向するように、間隔を空けて配置されている。
フラットケーブル10Cは、隣り合う回路基板91を接続している。この際、フラットケーブル10Cの第1部分21が接続される回路基板91は、フラットケーブル10Cにおける凹み部DP11の内部に配置される。この際、回路基板91の外形と凹み部DP11の形状とは略同じである。これにより、フラットケーブル10Cを回路基板91に接続する際に、フラットケーブル10Cの位置決めが容易になる。これにより、フラットケーブル10Cを回路基板91に接続する作業は、容易になる。
また、上述の構成によって、回路機能部110を他の部分よりも厚くしても、回路機能部110が第2主面102が外方に突出しない。したがって、筐体92の内壁面921とフラットケーブル10Cとの間の不要な空間を小さくできる。これにより、筐体92をより小さくできる。
(第5実施形態)
本発明の第5の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図9は、本発明の第5の実施形態に係る電子機器の構成を示す外観斜視図である。
本発明の第5の実施形態に係る電子機器のフラットケーブルについて、図を参照して説明する。図9は、本発明の第5の実施形態に係る電子機器の構成を示す外観斜視図である。
図9に示すように、第5の実施形態に係る電子機器90Eは、第1の実施形態に係る電子機器90に対して、回路基板91の配列方向、および、フラットケーブル10Eの形状において、異なる。電子機器90Eの他の構成は、電子機器90と同様であり、同様の箇所の説明は省略する。
複数の回路基板91は、これらの主面に平行な方向(図9におけるx方向)に沿って、間隔を空けて配置されている。
複数のフラットケーブル10Eは、第1端部31、第2端部32、および、第3端部33を有する。第1端部31のコネクタ13と、第2端部32のコネクタ13とは、複数の信号導体で接続されている。第1端部31のコネクタ13と、第3端部33のコネクタ13とは、複数の信号導体で接続されている。
フラットケーブル10Eは、信号導体の延びる方向の途中位置に、屈曲部CVを備える。屈曲部CVの形状は、回路基板91の形状に合わせられている。
このような構成であっても、上述の各実施形態と同様の作用効果を得ることができる。
(第6実施形態)
本発明の第6の実施形態に係る電子機器について、図を参照して説明する。図10は、本発明の第6の実施形態に係る電子機器の構成を示す外観斜視図である。
本発明の第6の実施形態に係る電子機器について、図を参照して説明する。図10は、本発明の第6の実施形態に係る電子機器の構成を示す外観斜視図である。
図10に示すように、第6の実施形態に係る電子機器90Fは、第1の実施形態に係る電子機器90に対して、フラットケーブル10Fの形状、および、回路基板911、回路基板912への接続態様において異なる。電子機器90Fの他の構成は、電子機器90と同様であり、同様の箇所の説明は省略する。
回路基板911と回路基板912とでは、外形形状は同じであるが、回路基板911に対する電子部品991の実装位置と、回路基板912に対する電子部品992の実装位置とは、異なる。
フラットケーブル10Fは、第1部分21F、第2部分22、および、第3部分23Fを備える。第1部分21Fの形状(平面視した外形形状)と第3部分23Fの形状(平面視した外形形状)とは、異なる。第1部分21Fは、フラットケーブル10Fを回路基板911に接続した状態で、電子部品991を避ける形状である。第3部分23Fは、フラットケーブル10Fを回路基板912に接続した状態で、電子部品992を避ける形状である。
このような構成により、電子機器90Fは、回路基板911と回路基板912とにおける電子部品の実装態様(実装位置、大きさ等)が異なっていても、フラットケーブル10Fによって、回路基板911と回路基板912とを接続できる。
なお、上述の各実施形態では、グランドを有さず、個別に、単独の信号を伝送する複数の信号導体を、フラットケーブルに備える態様を示した。しかしながら、フラットケーブルに形成される信号を伝送する構成は、これに限らず、例えば、次に示すような構成であってもよい。図11(A)、図11(B)、図11(C)、および、図11(D)は、それぞれにフラットケーブルの構成の一例を示す断面図である。なお、図11(A)、図11(B)、図11(C)、および、図11(D)は、第2部分の断面図であり、第1部分および第3部分は、第2部分と同様の線路の構成を備える。
図11(A)の構成では、基体11の内部に、2本の信号導体1211、1221が配置されている。信号導体1211、1221は、並走している。基体11の第1主面101および第2主面102には、グランド導体123が配置されている。グランド導体123は、信号導体1211、1221に対向しており、第1主面101および第2主面102の略全面を覆っていることが好ましい。
このような構成により、フラットケーブル10G1は、ストリップ線路構造の差動信号の伝送線路を実現できる。
図11(B)の構成では、基体11の第2主面102に、2本の信号導体1211、1221が配置されている。信号導体1211、1221は、並走している。基体11の第1主面101には、グランド導体123が配置されている。グランド導体123は、信号導体1211、1221に対向しており、第1主面101の略全面を覆っていることが好ましい。
このような構成により、フラットケーブル10G2は、マイクロストリップ線路構造の差動信号の伝送線路を実現できる。
図11(C)の構成では、基体11の内部に、4本の信号導体1211、1221、1212、1222が配置されている。信号導体1211、1221、1212、1222は、並走している。基体11の第1主面101および第2主面102には、グランド導体123が配置されている。グランド導体123は、信号導体1211、1221、1212、1222に対向しており、第1主面101および第2主面102の略全面を覆っていることが好ましい。基体11における複数の信号導体1211、1221、1212、1222が並ぶ方向の途中位置には、層間接続導体124が配置されている。層間接続導体124は、信号導体1211、1221の組と、信号導体1212、1222の組との間に配置されている。層間接続導体124は、第1主面101のグランド導体123と、第2主面102のグランド導体123とに接続する。層間接続導体124は、例えば、スルーホールめっき、ペーストビア等によって形成される。
このような構成により、フラットケーブル10G3は、ストリップ線路構造の差動信号の伝送線路を2本備える構成を実現できる。そして、フラットケーブル10G3では、2組差動信号線路間に、グランド導体123に接続する層間接続導体124が配置されている。したがって、信号導体1211、1221からなる差動信号伝送線路と、信号導体1212、1222からなる差動信号伝送線路との間の電磁界結合を抑制し、アイソレーションを高くできる。すなわち、複数の差動信号の伝送線路間に電磁シールド部材が配置される構成を実現できる。
図11(D)の構成は、図11(C)の構成に対して、さらに、層間接続導体125を備える。層間接続導体125は、基体11における信号導体1211、1221、1212、1222が並ぶ方向の両端にそれぞれ配置されている。
このような構成により、フラットケーブル10G4は、ストリップ線路構造の差動信号の伝送線路を2本備え、それぞれの伝送線路を個別に外部に対して電磁界シールドする構成を実現できる。
また、これら差動信号を伝送する伝送線路の場合、信号導体数が多くなり、且つ、差動信号を伝送する対となる信号導体間の距離を一定に保つ必要がある。このため、従来の構成では、配置等が煩雑になる。一方、本発明の構成を用いれば、このような配置等の煩雑さを解消できる。
なお、上述の各実施形態では、フラットケーブルに複数の信号導体を備える態様を示したが、フラットケーブルに1本の信号導体しか備えない場合でも、上述の構造的な特徴による作用効果を奏することができる。
なお、上述の各実施形態では、フラットケーブルに複数の信号導体を備える態様を示したが、フラットケーブルに1本の信号導体しか備えない場合でも、上述の構造的な特徴による作用効果を奏することができる。
また、上述の各実施形態の構成は、適宜組み合わせることが可能であり、この組合せに応じた作用効果を得ることができる。
10、10A、10B、10C、10E、10F、10G1、10G2、10G3、10G4:フラットケーブル
11、11A、11B、11C:基体
12、12A、12B、1211、1221、1212、1222:信号導体
12L:インダクタ導体
13:コネクタ
21、21F:第1部分
22:第2部分
23、23F:第3部分
31:第1端部
32:第2端部
33:第3端部
90、90C、90E、90F:電子機器
91、911、912:回路基板
92:筐体
921:内壁面
101:第1主面
102:第2主面
110:回路機能部
111、112、1131、1132、1141、1151、1152:絶縁体層
113:第1積層体
114:第2積層体
115:第3積層体
121:線状導体
122:層間接続導体
123:グランド導体
124:層間接続導体
991、992:電子部品
BP:境界
CV:屈曲部
DV:分岐
DP11:凹み
11、11A、11B、11C:基体
12、12A、12B、1211、1221、1212、1222:信号導体
12L:インダクタ導体
13:コネクタ
21、21F:第1部分
22:第2部分
23、23F:第3部分
31:第1端部
32:第2端部
33:第3端部
90、90C、90E、90F:電子機器
91、911、912:回路基板
92:筐体
921:内壁面
101:第1主面
102:第2主面
110:回路機能部
111、112、1131、1132、1141、1151、1152:絶縁体層
113:第1積層体
114:第2積層体
115:第3積層体
121:線状導体
122:層間接続導体
123:グランド導体
124:層間接続導体
991、992:電子部品
BP:境界
CV:屈曲部
DV:分岐
DP11:凹み
Claims (20)
- 同一形状の複数の回路基板と、
同一形状の複数のフラットケーブルと、を備え、
前記複数の回路基板は、所定の配列で配置され、前記複数のフラットケーブルによって接続され、
前記複数のフラットケーブルは、前記複数の回路基板の配列に応じた形状のセミリジッド性のケーブルである、
電子機器。 - 前記フラットケーブルは、熱可塑性の絶縁体層を有する基体を備え、
前記基体の塑性変形によって、前記形状が形成されている、
請求項1に記載の電子機器。 - 前記フラットケーブルは、それぞれが熱可塑性を有する複数の絶縁体層を積層してなる基体を備え、
前記複数の絶縁体層は、特定方向に第1の長さを有する第1の絶縁体層と、前記特定方向に第2の長さを有する第2の絶縁体層と、を有し、
前記第1の長さは、前記第2の長さよりも長く、
前記第1の絶縁体層と前記第2の絶縁体層とを、前記特定方向に直交する方向に積層することによって、前記形状が形成されている、
請求項1に記載の電子機器。 - 前記基体は、第1端と第2端とを有し、
前記基体には、前記第1端と前記第2端とを両端として延びる線状の信号導体が形成されている、
請求項2または請求項3に記載の電子機器。 - 前記基体は、
前記信号導体に接続する、または、前記信号導体を用いた回路機能部を有する、
請求項4に記載の電子機器。 - 前記回路機能部は、
前記信号導体に流れる信号に対するノイズの除去回路である、
請求項5に記載の電子機器。 - 前記基体における前記回路機能部は、
前記基体における前記回路機能部と異なる部分よりも厚い、
請求項5または請求項6に記載の電子機器。 - 前記回路機能部は、前記異なる部分に対して、第1主面では突出しており、第2主面では面一である、
請求項7に記載の電子機器。 - 前記回路機能部の厚みと前記異なる部分の厚みとの差によって生じる凹み部の形状は、前記回路基板の外形形状と略同じである、
請求項7または請求項8に記載の電子機器。 - 特定方向に並び、互いに対抗する面を有する第1基板および第2基板を接続するフラットケーブルであって、
前記特定方向に沿って延伸する部分である線路部と、
前記特定方向に対して異なる方向に延伸する2つの接続部と、を備え、
前記2つの接続部は、前記第1基板と、前記第2基板とにそれぞれ接続され、
前記2つの接続部は、前記特定方向に視て重なる、フラットケーブル。 - 前記2つの接続部は、前記特定方向に対して垂直方向に延伸する、
請求項10に記載のフラットケーブル。 - 前記線路部は、前記特定方向に対して垂直な方向に突出した突出部を有する、
請求項10または請求項11に記載のフラットケーブル。 - 前記2つの接続部のうち少なくとも1つは、コネクタを介さずに前記第1基板または前記第2基板に接続される、
請求項10乃至請求項12のいずれかに記載のフラットケーブル。 - 前記2つの接続部の少なくとも1つには、コネクタが接続され、
前記コネクタは、相手コネクタに前記特定方向に対して垂直な方向から挿入されることによって嵌合される、
請求項13に記載のフラットケーブル。 - 前記線路部は、前記第1基板および第2基板間の空間形状に沿った形状を有する、
請求項10乃至請求項14のいずれかに記載のフラットケーブル。 - 前記線路部は、複数の信号導体が並走する差動信号の伝送線路を構成する、
請求項10乃至請求項15のいずれかに記載のフラットケーブル。 - 前記差動信号の伝送線路は、複数組あり、
各組の前記差動信号の伝送線路の間には、電磁シールド部材が配置されている、
請求項16に記載のフラットケーブル。 - 前記第1基板に接続する接続部は、前記第1基板への他の部品の実装状態に応じた形状であり、
前記第2基板に接続する接続部は、前記第2基板への他の部品の実装状態に応じた形状である、
請求項10乃至請求項17のいずれかに記載のフラットケーブル。 - 特定方向に並び、互いに対向する面を有する、第1基板および第2基板とを接続するフラットケーブルであって、
前記フラットケーブルは、
前記第1基板に接続する接続部、
前記第2基板に接続する接続部、
前記第1基板に接続する接続部と前記第2基板に接続する接続部との間の線路部を、
備え、
前記線路部は前記第1基板および前記第2基板間の形状に沿った形状を有する、フラットケーブル。 - 前記線路部は、凹部または凸部を有する、
請求項10乃至請求項19のいずれかに記載のフラットケーブル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020560085A JP7215496B2 (ja) | 2018-12-11 | 2019-12-09 | 電子機器、および、フラットケーブル |
CN201990001217.0U CN215497161U (zh) | 2018-12-11 | 2019-12-09 | 电子设备及扁平电缆 |
US17/320,281 US11876318B2 (en) | 2018-12-11 | 2021-05-14 | Electronic device and flat cable |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-231460 | 2018-12-11 | ||
JP2018231460 | 2018-12-11 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/320,281 Continuation US11876318B2 (en) | 2018-12-11 | 2021-05-14 | Electronic device and flat cable |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020121984A1 true WO2020121984A1 (ja) | 2020-06-18 |
Family
ID=71076403
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/047979 WO2020121984A1 (ja) | 2018-12-11 | 2019-12-09 | 電子機器、および、フラットケーブル |
Country Status (4)
Country | Link |
---|---|
US (1) | US11876318B2 (ja) |
JP (1) | JP7215496B2 (ja) |
CN (1) | CN215497161U (ja) |
WO (1) | WO2020121984A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023189210A1 (ja) * | 2022-03-28 | 2023-10-05 | 株式会社村田製作所 | 高周波モジュール及び高周波モジュールの製造方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08279667A (ja) * | 1995-04-06 | 1996-10-22 | Murata Mfg Co Ltd | フレキシブル基板 |
JP2001102712A (ja) * | 1999-10-01 | 2001-04-13 | Rohm Co Ltd | コネクタ付きの配線基板、およびその製造方法 |
JP2001284760A (ja) * | 2000-03-29 | 2001-10-12 | Sony Corp | 電子回路装置と接続部材 |
JP2009038121A (ja) * | 2007-07-31 | 2009-02-19 | Denso Corp | 車載装置 |
WO2011018979A1 (ja) * | 2009-08-11 | 2011-02-17 | 株式会社村田製作所 | 多層基板 |
JP2012227037A (ja) * | 2011-04-21 | 2012-11-15 | Hitachi Cable Ltd | 多心シールドフラットケーブル及び多心シールドフラットケーブルの製造方法 |
JP2016100495A (ja) * | 2014-11-25 | 2016-05-30 | 株式会社村田製作所 | 伝送線路ケーブル、電子機器、および伝送線路ケーブルの製造方法 |
JP2018010910A (ja) * | 2016-07-12 | 2018-01-18 | 日本メクトロン株式会社 | フレキシブルプリント配線板の製造方法及びフレキシブルプリント配線板の製造装置 |
WO2018159839A1 (ja) * | 2017-03-02 | 2018-09-07 | 株式会社村田製作所 | 樹脂多層基板および電子機器 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06251834A (ja) * | 1993-02-26 | 1994-09-09 | Toshiba Lighting & Technol Corp | フレキシブル印刷配線板装置及びコネクタ装置 |
JPH09148010A (ja) * | 1995-11-29 | 1997-06-06 | Matsushita Electric Ind Co Ltd | 回路基板の接続方法 |
JP3507333B2 (ja) * | 1998-05-28 | 2004-03-15 | ローム株式会社 | 充電池用の保護回路および充電池パック |
CN1186971C (zh) * | 1999-04-22 | 2005-01-26 | 罗姆股份有限公司 | 印刷电路板、电池组件和印刷电路板的制造方法 |
JP4667652B2 (ja) * | 2001-06-12 | 2011-04-13 | ローム株式会社 | 電池パック、およびその製造方法 |
TWI395372B (zh) * | 2005-04-25 | 2013-05-01 | Semiconductor Energy Lab | 連接器與連接至其之印刷電路板 |
CN106332474B (zh) | 2011-04-26 | 2020-08-14 | 株式会社村田制作所 | 刚性柔性基板及其制造方法 |
JP2014002226A (ja) | 2012-06-18 | 2014-01-09 | Hitachi Ltd | 光通信装置および情報通信装置 |
JP6743532B2 (ja) * | 2016-07-07 | 2020-08-19 | 大日本印刷株式会社 | フレキシブル回路コネクタ、回路装置および情報記録装置 |
-
2019
- 2019-12-09 WO PCT/JP2019/047979 patent/WO2020121984A1/ja active Application Filing
- 2019-12-09 JP JP2020560085A patent/JP7215496B2/ja active Active
- 2019-12-09 CN CN201990001217.0U patent/CN215497161U/zh active Active
-
2021
- 2021-05-14 US US17/320,281 patent/US11876318B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08279667A (ja) * | 1995-04-06 | 1996-10-22 | Murata Mfg Co Ltd | フレキシブル基板 |
JP2001102712A (ja) * | 1999-10-01 | 2001-04-13 | Rohm Co Ltd | コネクタ付きの配線基板、およびその製造方法 |
JP2001284760A (ja) * | 2000-03-29 | 2001-10-12 | Sony Corp | 電子回路装置と接続部材 |
JP2009038121A (ja) * | 2007-07-31 | 2009-02-19 | Denso Corp | 車載装置 |
WO2011018979A1 (ja) * | 2009-08-11 | 2011-02-17 | 株式会社村田製作所 | 多層基板 |
JP2012227037A (ja) * | 2011-04-21 | 2012-11-15 | Hitachi Cable Ltd | 多心シールドフラットケーブル及び多心シールドフラットケーブルの製造方法 |
JP2016100495A (ja) * | 2014-11-25 | 2016-05-30 | 株式会社村田製作所 | 伝送線路ケーブル、電子機器、および伝送線路ケーブルの製造方法 |
JP2018010910A (ja) * | 2016-07-12 | 2018-01-18 | 日本メクトロン株式会社 | フレキシブルプリント配線板の製造方法及びフレキシブルプリント配線板の製造装置 |
WO2018159839A1 (ja) * | 2017-03-02 | 2018-09-07 | 株式会社村田製作所 | 樹脂多層基板および電子機器 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023189210A1 (ja) * | 2022-03-28 | 2023-10-05 | 株式会社村田製作所 | 高周波モジュール及び高周波モジュールの製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN215497161U (zh) | 2022-01-11 |
US11876318B2 (en) | 2024-01-16 |
US20210273361A1 (en) | 2021-09-02 |
JP7215496B2 (ja) | 2023-01-31 |
JPWO2020121984A1 (ja) | 2021-09-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN216529280U (zh) | 传输线路构件 | |
JP5743037B2 (ja) | 樹脂多層基板および電子機器 | |
JP5811306B1 (ja) | 信号伝送部品および電子機器 | |
JP5967290B2 (ja) | 高周波伝送線路 | |
US9666925B2 (en) | Transmission line, a transmission line apparatus, and an electronic device | |
JP4414365B2 (ja) | 高速伝送用基板 | |
JP5472555B2 (ja) | 高周波信号伝送線路及び電子機器 | |
US20230019563A1 (en) | High-frequency circuit | |
JP2016092561A (ja) | 伝送線路およびフラットケーブル | |
US9173284B2 (en) | Flexible circuit board with planarized cover layer structure | |
WO2020121984A1 (ja) | 電子機器、および、フラットケーブル | |
US8672690B2 (en) | Electronic connector including grounding part having protrusion interposed between terminal connecting parts | |
WO2017199824A1 (ja) | 多層基板、および、電子機器 | |
US20230216168A1 (en) | Transmission line and electronic device | |
WO2021112160A1 (ja) | 高周波回路基板および電子機器 | |
WO2021235263A1 (ja) | 信号伝送線路 | |
JP7268762B2 (ja) | 電子機器 | |
JP7517469B2 (ja) | 伝送線路及び電子機器 | |
WO2022138355A1 (ja) | 多層基板及び多層基板の製造方法 | |
WO2015186537A1 (ja) | 伝送線路部材 | |
WO2022080067A1 (ja) | 回路基板及び回路基板の製造方法 | |
JP2014175829A (ja) | 伝送線路、アンテナ装置及び伝送線路製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19895935 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020560085 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19895935 Country of ref document: EP Kind code of ref document: A1 |