WO2020119510A1 - 超疏水类金刚石复合层结构及其制备方法 - Google Patents

超疏水类金刚石复合层结构及其制备方法 Download PDF

Info

Publication number
WO2020119510A1
WO2020119510A1 PCT/CN2019/122576 CN2019122576W WO2020119510A1 WO 2020119510 A1 WO2020119510 A1 WO 2020119510A1 CN 2019122576 W CN2019122576 W CN 2019122576W WO 2020119510 A1 WO2020119510 A1 WO 2020119510A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
target
diamond
substrate
micro
Prior art date
Application number
PCT/CN2019/122576
Other languages
English (en)
French (fr)
Inventor
唐永炳
闫家肖
蒋春磊
石磊
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2020119510A1 publication Critical patent/WO2020119510A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating

Definitions

  • the invention belongs to the technical field of diamond-like coatings, and particularly relates to a super-hydrophobic diamond-like composite layer structure and a preparation method thereof.
  • super-hydrophobic materials with special wetting properties have received widespread attention.
  • Super-hydrophobic materials are used in medical biology, industrial and agricultural production, and daily life, such as self-cleaning materials, oil-water separation materials, anti-fouling woven fabrics, and drag reduction materials.
  • the superhydrophobic materials currently studied have a complicated preparation process and high cost, and the prepared superhydrophobic materials are not high in hardness, and cannot meet the requirements of diversification of materials. Therefore, the development of a method of high-hardness, super-hydrophobic materials has important promotion and significance for the wide application of special wettability materials.
  • Diamond-like carbon is an amorphous carbon material with sp 2 and sp 3 bonding characteristics. Due to its high hardness and high elastic modulus, low friction factor, wear resistance and good vacuum tribological characteristics, it is very suitable As a wear-resistant coating, it has attracted the attention of the tribological community, and has a broad application prospect in the fields of tools, molds, parts and biomedical devices. However, the lack of hydrophobicity greatly limits the industrial application of diamond coatings.
  • the object of the present invention is to provide a super-hydrophobic diamond-like carbon composite layer structure and a preparation method thereof, aiming to solve the problem that the existing diamond-like carbon coating does not have hydrophobicity.
  • One aspect of the present invention provides a diamond-like composite layer structure including a substrate, a transition layer disposed on the surface of the substrate, and a diamond-like layer disposed on the surface of the transition layer facing away from the substrate, wherein ,
  • the transition layer is convex on a side facing away from the substrate to form a micro-nano array structure, and the surface of the diamond-like layer facing away from the substrate is a micro-nano array surface.
  • the height of the micro-nano array structure is 0.5 ⁇ m to 2 ⁇ m, and the distance between adjacent micro-nano cells in the micro-nano array structure is 0.1 ⁇ m to 2 ⁇ m.
  • the height of the micro-nano array is 0.5 ⁇ m to 2 ⁇ m, and the distance between adjacent micro-nano cells in the micro-nano array is 0.1 ⁇ m to 2 ⁇ m.
  • the transition layer is selected from a metal layer or a non-metal layer, wherein,
  • the metal layer is one of an iron layer, an aluminum layer, a copper layer, a silver layer, a tin layer, a titanium layer, and a germanium layer,
  • the non-metal layer is one of a carbon layer, a silicon layer, and an organic polymer layer.
  • the substrate is selected from one of a carbon steel substrate, a stainless steel substrate, a high-quality steel substrate, a cemented carbide substrate, and a ceramic substrate.
  • Another aspect of the present invention provides a method for preparing a diamond-like composite layer structure, including the following steps:
  • the sample deposited with the prefabricated transition layer is taken out, placed in a container containing an etching solution, and subjected to ultrasonic treatment, and the prefabricated transition layer is etched to form a transition layer with a micro-nano structure array on the surface to obtain etching sample;
  • the etching sample After the etching sample is subjected to surface cleaning treatment, it is placed in a deposition chamber, and a diamond-like layer is deposited on the surface of the transition layer of the etching sample;
  • the first target and the second target are individually selected from metallic or non-metallic materials, and the first target is selected from a target soluble in the etching solution, and the second target The material is selected from targets that are insoluble in the etching solution; or
  • the first target is selected from a target of metal or non-metallic materials
  • the second target is selected from a target of metal or non-metallic materials
  • the etching solution is capable of dissolving the first target,
  • the etching liquid of the second target material cannot be dissolved.
  • the first target material and the second target material are selected from metal materials, and the metal materials include iron, aluminum, copper, silver, tin, titanium, and germanium.
  • the first target and the second target are selected from non-metallic materials, and the non-metallic materials include carbon, silicon, and organic polymers.
  • the first target material is selected from a metal material
  • the second target material is selected from a non-metallic material
  • the first target material is selected from a non-metallic material
  • the second target material is selected from a metal material
  • the metal material is selected from iron, aluminum, copper, silver, tin, titanium, germanium, and the non-metal material is selected from carbon, silicon, and organic polymer.
  • the etching solution is selected from acidic solutions, and the acidic solution is selected from at least one of nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, and organic acids.
  • the etching solution is selected from an alkaline solution, and the alkaline solution is selected from at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide, and organic alkali.
  • the etched sample is subjected to surface cleaning treatment and placed in a deposition chamber, using acetylene as a working gas, and adjusting the vacuum chamber
  • the pressure is 0.5 ⁇ 1.0Pa
  • the ion source voltage is 50 ⁇ 100V
  • the substrate bias voltage is 50 ⁇ 200V
  • a diamond-like layer is deposited on the surface of the transition layer of the etched sample.
  • a transition layer having a micro-nano array structure is provided on the surface of the substrate, and further, a diamond-like layer having a micro-nano array surface is formed on the surface of the transition layer.
  • the resulting diamond-like composite layer structure uses diamond-like carbon as the material basis, and therefore has the advantage of high hardness.
  • the diamond-like carbon layer has a micro-nano array surface, which gives the diamond-like composite layer structure excellent hydrophobic properties
  • contact angle experiments show that the contact angle of the diamond-like composite layer structure (diamond-like layer surface) 153° to 155°.
  • the diamond-like composite layer structure not only has high hardness, but also has excellent hydrophobic properties, and can be used as a wetting material that requires high hardness and hydrophobic properties, thereby expanding the prospect of industrial applications of diamond-like carbon.
  • the preparation method of the diamond-like composite layer structure provided by the present invention adopts a combination of an ion source and arc ion plating to prepare a diamond-like super-hydrophobic composite structure layer through a deposition etching process.
  • this method can achieve a strong bonding of the diamond-like layer on the substrate by preparing a transition layer, improve the adhesion of the diamond-like layer on the substrate, and prevent the peeling of the diamond-like coating;
  • the transition layer is carried out During the etching process, the transition layer forms a micro-nano array structure, which provides a structural basis for the deposition of diamond-like carbon. Finally, a diamond-like carbon layer with a micro-nano array on the surface is obtained to realize the super-hydrophobic function of the diamond-like carbon layer.
  • FIG. 1 is a schematic structural diagram of a diamond-like composite layer structure provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an ion source coating equipment provided by an embodiment of the present invention.
  • Example 3 is a graph of the contact angle test result of the diamond-like composite layer structure provided in Example 1 of the present invention.
  • Example 4 is a graph of the contact angle test results of the diamond-like composite layer structure provided in Example 2 of the present invention.
  • first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
  • the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
  • the meaning of “plurality” is two or more, unless otherwise specifically limited.
  • Diamond-like coatings due to their excellent properties, especially high hardness and good scratch resistance, have been increasingly used in various industries, from machinery manufacturing to optical electronics, from medical to aerospace field. However, it is precisely because of the material properties of diamond-like materials that diamond-like materials do not possess hydrophobic properties and are difficult to use in technologies that require better hydrophobic properties.
  • the present invention aims to provide a method for preparing a diamond-like composite layer structure with high hardness and super-hydrophobic capacity, and a corresponding diamond-like composite layer structure with high hardness and super-hydrophobic capacity.
  • an aspect of an embodiment of the present invention provides a diamond-like composite layer structure including a substrate 10, a transition layer 20 disposed on the surface of the substrate 10, and a transition layer 20 disposed on the surface of the transition layer 20 facing away from the substrate 10
  • the diamond-like carbon layer 30 wherein,
  • the transition layer 20 is convex on the side facing away from the substrate 10 to form a micro-nano array structure, and the surface of the diamond-like layer 30 facing away from the substrate 10 is a micro-nano array surface.
  • the diamond-like composite layer structure includes a three-layer structure, specifically, a substrate 10, a diamond-like layer 30, and a transition layer 20 between the substrate 10 and the diamond-like layer 30. Each layer is described in detail below.
  • the substrate 10 serves as a bearing layer of a diamond-like composite layer structure, and in theory, a substance with a certain hardness may be selected.
  • the material of the substrate 10 is preferably a material with strong stability.
  • the stronger stability means that it has better stability in conventional acid etching solution or alkaline etching solution, and will not be etched by acid or alkali.
  • the substrate 10 is a flat surface, so as to form a regular transition layer 20 and a diamond-like layer 30 on the surface.
  • the substrate 10 is selected from one of a carbon steel substrate 10, a stainless steel substrate 10, a high-quality steel substrate 10, a cemented carbide substrate 10, and a ceramic substrate 10, but is not limited thereto.
  • the carbon steel substrate 10, stainless steel substrate 10, high-quality steel substrate 10, cemented carbide substrate 10, and ceramic substrate 10 not only have good hardness, but also have good stability, and can be applied to prepare the transition layer 20 under various conditions and Diamond-like carbon layer 30.
  • the type of the substrate 10 can be adjusted according to the actual preparation conditions of the transition layer 20 and the diamond-like layer 30, such as the type of etching solution.
  • the thickness of the substrate 10 is 0.5 ⁇ m to 26 ⁇ m. Specifically, it can be adjusted according to the thicknesses of the transition layer 20 and the diamond-like layer 30. When the transition layer 20 and the diamond-like layer 30 to be deposited are relatively thin, the thickness of the substrate 10 is relatively thin; when the transition layer 20 and the diamond-like layer 30 to be deposited is relatively thick, the thickness of the substrate 10 is relatively thick. Overall, the thickness of the diamond-like composite layer structure is 1.5 microns to 30 microns, which has good general adaptability.
  • the transition layer 20 is bonded to the substrate 10 and simultaneously bonded to the diamond-like layer 30.
  • the transition layer 20 is disposed between the substrate 10 and the diamond-like carbon layer 30, forming a material transition between the substrate 10 and the diamond-like carbon layer 30, improving the bonding ability of the diamond-like carbon layer 30 on the substrate 10, and preventing the diamond-like carbon layer 30 Shedding occurs when deposited directly on the substrate 10.
  • the structural transformation of the transition layer 20 can provide a structural basis for the diamond-like carbon layer 30 to form a micro-nano array surface.
  • the transition layer 20 protrudes on the side facing away from the substrate 10 to form a micro-nano array structure.
  • the arrangement form is more flexible, and only needs to provide a structural basis for forming the micro-nano array surface on the diamond-like layer 30.
  • the transition layer 20 between the base 10 and the diamond-like layer 30 may be a structural layer that completely covers the surface of the base 10 and protrudes from the surface of the substrate to form a micro-nano array. At this time, since the transition layer 20 completely covers the substrate 10, the direct contact between the diamond-like layer 30 and the substrate 10 is blocked, and therefore, the bonding of the diamond layer on the substrate 10 is stronger.
  • the transition layer 20 provided between the substrate 10 and the diamond-like layer 30 is composed of the micro-nano array structure itself formed on the surface of the substrate 10, and the micro-nano structure unit constituting the micro-nano array structure is not completely One contact can even be arranged regularly without touching each other.
  • the diamond-like carbon layer 30 fills the gaps between the micro-nano structural units between the transition layers 20, and realizes contact with the substrate in some areas.
  • the micro-nano structure units are arranged regularly and do not contact each other, so that when the diamond-like layer 30 is formed later, the surface of the obtained micro-nano array can be guaranteed to be the same Has good regularity and uniformity.
  • the shape of the micro-nano cell is not strictly limited, and may be a cone, a semicircle, a column, or a cylinder, but is not limited thereto.
  • the thickness of the transition layer 20 is 0.5 microns to 2 microns. This thickness range is not only sufficient to improve the adhesion of the diamond-like carbon layer 30 on the substrate 10, but also has no significant effect on the overall hardness of the diamond-like carbon composite layer structure. In addition, more importantly, the micro-nano array structure formed in this thickness range, after being replicated by the diamond-like carbon layer 30, can give the diamond-like carbon layer 30 excellent superhydrophobic performance.
  • the height of the micro-nano array structure in the transition layer 20 is 0.5 ⁇ m to 2 ⁇ m, and the spacing between adjacent micro-nano cells in the micro-nano array structure is 0.1 ⁇ m to 2 ⁇ m.
  • the micro-nano array structure in the transition layer 20 serves as the structural basis of the diamond-like carbon layer 30, and is replicated by the diamond-like carbon layer 30.
  • the formed diamond-like carbon layer 30 also has a "micro-nano array height of 0.5 to 2 microns ,
  • the pitch of the adjacent micro-nano cells in the micro-nano array is 0.1 ⁇ m ⁇ 2 ⁇ m", which gives the diamond-like layer 30 excellent superhydrophobic properties, thereby providing materials with both excellent hardness and superhydrophobic properties .
  • the ratio of the height of the micro-nano cell to the pitch of the adjacent micro-nano cell is 1: (0.5 ⁇ 1.5), and the micro-nano array structure in the transition layer 20
  • the material selection of the transition layer 20 with a contact angle between 154.2° and 155° the overall needs to meet :
  • the bonding force between the transition layer 20 and the substrate 10, and between the transition layer 20 and the diamond-like layer 30 is greater than the bonding force between the substrate 10 and the diamond-like layer 30.
  • the material type of the transition layer 20 is not strictly limited, and may be selected from a metal layer or a non-metal layer.
  • the transition layer 20 is a metal layer
  • the metal layer is an iron layer, an aluminum layer, a copper layer, a silver layer, a tin layer, a titanium layer, a gold layer, a platinum layer, a tantalum layer, a tungsten layer, and vanadium
  • the metal layer has a good binding force with both the substrate 10 and the diamond-like layer 30, so that the adhesion of the diamond-like layer 30 to the substrate 10 can be improved and the stability of the composite structure layer can be improved.
  • the transition layer 20 is a non-metal layer
  • the non-metal layer is one of a carbon layer, a silicon layer, a sulfur layer, a selenium layer, a tellurium layer, and an organic polymer layer, but is not limited thereto.
  • the above-mentioned preferred type of metal layer has a good binding force with both the substrate 10 and the diamond-like layer 30, so that the adhesion of the diamond-like layer 30 to the substrate 10 can be improved and the stability of the composite structure layer can be improved.
  • the organic polymer may be selected from polytetrafluoroethylene, polyethylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polyacrylonitrile, natural rubber, styrene butadiene rubber, butadiene rubber, Polyurethane, but not limited to this, is preferably polytetrafluoroethylene, which is chemically stable and not easily damaged by oxidation, and has a simple synthesis process and low cost.
  • the diamond-like carbon layer 30 is disposed on the surface of the transition layer 20 facing away from the substrate 10, and the surface of the diamond-like carbon layer 30 facing away from the substrate 10 is a micro-nano array surface, thereby giving the diamond-like carbon layer 30 excellent superhydrophobic properties.
  • the thickness of the diamond-like carbon layer 30 is 0.5 microns to 2 microns. This thickness range has good general adaptability and can basically meet the industry requirements for using diamond-like carbon coatings. In addition, this thickness range can be prepared by deposition to ensure that The resulting diamond-like coating has good quality.
  • the height of the micro-nano array is 0.5 ⁇ m ⁇ 2 ⁇ m, and the distance between adjacent micro-nano cells in the micro-nano array is 0.1 ⁇ m ⁇ 2 ⁇ m.
  • the diamond-like layer 30 has a better surface structure, and thus has excellent superhydrophobic properties.
  • the ratio of the height of the micro-nano cells to the pitch of the adjacent micro-nano cells is 1: (0.5 ⁇ 1.5), and the diamond-like carbon layer 30 has more Excellent super-hydrophobic properties, contact angle between 154.2 ° to 155 °.
  • the diamond-like composite layer structure is composed of a substrate 10, a transition layer 20, and a diamond-like layer 30.
  • the transition layer 20 is disposed on the surface of the substrate 10, and the diamond-like layer 30 is disposed on the surface of the transition layer 20 facing away from the substrate 10
  • the transition layer 20 protrudes on the side facing away from the substrate 10 to form a micro-nano array structure, and the surface of the diamond-like layer 30 facing away from the substrate 10 is the surface of the micro-nano array.
  • a transition layer 20 having a micro-nano array structure is provided on the surface of the substrate. Further, a diamond-like layer 30 having a micro-nano array surface is formed on the surface of the transition layer 20.
  • the resulting diamond-like composite layer structure uses diamond-like carbon as the material basis, and therefore has the advantage of high hardness.
  • the contact angle experiment shows that the contact angle of the diamond-like carbon composite layer structure (diamond-like carbon layer 30 Surface) from 153° to 155°.
  • the diamond-like composite layer structure not only has high hardness, but also has excellent hydrophobic properties, and can be used as a wetting material that requires high hardness and hydrophobic properties, thereby expanding the prospect of industrial applications of diamond-like carbon.
  • the diamond-like composite layer structure provided by the embodiment of the present invention can be prepared by the following method.
  • Another aspect of the embodiments of the present invention provides a method for preparing a diamond-like composite layer structure, including the following steps:
  • S01 Provide a substrate, and perform pretreatment, glow cleaning, and ion etching cleaning on the substrate in sequence;
  • the sample deposited with the prefabricated transition layer is taken out, placed in a container containing an etching solution, and subjected to ultrasonic treatment, and the prefabricated transition layer is etched to form a transition layer with a micro-nano structure array on the surface to obtain Etching the sample;
  • the first target and the second target are individually selected from metallic or non-metallic materials, and the first target is selected from a target soluble in the etching solution, and the second target The material is selected from targets that are insoluble in the etching solution; or
  • the first target is selected from a target of metal or non-metallic materials
  • the second target is selected from a target of metal or non-metallic materials
  • the etching solution is capable of dissolving the first target,
  • the etching liquid of the second target material cannot be dissolved.
  • the method for preparing the diamond-like composite layer structure uses a combination of an ion source and arc ion plating to prepare a diamond-like superhydrophobic composite structure layer by a deposition etching process.
  • this method can achieve a strong bonding of the diamond-like layer on the substrate by preparing a transition layer, improve the adhesion of the diamond-like layer on the substrate, and prevent the peeling of the diamond-like coating; on the other hand, the transition layer is carried out During the etching process, the transition layer forms a micro-nano array structure, which provides a structural basis for the deposition of diamond-like carbon. Finally, a diamond-like carbon layer with a micro-nano array on the surface is obtained to realize the super-hydrophobic function of the diamond-like carbon layer.
  • the selection of the substrate is as described above.
  • the substrate may be selected from carbon steel substrates, stainless steel substrates, high-quality steel substrates, cemented carbide substrates, and ceramic substrates.
  • carbon steel substrates stainless steel substrates
  • high-quality steel substrates cemented carbide substrates
  • ceramic substrates One kind.
  • the method for pretreating the substrate is: sequentially using distilled water, acetone, and absolute ethanol to perform ultrasonic cleaning on the substrate, fully removing organic matter, especially oil stains on the surface of the substrate, and then drying and drying dry.
  • the substrate is placed in distilled water and ultrasonically cleaned for 5 to 30 minutes, and then the substrate is placed in an acetone solution and ultrasonically cleaned for 5 to 30 min, then put the substrate in an absolute ethanol solution for ultrasonic cleaning for 5 ⁇ 30 min; after cleaning, dry the substrate surface with dry nitrogen, and finally put the sample into the blast drying oven 80 ⁇ 150 Dry at °C.
  • the substrate is pretreated, it is further subjected to glow cleaning.
  • pure argon gas is used for the glow cleaning of the substrate.
  • the equipment parameters specifically, fix the dried substrate on the rotating frame in the ion source coating equipment; close the vacuum chamber door, open the water cooler to turn the ion source, multi-arc target,
  • the molecular pump and the vacuum chamber are connected with water.
  • the heating temperature is 100 ⁇ 500 °C, turn on the turret system during the heating process, so that the sample is autobiographical; when the vacuum degree When it reached 3.0 ⁇ 10 -3 Pa, glow cleaning was started.
  • the glow cleaning method is as follows: after the glow cleaning is completed, the main valve of the argon cylinder, the pressure reducing valve, the ion source valve, the arc valve and the target valve, and the mass flow meter are opened to communicate with the vacuum chamber Introduce argon, control the flow of argon at 300 ⁇ 500sccm, the working pressure is 1.0 ⁇ 1.7 Pa, the substrate bias voltage is -500 ⁇ -800V, perform the glow cleaning on the substrate, the cleaning time is 10 ⁇ 30min.
  • Glow cleaning under the above conditions can quickly remove the moisture and gas hidden in the uneven surface of the substrate, especially the scratches, to prevent the subsequent deposition of the pre-transition layer through the combination of the ion source and arc ion plating Adhesion is not enough to improve the adhesion of the film layer on the substrate.
  • the substrate is ion-etched and cleaned, and the uneven surface of the substrate is removed in a relatively gentle manner Especially the moisture and gas in the scratches are completely removed.
  • the ion etching and cleaning method is: after the etching and cleaning is completed, the ion source is turned on to perform ion bombardment cleaning on the sample, wherein the ion source voltage is 50 ⁇ 90 V, argon flow rate 70 ⁇ 500sccm, working pressure 0.5 ⁇ 1.7Pa, substrate bias 100 ⁇ 800V.
  • the ion source voltage is 50 ⁇ 90 V, argon flow rate 70 ⁇ 500sccm, working pressure 0.5 ⁇ 1.7Pa, substrate bias 100 ⁇ 800V.
  • the cleaning time of the ion bombardment cleaning is 10-30 minutes.
  • a method of combining an ion source and arc ion plating is used to deposit a prefabricated transition layer on the surface of the substrate.
  • a method of combining two plating methods can improve the bonding force and surface regularity of the plating layer.
  • the prefabricated transition layer serves as the material basis of the transition layer in the diamond-like composite layer structure. After the etching process in the following steps, the transition layer in the diamond-like composite layer structure is finally formed.
  • the cleaned substrate is placed in the deposition chamber of the ion source coating equipment.
  • the ion source coating equipment is shown in FIG. 2.
  • Argon gas is introduced into the deposition chamber, the pressure of the vacuum chamber is adjusted to 0.2 ⁇ 1.3 Pa, the first target and the second target are turned on, and the target power of the first target is controlled to be 30 ⁇ 70 W, controlling the target power of the second target to be 30-70 W, and depositing a prefabricated transition layer under the condition that the substrate bias is 100-300 V.
  • the pressure of the vacuum chamber, the target power of the first target material, the target power of the second target material and the substrate bias voltage jointly determine the quality of the prefabricated transition layer. If any one of the vacuum chamber pressure, target power, and substrate bias voltage becomes smaller, the deposition rate is too slow and the deposition time is too long; and if any one of the vacuum chamber pressure, target power, and substrate bias voltage is too large High, the deposition speed is too fast, the crystal grains formed when the two targets are mixed and plated are too large, and the arrangement is irregular, which will reduce the bonding force of the prefabricated transition layer on the substrate.
  • the pressure in the vacuum chamber, the target power of the first target, the target power of the second target, and the substrate bias are correlated with each other. Any change in the parameters may cause the deposition effect to change.
  • the pressure in the vacuum chamber, the target power of the first target, the target power of the second target, and the substrate bias voltage are within the above ranges, so that the obtained prefabricated transition layer The grain size is appropriate, and the bonding force of the pre-made transition layer on the surface of the substrate is enhanced.
  • the flow rate of the argon gas is 50-400 sccm, so as to provide a suitable vacuum chamber pressure.
  • a double target is used to prepare the prefabricated transition layer.
  • the double target material is used as the material basis of the prefabricated transition layer, and is uniformly deposited through mixed plating to form a prefabricated transition layer, and the first target material is used as a sacrificial material, and is removed by etching with an etching solution in the following steps
  • the prefabricated transition layer becomes a transition layer with an array of micro-nano structures.
  • the material selection of the first target and the second target in the embodiments of the present invention except that the second target needs to meet the material requirements of the transition layer in the diamond-like composite layer structure
  • the first target and the second target are individually selected from metallic or non-metallic materials
  • the first target is selected from a target soluble in the etching solution
  • the second The target material is selected from targets that are insoluble in the etching solution.
  • the first target is selected from a target of metal or non-metallic materials
  • the second target is selected from a target of metal or non-metallic materials
  • the etching solution is capable of dissolving the The etching solution of the first target material but not the second target material.
  • the first target and the second target are selected from metal materials, and the metal materials include iron, aluminum, copper, silver, tin, titanium , Germanium, gold, platinum, tantalum, tungsten, vanadium, niobium, cobalt, nickel.
  • the first target and the second target are selected from non-metallic materials, and the non-metallic materials include carbon, silicon, sulfur, selenium, tellurium, and organic polymers.
  • the first target material is selected from metallic materials
  • the second target material is selected from non-metallic materials
  • the metal material is selected from iron, aluminum, copper, silver, tin, titanium, germanium , Gold, platinum, tantalum, tungsten, vanadium, niobium, cobalt, nickel
  • the non-metallic material is selected from carbon, silicon, sulfur, selenium, tellurium, organic polymers.
  • the first target material is selected from a non-metallic material
  • the second target material is selected from a metal material
  • the metal material is selected from iron, aluminum, copper, silver, tin, titanium, germanium, gold , Platinum, tantalum, tungsten, vanadium, niobium, cobalt, nickel
  • the non-metallic material is selected from carbon, silicon, organic polymers.
  • the second target material can be selected from the various materials listed above, that is, the transition layer is selected from a metal layer or a non-metal layer, wherein the metal layer is iron One of layer, aluminum layer, copper layer, silver layer, tin layer, titanium layer, gold layer, platinum layer, tantalum layer, tungsten layer, vanadium layer, niobium layer, cobalt layer, nickel layer, germanium layer,
  • the non-metal layer is one of a carbon layer, a silicon layer, a sulfur layer, a selenium layer, a tellurium layer, and an organic polymer layer.
  • the organic polymer may be selected from polytetrafluoroethylene, polyethylene, polystyrene, polyvinyl chloride, polyethylene terephthalate, polyacrylonitrile, natural rubber, styrene butadiene rubber, butadiene rubber , Polyurethane, but not limited to this, preferably Teflon.
  • step S03 the sample deposited with the prefabricated transition layer is taken out, placed in a container containing an etching solution, subjected to ultrasonic treatment, and the prefabricated transition layer is etched.
  • the choice of the etching solution is sufficient to be able to dissolve the first target but not the second target, and there is no other requirement.
  • the etching solution is selected from acidic solutions, and the acidic solution is selected from at least one of nitric acid, sulfuric acid, hydrochloric acid, hydrofluoric acid, and organic acids.
  • the first target corresponds to a target that can be dissolved by the acidic solution
  • the second target corresponds to not being affected by the acidic etching solution, that is, not affected by the acidic solution.
  • the etching solution is selected from an alkaline solution
  • the alkaline solution is selected from at least one of sodium hydroxide, potassium hydroxide, calcium hydroxide, lithium hydroxide, and organic alkali.
  • the first target corresponds to a target that can be dissolved by the alkaline solution
  • the second target corresponds to not being affected by the acid etching solution, that is, not affected by the alkaline solution.
  • the prefabricated transition layer forms a transition layer with a micro-nano structure array on the surface.
  • the fine structure of the micro-nano array can be further controlled by adjusting the etching conditions, such as the temperature and the concentration of the etching solution.
  • the height of the micro-nano array structure is 0.5 ⁇ m to 2 ⁇ m, and the distance between adjacent micro-nano cells in the micro-nano array structure is 0.1 ⁇ m to 2 ⁇ m.
  • the etched sample is subjected to surface cleaning treatment, and the surface cleaning treatment may be implemented by the pretreatment and glow cleaning treatment described above. Further, it is preferable to use ion etching cleaning after glow cleaning.
  • the etched sample after cleaning is placed in a deposition chamber, and a diamond-like carbon layer is deposited on the surface of the transition layer of the etched sample to form a surface having the same structure as the transition layer.
  • a diamond-like carbon layer is deposited on the surface of the transition layer of the etched sample to form a surface having the same structure as the transition layer.
  • the etched sample is subjected to surface cleaning treatment and placed in a deposition chamber, using acetylene as a working gas, and adjusting the vacuum chamber
  • the pressure is 0.5 ⁇ 1.0Pa
  • the ion source voltage is 50 ⁇ 100V
  • the substrate bias voltage is 50 ⁇ 200V
  • a diamond-like layer is deposited on the surface of the transition layer of the etched sample.
  • the vacuum chamber pressure, ion source voltage and substrate bias voltage jointly determine the quality of the diamond-like carbon layer. If any of the vacuum chamber pressure, ion source voltage and substrate bias voltage becomes smaller, the deposition rate is too slow and the deposition time is too long; and if any of the vacuum chamber pressure, ion source voltage and substrate bias voltage If the term is too high, the deposition speed is too fast, and the formed grains are arranged irregularly, which will reduce the bonding force of the diamond-like layer in the transition layer.
  • the pressure in the vacuum chamber, the voltage of the ion source and the bias voltage of the substrate are related to each other, and any change in the parameters may cause the deposition effect to change.
  • the parameter conditions of the transition layer provided in the embodiments of the present invention can enhance the binding force of the obtained diamond-like layer and form a dense and uniform coating.
  • the height of the micro-nano array is 0.5 ⁇ m to 2 ⁇ m, and the distance between adjacent micro-nano cells in the micro-nano array is 0.1 ⁇ m to 2 ⁇ m.
  • the diamond layer has better superhydrophobic properties.
  • a method for preparing a diamond-like composite layer structure includes the following steps:
  • S11 Provide a substrate, perform pretreatment, glow cleaning and ion etching cleaning on the substrate in sequence; specifically:
  • the substrate in distilled water and clean it ultrasonically for 5 ⁇ 30 min, then put the substrate in acetone solution and clean it ultrasonically for 5 ⁇ 30 min, then put the substrate in absolute ethanol solution for 5 ⁇ 30 min; after cleaning, the substrate surface is blown dry with dry nitrogen, and finally the sample is placed in a blast drying oven at 80 ⁇ 150°C for drying.
  • adjust the equipment parameters specifically, fix the dried substrate on the rotating frame in the ion source coating equipment; close the vacuum chamber door, open the water cooler to turn the ion source, multi-arc target, The molecular pump and the vacuum chamber are connected with water.
  • the heating temperature is 100 ⁇ 500 °C, turn on the turret system during the heating process, so that the sample is autobiographical; when the vacuum degree When reaching 3.0 ⁇ 10 -3 Pa, glow cleaning is started.
  • the ion source is turned on to clean the sample by ion bombardment.
  • the ion source voltage is 50 ⁇ 90 V
  • the argon flow rate is 70 ⁇ 500sccm
  • the working pressure is 0.5 ⁇ 1.7Pa
  • the substrate bias voltage is 100 ⁇ 800 V.
  • the cleaning time of the ion bombardment cleaning is 10-30 minutes.
  • the sample deposited with the prefabricated transition layer is taken out, placed in a container containing an etching solution (sodium hydroxide solution), subjected to ultrasonic treatment, and the prefabricated transition layer is etched to form a micro-nano structure on the surface The transition layer of the array to obtain the etched sample.
  • an etching solution sodium hydroxide solution
  • the surface of the etched sample is cleaned and placed in the deposition chamber, using acetylene as the working gas, and the pressure in the vacuum chamber is adjusted to 0.5 ⁇ 1.0Pa, the ion source voltage is 50 ⁇ 100V, the substrate bias 50 ⁇ 200V, a diamond-like layer is deposited on the surface of the transition layer of the etched sample.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal copper target, the second target material is a metal aluminum target, and the etching solution is a potassium hydroxide solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal copper target, the second target material is a metal aluminum target, and the etching solution is a hydrochloric acid solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal copper target, the second target material is a metal aluminum target, and the etching solution is a sulfuric acid solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic carbon target, and the etching solution is a hydrochloric acid solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic carbon target, and the etching solution is a sodium hydroxide solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic carbon target, and the etching solution is a potassium hydroxide solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic carbon target, and the etching solution is a sulfuric acid solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic silicon target, and the etching solution is a sodium hydroxide solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that the first target material is a metal aluminum target, the second target material is a non-metallic silicon target, and the etching solution is a potassium hydroxide solution.
  • a method for preparing a diamond-like composite layer structure differs from Example 1 in that after step S11 is performed, step S12 and step S13 are not performed, and the cleaned substrate is directly placed in a deposition chamber for acetylene As a working gas, the pressure in the vacuum chamber is adjusted to 0.5 ⁇ 1.0 Pa, the ion source voltage is 50 ⁇ 100V, the substrate bias voltage is 50 ⁇ 200V, and a diamond-like layer is deposited on the surface of the transition layer of the etched sample.
  • the diamond-like composite layer structure prepared in Examples 1-10 and the diamond-like composite layer structure prepared in Comparative Example 1 were subjected to a water contact angle test experiment.
  • the test methods are as follows:
  • Test method shape image analysis method.
  • test results are shown in Table 1 below. Among them, the test results of Example 1 and Example 2 are shown in Figures 2 and 3.
  • Example 1 154.272
  • Example 2 153.229
  • Example 3 151.336
  • Example 4 152.253
  • Example 5 151.891
  • Example 6 152.534
  • Example 7 151.7719
  • Example 8 152.341
  • Example 9 154.002
  • Example 10 153.573 Comparative Example 1 143.343

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种类金刚石复合层结构的制备方法,包括以下步骤:提供基底(10),对基底(10)依次进行预处理、辉光清洗和离子刻蚀清洗;将经清洗后的基底(10)置于沉积室中,通入氩气,调节真空室压强为0.2~1.3Pa,开启第一靶材、第二靶材,且控制第一靶材的靶功率为30~70W,控制第二靶材的靶功率为30~70W,在基底(10)偏压为100~300V的条件下,沉积预制过渡层(20);将沉积有预制过渡层(20)的样品取出,置于盛有刻蚀液的容器中,进行超声处理,对预制过渡层(20)进行刻蚀处理,形成表面具有微纳结构阵列的过渡层(20),得到刻蚀样品;将刻蚀样品进行表面清洗处理后,置于沉积室中,在刻蚀样品的过渡层(20)表面沉积类金刚石层(30);其中,第一靶材和第二靶材单独选自金属或非金属材料,且第一靶材选自可溶于刻蚀液的靶材,第二靶材选自不溶于刻蚀液的靶材;或第一靶材选自金属或非金属材料的靶材,第二靶材选自金属或非金属材料的靶材,且刻蚀液为能够溶解第一靶材、但不能溶解第二靶材的刻蚀液。还公开了一种类金刚石复合结构。

Description

超疏水类金刚石复合层结构及其制备方法 技术领域
本发明属于类金刚石涂层技术领域,尤其涉及一种超疏水类金刚石复合层结构及其制备方法。
背景技术
近年来,具有特殊浸润性能的超疏水材料受到人们广泛关注,超疏水材料在医学生物、工农业生产和日常生活中,如自清洁材料、油水分离材料、抗污织布、减阻材料等都有着极其广阔的应用前景。然而目前研究的超疏水材料,制备工艺复杂、成本高昂,且制备出的超疏水材料硬度不高,无法满足材料多样化的要求。因此,发展一种高硬、超疏水材料的方法对特殊浸润性能材料的广泛应用具有重要的促进作用和意义。
类金刚石(DLC)是一种含有sp 2和sp 3键合特征的非晶碳材料,由于具有高硬度和高弹性模量,低摩擦因数,耐磨损以及良好的真空摩擦学特性,很适合于作为耐磨涂层,从而引起了摩擦学界的重视,在刀具、模具、零部件以及生物医疗器件等领域有着广泛的应用前景。但是由于不具备疏水性,极大限制了金刚石涂层的工业应用。
技术问题
本发明的目的在于提供一种超疏水类金刚石复合层结构及其制备方法,旨在解决现有的类金刚石涂层不具备疏水性的问题。
技术解决方案
为实现上述发明目的,本发明采用的技术方案如下:
本发明一方面提供一种类金刚石复合层结构,所述类金刚石复合层结构包括基底,设置在所述基底表面的过渡层,设置在所述过渡层背离所述基底的表面的类金刚石层,其中,
所述过渡层在背离所述基底的一侧凸起形成微纳阵列结构,所述类金刚石层背离所述基底的表面为微纳阵列表面。
优选的,所述过渡层中,所述微纳阵列结构的高度为0.5微米~2微米,所述微纳阵列结构中相邻微纳单元的间距为0.1微米~2微米。
优选的,所述类金刚石层的微纳阵列表面中,微纳阵列的高度为0.5微米~2微米,微纳阵列中相邻微纳单元的间距为0.1微米~2微米。
优选的,所述过渡层选自金属层或者非金属层,其中,
所述金属层为铁层、铝层、铜层、银层、锡层、钛层、锗层中的一种,
所述非金属层为碳层、硅层、有机聚合物层中的一种。
优选的,所述基底选自碳素钢基底、不锈钢基底、高素钢基底、硬质合金基底、陶瓷基底中的一种。
本发明另一方面提供一种类金刚石复合层结构的制备方法,包括以下步骤:
提供基底,对所述基底依次进行预处理、辉光清洗和离子刻蚀清洗;
将经清洗后的基底置于沉积室中,通入氩气,调节真空室压强为0.2~1.3 Pa,开启第一靶材、第二靶材,且控制所述第一靶材的靶功率为30~70 W,控制所述第二靶材的靶功率为30~70 W,在基底偏压为100~300 V的条件下,沉积预制过渡层;
将沉积有预制过渡层的样品取出,置于盛有刻蚀液的容器中,进行超声处理,对所述预制过渡层进行刻蚀处理,形成表面具有微纳结构阵列的过渡层,得到刻蚀样品;
将所述刻蚀样品进行表面清洗处理后,置于沉积室中,在所述刻蚀样品的过渡层表面沉积类金刚石层;
其中,所述第一靶材和所述第二靶材单独选自金属或非金属材料,且所述第一靶材选自可溶于所述刻蚀液的靶材,所述第二靶材选自不溶于所述刻蚀液的靶材;或
所述第一靶材选自金属或非金属材料的靶材,所述第二靶材选自金属或非金属材料的靶材,且所述刻蚀液为能够溶解所述第一靶材、但不能溶解所述第二靶材的刻蚀液。
优选的,所述第一靶材、所述第二靶材选自金属材料,且所述金属材料包括铁、铝、铜、银、锡、钛、锗。
优选的,所述第一靶材、所述第二靶材选自非金属材料,且所述非金属材料包括碳、硅、有机聚合物。
优选的,所述第一靶材选自金属材料,所述第二靶材选自非金属材料,或所述第一靶材选自非金属材料,所述第二靶材选自金属材料,
其中,所述金属材料选自铁、铝、铜、银、锡、钛、锗,所述非金属材料选自碳、硅、有机聚合物。
优选的,所述刻蚀液选自酸性溶液,且所述酸性溶液选自硝酸、硫酸、盐酸、氢氟酸、有机酸中的至少一种。
优选的,所述刻蚀液选自碱性溶液,且所述碱性溶液选自氢氧化钠、氢氧化钾、氢氧化钙、氢氧化锂、有机碱中的至少一种。
优选的,在所述刻蚀样品的过渡层表面沉积类金刚石层的步骤中,将所述刻蚀样品进行表面清洗处理后置于沉积室中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石层。
本发明提供的类金刚石复合层结构,在所述基底表面设置具有微纳阵列结构的过渡层,进一步的,在所述过渡层表面形成具有微纳阵列表面的类金刚石层。由此得到的类金刚石复合层结构,以类金刚石作为物质基础,因此,具有高硬度的优点。同时,由于所述类金刚石层具有微纳阵列表面,从而赋予所述类金刚石复合层结构优异的疏水性能,经接触角实验显示,所述类金刚石复合层结构的接触角(类金刚石层表面)为153°至155°。综上,所述类金刚石复合层结构不仅具有高硬度,而且具有优异的疏水性能,能够作为对硬度和疏水性能要求较高的浸润材料使用,从而拓展了类金刚石的工业应用前景。
有益效果
本发明提供的类金刚石复合层结构的制备方法,采用离子源和电弧离子镀相结合的方式,通过沉积刻蚀工艺制备类金刚石超疏水复合结构层。一方面,该方法通过制备过渡层,可以实现类金刚石层在基底上的牢固结合,提高类金刚石层在基底的附着力,防止类金刚石涂层的剥落;另一方面,将所述过渡层进行刻蚀处理,过渡层形成微纳阵列结构,为类金刚石的沉积提供结构基础,最终得到表面具有微纳阵列的类金刚石层,实现类金刚石层的超疏水功能。
附图说明
图1是本发明实施例提供的类金刚石复合层结构的结构示意图;
图2是本发明实施例提供的离子源镀膜设备示意图;
图3是本发明实施例1提供的类金刚石复合层结构的接触角测试结果图;
图4是本发明实施例2提供的类金刚石复合层结构的接触角测试结果图。
本发明的实施方式
为了使本发明要解决的技术问题、技术方案及有益效果更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明的描述中,需要理解的是,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
类金刚石涂层,由于其优异的性质,特别是高硬度和良好的耐刮磨性能,已越来越多地应用于各行业中,从机械制造领域到光学电子领域,从医学领域到航空航天领域。然而,也正是由于类金刚石材料本身的物质属性,类金刚石材料不具备疏水性能,难以用于对疏水性能要求较好的技术中。鉴于此,本发明旨在提供一种具有高硬度和超疏水能力的类金刚石复合层结构的制备方法,以及对应的具有高硬度和超疏水能力的类金刚石复合层结构。
结合图1,本发明实施例一方面提供一种类金刚石复合层结构,所述类金刚石复合层结构包括基底10,设置在基底10表面的过渡层20,设置在过渡层20背离基底10的表面的类金刚石层30,其中,
过渡层20在背离基底10的一侧凸起形成微纳阵列结构,类金刚石层30背离基底10的表面为微纳阵列表面。
所述类金刚石复合层结构包括三层结构,具体的,包括基底10,类金刚石层30,以及设置所述基底10和所述类金刚石层30之间的过渡层20。下面对各层进行详细描述。
基底10
本发明实施例中,基底10作为类金刚石复合层结构的承载层,理论上选择具有一定硬度的物质即可。考虑到过渡层20的微纳阵列结构优先选用刻蚀方法形成,因此,基底10材料优先选用稳定性较强的物质。其中,所述的稳定性较强是指在常规的酸性刻蚀液或碱性刻蚀液中具有较好的稳定性,不会被酸或碱刻蚀。
本发明实施例中,基底10的至少一表面为平整表面,以便于在其表面形成规整的过渡层20和类金刚石层30。在一些实施例中,基底10选自碳素钢基底10、不锈钢基底10、高素钢基底10、硬质合金基底10、陶瓷基底10中的一种,但不限于此。碳素钢基底10、不锈钢基底10、高素钢基底10、硬质合金基底10、陶瓷基底10不仅具有较好的硬度,而且均具有较好的稳定性,能够适用于多种条件制备过渡层20和类金刚石层30。具体的,基底10类型可以根据实际的过渡层20和类金刚石层30的制备条件如刻蚀液类型等进行调整。
基底10的厚度为0.5微米~26微米,具体的,可以根据过渡层20和类金刚石层30的厚度调整。当需要沉积的过渡层20和类金刚石层30较薄时,基底10的厚度相对较薄;当需要沉积的过渡层20和类金刚石层30较厚时,基底10的厚度相对较厚。整体上,类金刚石复合层结构的厚度为1.5微米~30微米,具有较好的普遍适应性。
过渡层20
本发明实施例,过渡层20结合在基底10上,同时与类金刚石层30结合。一方面,过渡层20设置在基底10和类金刚石层30之间,在基底10和类金刚石层30之间形成物质过渡,提高类金刚石层30在基底10上的结合能力,防止类金刚石层30直接沉积在基底10上时发生脱落。另一方面,由于类金刚石层30本身难以通过刻蚀形成微纳结构,因此,通过对过渡层20进行结构改造,可以为类金刚石层30形成微纳阵列表面提供结构基础。
本发明实施例中,过渡层20在背离基底10的一侧凸起形成微纳阵列结构,设置形式较为灵活,只需要满足能够为类金刚石层30形成微纳阵列表面提供结构基础即可。
在一些实施例中,设置基底10和类金刚石层30之间的过渡层20,可以是完全覆盖基底10表面、并在背离衬底的表面部分凸起形成微纳阵列的结构层。此时,由于过渡层20完全覆盖基底10,隔绝了类金刚石层30和基底10的直接接触,因此,金刚石层在基底10上的结合更牢固。
在一些实施例中,设置基底10和类金刚石层30之间的过渡层20,由形成在基底10表面的微纳阵列结构本身构成,且构成微纳阵列结构的微纳结构单元并不完全一一接触,甚至可以相互各不接触的规则排列。相应的,类金刚石层30填充过渡层20之间的微纳结构单元之间的空隙,在部分区域实现与衬底的接触。当然,作为优选实施例,构成过渡层20中的微纳阵列结构中,微纳结构单元规整排列且相互各不接触,从而在后续形成类金刚石层30时,可以保证得到的微纳阵列表面同样具有较好的规整度和均匀性。
过渡层20的微纳阵列结构中,微纳单元的形状没有严格限定,可以为锥状体、半圆形、柱形、圆柱形,但不限于此。
过渡层20的厚度为0.5微米~2微米。该厚度范围,不仅足够提高类金刚石层30在基底10上的附着力,而且对类金刚石复合层结构的整体硬度也不会造成明显的影响。此外,更重要的是,该厚度范围形成的微纳阵列结构,被类金刚石层30复制后,可以赋予类金刚石层30优异的超疏水性能。
在一些实施例中,过渡层20中的所述微纳阵列结构的高度为0.5微米~2微米,所述微纳阵列结构中相邻微纳单元的间距为0.1微米~2微米。此时,过渡层20中的所述微纳阵列结构作为类金刚石层30的结构基础,被类金刚石层30复制,形成的类金刚石层30同样具有“微纳阵列的高度为0.5微米~2微米,微纳阵列中相邻微纳单元的间距的间距为0.1微米~2微米”的结构特征,进而赋予类金刚石层30优异的超疏水性能,从而提供兼具优异的硬度和超疏水性能的材料。
在优选的实施例中,微纳阵列结构中,微纳单元的高度和相邻微纳单元的间距的比为1:(0.5~1.5),此时过渡层20中的所述微纳阵列结构作为类金刚石层30的结构基础,被类金刚石层30复制,形成的类金刚石层30具有更优异的超疏水性能,接触角在154.2°至155°之间过渡层20的材料选择,整体需要满足:过渡层20与基底10、过渡层20与类金刚石层30的结合力,均大于基底10与类金刚石层30的结合力。但过渡层20的材料类型没有严格限定,可以选自金属层或者非金属层。
在一些实施例中,过渡层20为金属层,且所述金属层为铁层、铝层、铜层、银层、锡层、钛层、金层、铂层、钽层、钨层、钒层、铌层、钴层、镍层、锗层中的一种,但不限于此。上述优选的金属层的类型,与基底10和类金刚石层30均具备较好的结合力,从而可以提高类金刚石层30在基底10上的附着力,提高复合结构层的稳定性。
在一些实施例中,过渡层20为非金属层,且所述非金属层为碳层、硅层、硫层、硒层、碲层、有机聚合物层中的一种,但不限于此。上述优选的金属层的类型,与基底10和类金刚石层30均具备较好的结合力,从而可以提高类金刚石层30在基底10上的附着力,提高复合结构层的稳定性。具体的,有机聚合物可以选自聚四氟乙烯、聚乙烯、聚苯乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚丙烯腈、天然橡胶、丁苯橡胶、顺丁橡胶、聚氨酯,但不限于此,优选为聚四氟乙烯,所述聚四氟乙烯化学性质稳定不易被氧化破坏且合成工艺简单、成本低廉。
类金刚石层30
本发明实施例中,类金刚石层30设置在过渡层20背离基底10的表面,且类金刚石层30的背离基底10的表面为微纳阵列表面,从而赋予类金刚石层30优异的超疏水性能。
类金刚石层30的厚度为0.5微米~2微米,该厚度范围,具有较好的普遍适应性,基本能满足使用类金刚石涂层的行业要求,此外,该厚度范围可以通过沉积制备,从而可以保证得到的类金刚石涂层具有较好的质量。
在一些实施例中,类金刚石层30的微纳阵列表面中,微纳阵列的高度为0.5微米~2微米,微纳阵列中相邻微纳单元的间距为0.1微米~2微米。此时,类金刚石层30具有较好的表面结构,从而具有优异的超疏水性能。
在优选的实施例中,类金刚石层30的微纳阵列结构中,微纳单元的高度和相邻微纳单元的间距的比为1:(0.5~1.5),此时类金刚石层30具有更优异的超疏水性能,接触角在154.2°至155°之间。
作为最优选实施例,所述类金刚石复合层结构由基底10、过渡层20和类金刚石层30组成,过渡层20设置在基底10表面,类金刚石层30设置在过渡层20背离基底10的表面,其中,过渡层20在背离基底10的一侧凸起形成微纳阵列结构,类金刚石层30背离基底10的表面为微纳阵列表面。
本发明实施例提供的类金刚石复合层结构,在所述基底表面设置具有微纳阵列结构的过渡层20,进一步的,在所述过渡层20表面形成具有微纳阵列表面的类金刚石层30。由此得到的类金刚石复合层结构,以类金刚石作为物质基础,因此,具有高硬度的优点。同时,由于所述类金刚石层30具有微纳阵列表面,从而赋予所述类金刚石复合层结构优异的疏水性能,经接触角实验显示,所述类金刚石复合层结构的接触角(类金刚石层30表面)为153°至155°。综上,所述类金刚石复合层结构不仅具有高硬度,而且具有优异的疏水性能,能够作为对硬度和疏水性能要求较高的浸润材料使用,从而拓展了类金刚石的工业应用前景。
本发明实施例提供的类金刚石复合层结构,可以通过下述方法制备获得。
本发明实施例另一方面提供一种类金刚石复合层结构的制备方法,包括以下步骤:
S01.提供基底,对所述基底依次进行预处理、辉光清洗和离子刻蚀清洗;
S02.将经清洗后的基底置于沉积室中,通入氩气,调节真空室压强为0.2~1.3 Pa,开启第一靶材、第二靶材,且控制所述第一靶材的靶功率为30~70 W,控制所述第二靶材的靶功率为30~70 W,在基底偏压为100~300 V的条件下,沉积预制过渡层;
S03.将沉积有预制过渡层的样品取出,置于盛有刻蚀液的容器中,进行超声处理,对所述预制过渡层进行刻蚀处理,形成表面具有微纳结构阵列的过渡层,得到刻蚀样品;
S04.将所述刻蚀样品进行表面清洗处理后,置于沉积室中,在所述刻蚀样品的过渡层表面沉积类金刚石层;
其中,所述第一靶材和所述第二靶材单独选自金属或非金属材料,且所述第一靶材选自可溶于所述刻蚀液的靶材,所述第二靶材选自不溶于所述刻蚀液的靶材;或
所述第一靶材选自金属或非金属材料的靶材,所述第二靶材选自金属或非金属材料的靶材,且所述刻蚀液为能够溶解所述第一靶材、但不能溶解所述第二靶材的刻蚀液。
本发明实施例提供的类金刚石复合层结构的制备方法,采用离子源和电弧离子镀相结合的方式,通过沉积刻蚀工艺制备类金刚石超疏水复合结构层。一方面,该方法通过制备过渡层,可以实现类金刚石层在基底上的牢固结合,提高类金刚石层在基底的附着力,防止类金刚石涂层的剥落;另一方面,将所述过渡层进行刻蚀处理,过渡层形成微纳阵列结构,为类金刚石的沉积提供结构基础,最终得到表面具有微纳阵列的类金刚石层,实现类金刚石层的超疏水功能。
具体的,上述步骤S01中,所述基底的选择如前文所述,在具体实施例中,所述基底可选自碳素钢基底、不锈钢基底、高素钢基底、硬质合金基底、陶瓷基底中的一种。
对提供的基底依次进行预处理、辉光清洗和离子刻蚀清洗,通过预处理去除基底表面的有机物,特别是油渍;通过辉光清洗和离子刻蚀清洗去除基板表面不平整处如刮痕中残留的水分、气体等,从而为提高涂层的附着效果。通过逐步清洗,达到最佳的清洗效果,涂层在清洗后的基底上具有最好的结合力。
在一些实施例中,对所述基底进行预处理的方法为:依次使用蒸馏水、丙酮、无水乙醇对所述基底进行超声清洗,将所述基底表面的有机物特别是油渍充分去除,然后干燥烘干。
在具体实施例中,将所述基底放入蒸馏水中超声清洗5~30 min,再将所述基底放入丙酮溶液中超声清洗5~30 min,之后再将所述基底放入无水乙醇溶液中超声清洗5~30 min;清洗结束后,用干燥氮气将衬底表面吹干,最后再将样品放入鼓风干燥箱中80~150℃烘干。
将所述基底进行预处理后,进一步进行辉光清洗。在一些实施例中,采用纯氩气对所述基底进行辉光清洗。
在进行辉光清洗之前,调整设备参数,具体的,将烘干后的所述基底固定在离子源镀膜设备中的转架上;关闭真空室门,打开水冷机将离子源、多弧靶、分子泵、真空腔室的水路接通,打开空压机和复合镀膜机总电源,然后开启机械泵和旁抽阀以及分子泵,使分子泵进入爬升状态;当分子泵达到全速以后,关闭旁抽阀,打开粗抽阀,对真空室进行粗抽;当真空室内压强达到10 Pa以下后,再次打开旁抽阀;当真空室压强达到3Pa以下后,关闭粗抽阀,开启高阀对真空室抽高真空。当真空室压强抽到5.0×10 -3 Pa以后,打开加热电源对真空室进行加热烘烤,加热温度为100~500℃,加热过程中开启转架系统,使样品进行公自传;当真空度达到3.0×10 -3 Pa时,开始进行辉光清洗。
在具体实施例中,所述辉光清洗的方法为:辉光清洗结束后,打开氩气瓶主阀、减压阀、离子源阀、弧阀和靶阀以及质量流量计,向真空室内通入氩气,控制氩气流量300~500sccm,工作压强为1.0~1.7 Pa,基底偏压-500~-800V,对基底进行辉光清洗,清洗时间10~30min。在上述条件下进行辉光清洗,可以将藏留在所述基底不平整表面特别是刮痕中的水分、气体快速清除,防止后续通过离子源和电弧离子镀相结合沉积预制过渡层时膜层附着力不够,提高膜层在所述基底上的结合力。
为了进一步保证所述基底不平整表面特别是刮痕中的水分、气体被充分去除,在辉光清洗结束后,对所述基底进行离子刻蚀清洗,通过相对柔和的方式,将基底不平整表面特别是刮痕中的水分、气体完全去除。
在一些具体实施例中,所述离子刻蚀清洗的方法为:刻蚀清洗结束后,开启离子源对样品进行离子轰击清洗,其中,离子源电压为50~90 V,氩气流量70~500sccm,工作压强0.5~1.7Pa,基底偏压为100~800 V。在上述条件下,可以将辉光清洗过程中没有去除的水分和气体完全去除。优选的,所述离子轰击清洗的清洗时间为10~30min。
本发明实施例通过对所述基底依次进行预处理、辉光清洗和离子刻蚀清洗,可以逐级、不同力度地去除所述基底表面的各种附着物,提高涂层在所述基底表面的附着力;同时,按照该方法对所述基底进行表面清洁,还具有很好的时效性。
上述步骤S02中,采用离子源和电弧离子镀相结合的方法,在所述基底表面沉积预制过渡层,此处采取两种镀膜方式相结合的方法可以提高镀层的结合力和表面规整性。本发明实施例中,所述预制过渡层作为类金刚石复合层结构中的过渡层的物质基础,在经过下述步骤的刻蚀处理后,最终形成类金刚石复合层结构的过渡层。
本发明实施例中,将经清洗后的基底置于离子源镀膜设备的沉积室中。所述离子源镀膜设备如图2所示。沉积室中通入氩气,调节真空室压强为0.2~1.3 Pa,开启第一靶材、第二靶材,且控制所述第一靶材的靶功率为30~70 W,控制所述第二靶材的靶功率为30~70 W,在基底偏压为100~300 V的条件下,沉积预制过渡层。
制备预制过渡层的步骤中,所述真空室压强、第一靶材的靶功率、第二靶材的靶功率和基底偏压,共同决定了预制过渡层的质量。若所述真空室压强、靶功率、基底偏压中的任意一项变小,则沉积速率过慢,沉积时间过长;而若真空室压强、靶功率、基底偏压中的任意一项过高,沉积速度过快,两个靶材进行混合镀时形成的晶粒过大,且排列不规整,从而会降低预制过渡层在所述基底的结合力。且所述真空室压强、第一靶材的靶功率、第二靶材的靶功率和基底偏压之间相互关联,任意参数的变动,都可能导致沉积效果发生变化。本发明实施例提供的预制过渡层的方法,所述真空室压强、第一靶材的靶功率、第二靶材的靶功率和基底偏压在上述范围内,可以使得得到的预制过渡层中晶粒大小合适,预制过渡层在所述基底表面的结合力增强。
进一步优选的,所述氩气的流量为50~400sccm,从而提供合适的真空室压强。
本发明实施例制备预制过渡层的步骤中,为了形成表面具有微纳结构阵列的过渡层,采用双靶材制备预制过渡层。双靶材共同作为预制过渡层的物质基础,经过混镀均匀地沉积,形成预制过渡层,且其中,所述第一靶材作为牺牲材料,在下述步骤中,通过刻蚀液的刻蚀去除,最终,所述预制过渡层变成具有微纳结构阵列的过渡层。
这也就意味着,本发明实施例所述第一靶材、所述第二靶材的材料选择,除了所述第二靶材需要满足所述类金刚石复合层结构中的过渡层的材料要求外,还与下述步骤的刻蚀剂类型密切相关。具体的,所述第一靶材和所述第二靶材单独选自金属或非金属材料,且所述第一靶材选自可溶于所述刻蚀液的靶材,所述第二靶材选自不溶于所述刻蚀液的靶材。也可以理解为,所述第一靶材选自金属或非金属材料的靶材,所述第二靶材选自金属或非金属材料的靶材,且所述刻蚀液为能够溶解所述第一靶材、但不能溶解所述第二靶材的刻蚀液。
在满足上述基本要求的前提下,在一些实施例中,所述第一靶材、所述第二靶材选自金属材料,且所述金属材料包括铁、铝、铜、银、锡、钛、锗、金、铂、钽、钨、钒、铌、钴、镍。
在一些实施例中,所述第一靶材、所述第二靶材选自非金属材料,且所述非金属材料包括碳、硅、硫、硒、碲、有机聚合物。
在一些实施例中,所述第一靶材选自金属材料,所述第二靶材选自非金属材料,其中,所述金属材料选自铁、铝、铜、银、锡、钛、锗、金、铂、钽、钨、钒、铌、钴、镍,所述非金属材料选自碳、硅、硫、硒、碲、有机聚合物。
在一些实施例中,第一靶材选自非金属材料,所述第二靶材选自金属材料,其中,所述金属材料选自铁、铝、铜、银、锡、钛、锗、金、铂、钽、钨、钒、铌、钴、镍,所述非金属材料选自碳、硅、有机聚合物。
可以理解为,只要选择的刻蚀剂相匹配,所述第二靶材可以选择上述列举的各种材料,即所述过渡层选自金属层或者非金属层,其中,所述金属层为铁层、铝层、铜层、银层、锡层、钛层、金层、铂层、钽层、钨层、钒层、铌层、钴层、镍层、锗层中的一种,所述非金属层为碳层、硅层、硫层、硒层、碲层、有机聚合物层中的一种。
上述优选的靶材的优点如上文所述,此处不再赘述。其中,所述有机聚合物可以选自聚四氟乙烯、聚乙烯、聚苯乙烯、聚氯乙烯、聚对苯二甲酸乙二醇酯、聚丙烯腈、天然橡胶、丁苯橡胶、顺丁橡胶、聚氨酯,但不限于此,优选为聚四氟乙烯。
进一步的,沉积结束后,关闭离子源电源以及偏压电源,然后关闭气体质量流量计和气瓶主阀和减压阀;设置降温程序,待温度降到100℃以下后,关闭高阀,打开放气阀,待真空室内压强与外界气压一致时,打开真空室门。
上述步骤S03中,将沉积有预制过渡层的样品取出,置于盛有刻蚀液的容器中,进行超声处理,对所述预制过渡层进行刻蚀处理。所述刻蚀液的选择,满足能够溶解所述第一靶材、但不能溶解所述第二靶材即可,其他没有要求。
在一些实施例中,所述刻蚀液选自酸性溶液,且所述酸性溶液选自硝酸、硫酸、盐酸、氢氟酸、有机酸中的至少一种。此时,所述第一靶材对应为能够被所述酸性溶液溶解的靶材,所述第二靶材对应不受酸性刻蚀液的影响,即不被所述酸性溶液的影响。
在一些实施例中,所述刻蚀液选自碱性溶液,且所述碱性溶液选自氢氧化钠、氢氧化钾、氢氧化钙、氢氧化锂、有机碱中的至少一种。此时,所述第一靶材对应为能够被所述碱性溶液溶解的靶材,所述第二靶材对应不受酸性刻蚀液的影响,即不被所述碱性溶液的影响。
经过刻蚀处理后,所述预制过渡层形成表面具有微纳结构阵列的过渡层。本发明实施例可通过调整刻蚀条件,如温度、刻蚀液的浓度等,进一步控制微纳阵列的精细结构。优选的,所述过渡层中,所述微纳阵列结构的高度为0.5微米~2微米,所述微纳阵列结构中相邻微纳单元的间距为0.1微米~2微米。
上述步骤S04中,将所述刻蚀样品进行表面清洗处理,所述表面清洁处理可以采用前文所述的预处理和辉光清洗处理实现。进一步的,优选在辉光清洗后,采用离子刻蚀清洗。
将经清洗后的刻蚀样品置于沉积室中,在所述刻蚀样品的过渡层表面沉积类金刚石层,形成具有与所述过渡层相同的结构表面。优选的,在所述刻蚀样品的过渡层表面沉积类金刚石层的步骤中,将所述刻蚀样品进行表面清洗处理后置于沉积室中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石层。
制备类金刚石层的步骤中,所述真空室压强、离子源电压和基底偏压,共同决定了类金刚石层的质量。若所述真空室压强、离子源电压和基底偏压中的任意一项变小,则沉积速率过慢,沉积时间过长;而若真空室压强、离子源电压和基底偏压中的任意一项过高,沉积速度过快,形成的晶粒排列不规整,从而会降低类金刚石层在所述过渡层的结合力。且所述真空室压强、离子源电压和基底偏压之间相互关联,任意参数的变动,都可能导致沉积效果发生变化。本发明实施例提供的过渡层的参数条件,可以使得得到的类金刚石层的结合力增强,且形成的涂层致密均匀。
涂层沉积结束后,关闭离子源电源以及偏压电源,然后关闭气体质量流量计和气瓶主阀和减压阀;设置降温程序,待温度降到100℃以下后,关闭高阀,打开放气阀,待真空室内压强与外界气压一致时,打开真空室门,然后将样品取出。
优选的,所述类金刚石层的微纳阵列表面中,微纳阵列的高度为0.5微米~2微米,微纳阵列中相邻微纳单元的间距为0.1微米~2微米,由此得到的类金刚石层具有更好的超疏水性能。
下面结合具体实施例进行说明。
实施例1
一种类金刚石复合层结构的制备方法,包括以下步骤:
S11. 提供基底,对所述基底依次进行预处理、辉光清洗和离子刻蚀清洗;具体的:
将所述基底放入蒸馏水中超声清洗5~30 min,再将所述基底放入丙酮溶液中超声清洗5~30 min,之后再将所述基底放入无水乙醇溶液中超声清洗5~30 min;清洗结束后,用干燥氮气将衬底表面吹干,最后再将样品放入鼓风干燥箱中80~150℃烘干。在进行辉光清洗之前,调整设备参数,具体的,将烘干后的所述基底固定在离子源镀膜设备中的转架上;关闭真空室门,打开水冷机将离子源、多弧靶、分子泵、真空腔室的水路接通,打开空压机和复合镀膜机总电源,然后开启机械泵和旁抽阀以及分子泵,使分子泵进入爬升状态;当分子泵达到全速以后,关闭旁抽阀,打开粗抽阀,对真空室进行粗抽;当真空室内压强达到10 Pa以下后,再次打开旁抽阀;当真空室压强达到3Pa以下后,关闭粗抽阀,开启高阀对真空室抽高真空。当真空室压强抽到5.0×10 -3 Pa以后,打开加热电源对真空室进行加热烘烤,加热温度为100~500℃,加热过程中开启转架系统,使样品进行公自传;当真空度达到3.0×10 -3 Pa时,开始进行辉光清洗。
打开氩气瓶主阀、减压阀、离子源阀、弧阀和靶阀以及质量流量计,向真空室内通入氩气,控制氩气流量300~500sccm,工作压强为1.0~1.7 Pa,基底偏压-500~-800V,对基底进行辉光清洗,清洗时间10~30min。
辉光清洗结束后,开启离子源对样品进行离子轰击清洗,其中,离子源电压为50~90 V,氩气流量70~500sccm,工作压强0.5~1.7Pa,基底偏压为100~800 V,所述离子轰击清洗的清洗时间为10~30min。
S12. 将经清洗后的基底置于沉积室中,通入氩气,流量为50~400sccm,调节真空室压强为0.2~1.3 Pa,开启第一靶材(铜靶)、第二靶材(铝靶),且控制所述第一靶材的靶功率为30~70 W,控制所述第二靶材的靶功率为30~70 W,在基底偏压为100~300 V的条件下,沉积预制过渡层。
S13. 将沉积有预制过渡层的样品取出,置于盛有刻蚀液(氢氧化钠溶液)的容器中,进行超声处理,对所述预制过渡层进行刻蚀处理,形成表面具有微纳结构阵列的过渡层,得到刻蚀样品。
S14. 将所述刻蚀样品进行表面清洗处理后置于沉积室中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石层。
实施例2
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铜靶,第二靶材选用金属铝靶,刻蚀液选用氢氧化钾溶液。
实施例3
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铜靶,第二靶材选用金属铝靶,刻蚀液选用盐酸溶液。
实施例4
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铜靶,第二靶材选用金属铝靶,刻蚀液选用硫酸溶液。
实施例5
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属碳靶,刻蚀液选用盐酸溶液。
实施例6
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属碳靶,刻蚀液选用氢氧化钠溶液。
实施例7
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属碳靶,刻蚀液选用氢氧化钾溶液。
实施例8
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属碳靶,刻蚀液选用硫酸溶液。
实施例9
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属硅靶,刻蚀液选用氢氧化钠溶液。
实施例10
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:第一靶材选用金属铝靶,第二靶材选用非金属硅靶,刻蚀液选用氢氧化钾溶液。
对比例1
一种类金刚石复合层结构的制备方法,与实施例1的不同之处在于:在进行步骤S11之后,不进行步骤S12、步骤S13,直接将清洗后的所述基底置于沉积室中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石层。
将实施例1-10制备的类金刚石复合层结构以及对比例1制备的类金刚石复合层结构进行水接触角测试实验,测试方法如下:
测试方法:外形图像分析法。
测试结果如下表1所示,其中,实施例1、实施例2的测试结果图如图2、图3所示。
表1(不同条件接触角测试结果)
测试样品 水接触角(°)
实施例1 154.272
实施例2 153.229
实施例3 151.336
实施例4 152.253
实施例5 151.891
实施例6 152.534
实施例7 151.7719
实施例8 152.341
实施例9 154.002
实施例10 153.573
对比例1 143.343
由表1可见,通过本发明实施例制备得到的具有表面微纳阵列结构的类金刚石复合层结构,具有优异的超疏水性能。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种类金刚石复合层结构的制备方法,其特征在于,包括以下步骤:
    提供基底,对所述基底依次进行预处理、辉光清洗和离子刻蚀清洗;
    将经清洗后的基底置于沉积室中,通入氩气,调节真空室压强为0.2~1.3 Pa,开启第一靶材、第二靶材,且控制所述第一靶材的靶功率为30~70 W,控制所述第二靶材的靶功率为30~70 W,在基底偏压为100~300 V的条件下,沉积预制过渡层;
    将沉积有预制过渡层的样品取出,置于盛有刻蚀液的容器中,进行超声处理,对所述预制过渡层进行刻蚀处理,形成表面具有微纳结构阵列的过渡层,得到刻蚀样品;
    将所述刻蚀样品进行表面清洗处理后,置于沉积室中,在所述刻蚀样品的过渡层表面沉积类金刚石层;
    其中,所述第一靶材和所述第二靶材单独选自金属或非金属材料,且所述第一靶材选自可溶于所述刻蚀液的靶材,所述第二靶材选自不溶于所述刻蚀液的靶材;或
    所述第一靶材选自金属或非金属材料的靶材,所述第二靶材选自金属或非金属材料的靶材,且所述刻蚀液为能够溶解所述第一靶材、但不能溶解所述第二靶材的刻蚀液。
  2. 如权利要求1所述的类金刚石复合层结构的制备方法,其特征在于,所述第一靶材、所述第二靶材选自金属材料,且所述金属材料包括铁、铝、铜、银、锡、钛、锗;或
    所述第一靶材、所述第二靶材选自非金属材料,且所述非金属材料包括碳、硅、有机聚合物。
  3. 如权利要求1所述的类金刚石复合层结构的制备方法,其特征在于,所述第一靶材选自金属材料,所述第二靶材选自非金属材料,或
    所述第一靶材选自非金属材料,所述第二靶材选自金属材料,
    其中,所述金属材料选自铁、铝、铜、银、锡、钛、锗,所述非金属材料选自碳、硅、有机聚合物。
  4. 如权利要求1至3任一项所述的类金刚石复合层结构的制备方法,其特征在于,所述刻蚀液选自酸性溶液,且所述酸性溶液选自硝酸、硫酸、盐酸、氢氟酸、有机酸中的至少一种;或
    所述刻蚀液选自碱性溶液,且所述碱性溶液选自氢氧化钠、氢氧化钾、氢氧化钙、氢氧化锂、有机碱中的至少一种。
  5. 如权利要求1至3任一项所述的类金刚石复合层结构的制备方法,其特征在于,在所述刻蚀样品的过渡层表面沉积类金刚石层的步骤中,将所述刻蚀样品进行表面清洗处理后置于沉积室中,以乙炔作为工作气体,且调节所述真空室内的压强为0.5~1.0Pa,离子源电压为50~100V,基底偏压为50~200V,在所述刻蚀样品的过渡层表面沉积类金刚石层。
  6. 一种类金刚石复合层结构,其特征在于,所述类金刚石复合层结构包括基底,设置在所述基底表面的过渡层,设置在所述过渡层背离所述基底的表面的类金刚石层,其中,
    所述过渡层在背离所述基底的一侧凸起形成微纳阵列结构,所述类金刚石层背离所述基底的表面为微纳阵列表面。
  7. 如权利要求6所述的类金刚石复合层结构,其特征在于,所述过渡层中,所述微纳阵列结构的高度为0.5微米~2微米,所述微纳阵列结构中相邻微纳单元的间距为0.1微米~2微米。
  8. 如权利要求6所述的类金刚石复合层结构,其特征在于,所述类金刚石层的微纳阵列表面中,微纳阵列的高度为0.5微米~2微米,微纳阵列中相邻微纳单元的间距为0.1微米~2微米。
  9. 如权利要求6至8任一项所述的类金刚石复合层结构,其特征在于,所述过渡层选自金属层或者非金属层,其中,
    所述金属层为铁层、铝层、铜层、银层、锡层、钛层、锗层中的一种,
    所述非金属层为碳层、硅层、有机聚合物层中的一种。
  10. 如权利要求6至8任一项所述的类金刚石复合层结构,其特征在于,所述基底选自碳素钢基底、不锈钢基底、高素钢基底、硬质合金基底、陶瓷基底中的一种。
PCT/CN2019/122576 2018-12-11 2019-12-03 超疏水类金刚石复合层结构及其制备方法 WO2020119510A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811508697.8A CN111304602B (zh) 2018-12-11 2018-12-11 超疏水类金刚石复合层结构及其制备方法
CN201811508697.8 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020119510A1 true WO2020119510A1 (zh) 2020-06-18

Family

ID=71077108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122576 WO2020119510A1 (zh) 2018-12-11 2019-12-03 超疏水类金刚石复合层结构及其制备方法

Country Status (2)

Country Link
CN (1) CN111304602B (zh)
WO (1) WO2020119510A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113005388A (zh) * 2020-11-18 2021-06-22 河海大学 超疏水耐蚀防污铝基非晶涂层及其制备方法
CN112853281B (zh) * 2020-12-29 2022-04-26 东莞市华升真空镀膜科技有限公司 碳基多层薄膜及其制备方法和应用
CN113481473B (zh) * 2021-07-07 2024-01-26 广东省科学院新材料研究所 一种钛合金轴承座及其制备方法和航空部件
CN114921755A (zh) * 2022-05-31 2022-08-19 成都光明光电股份有限公司 一种具有过渡层阵列的硬质薄膜结构及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
CN101736323A (zh) * 2009-12-21 2010-06-16 上海交通大学 刀具表面掺硼金刚石复合涂层制备装置
CN104674185A (zh) * 2015-02-03 2015-06-03 上海交通大学 具有非晶二氧化硅中间过渡层的金刚石薄膜的制备方法
CN106684387A (zh) * 2016-12-20 2017-05-17 深圳先进技术研究院 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池
CN106835011A (zh) * 2016-12-20 2017-06-13 深圳先进技术研究院 一种具有类金钢石阵列的结构件及其制备方法
CN106835219A (zh) * 2017-01-19 2017-06-13 中国科学院深圳先进技术研究院 一种超疏水不锈钢表面涂层及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3416364B2 (ja) * 1995-11-27 2003-06-16 三洋電機株式会社 光起電力素子及びその製造方法
CN103641062B (zh) * 2013-12-17 2016-08-17 安徽华东光电技术研究所 一种制备微纳结构的方法
US20160332908A1 (en) * 2015-05-14 2016-11-17 Intevac, Inc. Textured ar with protective thin film
CN105413994A (zh) * 2015-12-15 2016-03-23 大连理工大学 一种仿生微纳复合结构超疏水表面的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5268217A (en) * 1990-09-27 1993-12-07 Diamonex, Incorporated Abrasion wear resistant coated substrate product
CN101736323A (zh) * 2009-12-21 2010-06-16 上海交通大学 刀具表面掺硼金刚石复合涂层制备装置
CN104674185A (zh) * 2015-02-03 2015-06-03 上海交通大学 具有非晶二氧化硅中间过渡层的金刚石薄膜的制备方法
CN106684387A (zh) * 2016-12-20 2017-05-17 深圳先进技术研究院 一种含类金刚石薄膜层的锂离子电池负极及其制备方法和锂离子电池
CN106835011A (zh) * 2016-12-20 2017-06-13 深圳先进技术研究院 一种具有类金钢石阵列的结构件及其制备方法
CN106835219A (zh) * 2017-01-19 2017-06-13 中国科学院深圳先进技术研究院 一种超疏水不锈钢表面涂层及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUOMING ZHU: "The Hydrophobic Property of Diamond-like Carbon Film deposited on Micro and Nano Structural Surface", MASTER THESIS, no. 4, 15 April 2013 (2013-04-15), pages 1 - 69, XP009521498, ISSN: 1674-0246 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116555907A (zh) * 2023-04-28 2023-08-08 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法
CN116555907B (zh) * 2023-04-28 2024-05-03 哈尔滨工业大学 仿生自清洁多晶金刚石的制备方法

Also Published As

Publication number Publication date
CN111304602A (zh) 2020-06-19
CN111304602B (zh) 2023-07-21

Similar Documents

Publication Publication Date Title
WO2020119510A1 (zh) 超疏水类金刚石复合层结构及其制备方法
CN111321380B (zh) 超疏水类金刚石复合层结构及其制备方法
CN101518935B (zh) Pvd纳米复合陶瓷涂层螺杆及其制造方法
CN108193173B (zh) 一种低粘附轮胎模具的多层复合涂层及其制备方法
CN109666904B (zh) 一种低应力高耐磨抗冲蚀涂层、制备方法及应用
CN107779839B (zh) 基于阳极技术的dlc镀膜方法
CN107142463A (zh) 一种等离子体化学气相沉积与磁控溅射或离子镀复合的镀覆方法
CN110578122A (zh) 一种AlTiN/AlTiSiN多层纳米复合涂层的制备工艺
WO2020155732A1 (zh) 用于注塑模具的防粘附硬质涂层及其制备方法
CN110578123A (zh) 高硬度AlTiN/AlTiSiN多层纳米复合涂层及其制备工艺
CN110777336A (zh) 一种基于能量调控原理制备超厚硬质薄膜的方法
CN111254391A (zh) 超疏水类金刚石复合层及其制备方法
CN107513690B (zh) 一种类金刚石/立方氮化硼多层复合涂层及其制备方法
CN105779943A (zh) 一种物理气相沉积氟硅烷制备疏水膜的方法
CN110117774A (zh) 一种tc4钛合金表面涂层及其制备方法和tc4钛合金产品
CN113529033A (zh) 一种防护涂层的制备方法及制备得到的防护涂层
CN108396306A (zh) 一种低温沉积硬度可控的类金刚石复合薄膜的方法
CN111908803A (zh) 一种超亲水、高耐磨膜层及其制备方法
CN110438421A (zh) 一种铝合金材料及铝合金固溶处理+pvd涂层同步强化方法
CN108893711A (zh) 利用离子束加厚非晶四面体碳涂层的方法及装置及涂层
CN112941463B (zh) 一种纳米多层氧氮化物耐蚀防护涂层及其制备方法和应用
CN101550539B (zh) 一种在陶瓷阀芯表面沉积防护薄膜的方法
CN107881469A (zh) 类金刚石复合涂层及其制备方法与用途以及涂层工具
CN115070516A (zh) 一种控制红外窗口镜片净光圈的方法
CN109972101A (zh) 一种低掺杂金属纳米类金刚石涂层的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19896731

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19896731

Country of ref document: EP

Kind code of ref document: A1