CN108396306A - 一种低温沉积硬度可控的类金刚石复合薄膜的方法 - Google Patents

一种低温沉积硬度可控的类金刚石复合薄膜的方法 Download PDF

Info

Publication number
CN108396306A
CN108396306A CN201810032374.XA CN201810032374A CN108396306A CN 108396306 A CN108396306 A CN 108396306A CN 201810032374 A CN201810032374 A CN 201810032374A CN 108396306 A CN108396306 A CN 108396306A
Authority
CN
China
Prior art keywords
diamond
carbon composite
composite film
hardness
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810032374.XA
Other languages
English (en)
Inventor
苏峰华
陈国富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201810032374.XA priority Critical patent/CN108396306A/zh
Publication of CN108396306A publication Critical patent/CN108396306A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3485Sputtering using pulsed power to the target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers

Abstract

本发明公开了一种低温沉积硬度可控的类金刚石复合薄膜的方法。该方法采用中频磁控溅射技术与等离子体增强化学气相沉积技术,在金属基材及硅片上,通过调节偏压低温制备了不同硬度的类金刚石复合薄膜。复合薄膜由基底起包括纯金属钛过渡层,碳化钛过渡层及类金刚石涂层。该类金刚石复合薄膜沉积温度低,硬度可控,表面光滑,与基底结合紧密,具有优良的减摩耐磨性能。

Description

一种低温沉积硬度可控的类金刚石复合薄膜的方法
技术领域
本发明属于新材料无机合成技术领域,具体涉及一种低温沉积硬度可控的类金刚石复合薄膜的方法。
背景技术
类金刚石薄膜的结构介于金刚石和石墨之间,使其具有高的硬度、优异的减摩抗磨性能、高的热导率、良好的光学透明性、低的介电常数以及优异的化学惰性和生物相容性等,可广泛用于机械、电子、光学、热学、生物医学等领域,具有广泛的应用前景。目前,类金刚石薄膜的制备方法主要以气相沉积技术为主。为获得内应力低,结合力良好且厚度较厚的类金刚石薄膜,采用现有的气相沉积技术制备的类金刚石复合薄膜过渡层多,制备工艺复杂,温度高,耗时耗能。中国发明专利CN102658684A公开了一种类金刚石薄膜制备的方法。该方法制备了基体渗氮层,铬扩散过渡层,碳、氮的富铬混合层及类金刚石层,复合薄膜的最大厚度为3.1 μm。中国发明专利CN106521493A公开了一种梯度结构类金刚石薄膜及其制备方法。该方法制备了纯金属层、第一梯度过渡层、金属氮化物层、第二梯度过渡层、碳化钨层、第三梯度过渡层以及表面类金刚石薄膜层。以上两种类金刚石复合薄膜的制备方法过渡层多,制备工艺复杂,对于设备要求高,耗能大。同时由于制备的温度过高易导致类金刚石薄膜结构由无定形碳结构向纳米晶石墨结构转变,降低薄膜的硬度,限制薄膜的应用范围。
发明内容
本发明的目的在于克服以上类金刚石薄膜性能及制备方法上存在的问题,提供一种低温沉积硬度可控的类金刚石复合薄膜的方法及产品,该方法设备简单,沉积温度低,省时节能,成膜均匀,重复性好。用这种方法制得的薄膜均匀致密,表面光滑,与基底结合力强,摩擦系数与磨损率低,硬度可控。
本发明采用中频磁控溅射技术与等离子体增强化学气相沉积技术,通过改变脉冲偏压电源参数,控制沉积温度,在金属基材及硅片上制备了具有不同硬度的类金刚石复合薄膜,该薄膜在需要不同减摩耐磨性能要求的零部件上具有潜在的应用价值。
本发明具体通过以下技术方案实现。
一种低温沉积硬度可控的类金刚石复合薄膜的方法,包括以下步骤:
(1)将基底超声清洗,然后转移至真空室,固定于样品行星架上,样品行星架与负偏压电源相连,再将真空室抽真空;
(2)往真空室中通入氩气,真空度保持在0.1-1 Pa,开启离子源电源,在脉冲负偏压300-800 V,占空比20-50 %条件下进行等离子体清洗,用以去除基底表面残留的污染物与杂质;
(3)开启中频磁控溅射电源及相应的钛靶,改变氩气流量,真空度保持在0.3-1 Pa,在脉冲负偏压150-400 V,占空比为30-50 %,温度为28-32 ℃,沉积第一层纯金属钛过渡层,沉积时间为10-30 min;
(4)往真空室中通入乙炔与氩气,真空度保持在0.5-0.8 Pa,在脉冲负偏压100-300 V,占空比10-30 %,温度为32-37 ℃,沉积第二层碳化钛过渡层, 沉积时间为10-30 min;
(5)关闭中频磁控溅射电源,脉冲偏压电源及相应钛靶,通入乙炔及氢气,真空度保持在10-15 Pa,开启单极脉冲偏压电源,占空比为10-40 %,脉冲负偏压为1000-3000 V,温度为37-80 ℃,制备第三层类金刚石薄膜, 沉积时间为60-180 min,得类金刚石复合薄膜。
优选的,步骤(1)所述基底为金属基材及硅片。
优选的,步骤(1)所述超声清洗是在无水乙醇中超声清洗30 min。
优选的,步骤(1)所述抽真空是直至真空室室内真空度达到1.0Í10-3 Pa。
优选的,步骤(2)所述等离子体清洗的时间为15-30 min。
优选的,步骤(3)所述第一层纯金属钛过渡层的厚度为0.1-0.4 μm。
优选的,步骤(4)所述第二层碳化钛过渡层的厚度为0.2-0.6 μm。
优选的,步骤(4)所述乙炔与氩气的体积比为2:1。
优选的,步骤(5)所述乙炔及氢气的体积比为4:1。
优选的,步骤(5)所述第三层类金刚石薄膜的厚度为4.5-5.5 μm。
由以上所述的方法制得的类金刚石复合薄膜,该类金刚石复合薄膜由三层组成,从基底起分别为:0.1-0.4 μm厚的纯金属钛过渡层,0.2-0.6 μm厚的碳化钛过渡层和4.5-5.5 μm厚的类金刚石薄膜。复合薄膜表面光滑,表面粗糙度Ra为10-15 nm,硬度为8-16GPa。
优选的,所述类金刚石复合薄膜与基底的结合力为43-56 N。
本发明所制备的类金刚石复合薄膜用拉曼光谱表征其结构,场发射扫描电子显微镜观察其断面形貌,纳米压痕仪表征其硬度,摩擦磨损试验仪表征其摩擦磨损性能。结果表明, 在金属基材和硅片上成功制备了类金刚石复合薄膜。不同偏压制备的复合薄膜的硬度可控,其范围为8-16 GPa,膜基结合力为43-56 N,都具有良好的减摩耐磨性能。
与现有技术相比,本发明具有以下优点:
(1)本发明沉积过渡层时采用中频磁控溅射技术,避免了磁控靶靶中毒现象,沉积温度低,膜层致密光滑,避免了多弧离子镀技术导致的膜层颗粒多,表面粗糙和沉积温度变化大等问题。沉积类金刚石薄膜采用等离子增强化学气相沉积技术,该技术具有沉积温度低、绕射性好、环保零污染,符合绿色制造,可持续发展的要求。充分发挥中频磁控溅射技术与等离子体增强化学气相沉积技术的优势使得类金刚石复合薄膜沉积温度低,可控制在37-80℃之间。低温沉积避免类金刚石薄膜由无定形碳结构向纳米晶石墨结构转变。
(2)本发明通过改变制备类金刚石薄膜的脉冲偏压,控制薄膜的硬度。相应脉冲偏压调节范围为1000 V-3000 V,对应的薄膜硬度为8-16 GPa,而且各偏压条件下制备的类金刚石复合薄膜厚度厚,内应力小,结合力强。根据零部件性能需要选择脉冲偏压沉积满足其硬度要求的类金刚石复合薄膜,增强零部件服役寿命。相比于现有薄膜制备工艺的单一性,本发明制备的类金刚石复合薄膜实际应用范围更广,选择性更多。
附图说明
图1是本发明实施例2中制备的类金刚石复合薄膜的拉曼光谱图;
图2是本发明实施例2中制备的类金刚石复合薄膜的断面形貌SEM图;
图3是本发明实施例2中制备的类金刚石复合薄膜的压入深度与载荷关系曲线图。
具体实施方式
以下结合实例与附图对本发明的实施作进一步的说明,但本发明的实施方式不限于此。
实施例1:
一种类金刚石复合薄膜由三层组成,从基底起分别为:0.1 μm厚的纯金属钛过渡层,0.2 μm厚的碳化钛过渡层和4.5μm厚的类金刚石薄膜。
一种类金刚石复合薄膜的制备方法,包括如下步骤:
步骤1将TC4钛合金基材(20 mm Í40 mm Í2 mm)置于无水乙醇中超声清洗30 min,然后转移至真空室,固定于样品行星架上,样品行星架与负偏压电源相连;抽真空直至真空室室内真空度达到1.0Í10-3 Pa;
步骤2 通入氩气,真空保持在0.1Pa,开启离子源电源,在脉冲负偏压300 V,占空比20% 条件下进行等离子体清洗,用以去除基底表面残留的污染物与杂质,处理时间15 min;
步骤3 开启中频磁控溅射电源及相应的钛靶,改变氩气流量,真空保持在0.3 Pa,在脉冲负偏压150 V,占空比为30 % 条件下沉积第一层纯金属钛过渡层,沉积时间10 min,沉积温度为28 ℃;
步骤4 通入乙炔与氩气,体积比为2:1,真空保持在0.5 Pa,在脉冲负偏压100 V,占空比10 % 下沉积第二层碳化钛过渡层, 沉积时间10 min,沉积温度为32 ℃;
步骤5 关闭中频磁控溅射电源,脉冲偏压电源及相应的钛靶,通入乙炔及氢气,体积比为4:1,真空保持在10 Pa,开启单极脉冲偏压电源,占空比为10 %,脉冲负偏压为1.0 kV,制备第三层类金刚石薄膜, 沉积时间60 min,沉积温度为37 ℃。
本实施例制备的类金刚石复合薄膜性能:膜厚为4.8 um,纳米压痕测得硬度为8GPa,膜基结合力为43 N,表面粗糙度为15 nm,摩擦系数为0.085-0.1,磨损率为1.35Í10-6mm-3(N•m)-1
实施例2:
一种类金刚石复合薄膜由三层组成,从基底起分别为:0.25 μm厚的纯金属钛过渡层,0.4 μm厚的碳化钛过渡层和5.0 μm厚的类金刚石薄膜。
一种类金刚石复合薄膜的制备方法,包括如下步骤:
步骤1将304不锈钢基材(20 mm Í40 mm Í2 mm)置于无水乙醇中超声清洗30 min,然后转移至真空室,固定于样品行星架上,样品行星架与负偏压电源相连;抽真空直至真空室室内真空度达到1.0Í10-3 Pa;
步骤2 通入氩气,真空保持在0.55 Pa,开启离子源电源,在脉冲负偏压550 V,占空比35 % 条件下进行等离子体清洗,用以去除基底表面残留的污染物与杂质,处理时间22min;
步骤3 开启中频磁控溅射电源及相应的钛靶,改变氩气流量,真空保持在0.65 Pa,在脉冲负偏压275 V,占空比为40 % 条件下沉积第一层纯金属钛过渡层,沉积时间20 min,沉积温度为30 ℃;
步骤4 通入乙炔与氩气,体积比为2:1,真空保持在0.65 Pa,在脉冲负偏压200 V,占空比20 % 下沉积第二层碳化钛过渡层, 沉积时间20 min,沉积温度为35 ℃;
步骤5 关闭中频磁控溅射电源,脉冲偏压电源及相应的钛靶,通入乙炔及氢气,体积比为4:1,真空保持在12.5 Pa,开启单极脉冲偏压电源,占空比为25 %,脉冲负偏压为1.6 kV,制备第三层类金刚石薄膜, 沉积时间120 min,沉积温度为58 ℃。
本实施例制备的类金刚石复合薄膜的拉曼光谱图、断面形貌SEM图、压入深度与载荷关系曲线图分别如图1、图2、图3所示。
本实施例制备的类金刚石复合薄膜性能:膜厚为5.65 um,纳米压痕测得硬度为16GPa,膜基结合力为56 N,表面粗糙度为10 nm,摩擦系数为0.06-0.08,磨损率为0.75Í10-6mm-3(N•m)-1
实施例3:
一种类金刚石复合薄膜由三层组成,从基底起分别为:0.4 μm厚的纯金属钛过渡层,0.6 μm厚的碳化钛过渡层和5.5 μm厚的类金刚石薄膜。
一种类金刚石复合薄膜的制备方法,包括如下步骤:
步骤1将表面粗糙度小于10 nm的单晶硅片(10 mm Í10 mm Í1 mm)置于无水乙醇中超声清洗30 min,然后转移至真空室,固定于样品行星架上,样品行星架与负偏压电源相连;抽真空直至真空室室内真空度达到1.0Í10-3 Pa;
步骤2 通入氩气,真空保持在1 Pa,开启离子源电源,在脉冲负偏压800 V,占空比50 %条件下进行等离子体清洗,用以去除基底表面残留的污染物与杂质,处理时间30 min;
步骤3 开启中频磁控溅射电源及相应的钛靶,改变氩气流量,真空保持在1 Pa,在脉冲负偏压400 V,占空比为50 % 条件下沉积第一层纯金属钛过渡层,沉积时间30 min,沉积温度为32 ℃;
步骤4 通入乙炔与氩气,体积比为2:1,真空保持在0.8 Pa,在脉冲负偏压300 V,占空比30 % 下沉积第二层碳化钛过渡层, 沉积时间30 min,沉积温度为37 ℃;
步骤5 关闭中频磁控溅射电源,脉冲偏压电源及相应的钛靶,通入乙炔及氢气,体积比为4:1,真空保持在15 Pa,开启单极脉冲偏压电源,占空比为40 %,脉冲负偏压为3.0 kV,制备第三层类金刚石薄膜, 沉积时间180 min,沉积温度为80 ℃。
本实施例制备的类金刚石复合薄膜性能:膜厚为6.5 um,纳米压痕测得硬度为14GPa,膜基结合力为50 N,表面粗糙度为12.5 nm,摩擦系数为0.075-0.09,磨损率为0.95Í10-6 mm-3(N•m)-1
以上所述的实施例对本发明的技术方案进行了详细的说明,应理解的是以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的原则范围内所做的任何和修改、补充或类似方式的替代等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,包括以下步骤:
(1)将基底超声清洗,然后转移至真空室,固定于样品行星架上,样品行星架与负偏压电源相连,再将真空室抽真空;
(2)往真空室中通入氩气,真空度保持在0.1-1 Pa,开启离子源电源,在脉冲负偏压300-800 V,占空比20-50 %条件下进行等离子体清洗,用以去除基底表面残留的污染物与杂质;
(3)开启中频磁控溅射电源及相应的钛靶,改变氩气流量,真空度保持在0.3-1 Pa,在脉冲负偏压150-400 V,占空比为30-50 %,温度为28-32℃,沉积第一层纯金属钛过渡层,沉积时间为10-30 min;
(4)往真空室中通入乙炔与氩气,真空度保持在0.5-0.8 Pa,在脉冲负偏压100-300 V,占空比10-30 %,温度为32-37℃,沉积第二层碳化钛过渡层, 沉积时间为10-30 min;
(5)关闭中频磁控溅射电源,脉冲偏压电源及相应钛靶,通入乙炔及氢气,真空度保持在10-15 Pa,开启单极脉冲偏压电源,占空比为10-40 %,脉冲负偏压为1000-3000 V,温度为37-80 ℃,制备第三层类金刚石薄膜, 沉积时间为60-180 min,得类金刚石复合薄膜。
2.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(1)所述超声清洗是在无水乙醇中超声清洗30 min。
3.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(1)所述抽真空是直至真空室室内真空度达到1.0Í10-3 Pa。
4.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(2)所述等离子体清洗的时间为15-30 min。
5.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(3)所述第一层纯金属钛过渡层的厚度为0.1-0.4 μm。
6.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(4)所述第二层碳化钛过渡层的厚度为0.2-0.6 μm。
7.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(5)所述第三层类金刚石薄膜的厚度为4.5-5.5 μm。
8.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(5)所述类金刚石复合薄膜的表面粗糙度Ra为10-15 nm,硬度为8-16 GPa。
9.根据权利要求书1所述的一种低温沉积硬度可控的类金刚石复合薄膜的方法,其特征在于,步骤(5)所述类金刚石复合薄膜与基底的结合力为43-56 N。
CN201810032374.XA 2018-01-12 2018-01-12 一种低温沉积硬度可控的类金刚石复合薄膜的方法 Pending CN108396306A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810032374.XA CN108396306A (zh) 2018-01-12 2018-01-12 一种低温沉积硬度可控的类金刚石复合薄膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810032374.XA CN108396306A (zh) 2018-01-12 2018-01-12 一种低温沉积硬度可控的类金刚石复合薄膜的方法

Publications (1)

Publication Number Publication Date
CN108396306A true CN108396306A (zh) 2018-08-14

Family

ID=63094726

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810032374.XA Pending CN108396306A (zh) 2018-01-12 2018-01-12 一种低温沉积硬度可控的类金刚石复合薄膜的方法

Country Status (1)

Country Link
CN (1) CN108396306A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536905A (zh) * 2018-12-13 2019-03-29 西安工程大学 一种铜表面用TiC-Si固溶体导电涂层的制备方法
CN111791024A (zh) * 2020-06-01 2020-10-20 肇庆宏旺金属实业有限公司 一种普砂超黑钢不锈钢板的加工方法
CN113862671A (zh) * 2021-09-25 2021-12-31 科汇纳米技术(深圳)有限公司 Pvd-cvd联用制备类金刚石膜的方法、类金刚石膜、合金材料及汽车部件

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196401A (zh) * 1997-04-17 1998-10-21 哈尔滨工业大学 大面积类金刚石碳膜低温制备方法及装置
CN1227162A (zh) * 1998-12-04 1999-09-01 中国科学院上海冶金研究所 以金属钛为界面层的非晶金刚石薄膜多层材料、制备方法及其用途
CN1402589A (zh) * 2002-11-02 2003-03-12 广州有色金属研究院 一种类金刚石复合扬声器振膜的制备方法
CN1969058A (zh) * 2004-04-19 2007-05-23 独立行政法人产业技术总合研究所 碳膜
CN101082131A (zh) * 2007-07-05 2007-12-05 中国航天科技集团公司第五研究院第五一○研究所 不锈钢金属表面镀制类金刚石薄膜的方法
CN101082118A (zh) * 2007-07-05 2007-12-05 中国航天科技集团公司第五研究院第五一○研究所 高速钢金属表面镀制类金刚石薄膜的方法
CN101532122A (zh) * 2009-04-03 2009-09-16 西安交通大学 一种生物医用NiTi合金表面制备类金刚石涂层的方法
CN201756583U (zh) * 2010-04-12 2011-03-09 深圳市天星达真空镀膜设备有限公司 一种低温沉积大面积类金刚石薄膜的装置
CN102352510A (zh) * 2011-10-19 2012-02-15 济南安塞自动化技术有限公司 镁合金上低温制备高性能硅掺杂类金刚石膜层的方法
CN107022745A (zh) * 2017-04-28 2017-08-08 星弧涂层新材料科技(苏州)股份有限公司 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN107034440A (zh) * 2017-05-03 2017-08-11 马鞍山市卡迈特液压机械制造有限公司 一种复合类金刚石碳膜及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1196401A (zh) * 1997-04-17 1998-10-21 哈尔滨工业大学 大面积类金刚石碳膜低温制备方法及装置
CN1227162A (zh) * 1998-12-04 1999-09-01 中国科学院上海冶金研究所 以金属钛为界面层的非晶金刚石薄膜多层材料、制备方法及其用途
CN1402589A (zh) * 2002-11-02 2003-03-12 广州有色金属研究院 一种类金刚石复合扬声器振膜的制备方法
CN1969058A (zh) * 2004-04-19 2007-05-23 独立行政法人产业技术总合研究所 碳膜
CN101082131A (zh) * 2007-07-05 2007-12-05 中国航天科技集团公司第五研究院第五一○研究所 不锈钢金属表面镀制类金刚石薄膜的方法
CN101082118A (zh) * 2007-07-05 2007-12-05 中国航天科技集团公司第五研究院第五一○研究所 高速钢金属表面镀制类金刚石薄膜的方法
CN101532122A (zh) * 2009-04-03 2009-09-16 西安交通大学 一种生物医用NiTi合金表面制备类金刚石涂层的方法
CN201756583U (zh) * 2010-04-12 2011-03-09 深圳市天星达真空镀膜设备有限公司 一种低温沉积大面积类金刚石薄膜的装置
CN102352510A (zh) * 2011-10-19 2012-02-15 济南安塞自动化技术有限公司 镁合金上低温制备高性能硅掺杂类金刚石膜层的方法
CN107022745A (zh) * 2017-04-28 2017-08-08 星弧涂层新材料科技(苏州)股份有限公司 基于类金刚石薄膜的增厚型复合薄膜及其镀膜方法
CN107034440A (zh) * 2017-05-03 2017-08-11 马鞍山市卡迈特液压机械制造有限公司 一种复合类金刚石碳膜及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109536905A (zh) * 2018-12-13 2019-03-29 西安工程大学 一种铜表面用TiC-Si固溶体导电涂层的制备方法
CN111791024A (zh) * 2020-06-01 2020-10-20 肇庆宏旺金属实业有限公司 一种普砂超黑钢不锈钢板的加工方法
CN113862671A (zh) * 2021-09-25 2021-12-31 科汇纳米技术(深圳)有限公司 Pvd-cvd联用制备类金刚石膜的方法、类金刚石膜、合金材料及汽车部件

Similar Documents

Publication Publication Date Title
CN101487121B (zh) 一种金刚石/w-c梯度结构复合涂层及其制备方法
Lin et al. Thick diamond like carbon coatings deposited by deep oscillation magnetron sputtering
CN108728802B (zh) 多层耐高温Ti/Zr共掺杂类金刚石涂层及其制备方法
CN102453859A (zh) 含氢类金刚石碳薄膜材料的制备方法
CN108396306A (zh) 一种低温沉积硬度可控的类金刚石复合薄膜的方法
CN101665942A (zh) 超润滑复合碳薄膜材料的制备方法
CN101876053A (zh) 铝合金表面掺钛类金刚石膜及其制备方法
CN110423989A (zh) 一种低残余应力的硬质类金刚石薄膜的制备方法
JP4558549B2 (ja) 被覆部材の製造方法
Dwivedi et al. Influence of bonding environment on nano-mechanical properties of nitrogen containing hydrogenated amorphous carbon thin films
US20230183851A1 (en) High-entropy carbide ceramic material, carbide ceramic coating and preparation methods and use thereof
Cao et al. Microstructure, mechanical and tribological properties of multilayer TiAl/TiAlN coatings on Al alloys by FCVA technology
CN111218663A (zh) 一种类金刚石保护性涂层及其制备方法
CN106978593A (zh) 一种顶面为钛掺杂类金刚石多层隔热厚膜的活塞及其制备方法和应用
CN100408719C (zh) 一种氧化铬复合涂层的制备方法
Cao et al. Simultaneously improving the corrosion resistance and wear resistance of internal surface of aluminum pipe by using multilayer diamond-like carbon-Si coatings
Li et al. Surface modification of 316L stainless steel by diamond-like carbon films
JP2013087325A (ja) 硬質炭素膜及びその形成方法
Jao et al. Formation and characterization of DLC: Cr: Cu multi-layers coating using cathodic arc evaporation
CN100465353C (zh) 含二氧化硅纳米颗粒的类金刚石碳复合薄膜的制备方法
Tian et al. Deposition of cubic boron nitride films by anode layer linear ion source assisted radio frequency magnetron sputtering
CN109972101A (zh) 一种低掺杂金属纳米类金刚石涂层的制备方法
Sun et al. Achieving ultra‐low friction of a‐C: H film grown on 9Cr18Mo steel for industrial application via programmable high power pulse magnetron sputtering
CN207862436U (zh) 碳-过渡金属硼化物复合涂层和切削工具
CN102560413B (zh) 类钻碳膜及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20180814

RJ01 Rejection of invention patent application after publication