WO2020116271A1 - 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置 - Google Patents

内部熱交換器及び内部熱交換器を備える冷凍サイクル装置 Download PDF

Info

Publication number
WO2020116271A1
WO2020116271A1 PCT/JP2019/046331 JP2019046331W WO2020116271A1 WO 2020116271 A1 WO2020116271 A1 WO 2020116271A1 JP 2019046331 W JP2019046331 W JP 2019046331W WO 2020116271 A1 WO2020116271 A1 WO 2020116271A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
inner pipe
expansion valve
heat exchanger
outer pipe
Prior art date
Application number
PCT/JP2019/046331
Other languages
English (en)
French (fr)
Inventor
文昭 中村
丸山 稔
秀明 稲沢
正夫 務台
佐藤 幸一
展道 原田
Original Assignee
株式会社デンソーエアシステムズ
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2019210354A external-priority patent/JP6824366B2/ja
Application filed by 株式会社デンソーエアシステムズ, 株式会社デンソー filed Critical 株式会社デンソーエアシステムズ
Priority to DE112019006055.4T priority Critical patent/DE112019006055T5/de
Priority to CN201980078971.9A priority patent/CN113167516B/zh
Publication of WO2020116271A1 publication Critical patent/WO2020116271A1/ja
Priority to US17/179,592 priority patent/US11873935B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • the disclosure of the present specification relates to an internal heat exchanger used in a refrigeration cycle and a refrigeration cycle apparatus including the internal heat exchanger.
  • the internal heat exchanger described in Patent Document 1 has a double pipe including an outer pipe and an inner pipe.
  • the high-pressure liquid refrigerant from the condenser of the refrigeration cycle flows in the internal-external flow path formed between the outer pipe and the inner pipe.
  • the low-pressure gas refrigerant evaporated in the evaporator of the refrigeration cycle flows through the flow path formed inside the inner pipe.
  • the double pipe functions as an internal heat exchanger.
  • Liquid pipes are brazed to the circumferential wall surfaces on both ends of the outer pipe in the longitudinal direction.
  • the liquid pipe on one end side in the longitudinal direction of the outer pipe is a high-pressure pipe that connects the refrigerant outlet of the condenser and the internal/external flow path.
  • the liquid pipe on the other end side in the longitudinal direction of the outer pipe is a high-pressure pipe that connects the inner-outer passage and the high-pressure refrigerant inlet of the expansion valve.
  • Suction pipes are brazed to the circumferential wall surfaces on both longitudinal ends of the inner pipe.
  • the suction pipe on one end side in the longitudinal direction of the inner pipe is a low-pressure pipe that connects the internal flow path of the inner pipe and the refrigerant suction port of the compressor of the refrigeration cycle.
  • the suction pipe on the other end side in the longitudinal direction of the inner pipe is a low-pressure pipe that connects the low-pressure refrigerant outlet of the expansion valve and the internal flow passage of the inner pipe.
  • the inner pipe is a high-pressure pipe that communicates the refrigerant outlet of the condenser with the high-pressure refrigerant inlet of the expansion valve, and the internal-external flow path is the evaporator of the refrigeration cycle.
  • a structure is disclosed in which a low pressure pipe through which the evaporated low pressure gas refrigerant flows is provided.
  • the double pipe is not brazed to the liquid pipe and the suction pipe, and the double pipe is joined to the connector via the O-ring.
  • the disclosure of the present specification reduces the refrigerant pipe branched from the double pipe, and has a structure in which the double pipe is directly joined to the connector, and the joining of the double pipe and the connector is ensured.
  • the purpose is to be able to do.
  • an outer pipe (181) forming an outer pipe of the double pipe and an inner pipe (182) forming an inner pipe of the double pipe are provided. I have it.
  • an inner flow path (18b) through which the refrigerant on the low pressure side of the refrigeration cycle (11) flows is formed inside the inner pipe, and between the outer pipe and the inner pipe, the high pressure side of the refrigeration cycle is formed.
  • An internal-external flow path (18a) through which the refrigerant flows is formed, the outer diameter of the outer pipe is 30 mm or less, and the ratio of the difference between the inner diameter of the outer pipe and the outer diameter of the inner pipe is 25 mm. % Or less.
  • a concentric structure is formed in which the flow passage cross-sectional area of the inner-outer flow passage is increased and the outer pipe and the inner pipe are arranged on the same core, and The tip of the inner tube extends outward in the axial direction.
  • high-pressure communication flow paths (186g, 311) which are interposed between the outer pipe and the inner pipe and the connection target members (14, 35, 37) to communicate the inner-outer flow path with the refrigerant flow path of the connection target member, and It is provided with connectors (186, 31) forming low-pressure communication channels (186f, 312) for communicating the inner channel with the refrigerant passage of the connection target member.
  • the tip of the outer pipe is separated from the innermost portion of the outer pipe insertion portion (186e, 3111) of the connector to form a high-pressure communication space (186k, 3110) through which the high-pressure communication passage communicates.
  • An outer pipe side seal member (191) is provided between the outer pipe and the outer pipe insertion portion (186e, 3111) of the connector to prevent refrigerant from leaking from the high pressure communication space, and the inner pipe and the connector.
  • An inner pipe side seal member (192) that is interposed between the inner pipe insertion portions (1860, 3113) and prevents leakage of the refrigerant from the high pressure communication space is provided, and the double pipe and the connector are mechanically It is fixed.
  • the internal/external flow path (18a) and the internal flow path (18b) and the refrigerant flow path of the connection target member (14, 35, 37) are connected to the high pressure communication flow path (186g, 311) of the connector (186, 31). ) And the low pressure communication flow paths (186f, 312) so that the refrigerant pipes do not branch from the double pipes (the outer pipe 181 and the inner pipe 182) and the internal/external flow passage (18a) and the connection target member (14). , 35, 37) can be communicated with the refrigerant flow path. Therefore, the refrigerant pipe branched from the double pipe can be reduced.
  • “mechanically fixed” means being fixed by bolts, screws, caulking, press fitting, etc. That is, fixing by material bonding between base materials such as welding, brazing, and solid-phase joining, and chemical fixing such as adhesion do not correspond to “mechanically fixed”.
  • the inner flow path (18b) is a low-pressure refrigerant flow path
  • the inner-outer flow path (18a) is a high-pressure refrigerant flow path
  • the inner diameter of the outer tube is larger than that of the outer tube. Since the ratio of the difference with the outer diameter of the inner pipe is 25% or less, the flow passage cross-sectional area of the inner flow passage (18b) can be increased and the flow passage cross-sectional area of the inner-outer flow passage (18a) can be reduced. ..
  • the ratio of the difference between the inner diameter of the outer tube and the outer diameter of the inner tube to the inner diameter of the outer tube is 25% or less, the axes of the inner tube and the outer tube can be easily aligned.
  • the outer diameter of the outer pipe is set to 30 mm or less, it is possible to suppress the cross-sectional area of the entire refrigerant passage (inner passage and inner-outer passage). As a result, the amount of refrigerant circulating in the refrigeration cycle is not increased unnecessarily. Since the amount of the refrigerant increases in the inner-outer flow path through which the liquid refrigerant flows, the ratio of the average value of the difference between the inner diameter of the outer tube and the outer diameter of the inner tube to the inner diameter of the outer tube is 25% or less. It is also desirable to suppress the amount of refrigerant circulating in the cycle.
  • a concentric structure for increasing the flow passage cross-sectional area of the inner-outer flow passage and for arranging the outer pipe and the inner pipe on the same core is formed between the outer pipe and the inner pipe.
  • the axes of the and outer tube are more accurately aligned. Therefore, when the inner pipe end portion and the outer pipe end portion are inserted into the inner pipe insertion portion and the outer pipe insertion portion of the connector and are mechanically fixed, the seal members (191, 192) are It is properly sandwiched between the end portion and the end portion of the outer tube and the inserted portion of the connector.
  • a high-pressure communication space (186k, 3110) in which a high-pressure communication channel communicates is formed between the tip of the outer pipe and the innermost portion of the outer pipe insertion portion of the connector.
  • the communication space is reliably sealed by a seal member (191) arranged on the outer pipe and a seal member (192) arranged on the inner pipe.
  • the internal heat exchanger has a connector provided with a mounting portion (31a, 31b, 31c) to which at least one of a service valve (32, 33), a pressure switch (34) and a pressure sensor is mounted.
  • the connector can be used as a mounting portion for the service valve or the like, and the mounting member for the service valve or the like can be omitted, and the cost can be reduced.
  • the spiral groove (1816, 1822) is formed in one of the inner pipe and the inner pipe, and the ridges (1816a, 1822a) of the spiral groove are formed in the other of the inner pipe and the outer pipe.
  • a concentric structure is formed by a structure that contacts at a plurality of points.
  • the inner tube tip (1821), the inner tube side seal member (192), the outer tube tip (1811), and the outer tube side seal member (191), and the inner tube of the connector Regarding the positional relationship between the insertion portion (1860) and the outer pipe insertion portion (186e), when the inner pipe and the outer pipe are inserted into the connector, the tip of the inner pipe first contacts the inner pipe insertion portion, and then The tip of the outer pipe is in contact with the outer pipe inserting portion, the inner pipe side sealing member is in contact with the inner pipe inserting portion, and finally the outer pipe side sealing member is in contact with the outer pipe inserting portion.
  • the connector and the outer pipe are aligned with each other, and even if the axial cores of the inner pipe and the outer pipe are deviated from each other by a slight amount, it is smooth.
  • the inner pipe side seal member and the outer pipe side seal member are inserted in a state of being axially aligned. Since the outer pipe side seal member is inserted after the inner pipe side seal member is inserted, the assembly is smooth.
  • a gap is formed between the tip of the inner pipe and the inner part when inserting the inner pipe.
  • the contact portion (181a) that contacts the connector is formed in the outer peripheral direction at the end portion of the outer pipe, and the tip of the inner pipe and the innermost portion of the inner pipe insertion portion. Since the distance between and is longer than the distance between the tip of the outer tube and the innermost part of the outer tube insertion part, a gap is formed between the tip of the inner tube and the inner part of the inner tube insertion part. As a result, the contact portion (181a) can be reliably brought into contact with the connector.
  • the end portion (1810) of the outer tube and the portion inside the tip (1811) are pressed and formed radially inward of the outer tube over a predetermined distance. That is, the outer tube is pressure molded towards the inner tube so that the diameter is reduced at the end (1810). With this contracted tube, the axes of the outer tube and the inner tube can be aligned at the ends, and as a result, the alignment when inserting the inner tube and the outer tube into the connector is ensured.
  • the connectors (186, 31) are arranged on both sides of the inner pipe and the outer pipe. That is, the internal heat exchanger (18) connects the entire length between both connectors. Therefore, the heat exchange amount of the internal heat exchanger is uniquely determined based on the lengths of the inner pipe and the outer pipe.
  • the heat exchange efficiency between the inner pipe and the outer pipe is made different between a part of the inner pipe and the outer pipe and another part.
  • the heat exchange amount of the entire internal heat exchanger can be adjusted by adjusting the lengths of some parts, and the thermal efficiency of the entire refrigeration cycle can be optimized.
  • This refrigeration cycle device (11) includes a compressor (12), a condenser (13), an expansion valve (14) for an indoor air conditioning unit (20), an evaporator (15) for an indoor air conditioning unit, and an expansion valve for a rear cooler. (140), a rear cooler evaporator (150), and an internal heat exchanger (18, 208).
  • the internal heat exchanger is equipped with connectors (186, 31) located at the ends of the outer pipe and the inner pipe.
  • a high-pressure communication flow path (186g, 311) that communicates the internal and external flow paths with the refrigerant flow path of the connection target member and a low-pressure communication flow path (186f, that connects the internal flow path with the refrigerant flow path of the connection target member).
  • the internal heat exchanger is interposed between the condenser and the compressor and the expansion valve of the indoor air conditioning unit.
  • the connector connects the high-pressure communication channel to the condenser and at least one of the expansion valve of the indoor air conditioning unit and the expansion valve for the rear cooler. Further, the connector connects the low-pressure communication channel to the compressor and at least one of the expansion valve of the indoor air conditioning unit and the expansion valve for the rear cooler.
  • the refrigeration cycle apparatus has the internal heat exchanger interposed between the condenser and the compressor and the expansion valve of the indoor air conditioning unit, the enthalpy of both the indoor air conditioning unit and the rear cooler can be increased. Moreover, the liquid refrigerant flowing from the condenser toward both the indoor air conditioning unit and the rear cooler can be collected by the internal heat exchanger.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is sectional drawing which shows some internal heat exchangers in 2nd Embodiment. It is sectional drawing which shows some internal heat exchangers in 3rd Embodiment. It is a perspective view showing a part of internal heat exchanger in a 4th embodiment.
  • FIG. 8 is a sectional view taken along line VIII-VIII of FIG. 7. It is a perspective view showing a part of internal heat exchanger in a 5th embodiment.
  • FIG. 10 is a sectional view taken along line XX of FIG. 9. It is sectional drawing which shows some internal heat exchangers in 6th Embodiment. It is sectional drawing of a double pipe. It is sectional drawing which shows a shrinking process. It is a perspective view which shows an internal heat exchanger. It is sectional drawing which shows some internal heat exchangers in 8th Embodiment. It is sectional drawing which shows some internal heat exchangers in 8th Embodiment. It is sectional drawing which shows some internal heat exchangers in 8th Embodiment. It is sectional drawing which shows some internal heat exchangers in 8th Embodiment. It is sectional drawing which shows some internal heat exchangers in 9th Embodiment. It is sectional drawing which shows some internal heat exchangers in 9th Embodiment.
  • the vehicle air conditioner 10 shown in FIG. 1 has a refrigeration cycle device 11.
  • a double pipe type internal heat exchanger 18 is applied to the refrigeration cycle apparatus 11.
  • the refrigeration cycle device 11 is a vapor compression refrigerator including a compressor 12, a condenser 13, an expansion valve 14 and an evaporator 15.
  • the refrigeration cycle apparatus 11 of the present embodiment uses a CFC-based refrigerant as the refrigerant, and constitutes a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure.
  • the compressor 12 and the condenser 13 are arranged in an engine room of a vehicle (not shown).
  • the expansion valve 14 and the evaporator 15 are arranged in a vehicle compartment.
  • the compressor 12, the condenser 13, the expansion valve 14, and the evaporator 15 are arranged in series with each other in the flow of the refrigerant.
  • the compressor 12 sucks the refrigerant of the refrigeration cycle device 11, compresses it, and discharges it.
  • the compressor 12 is a belt drive type compressor or an electric compressor.
  • the belt drive type compressor is driven by the drive force of the engine 4 being transmitted through the crank pulley 5, the drive belt 6 and the pulley 7.
  • the electric compressor is driven by the electric power supplied from the battery.
  • the condenser 13 is a radiator that heat-exchanges the high-pressure gas refrigerant discharged from the compressor 12 with the outside air to radiate the heat of the high-pressure gas refrigerant to the outside air to condense the high-pressure refrigerant.
  • the condenser 13 is arranged at the frontmost part in the engine room.
  • the liquid-phase refrigerant condensed in the condenser 13 flows into the high-pressure refrigerant inlet 14 a of the expansion valve 14 via the high-pressure refrigerant pipe 16.
  • the high-pressure refrigerant pipe 16 corresponds to the internal-external flow path 18a of the internal heat exchanger 18.
  • the expansion valve 14 is a decompression unit for decompressing and expanding the liquid-phase refrigerant flowing out from the high-pressure refrigerant pipe 16.
  • the expansion valve 14 has a temperature sensing part.
  • the temperature sensing unit detects the degree of superheat of the refrigerant on the outlet side of the evaporator 15 based on the temperature and pressure of the refrigerant on the outlet side of the evaporator 15.
  • the expansion valve 14 is a thermal expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the superheat degree of the refrigerant on the outlet side of the evaporator 15 falls within a predetermined range.
  • the evaporator 15 heat-exchanges the low-pressure refrigerant flowing out of the expansion valve 14 with the air blown into the vehicle compartment to evaporate the low-pressure refrigerant and cool the air blown into the vehicle compartment. Is.
  • the vapor-phase refrigerant evaporated in the evaporator 15 flows into the temperature sensing part of the expansion valve 14.
  • the refrigerant that has passed through the temperature-sensitive portion of the expansion valve 14 flows out from the low-pressure refrigerant outlet 14b of the expansion valve 14 to the low-pressure refrigerant pipe 17, is sucked into the compressor 12 via the low-pressure refrigerant pipe 17, and is compressed.
  • the low-pressure refrigerant pipe 17 corresponds to the inner flow passage 18b of the internal heat exchanger 18.
  • the evaporator 15 is housed in the casing 21 of the indoor air conditioning unit 20.
  • the indoor air conditioning unit 20 is arranged inside the instrument panel (not shown) at the front of the passenger compartment.
  • the casing 21 is an air passage forming member that forms an air passage.
  • a heater core 22 is arranged on the air flow downstream side of the evaporator 15.
  • the heater core 22 is an air-heating heat exchanger that heats the engine cooling water and the air blown into the vehicle compartment to heat the air blown into the vehicle compartment.
  • the casing 21 is provided with an inside/outside air switching box and an indoor blower 23, which are not shown.
  • the inside/outside air switching box is an inside/outside air switching unit that switches and introduces inside air and outside air into the air passage in the casing 21.
  • the indoor blower 23 sucks and blows the inside air and the outside air introduced into the air passage in the casing 21 through the inside/outside air switching box.
  • An air mix door 24 is arranged between the evaporator 15 and the heater core 22 in the air passage in the casing 21.
  • the air mix door 24 adjusts the air volume ratio of the cool air that flows into the heater core 22 and the cool air that bypasses the heater core 22 among the cool air that has passed through the evaporator 15.
  • the air mix door 24 is a rotary door having a rotating shaft rotatably supported with respect to the casing 21 and a door substrate portion coupled to the rotating shaft.
  • a blowout opening 25 is formed at the most downstream part of the air flow of the casing 21. Although not shown in FIG. 1, a plurality of outlet openings 25 are formed. The conditioned air whose temperature is adjusted by the casing 21 is blown out into the vehicle compartment, which is the air-conditioned space, through these blowout openings 25.
  • An air outlet mode switching door (not shown) is arranged on the upstream side of the air flow of the plurality of air outlets 25. The outlet mode switching door switches the outlet mode.
  • the outlet mode includes face mode, bi-level mode, foot mode, vent mode and the like.
  • At least a part of the high-pressure refrigerant pipe 16 and at least a part of the low-pressure refrigerant pipe 17 are configured by a double pipe type internal heat exchanger 18 shown in FIGS. 2 to 4.
  • the internal heat exchanger 18 has a total length of about 200 to 1200 mm.
  • the length of the internal heat exchanger 18 is determined according to the required heat exchange capacity. That is, the internal heat exchanger 18 exchanges heat between the low-temperature low-pressure gas-phase refrigerant toward the compressor 12 and the high-temperature high-pressure liquid-phase refrigerant toward the expansion valve 14 to increase the enthalpy of the refrigeration cycle apparatus 11. Therefore, the internal heat exchanger 18 is required to have a length sufficient to obtain a desired enthalpy. On the other hand, if the amount of heat exchange in the internal heat exchanger 18 is too large, the temperature of the refrigerant sucked into the compressor rises excessively, which is not desirable. Therefore, when the length of the internal heat exchanger 18 is fixed, it is desired to adjust the amount of heat exchange in the internal heat exchanger 18. The adjustment of the heat exchange amount will be described later.
  • the internal heat exchanger 18 may be covered with a heat insulating material in order to block heat exchange from the outside air to the internal heat exchanger 18. For example, when the internal heat exchanger 18 is arranged in the engine room, heat from the engine is prevented from being directly applied to the internal heat exchanger 18.
  • the double pipe type internal heat exchanger 18 includes an outer pipe 181 and an inner pipe 182, as shown in FIG.
  • the inner pipe 182 is inserted inside the outer pipe 181 so as to penetrate the outer pipe 181. Thereby, the outer pipe 181 and the inner pipe 182 form a double pipe.
  • the outer pipe 181 is, for example, a ⁇ 22 mm pipe made of aluminum.
  • the ⁇ 22 mm tube has an outer diameter of 22 mm and an inner diameter of 19.6 mm.
  • the outer pipe 181 used as an air conditioner for automobiles as one of the vehicle air conditioners 10 has an outer diameter of about 22 mm in order to make the diameter as small as possible.
  • the refrigerant circulation amount is large, and it is desired to be less than 28 mm even when the outer pipe 181 is made large.
  • the wall thickness of the outer tube 181 is also about 1.2 mm, and even if it is made thick, it is less than 2 mm.
  • the inner pipe 182 is, for example, a 3/4 inch pipe made of aluminum.
  • the 3/4 inch tube has an outer diameter of 19.1 mm and an inner diameter of 16.7 mm. In this way, the surface area of the inner pipe 182 is increased by selecting the outer diameter of the inner pipe 182 as close to the inner diameter of the outer pipe 181 as possible while ensuring the inner-outer flow path 18a.
  • the inner diameter of the inner pipe 182 is determined so that the inner pipe 182 has a sufficient flow passage cross-sectional area, and a wall thickness of about 1 to 2 mm is taken into consideration. Determine the outer diameter.
  • the outer diameter of the inner pipe 182 is about 15.8 to 22 mm.
  • the diameter of the outer pipe 181 is designed to be the smallest in the range where the high-pressure liquid refrigerant can flow in the inner-outer flow passage 18a, depending on the outer diameter of the inner pipe 182. This is because the high-pressure liquid refrigerant flows through the internal/external flow path 18a, and thus the refrigerant amount enclosed in the refrigeration cycle unnecessarily increases as the sectional view of the internal/external flow path 18a increases. By reducing the amount of refrigerant used in the refrigeration cycle, it is possible to reduce costs. Therefore, the ratio of the difference between the inner diameter of the outer tube 181 and the outer diameter of the inner tube 182 to the inner diameter of the outer tube 181 is set to 25% or less. More preferably, it is 20% or less.
  • FIGS. 12(a) to 12(o) The cross-sectional shape of the double pipe is shown in FIGS. 12(a) to 12(o), and the outer diameter and wall thickness of each are as follows. Further, the ratio of the difference between the inner diameter of the outer tube 181 and the outer diameter of the inner tube 182 to the inner diameter of the outer tube 181 calculated based on this dimension is also as follows and is 20% or less.
  • FIG. 12(a) Outer tube outer diameter 25 mm, outer tube wall thickness 1.2 mm, inner tube outer diameter 22.1 mm, inner tube wall thickness 1.2 mm, ratio 2.2%
  • FIG. 12(c) outer pipe outer diameter 27.5 mm, outer pipe wall thickness 1.7 mm, inner pipe outer diameter 21.9 mm, inner pipe wall thickness 1.5 mm, ratio 9.1%
  • FIG. 12(d) outer tube outer diameter 25 mm, outer tube wall thickness 1.7 mm, inner tube outer diameter 19.1 mm, inner tube wall thickness 1.3 mm, ratio 11.6%
  • FIG. 12(e) outer tube outer diameter 25 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 18.9 mm, inner tube wall thickness 1.1 mm, ratio 13.3%
  • FIG. 12(g) outer tube outer diameter 27 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 22 mm, inner tube wall thickness 1.5 mm, ratio 7.6%
  • FIG. 12(h) outer tube outer diameter 25 mm, outer tube wall thickness 1.5 mm, inner tube outer diameter 20 mm, inner tube wall thickness 1.3 mm, ratio 9.1%
  • FIG. 12(i) outer tube outer diameter 25 mm, outer tube wall thickness 1.2 mm, inner tube outer diameter 20 mm, inner tube wall thickness 1.2 mm, ratio 11.5%
  • FIG. 12(j) outer tube outer diameter 25 mm, outer tube wall thickness 1.7 mm, inner tube outer diameter 18 mm, inner tube wall thickness 1.5 mm, ratio 16.7%
  • FIG. 12(i) outer tube outer diameter 25 mm, outer tube wall thickness 1.7 mm, inner tube outer diameter 18 mm, inner tube wall thickness 1.5 mm, ratio 16.7%
  • FIG. 12(i) outer tube outer diameter 25 mm, outer tube wall thickness 1.7 mm, inner tube outer diameter 18 mm, inner tube
  • FIG. 12(k) outer tube outer diameter 24.6 mm, outer tube wall thickness 1.8 mm, inner tube outer diameter 19.1 mm, inner tube wall thickness 1.8 mm, ratio 9.1%
  • FIG. 12(l) Outer tube outer diameter 24.6 mm, outer tube wall thickness 1.7 mm, inner tube outer diameter 19.1 mm, inner tube wall thickness 1.3 mm
  • FIG. 12(m) outer tube outer diameter 25 mm, outer tube wall thickness 1.5 mm, inner tube outer diameter 18 mm, inner tube wall thickness 1.5 mm, ratio 18.2%
  • FIG. 12(n) outer tube outer diameter 25 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 18 mm, inner tube wall thickness 1.5 mm, ratio 17.4%
  • FIG. 12(m) outer tube outer diameter 25 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 18 mm, inner tube wall thickness 1.5 mm, ratio 17.4%
  • FIG. 12(m) outer tube outer diameter 25 mm, outer tube wall thickness 1.6 mm, inner tube outer
  • FIG. 12(o) outer tube outer diameter 22.5 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 19.1 mm, inner tube wall thickness 1.6 mm, ratio 1.0%
  • FIG. 12(p) outer tube outer diameter 22.5 mm, outer tube wall thickness 1.6 mm, inner tube outer diameter 19.1 mm, inner tube wall thickness 1.6 mm, ratio 1.0%
  • a spiral groove 1822 is formed in the inner pipe 182.
  • the outer diameter of the inner pipe 182 in which the spiral groove 1822 is formed is indicated by the dimension before the formation of the spiral groove 1822, that is, the outer diameter dimension of the inner pipe 182 in the portion where the spiral groove 1822 is not formed. There is.
  • the spiral groove 1822 is composed of a depressed groove portion 1822b and a ridge portion 1822a, and the ridge portion 1822a abuts the outer pipe 181 at a plurality of locations. Therefore, the outer peripheral surface of the inner pipe 182 abuts on the inner peripheral surface of the outer pipe 181, thereby forming a concentric structure in which the inner pipe 182 and the outer pipe 181 are coaxially arranged.
  • the ridge portion 1822a is further provided with a recess to widen the ridge portion 1822a. In this way, the shapes of the ridge portion 1822a and the groove portion 1822b can be changed as appropriate.
  • a spiral groove 1816 is formed in the outer pipe 181.
  • the outer diameter of the outer tube 181 is the dimension before the spiral groove 1816 is formed, that is, the outer diameter dimension of the outer tube 181 at the portion where the spiral groove 1816 is not formed.
  • the spiral groove 1816 also includes a depressed groove portion 1816b and a ridge portion 1816a, and the ridge portion 1816a is in contact with the outer peripheral surface of the inner pipe 182 at a plurality of locations.
  • the inner peripheral surface of the outer pipe 181 contacts the outer peripheral surface of the inner pipe 182 to form a concentric structure in which the inner pipe 182 and the outer pipe 181 are coaxially arranged.
  • the spiral groove 1822 of the inner pipe 182 and the spiral groove 1816 of the outer pipe 181 are opposite. That is, in the spiral groove 1822 of the inner pipe 182, the ridge portion 1822a is formed to project outward, and in the spiral groove 1816 of the outer pipe 181, the ridge portion 1816a is formed to project inward.
  • the inner pipe 182 and the outer pipe 181 can come into contact with each other at a plurality of positions, and the inner pipe 182 and the outer pipe 181 are coaxial with each other.
  • the concentric structure is arranged.
  • the surface area of the inner pipe 182 or the outer pipe 181 can be increased by forming the spiral grooves 1822 and 1816 in the inner pipe 182 or the outer pipe 181.
  • the spiral groove 1822 is formed in the inner pipe 182
  • the heat exchange area between the inner flow passage 18b and the inner-outer flow passage 18a can be increased.
  • the inner channel 182 and the inner-outer channel are also caused by the contact between the inner tube 182 and the outer tube 181 by the peak portions 1822a, 1816a of the spiral grooves 1822, 1816 formed in the inner tube 182 or the outer tube 181. Heat exchange with 18a is promoted.
  • the double pipes of (c), (d), (e), (g), (i), (j), (m) and (n) of FIG. 1815 are formed at equal intervals, and when the inner pipe 182 is inserted, the tips of the ribs 1815 are in contact with the outer peripheral surface of the inner pipe 182 at least in part. Due to the contact of the ribs 1815, a concentric structure in which the inner pipe 182 and the outer pipe 181 are arranged coaxially is obtained.
  • the rib 1815 increases the surface area of the inner-outer flow path 18a to enhance the heat exchange efficiency, and the rib 1815 contacts the inner pipe 182 to enhance the heat exchange efficiency.
  • ribs 1815 are formed to project outward from the inner pipe 182 at equal intervals. At least a part of the rib 1815 of the inner pipe 182 contacts the inner peripheral surface of the outer pipe 181, so that the inner pipe 182 and the outer pipe 181 are coaxially arranged.
  • the improvement of the heat exchange efficiency by the rib 1815 is the same as that of the above-mentioned double pipe formed so as to project inward from the outer pipe 181.
  • the concentric structure refers to a structure that acts in a direction in which the axial cores of the inner pipe 182 and the outer pipe 181 are aligned.
  • the inner pipe 182 and the outer pipe 181 act in the direction in which the axes of the inner pipe 182 are aligned. ..
  • the outer pipe 181 and the inner pipe 182 are formed with a bent portion 1801 as shown in FIG. 2 in order to avoid interference with the engine 4, various in-vehicle devices (not shown), the vehicle body, and the like.
  • the bent portion 1801 is formed by bending the outer pipe 181 and the inner pipe 182 at the same time in a state where the straight pipe inner pipe 182 is inserted inside the straight pipe outer pipe 181.
  • the concentric structure of the spiral grooves 1822, 1816 and the rib 1815 is useful because the inner-outer channel 18a is formed between the inner pipe 182 and the outer pipe 181 in the bent portion 1801. This is because without the concentric structure, the outer surface of the inner tube 182 and the inner surface of the outer tube 181 may directly contact each other at the bent portion 1801. In that case, the cross-sectional shape of the inner-outer flow path 18a becomes distorted and the flow resistance increases. On the other hand, if the concentric structure is provided, the outer surface of the inner pipe 182 and the inner surface of the outer pipe 181 do not come into direct contact with each other even in the bent portion 1801 due to the concentric structure.
  • the end portion 1810 in the longitudinal direction of the outer pipe 181 is joined to the circumferential surface of the inner pipe 182 by being pressed (constricted pipe) inward in the radial direction after being combined with the inner pipe 182.
  • the contraction is performed by pressing the three-claw chuck 201 from the outside of the outer pipe 181 with the core metal 200 being in contact with the inside of the inner pipe 182.
  • the tip 202 of the three-jaw chuck 201 has a cylindrical shape corresponding to the outer shape of the outer tube 181, and presses the outer tube 181 from three directions.
  • the three-jaw chuck 201 presses the outer tube 181 once, then moves backward, rotates 60 degrees in the circumferential direction, and presses the outer tube 181 again.
  • the outer tube 181 and the inner tube 182 are concentrically arranged, particularly at the ends 1810 and 1820 thereof.
  • the terms of the end portions 1810 and 1820 do not mean the tips, but the portions from the position where the three-jaw chuck 201 is arranged to the tip.
  • the tip portions of the outer pipe 181 and the inner pipe 182 are shown by a tip 1811 and a tip 1821, respectively (FIG. 4).
  • the spiral groove 1822 of the inner pipe 182 starts from the inside of this end portion 1820, and the spiral groove 1822 is not formed at the tip 1821 portion from the end portion 1820 of the inner pipe 182, and has a cylindrical shape. Therefore, the cored bar 200 is a cylinder, and the outer surface thereof is in contact with the inner surface of the inner pipe 182 with the front surface.
  • a space is formed between the outer pipe 181 and the inner pipe 182, and this space serves as the internal-external flow path 18a.
  • the inner space of the inner pipe 182 serves as the inner flow path 18b.
  • the flow directions of the refrigerant in the inner-outer passage 18a and the inner passage 18b are opposite to each other.
  • the internal-external fluid flowing through the internal-external flow path 18a is a high-pressure liquid refrigerant.
  • the inner fluid flowing through the inner passage 18b is a low-pressure gas refrigerant.
  • a spiral groove 1822 is provided on the outer surface of the inner pipe 182, as shown in FIGS. 12(a), (b), (f), (o), and (p).
  • the spiral groove 1822 is a multiple groove that spirally extends in the longitudinal direction of the inner pipe 182, and has three threads in FIGS. 12(a), (b), (o), and (p), and has three threads in FIG. In f), there are two articles.
  • the inner groove 182 has a bellows shape (in other words, a fold shape) due to the spiral groove 1822. Therefore, the inner-outer flow path 18a is formed in a spiral shape on the outer periphery of the inner pipe 182, and as described above, the contact area between the inner pipe 182 and the outer pipe 181 increases, and heat exchange efficiency can be improved.
  • FIG. 4 shows an example in which the inner pipe 182 having the spiral groove 1822 shown in FIGS. 12A, 12B, 12F, 12O, and 12P is used, but other two examples are shown. Even when a heavy pipe is used, the end portion 1820 has the same shape.
  • the tip 1821 of the inner pipe 182 is the one. Is located axially outward from the tip 1811 of the outer tube 181, and the outer tube 181 and the rib 1815 do not exist at the end portion 1820 of the inner tube 182 (see FIG. 17, which will be described later).
  • the rib 1815 of the inner pipe 182 is cut at the end portion 1820, and then the inner pipe 182 is arranged in the outer pipe 181 to form a double pipe. Therefore, the assembled double pipe is free of the outer pipe 181 and the rib 1815 at the end 1820 of the inner pipe 182.
  • a liquid pipe 184 is brazed to the outer peripheral surface of the outer pipe 181 near one end in the longitudinal direction.
  • the liquid pipe 184 communicates with the internal/external flow path 18a.
  • a joint 184 a connected to the refrigerant outlet side of the condenser 13 is provided at the tip of the liquid pipe 184. Therefore, as described above, the high-pressure liquid refrigerant from the condenser 13 flows into the internal/external flow path 18a.
  • the joint 184a may be directly connected to the condenser 13 or may be connected to the condenser 13 via a piping member (not shown).
  • a suction pipe 185 is provided at one longitudinal end of the inner pipe 182.
  • the suction pipe 185 is a pipe forming the low-pressure refrigerant pipe 17.
  • a joint 185 a connected to the refrigerant intake side of the compressor 12 is provided at the tip of the suction pipe 185.
  • the low-temperature low-pressure refrigerant flowing out of the evaporator 15 flows through the inner flow path 18b and is sucked into the compressor 12.
  • the joint 185a is normally connected to the compressor 12 via a hose member.
  • a bulging portion 181a is formed near the end 1810 in the longitudinal direction of the outer tube 181.
  • the bulging portion 181a is an abutting portion that comes into contact with the end surface 1865 of the expansion valve side connector 186, and is formed by bulging the outer pipe 181 to the outer peripheral side.
  • a circumferential groove-shaped outer pipe side O-ring groove 181b is formed between the longitudinal end 1811 of the outer pipe 181 and the bulging portion 181a.
  • An annular outer pipe O-ring 191 is arranged in the outer pipe O-ring groove 181b.
  • the outer pipe side O-ring 191 is a seal member that prevents the leakage of the refrigerant between the inner-outer flow path 18a and the expansion valve side connector 186.
  • a circular groove-shaped inner pipe side O-ring groove 182a is formed in the vicinity of the end portion 1820 in the longitudinal direction of the inner pipe 182.
  • An annular inner pipe side O ring 192 is arranged in the inner pipe side O ring groove 182a.
  • the inner pipe side O-ring 192 is a seal member that prevents the refrigerant from leaking between the inner flow path 18b and the expansion valve side connector 186.
  • the inner pipe side O-ring 192 ensures a seal between the inner flow path 18b and the high pressure communication space 186k of the expansion valve side connector 186.
  • the expansion valve-side connector 186 includes the tip 1811 of the outer pipe 181 and the innermost portion of the outer pipe insertion portion 186e.
  • a high-pressure communication space 186k is formed between and the outer circumference of the end portion 1820 of the inner pipe 182. Then, the high-pressure refrigerant flow path 186g communicates with the high-pressure communication space 186k.
  • the outer pipe side seal member (outer pipe side O-ring) 191 seals between the high pressure communication space 186k and the atmosphere, and the inner pipe side seal member (inner pipe side O ring 192) is connected to the high pressure communication space 186k and low pressure.
  • a seal is provided between the coolant passage 186f and the coolant passage 186f.
  • the expansion valve side connector 186 is arranged at the end portions 1810 and 1820 in the longitudinal direction of the outer pipe 181 and the inner pipe 182.
  • the expansion valve side connector 186 is a member forming a connecting portion between the internal heat exchanger 18 and the expansion valve 14.
  • the expansion valve 14 is a connection target member connected to the expansion valve side connector 186.
  • the expansion valve side connector 186 is provided with a high pressure side joint 186a and a low pressure side joint 186b.
  • the high pressure side joint 186 a is connected to the high pressure refrigerant inlet 14 a of the expansion valve 14.
  • the low pressure side joint 186 b is connected to the low pressure refrigerant outlet 14 b of the expansion valve 14.
  • the low-pressure side joint 186b is a male-shaped portion that projects in a male shape on the extension line of the internal heat exchanger 18.
  • the high-voltage side joint 186a is a male-shaped portion that protrudes in a male shape in parallel with the low-voltage side joint 186b.
  • the high pressure refrigerant inlet 14a and the low pressure refrigerant outlet 14b of the expansion valve 14 form a female joint.
  • the male high pressure side joint 186 a is inserted into the female high pressure refrigerant inlet 14 a of the expansion valve 14.
  • the male low pressure side joint 186 b is inserted into the female low pressure refrigerant outlet 14 b of the expansion valve 14.
  • a circumferential groove-shaped high-pressure side O-ring groove 186c is formed on the outer peripheral surface of the high-pressure side joint 186a.
  • the high-pressure side O-ring 193 is arranged in the high-pressure side O-ring groove 186c.
  • the high-pressure O-ring 193 is a seal member that prevents leakage of the refrigerant flowing out from the internal-external flow path 18a.
  • a circumferential groove-shaped low-pressure side O-ring groove 186d is formed on the outer peripheral surface of the low-pressure side joint 186b.
  • the low-pressure side O-ring 194 is arranged in the low-pressure side O-ring groove 186d.
  • the low pressure side O-ring 194 is a seal member that prevents leakage of the refrigerant flowing out from the low pressure refrigerant outlet 14b of the expansion valve 14.
  • the expansion valve side connector 186 is provided with an outer pipe inserting portion 186e, an inner pipe inserting portion 1860, a low pressure refrigerant flow passage 186f, a high pressure refrigerant flow passage 186g and a bolt hole 186h.
  • the outer pipe 181 is inserted into the outer pipe insertion portion 186e, and in the inserted state, the outer pipe side O-ring 191 is compressed and deformed to maintain the seal.
  • the inner pipe 182 is inserted into the inner pipe insertion portion 1860, and the inner pipe O-ring 192 is compressed and deformed in the inserted state to maintain the seal.
  • the tip 1821 of the inner pipe 182 first contacts the inner pipe insertion portion 1860 of the expansion valve side connector 186, and then the tip 1811 of the outer pipe 181 receives the outer pipe of the expansion valve side connector 186. It contacts the insertion portion 186e. To facilitate the insertion at this time, the tip 1821 of the inner tube 182 and the tip 1811 of the outer tube 181 are tapered. Further, as described above, the ends 1820 and 1810 of the inner pipe 182 and the outer pipe 181 are contracted so that the axes thereof are aligned, so that the insertion is smoothly performed.
  • the inner pipe 182 is axially aligned with the inner pipe insertion portion 1860 of the expansion valve side connector 186, and in this state, the outer pipe 181 is axially aligned with the outer pipe insertion portion 186e. It will be. Therefore, even if the axis of the inner tube 182 and the axis of the outer tube 181 are slightly deviated, smooth insertion is possible.
  • the low-pressure refrigerant passage 186f is a low-pressure side communication passage that connects the low-pressure refrigerant outlet 14b of the expansion valve 14 and the inner passage 18b.
  • the low-pressure refrigerant flowing out from the low-pressure refrigerant outlet 14b of the expansion valve 14 flows into the inner flow path 18b via the low-pressure refrigerant flow path 186f.
  • the low-pressure refrigerant flow path 186f extends from the inner pipe insertion portion 1860 toward the low-pressure side joint 186b and penetrates through the low-pressure side joint 186b.
  • the high-pressure refrigerant passage 186g is a high-pressure side communication passage that connects the inside-outside passage 18a and the high-pressure refrigerant inlet 14a of the expansion valve 14. Therefore, the high-pressure refrigerant flowing out from the inside/outside passage 18a flows to the high-pressure refrigerant inlet 14a of the expansion valve 14 via the high-pressure refrigerant passage 186g.
  • the high-pressure refrigerant flow path 186g has one end open to the high-pressure communication space 186k formed in the outer tube insertion portion 186e, extends downward in FIG. 4, and then bends and extends toward the high-pressure side joint 186a. , Penetrates inside the high-pressure side joint 186a.
  • the high-pressure refrigerant channel is formed by cutting.
  • the opening hole formed in the expansion valve side connector 186 in the process of cutting is closed by the sealing plug 187.
  • the bolt hole 186h is used to mechanically fix the expansion valve side connector 186 to the outer pipe 181 and the inner pipe 182. Specifically, the expansion valve side connector 186 and the pressing plate 188 sandwich the bulging portion 181a of the outer pipe 181 and the expansion valve side connector 186 and the pressing plate 188 are fastened with a bolt 189, whereby the expansion valve side connector 186 is mechanically fixed to the outer pipe 181 and the inner pipe 182.
  • the reason why the bolt 189 projects from the expansion valve side connector 186 in FIG. 4 is that the bolt 189 also fixes the expansion valve side connector 186 and the expansion valve 14. In the state before fixing the expansion valve side connector 186 and the expansion valve 14, as shown in FIG. 28, the pressing plate 188 is fixed to the expansion valve side connector 186 by the flat head screw 1890.
  • the compressor 12 When the compressor 12 is driven, the compressor 12 sucks the low-pressure gas refrigerant from the evaporator 15 side, compresses it, and then discharges it as a high-temperature high-pressure gas refrigerant to the condenser 13 side.
  • the high-pressure refrigerant is cooled and condensed and liquefied in the condenser 13.
  • the refrigerant here is almost in a liquid phase.
  • the condensed and liquefied refrigerant flows through the high-pressure refrigerant pipe 16 (inside/outside passage 18a), is decompressed and expanded by the expansion valve 14, and is evaporated by the evaporator 15.
  • the refrigerant here is in a substantially saturated gas state with a superheat degree of 0 to 3°C.
  • the air is cooled as the refrigerant evaporates.
  • the saturated gas refrigerant evaporated in the evaporator 15 flows through the low pressure refrigerant pipe 17 (inner flow path 18b) as a low temperature low pressure refrigerant and returns to the compressor 12.
  • the liquid-phase refrigerant flowing out from the condenser 13 is supercooled by the internal heat exchanger 18 to promote the temperature reduction.
  • the saturated gas refrigerant flowing out from the evaporator 15 is heated by the internal heat exchanger 18 and becomes a gas refrigerant having a superheat degree. This improves the performance of the refrigeration cycle device 11.
  • the inner pipe 182 is the outer pipe. It is covered by 181. Since the outer pipe 181 has a high temperature due to the high-pressure refrigerant flowing in the inner-outer passage 18a, dew condensation does not occur on the outer surface of the outer pipe 181.
  • the outer pipe side O-ring 191 prevents the refrigerant from leaking from the inside/outside passage 18a and the high-pressure communication space 186k.
  • the high-pressure side O-ring 193 prevents the high-pressure side refrigerant passage 186g and the high-pressure side refrigerant inlet 14a of the expansion valve 14 from leaking the refrigerant.
  • the low-pressure side O-ring 194 prevents the refrigerant from leaking between the low-pressure refrigerant outlet 14b of the expansion valve 14 and the low-pressure refrigerant passage 186f. Refrigerant leakage between the low-pressure refrigerant flow path 186f and the high-pressure communication space 186k is prevented by the inner pipe side O-ring 192.
  • the internal/external flow path 18a and the high pressure refrigerant inlet 14a of the expansion valve 14 are connected by the high pressure communication space 186k of the expansion valve side connector 186 and the high pressure refrigerant flow path 186g. Therefore, the refrigerant pipe for connecting the internal/external flow path 18a and the high pressure refrigerant inlet 14a of the expansion valve 14 is unnecessary.
  • the refrigerant pipe for making the internal-external flow path 18a and the high pressure refrigerant inlet 14a of the expansion valve 14 communicate is called an expansion valve side liquid pipe.
  • the expansion valve side liquid piping is unnecessary, the overall size of the internal heat exchanger 18 can be reduced. Since a space for arranging the expansion valve side liquid pipe is not necessary, the space required on the vehicle side for mounting the internal heat exchanger 18 can be reduced and the design constraint can be reduced. In addition, when a large number of internal heat exchangers 18 are simultaneously transported, the packing appearance is improved and the transportation efficiency can be improved.
  • the expansion valve side liquid pipe may be bent and damaged when the internal heat exchanger 18 is transported, but the expansion valve side connector 186 is not likely to be bent when the internal heat exchanger 18 is transported. Therefore, damage to the internal heat exchanger 18 during transportation can be reduced. Moreover, since there is no expansion valve side liquid piping, the length of the portion of the internal heat exchanger 18 where internal heat exchange is performed can be lengthened, so the effect of improving cycle efficiency can be increased.
  • the expansion valve side connector 186 is interposed between the end portion 1810 of the outer pipe 181 and the end portion 1820 of the inner pipe 182 and the expansion valve 14, and the high pressure communication space 186k and the high pressure refrigerant flow passage 186g. Is formed.
  • the high-pressure communication space 186k and the high-pressure refrigerant flow passage 186g communicate the internal-external flow passage 18a with the refrigerant flow passage of the expansion valve 14.
  • expansion valve side connector 186 By connecting one expansion valve side connector 186 to the expansion valve 14, the connection of the two passages of the high pressure refrigerant passage and the low pressure refrigerant passage is completed, so that the internal heat exchanger 18 is attached to the expansion valve 14. Work can be facilitated.
  • the expansion valve side connector 186 is mechanically fixed to the internal heat exchanger 18.
  • the outer pipe side O-ring 191 prevents the high pressure refrigerant from leaking between the expansion valve side connector 186 and the internal heat exchanger 18. Therefore, as compared with the case where the expansion valve side liquid pipe is brazed to prevent refrigerant leakage, it is easier to secure stable manufacturing quality.
  • the high-pressure communication space 186k is formed between the tip 1811 of the outer tube 181 and the innermost part of the outer tube insertion section 186e, the tip 1811 of the outer tube 181 and the outer tube insertion section 186e. Does not come into contact with the innermost part of the. Therefore, the bulging portion 181a can be reliably brought into contact with the end surface 1865 of the expansion valve side connector 186.
  • the seal member prevents the leakage of the refrigerant from between the inside-outside passage 18a and the high-pressure communication space 186k and the high-pressure refrigerant passage 186g.
  • the outer tube 181 and the expansion valve side connector 186 are mechanically fixed. According to this, the inter-inside/outside flow path 18a and the refrigerant flow path of the expansion valve 14 can be communicated with each other without branching the refrigerant pipe from the outer pipe 181 and the inner pipe 182. Therefore, the refrigerant pipe branched from the outer pipe 181 and the inner pipe 182 can be reduced.
  • the outer pipe 181 and the expansion valve side connector 186 are mechanically fixed by the bolt 189. Accordingly, the outer tube 181 and the expansion valve side connector 186 can be mechanically fixed with a simple configuration.
  • the expansion valve side connector 186 has a male high pressure side joint 186a and a low pressure side joint 186b.
  • the male high-pressure side joint 186a and the low-pressure side joint 186b are inserted into a female joint part (not shown) of the expansion valve 14. Thereby, the expansion valve side connector 186 can be connected to the female expansion valve 14.
  • the expansion valve side connector 186 is formed such that the end of the high pressure refrigerant flow path 186g on the expansion valve 14 side opens in a direction parallel to the extension direction of the outer pipe 181 and the inner pipe 182. There is. Accordingly, when the expansion valve 14 is arranged on the extension direction side of the outer pipe 181 and the inner pipe 182, the expansion valve side connector 186 can be satisfactorily connected to the expansion valve 14.
  • the expansion valve side connector 186 is fixed to the outer pipe 181 and the inner pipe 182 using the bolt 189, but in the present embodiment, as shown in FIG. 5, the expansion valve side connector 186 is used.
  • the expansion valve side connector 186 is used.
  • a caulking fixing portion 186i is formed around the bulging portion 181a of the outer pipe 181 of the expansion valve side connector 186.
  • the crimping fixing portion 186i is crimped so that the bulge processing portion 181a of the outer tube 181 is wound therein.
  • the expansion valve side connector 186 is mechanically fixed to the outer pipe 181 and the inner pipe 182, it is possible to obtain the same effect as the first embodiment.
  • the outer tube 181 and the expansion valve side connector 186 are mechanically caulked and fixed. Thereby, the outer pipe 181 and the expansion valve side connector 186 can be reliably mechanically fixed.
  • the caulking fixing portion 186i is formed on the expansion valve side connector 186 in FIG. 5, when the pressing plate 188 is used as in FIG. 4, the caulking fixing portion may be formed on the pressing plate 188.
  • the expansion valve side connector 186 is fixed to the outer pipe 181 and the inner pipe 182 using the bolt 189, and in the second embodiment, the expansion valve side connector 186 is the outer pipe 181 and the inner pipe 182. In this embodiment, as shown in FIG. 6, the expansion valve side connector 186 is fixed to the outer pipe 181 and the inner pipe 182 using the elastic force of the resin member 30.
  • the resin member 30 is formed of a resin having elasticity into a cylindrical shape.
  • the resin member 30 is formed with an outer tube side claw portion 30a and a connector side claw portion 30b.
  • the outer pipe side claw portion 30 a is formed in a circumferential shape on the inner cylindrical surface of the resin member 30.
  • the connector-side claw portion 30b is circumferentially formed on the outer cylindrical surface of the resin member 30.
  • An outer pipe side engaging portion 181c is formed on the outer peripheral surface of the outer pipe 181.
  • the outer pipe side engaging portion 181c has a recessed shape so that the outer pipe side claw portion 30a engages with the outer pipe 181 and the inner pipe 182 in the axial direction (left and right direction in FIG. 6).
  • a connector-side engaging portion 186l is formed on the inner peripheral surface of the outer pipe inserting portion 186e of the expansion valve-side connector 186.
  • the connector-side engaging portion 186l has a recessed shape such that the connector-side claw portion 30b engages with the outer pipe 181 and the inner pipe 182 in the axial direction (the left-right direction in FIG. 6).
  • the outer diameter of the connector side claw portion 30b is slightly larger than the inner diameter of the connector side engaging portion 186l. Therefore, when the connector side claw portion 30b engages with the connector side engaging portion 186l, the resin member 30 is elastically deformed so as to reduce the diameter, and a biasing force for pressing the connector side engaging portion 186l is generated. Therefore, since the expansion valve side connector 186 is fixed to the outer pipe 181 and the inner pipe 182 by utilizing the elastic force of the resin member 30, the expansion valve side connector 186 is mechanically fixed to the outer pipe 181 and the inner pipe 182. To be done.
  • the outer pipe side claw portion 30a of the resin member 30 is engaged with the outer pipe side engaging portion 181c, and the resin member 30 is attached to the end portion 1810 of the outer pipe 181.
  • the double pipe is inserted into the expansion valve side connector 186.
  • the tip end 1821 of the inner pipe 182 is brought into contact with the inner pipe insertion portion 1860 of the expansion valve side connector 186 to perform axial alignment.
  • the tip 1811 of the outer tube 181 contacts the outer tube insertion portion 186e, and the outer tube 181 is axially aligned.
  • the connector side claw portion 30b of the resin member 30 engages with the connector side engaging portion 186l of the expansion valve side connector 186.
  • mechanical assembly can be completed by simply pressing the double pipe in the axial direction against the expansion valve side connector 186 with the resin member 30 attached to the double pipe. There is no need to tighten the bolts 189 as in the first embodiment or to caulk the caulking fixing portion 186i as in the second embodiment. Therefore, it is particularly effective for mechanical assembly in a narrow space.
  • the high pressure side joint 186a and the low pressure side joint 186b protrude in a direction parallel to the extension direction of the outer pipe 181 and the inner pipe 182, but in the present embodiment, as shown in FIGS. 7 and 8.
  • the high pressure side joint 186 a and the low pressure side joint 186 b project in a direction orthogonal to the extension direction of the outer pipe 181 and the inner pipe 182. Accordingly, even when the expansion valve 14 cannot be arranged on the extension direction side of the outer pipe 181 and the inner pipe 182 due to layout restrictions, the expansion valve side connector 186 connects the internal heat exchanger 18 and the expansion valve 14 to each other. it can.
  • the ends of the high pressure refrigerant flow passage 186g and the low pressure refrigerant flow passage 186f on the expansion valve 14 side are opened in a direction orthogonal to the extension direction of the outer pipe 181 and the inner pipe 182. Is formed. Therefore, the connection is good when the expansion valve 14 is arranged on the side of the direction orthogonal to the extension direction of the outer pipe 181 and the inner pipe 182.
  • a high-pressure communication space 186k is formed between the tip 1811 of the outer pipe 181 and the innermost portion of the outer pipe insertion portion 186e, and the tip 1821 of the inner pipe 182 and the innermost portion of the inner pipe insertion portion 1860 are formed.
  • a low-pressure refrigerant flow path 186f is formed between the low pressure refrigerant flow path and the portion. Therefore, both the tip 1811 of the outer pipe 181 and the tip 1821 of the inner pipe 182 are free and do not interfere with the member of the expansion valve side connector 186. As a result, the bulging portion 181a of the outer pipe 181 can be reliably brought into contact with the end surface 1865.
  • the tip 1821 of the inner pipe 182 and the tip 1811 of the outer pipe 181 may be displaced in the axial direction. Even in such a case, in the present embodiment, both the tip 1811 of the outer tube 181 and the tip 1821 of the inner tube 182 are free, so it is possible to absorb this axial deviation.
  • the ends of the outer pipe 181 and the inner pipe 182 opposite to the expansion valve 14 are connected to the condenser 13 and the compressor 12 by the liquid pipe 184, the suction pipe 185, and the joints 184a and 185a.
  • the ends of the outer pipe 181 and the inner pipe 182 on the side opposite to the expansion valve 14 are connected to the condenser 13 and the compression unit by the anti-expansion valve side connector 31.
  • the structure is such that it is connected to the machine 12.
  • both ends of the outer pipe 181 and the inner pipe 182 are connected by the expansion valve side connector 186 and the anti-expansion valve side connector 31.
  • the basic structure of the anti-expansion valve side connector 31 is the same as that of the expansion valve side connector 186. Therefore, in the following, detailed description of the basic structure of the anti-expansion valve side connector 31 will be omitted.
  • the high pressure side service valve 32, the low pressure side service valve 33, and the pressure switch 34 are attached to the anti-expansion valve side connector 31. Therefore, a fixture for attaching the high-pressure side service valve 32 and the like to the refrigerant pipe is not required, and the cost can be reduced by reducing the parts rolling.
  • a pressure sensor may be used instead of the pressure switch.
  • the pressure sensor is a sensor that detects the refrigerant pressure.
  • the high-pressure side service valve 32, the low-pressure side service valve 33, and the pressure switch 34 do not necessarily have to be attached to the anti-expansion valve side connector 31, and some of them are provided around the anti-expansion valve side connector 31. Good. Depending on the mounting position and other restrictions, all of the high-pressure service valve 32 and the like may be provided around the anti-expansion valve-side connector 31.
  • the high pressure side service valve 32 is arranged upward, and the low pressure side service valve 33 is arranged laterally.
  • the high pressure side service valve 32 and the low pressure side service valve 33 are There is also a need to place them both facing upward. In such a case, it is desirable to arrange the low-pressure side service valve 33 upward at a position apart from the anti-expansion valve side connector 31.
  • the high-pressure side service valve 32 and the low-pressure side service valve 33 are valves used for supplementary charging of the refrigerant.
  • the pressure switch 34 is a switch that is turned on and off depending on whether the refrigerant pressure is higher or lower than a predetermined value.
  • a hard high pressure side piping member 35 is fixed to the anti-expansion valve side connector 31 using a high pressure side joint plate 36 and a bolt (not shown).
  • the rigid high-pressure side piping member 35 is, for example, a tubular member made of a hard material such as a metal such as aluminum or a hard resin.
  • the metal low-pressure side pipe member 37 at the end of the soft hose member is fixed to the anti-expansion valve side connector 31 using a low-pressure side joint plate 38 and a bolt (not shown).
  • the soft hose member is, for example, a tubular member made of a soft material such as rubber or soft resin.
  • the anti-expansion valve side connector 31 is formed with a high pressure side service valve mounting portion 31a, a low pressure side service valve mounting portion 31b and a pressure switch mounting portion 31c.
  • the high pressure side service valve 32 is attached to the high pressure side service valve attachment portion 31a.
  • the high pressure side service valve mounting portion 31 a communicates with the high pressure refrigerant flow path 311 of the anti-expansion valve side connector 31.
  • the low pressure side service valve 33 is attached to the low pressure side service valve attachment portion 31b.
  • the low pressure side service valve mounting portion 31b communicates with the low pressure refrigerant flow path 312 of the anti-expansion valve side connector 31.
  • the pressure switch 34 is attached to the pressure switch attachment portion 31c.
  • the pressure switch mounting portion 31c communicates with the high pressure refrigerant flow path 311 of the anti-expansion valve side connector 31.
  • the size and shape of the pressure sensor are almost the same as those of the pressure switch 34, so the shape of the pressure sensor mounting portion is almost the same as that of the pressure switch mounting portion 31c.
  • the pressure sensor mounting portion communicates with the high pressure refrigerant flow passage 311 of the anti-expansion valve side connector 31.
  • a pressure sensor may be provided in the condenser 13.
  • the high-pressure side service valve 32 is airtightly and liquid-tightly attached to the anti-expansion valve side connector 31 via an elastic sealing material 39 (for example, an O-ring).
  • an elastic sealing material 39 for example, an O-ring.
  • the low-pressure side service valve 33, the pressure switch 34, and the pressure sensor are also attached to the anti-expansion valve side connector 31 in an airtight and liquid-tight manner via an elastic sealing material (not shown).
  • the end portion 1810 of the outer pipe 181 is inserted into the outer pipe insertion portion 3111, and the bulging portion 181a of the outer pipe 181 is in contact with the end surface 3112.
  • a high-pressure communication space 3110 that communicates with the high-pressure refrigerant channel 311 is formed between the tip 1811 of the outer pipe 181 and the innermost portion of the outer pipe insertion portion 3111.
  • An inner pipe insertion portion 3113 is also formed on the anti-expansion valve side connector 31, and the end portion 1820 of the inner pipe 182 is inserted into the inner pipe insertion portion 3113. Then, the inner pipe side O-ring 192 is held by the inner pipe insertion portion 3113. Further, a gap 1821a is formed between the innermost portion of the inner pipe insertion portion 3113 and the tip 1821 of the inner pipe 182.
  • the high pressure side joint portion 313 and the low pressure side joint portion 314 are formed on the anti-expansion valve side connector 31.
  • the high pressure side joint portion 313 is a female joint into which the hard high pressure side piping member 35 is inserted.
  • the low pressure side joint portion 314 is a female joint into which the low pressure side piping member 37 is inserted.
  • the high pressure side joint portion 313 and the low pressure side joint portion 314 are female-shaped portions.
  • the pressing plate 390 is pressed against the bulging portion 181a of the outer tube 181, and the internal heat exchanger 18 is fixed by using a bolt (not shown).
  • the anti-expansion valve side connector 31 has a high pressure side service valve mounting portion 31a, a low pressure side service valve mounting portion 31b and a pressure switch mounting portion 31c.
  • the number of parts can be reduced and the configuration can be simplified as compared with the case where dedicated members for mounting the high pressure side service valve 32, the low pressure side service valve 33, and the pressure switch 34 are separately provided.
  • the anti-expansion valve side connector 31 has a female high pressure side joint portion 313 into which the male high pressure side piping member 35 is inserted.
  • the anti-expansion valve side connector 31 has a female low pressure side joint portion 314 into which the male low pressure side piping member 37 is inserted. Thereby, the male high-pressure side piping member 35 and the low-pressure side piping member 37 can be connected to the anti-expansion valve side connector 31.
  • a high-pressure communication space 3110 is formed between the innermost portion of the outer pipe insertion portion 3111 of the anti-expansion valve side connector 31 and the tip 1811 of the outer pipe 181.
  • a gap 1821a is formed between the innermost portion of the inner pipe insertion portion 3113 of the anti-expansion valve side connector 31 and the tip 1821 of the inner pipe 182. Therefore, the bulging portion 181a of the outer pipe 181 can be reliably brought into contact with the end surface 3112. That is, the tip 1811 of the outer tube 181 and the tip 1821 of the inner tube 182 do not interfere with the portion of the anti-expansion valve side connector 31 during insertion.
  • the expansion valve 14 is connected to the expansion valve side connector 186, but in the present embodiment, the expansion valve 14 is integrated with the expansion valve side connector 186 as shown in FIG. 11. Specifically, the valve body portion 141 and the element portion 142 are arranged in the expansion valve side connector 186, and the low pressure refrigerant passage 143, the throttle passage 144 and the valve chamber 145 are formed inside the expansion valve side connector 186. ing.
  • FIG. 11 shows a portion where the outer pipe 181 and the inner pipe 182 are in contact with each other, the inner-outer flow passage 18a is formed between the outer pipe 181 and the inner pipe 182 as in the above-described embodiment. Then, the internal-external flow path 18a communicates with the high pressure communication space 186k, and the high pressure liquid refrigerant flows into the valve chamber 145 from the high pressure refrigerant flow path 186g.
  • the low-pressure refrigerant passage 143 is a refrigerant passage for detecting the temperature and pressure of the low-pressure refrigerant, and allows the low-pressure refrigerant flowing out of the evaporator 15 to flow therethrough.
  • the throttle passage 144 is a refrigerant passage that functions as an orifice for reducing the pressure of the high-pressure refrigerant flowing out from the condenser 13 to a low-pressure refrigerant by reducing the passage cross-sectional area of the refrigerant passage.
  • the valve chamber 145 is a space that is arranged on the upstream side of the refrigerant flow in the throttle passage 144 and that accommodates the valve body portion 141. The valve chamber 145 communicates with the high pressure refrigerant flow path 186g.
  • the valve body 141 is a spherical valve.
  • the passage cross-sectional area of the throttle passage 144 changes due to the displacement of the valve body portion 141.
  • a coil spring 146 is housed inside the valve chamber 145.
  • the coil spring 146 is an elastic member that applies a load to the valve body 141 on the side that reduces the passage cross-sectional area of the throttle passage 144.
  • An evaporator-side outlet 14c and a low-pressure side inlet 14d are opened on the outer surface of the expansion valve-side connector 186.
  • the evaporator-side outlet 14c allows the low-pressure refrigerant whose pressure has been reduced in the throttle passage 144 to flow out.
  • the low-pressure side inlet 14d allows the low-pressure refrigerant flowing out of the evaporator 15 to flow into the low-pressure refrigerant passage 143.
  • the evaporator side outlet 14c and the low pressure side inlet 14d are female joints.
  • the evaporator-side outlet 14c and the low-pressure side inlet 14d are open on the same surface of the expansion valve-side connector 186 (the surface on the right side in FIG. 11).
  • the element part 142 outputs a driving force for displacing the valve body part 141.
  • the element portion 142 has a diaphragm 147.
  • the diaphragm 147 is made of a thin plate metal, and is deformed according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 143.
  • An operating rod 148 is connected to the diaphragm. The actuation rod 148 transfers the displacement due to the deformation of the diaphragm to the valve body portion 141 to displace the valve body portion 141.
  • the refrigerant flowing into the valve chamber 145 is decompressed in the throttle passage 144 and then flows out from the evaporator-side outlet 14c to the evaporator 15.
  • the refrigerant evaporated in the evaporator 15 flows into the low pressure refrigerant passage 143 through the low pressure side inlet 14d.
  • the diaphragm 147 is deformed according to the temperature and pressure of the low-pressure refrigerant flowing through the low-pressure refrigerant passage 143, and the displacement due to the deformation of the diaphragm 147 is transmitted to the valve body part 141 by the actuation rod 148 to displace the valve body part 141.
  • the amount of refrigerant flowing into the evaporator 15 is adjusted, and the amount of superheat of the refrigerant flowing out of the evaporator 15 becomes constant.
  • the refrigerant flowing through the low-pressure refrigerant passage 143 flows into the inner flow path 18b of the internal heat exchanger 18.
  • the expansion valve is integrated with the expansion valve side connector 186, the number of parts can be reduced, and the man-hours for assembling the refrigeration cycle device 11 to the vehicle body can be reduced.
  • the low pressure refrigerant passage 143 and the throttle passage 144 are formed inside the expansion valve side connector 186.
  • the low-pressure refrigerant passage 143 communicates with the inner flow path 18b.
  • the throttle passage 144 communicates with the internal-external flow passage 18a to decompress and expand the high-pressure side refrigerant.
  • the valve body portion 141 and the element portion 142 are arranged in the expansion valve side connector 186.
  • the valve body 141 changes the passage cross-sectional area of the throttle passage 144.
  • the element portion 142 outputs a driving force for displacing the valve body portion 141. Accordingly, the expansion valve 14 can be integrated with the expansion valve side connector 186, so that the number of parts of the refrigeration cycle apparatus 11 can be reduced.
  • a high-pressure communication space 186k is formed between the outer circumference and the outer circumference.
  • a gap 1821a is formed between the innermost portion of the inner pipe insertion portion 1860 of the expansion valve side connector 186 and the tip 1821 of the inner pipe 182.
  • the tip end 1811 of the outer tube 181 and the tip end 1821 of the inner tube 182 do not interfere with the expansion valve side connector 186 during insertion, and the bulging portion 181a of the outer tube 181 can be reliably brought into contact with the end surface 1865. .. Particularly, even when the tip 1821 of the inner tube 182 and the tip 1811 of the outer tube 181 are axially displaced from each other, reliable assembly is possible.
  • the pressing plate 188 is pressed against the bulging portion 181a, and the bulging portion 181a is held between the pressing plate 188 and the end surface 1865 of the expansion valve side connector 186. Then, in this state, the internal heat exchanger 18 and the expansion valve side connector 186 are assembled using the bolt 189.
  • the resin member 30 may be used for assembly.
  • the expansion valve 14 is attached to the casing 21 together with the evaporator 15.
  • the internal heat exchanger 18 is arranged in the engine room of the automobile, and the casing 21 is arranged in the vehicle compartment.
  • the expansion valve 14 is exposed to the engine room side from the firewall that separates the engine room from the vehicle compartment. Therefore, the working space is limited in the exposed portion of the expansion valve 14.
  • the internal heat exchanger 18 can be attached to the expansion valve side connector 186 simply by pressing the internal heat exchanger 18 in the axial direction. Therefore, in the example in which the expansion valve 14 is integrated with the expansion valve side connector 186, it is desirable to use the resin member 30.
  • the spiral groove 1822 is formed over substantially the entire length of the inner pipe 182 except for the end portion 1820.
  • the spiral groove 1822 makes it possible to form the inner-outer flow path 18a in a spiral shape and improve the heat exchange efficiency.
  • the expansion valve side connector 186 is arranged at one end of the internal heat exchanger 18 and the anti-expansion valve side connector 31 is arranged at the opposite side, the expansion valve side connector 186 and the anti-expansion valve side connector 31 are The space between them serves as the internal heat exchanger 18. Therefore, the heat exchange amount of the internal heat exchanger 18 is uniquely determined by the distance between the expansion valve side connector 186 and the anti-expansion valve side connector 31.
  • the other device when the other device is cooled by using the low-temperature suction refrigerant flowing from the evaporator 15 to the compressor 12, it is not desirable that the temperature of the suction refrigerant rises too much.
  • Other devices include, for example, an inverter of an electric compressor of an electric vehicle or a hybrid vehicle.
  • a spiral groove 1822 is formed in a part of the internal heat exchanger 18.
  • the spiral groove 1822 may not be formed in other portions.
  • the portion forming the spiral groove 1822 is shortened.
  • the spiral groove 1822 is formed in the portion indicated by 1802, and the spiral groove 1822 is not formed in the remaining portion.
  • the spiral groove 1822 also has a function as a concentric structure of the inner pipe 182 and the outer pipe 181 as described above.
  • the spiral groove 1822 is formed in the end portions 1820 and 1810 and the bent portion 1801.
  • the heat exchange efficiency can be adjusted not only by forming the spiral groove 1822 and the rib 1815 but also by partially coating the heat insulating material in addition to the spiral groove 1822 and the like.
  • the inner pipe 182 and the outer pipe 181 are provided with the inner pipe-side O-ring groove 182a and the outer pipe-side O-ring groove 181b, respectively, but the end portions of the inner pipe 182 and the outer pipe 181 are provided.
  • 1820 and 1810 may have a straight cylindrical shape.
  • the outer pipe side O-ring 191 is sandwiched between the bulging portion 181 a and the outer pipe insertion portion 186 e of the expansion valve side connector 186.
  • a flange portion (bulge processing portion) 1825 is also formed on the inner pipe 182, and the inner pipe O ring 192 is sandwiched between the bulging portion 1825 and the inner pipe O ring holding portion 1861 of the expansion valve side connector 186. To do.
  • the start point of the outer pipe insertion portion 186e (the left end in FIG. 15) from the end surface 1865 of the expansion valve side connector 186 so that abnormal engagement of the outer pipe side O-ring 191 and the inner pipe side O-ring 192 does not occur.
  • the distance from the end surface 1865 to the starting point of the inner tube insertion portion 1860 (the left end in FIG. 15) and the distance from the tip 1811 of the outer tube 181 to the tip 1821 of the inner tube 182 are set.
  • the tip 1821 of the inner pipe 182 first contacts the inner pipe insertion portion 1860 of the expansion valve side connector 186. Since both the tip 1821 of the inner pipe 182 and the inner pipe insertion portion 1860 of the expansion valve side connector 186 are formed with a taper, the inner pipe 182 is smoothly guided into the inner pipe insertion portion 1860 by being guided by this taper. Is inserted.
  • the tip 1811 of the outer pipe 181 contacts the outer pipe insertion portion 186e of the expansion valve side connector 186. Since the tip 1821 of the outer pipe 181 and the outer pipe insertion portion 186e of the expansion valve side connector 186 are also tapered, the outer pipe 181 is also smoothly inserted into the outer pipe insertion portion 186e by being guided by the taper. It
  • the inner pipe O-ring 192 contacts the inner pipe O-ring holding portion 1861 of the expansion valve side connector 186.
  • the inner pipe O-ring holding portion 1861 is a part of the inner pipe inserting portion 1860 of the expansion valve side connector 186, and is formed on the outer pipe inserting portion 186e side (right side in FIG. 15).
  • the inner diameter of the inner pipe O-ring holding portion 1861 is formed to be larger than the outer diameter of the bulging portion 1825 of the inner pipe 182. Since the inner pipe O-ring holding portion 1861 is also tapered, the inner pipe-side O-ring 192 is inserted along the taper into the inner pipe O-ring holding portion 1861 while being compressed and deformed.
  • the outer pipe O-ring 191 comes into contact with the outer pipe O-ring holding portion 1862 of the expansion valve side connector 186.
  • the outer pipe O-ring holding portion 1862 is also a part of the outer pipe inserting portion 186e. It is formed on the end surface 1865 side of the expansion valve side connector 186 of the outer tube inserting portion 186e.
  • the outer pipe O-ring holding portion 1862 is also tapered, so that the outer pipe O-ring 191 is also inserted while being compressed and deformed along the taper. ..
  • the inner diameter of the outer pipe O-ring holding portion 1862 is smaller than the outer diameter of the bulging portion 181a of the outer pipe 181.
  • the bulging portion 181a of the outer pipe 181 comes into contact with the end surface 1865 of the expansion valve side connector 186.
  • the contracted tube described in FIG. 13 is formed by the ends 1820 and 1810 of the inner tube 182 and the outer tube 181.
  • the inner tube 182 and the outer tube 181 are molded by a contracted tube so that the axes of the inner tube 182 and the outer tube 181 are aligned.
  • the state where the insertion is completed is the state of FIG. 16, and the inner pipe side O-ring 192 is held by the outer peripheral surface of the end portion 1820 of the inner pipe 182, the bulging portion 1825, and the inner peripheral surface of the inner pipe O-ring holding portion 1861. To be done.
  • the outer pipe O-ring 191 is held by the outer peripheral surface of the end portion 1810, the bulging portion 181a, and the inner peripheral surface of the outer pipe O-ring holding portion 1862.
  • the inner tube tip 1821, the inner tube side O-ring 192, the outer tube tip 1811, the outer tube side O-ring 191, and the inner pipe insertion portion 1860 and the outer tube insertion of the expansion valve side connector 186 are inserted.
  • the positional relationship with the portion 186e has the following configuration.
  • the inner pipe tip 1821 first contacts the inner pipe insertion portion 1860, and then the tip 1811 of the outer pipe 181 the outer pipe insertion portion 186e. Touch.
  • the inner pipe side O-ring 192 contacts the inner pipe insertion portion 1860, and then the outer pipe O ring 191 contacts the outer pipe insertion portion 186e.
  • the bulging portion 181a is configured to contact the end surface 1865 of the expansion valve side connector 186.
  • the axial alignment is first performed between the expansion valve side connector 186 and the inner pipe 182. In that state, axial alignment is performed between the expansion valve side connector 186 and the outer pipe 181. Therefore, even if the axial cores of the inner pipe and the outer pipe are deviated from each other by a small amount, smooth connection can be achieved.
  • the inner pipe side O-ring 192 and the outer pipe side O-ring 191 are already inserted in a state where the inner pipe 182 and the outer pipe 181 are already aligned, so that the risk of biting is greatly reduced.
  • the outer pipe side O-ring 191 is inserted after the inner pipe side O-ring 192 is inserted, the two O-rings do not start to deform at the same time, and the assembly becomes smooth.
  • the start point of the portion of the inner pipe insertion portion 1860 that contacts the inner pipe 182, that is, the boundary portion of the inner pipe insertion portion 1860 with the inner pipe O-ring holding portion 1861 is indicated by reference numeral 1860a.
  • the start point of the portion of the outer pipe inserting portion 186e that is in contact with the outer pipe 181, that is, the boundary portion of the outer pipe inserting portion 186e with the outer pipe O-ring holding portion 1862 is indicated by reference numeral 186ea.
  • the distance between the starting point 1860a of the inner pipe inserting portion 1860 and the starting point 186ea of the outer pipe inserting portion 186e is Y.
  • the distance X between the tip 1821 of the inner pipe 182 and the tip 1811 of the outer pipe 181 is longer than this distance Y.
  • the distance of the inner pipe O-ring holding portion 1861 of the inner pipe insertion portion 1860 is X1.
  • the distance of the outer pipe O-ring holding portion 1862 of the outer pipe insertion portion 186e is set to Y1.
  • the distance X1 is longer than the distance Y1. That is, the inner pipe O-ring holding portion 1861 is longer than the outer pipe O-ring holding portion 1862. As a result, as described above, the inner pipe side O-ring 192 comes into contact with the inner pipe O-ring holding portion 1861 before the outer pipe side O-ring 191.
  • the distance between the tip 1821 of the inner pipe 182 and the inner pipe side O-ring 192 side surface 1825a (right side surface in FIG. 15) of the bulging portion 1825 is X2.
  • the distance X2 is longer than the sum of the distance X1 to the starting point 1860a of the portion of the inner tube insertion portion 1860 that contacts the inner tube 182 and the diameter of the inner tube side O-ring 192.
  • the distance X1 to the starting point 1860a of the portion of the inner pipe insertion portion 1860 that contacts the inner pipe 182 is also the length X1 of the inner pipe O-ring holding portion 1861 of the inner pipe insertion portion 1860.
  • the inner pipe side O-ring 192 is inserted into the inner pipe O-ring holding portion 1861 after the distal end 1821 of the inner pipe 182 is inserted into the inner pipe insertion portion 1860.
  • the distance Y2 between the tip 1811 and the surface 181aa of the bulging portion 181a on the outer tube side O-ring 191 side is the outer tube of the outer tube insertion portion 186e. It is longer than the sum of the distance Y1 to the starting point 186ea of the portion in contact with 181 and the diameter of the outer tube side O-ring 191.
  • the distance Y1 from the outer pipe inserting portion 186e to the starting point 186ea of the portion in contact with the outer pipe 181 is also the distance Y1 of the outer pipe O-ring holding portion 1862 of the outer pipe inserting portion 186e.
  • the tip 1811 of the outer tube 181 is also inserted into the outer tube insertion portion 186e before the outer tube O-ring 191. Therefore, it is possible to favorably prevent the outer tube side O-ring 191 from being caught.
  • a high-pressure communication space 186k is formed between the tip end 1811 of the outer tube 181 and the innermost part of the outer tube insertion portion 186e, and the tip end 1821 of the inner tube 182 and the end 1821 are covered.
  • a low pressure refrigerant flow path 186f is formed between the inner pipe insertion portion 1860 and the innermost portion. Therefore, the tip 1811 of the outer tube 181 and the tip 1821 of the inner tube 182 are both free and do not interfere with other parts of the expansion valve side connector 186, so that the bulging portion 181a of the outer tube 181 is surely placed on the end surface 1865. Can be brought into contact. Even if the tip 1821 of the inner tube 182 and the tip 1811 of the outer tube 181 are misaligned, good assembly can be performed.
  • the outlet direction of the high-pressure refrigerant passage 186g and the inlet of the low-pressure refrigerant passage 186f of the expansion valve-side connector 186 are disposed with respect to the internal heat exchanger 18.
  • the axes are orthogonal.
  • the axis of the internal heat exchanger 18 may be in the same direction as the outlet of the high-pressure refrigerant channel 186g of the expansion valve side connector 186 and the axis of the inlet of the low-pressure refrigerant channel 186f.
  • the axis of the internal heat exchanger 18 may be in the same direction as the outlet of the high-pressure refrigerant channel 186g of the expansion valve side connector 186 and the axis of the inlet of the low-pressure refrigerant channel 186f.
  • FIG. 17 shows an example in which the axis of the internal heat exchanger 18 has the same direction as the axis of the outlet of the high-pressure refrigerant channel 186g and the axis of the inlet of the low-pressure refrigerant channel 186f.
  • ribs 1815 are used instead of the spiral grooves 1822 of FIGS. 15 and 16.
  • This rib 1815 is formed from the outer pipe 181 like the double pipe of (c), (d), (e), (g), (i), (j), (m) and (n) of FIG. It is integrally formed so as to project inward. Therefore, the rib 1815 is cut and removed at the end portion 1810 of the outer pipe 181, and the bulging portion 181a is formed in this state.
  • the high pressure refrigerant flow passage 186g is formed inside the expansion valve side connector 186 to connect the high pressure side joint 186a and the internal-external flow passage 18a, but as shown in FIG.
  • the high pressure side joint 186a may be directly opposed to the high pressure communication space 186k sealed by the pipe side O ring 192 and the outer pipe side O ring 191.
  • the inside of the high pressure side joint 186a becomes the high pressure refrigerant flow passage 186g. Therefore, the sealing plug 187 (FIG. 4) of the expansion valve side connector 186 is also unnecessary, which facilitates molding.
  • the high pressure side joint 186a and the low pressure side joint 186b are formed in a male shape, but the high pressure side joint 186a and the low pressure side joint 186b may be formed in a female shape as shown in FIG.
  • the tip 1811 of the outer tube 181 and the tip 1821 of the inner tube 182 are free, and the bulging portion 181a can be reliably brought into contact with the end surface 1865. It is similar to the form.
  • the inner pipe side O-ring groove 182a is formed in the inner pipe 182 to hold the inner pipe side O-ring 192, as in the first embodiment.
  • the outer tube 181 has the end portion 1810 formed straight and holds the outer tube side O-ring 191 on the outer circumference, as in the eighth embodiment.
  • the number of steps for forming the inner pipe side O-ring groove O-ring groove 182a is increased.
  • the bulging portion 1825 for holding the inner pipe side O-ring 192 is formed. Processing is required. Which holding method is adopted is appropriately set in consideration of the sealing performance of the O-ring, the axial tolerance of the inner pipe 182 and/or the outer pipe 181, and the like.
  • the bulging portion 181a of the outer pipe 181 is fixed by the caulking fixing portion 186i of the expansion valve side connector 186 in the same manner as the second embodiment shown in FIG. In this way, the combination of the respective embodiments can be appropriately selected.
  • the high pressure side joint 186a and the low pressure side joint 186b of the expansion valve side connector 186 are formed on only one side of the connector, but they may be formed on both sides as shown in FIG.
  • the high-pressure side joint 186 a and the low-pressure side joint 186 b protruding rightward in FIG. 20 are connected to the high-pressure refrigerant inlet 14 a and the low-pressure refrigerant outlet 14 b of the expansion valve 14.
  • a high pressure side joint 186a and a low pressure side joint 186b are also formed on the left side, and are connected to the high pressure liquid refrigerant pipe 205 and the low pressure gas refrigerant pipe 206, respectively.
  • the high-pressure liquid refrigerant pipe 205 has an outer diameter of 8 mm and a wall thickness of 1.0 mm.
  • the low-pressure gas refrigerant pipe 206 has an outer diameter of 12.7 mm and a wall thickness of 1.2 mm.
  • the high-pressure liquid refrigerant pipe 205 and the low-pressure gas refrigerant pipe 206 of FIG. 20 are connected to the rear cooler expansion valve 140 located at the rear of the vehicle compartment.
  • the rear cooler expansion valve 140 is attached to the rear cooler evaporator 150 and decompresses and expands the refrigerant flowing into the rear cooler evaporator 150.
  • the operations of the rear cooler expansion valve 140 and the rear cooler evaporator 150 are similar to those of the expansion valve 14 and the evaporator 15 of the indoor air conditioning unit 20 described above.
  • FIG. 21 is an example in which the rear pipe connecting the rear cooler and the expansion valve side connector 186 is a double pipe rear side internal heat exchanger 208.
  • the low-pressure refrigerant from the low-pressure refrigerant outlet 14b of the expansion valve 14 and the low-pressure refrigerant from the inner pipe 182 of the rear-side internal heat exchanger 208 flow into the low-pressure refrigerant passage 186f, and the two low-pressure refrigerant passages 186f receive the two low-pressure refrigerants.
  • the high pressure refrigerant flow path 186g of the expansion valve side connector 186 is branched at a branching portion 1867, and one of them flows into the high pressure refrigerant inlet 14a of the expansion valve 14 from the high pressure side joint 186a.
  • the other branched portion flows from the rear-side high-pressure refrigerant passage 1868 into the inside-outside passage 18a of the rear-side internal heat exchanger 208.
  • the connection between the outer pipe 181 and the inner pipe 182 of the rear side internal heat exchanger 208 and the expansion valve side connector 186 is the same as in the above-described embodiment.
  • the outer diameter of the inner pipe 182 of the rear side internal heat exchanger 208 is 12.7 mm, and the outer diameter of the outer pipe 181 is 15.9 mm.
  • the wall thickness is 1.2 mm, respectively.
  • the axis of the double pipe is aligned with or orthogonal to the extension direction of the high pressure side joint 186a and the low pressure side joint 186b.
  • the angle between the axis of the double pipe and the extension direction of the high pressure side joint 186a and the low pressure side joint 186b can be freely set.
  • angle between the extension direction of the high pressure side joint 186a and the low pressure side joint 186b and the axis of the double pipe is an obtuse angle.
  • This angle can be appropriately set according to the assembling direction of the double pipe, and may of course be an acute angle.
  • FIG. 24 shows the anti-expansion valve side connector 31 without the pressure switch 34 and the like.
  • the high-pressure side piping member 35 through which the high-pressure liquid refrigerant from the condenser 13 flows is inserted into the high-pressure side joint portion 313 of the anti-expansion valve side connector 31, and is fixed using the high-pressure side joint plate 36 and a bolt (not shown).
  • the high pressure side joint portion 313 and the low pressure side joint portion 314 are female members.
  • the tip 1821 of the inner pipe 182 is inserted into the inner pipe insertion portion 3113 of the anti-expansion valve side connector 31, and the tip 1811 of the outer pipe 181 is inserted into the outer pipe insertion portion 3111.
  • the bulging portion 181a contacts the end surface 3112 and is fixed by the pressing plate 390 and the bolt 391.
  • the tip 1811 of the outer tube 181 is open to the high-pressure communication space 3110 and will not interfere with the insertion. Further, the tip end 1821 of the inner pipe 182 enters the inside of the low pressure side piping member 37, and the tip end 1821 is not interfered with.
  • the high-pressure communication space 3110 is sealed by an outer pipe side O-ring 191 and an inner pipe side O-ring 192.
  • the high-pressure communication space 3110 communicates with the inside/outside passage 18a. Therefore, in this embodiment, the high-pressure communication space 3110 forms a high-pressure refrigerant flow path.
  • the inner pipe 182 enters the inside of the low pressure side piping member 37, and the inner flow path 18b is sealed by the inner pipe side O-ring 192 and the O ring 370 of the low pressure side piping member 37. Therefore, in the present embodiment, the low pressure side refrigerant passage corresponds to the end portion 1820 of the inner pipe 182. At the portion of the anti-expansion valve side connector 31, the inner pipe insertion portion 3113 holding the end portion 1820 corresponds to the low pressure side refrigerant flow passage.
  • both the high pressure liquid refrigerant pipe 205 and the low pressure gas refrigerant pipe 206 for the rear cooler are branched by the expansion valve side connector 186.
  • the present embodiment is similar to the eleventh and twelfth embodiments described above in that the expansion valve side connector 186 branches the high-pressure liquid refrigerant pipe 205 for the rear cooler. However, the low-pressure gas refrigerant pipe 206 for the rear cooler is fixed to the anti-expansion valve side connector 31 by a pressing plate 380 and a bolt (not shown) as shown in FIGS. 25 to 27.
  • the high pressure communication space 3110 of the anti-expansion valve side connector 31 communicates with the internal/external flow path 18a of the internal heat exchanger 18 (FIG. 26). Therefore, all the high-pressure liquid refrigerant from the condenser 13 flows into the internal-external flow path 18a. Then, the expansion valve side connector 186 branches the flow into the expansion valve 14 of the front indoor air conditioning unit 20 and the flow into the expansion valve of the rear cooler.
  • the low-pressure gas refrigerant flows merge in the low-pressure communication space 3120 of the anti-expansion valve side connector 31 (Fig. 25). That is, the inner flow path 18b and the low-pressure gas refrigerant pipe 206 of the rear cooler are open to the low-pressure communication space 3120.
  • the low-pressure communication space 3120 is also connected to the low-pressure side pipe member 37, and the combined gas refrigerant is sucked into the compressor 12 via the low-pressure side pipe member 37.
  • FIG. 27 is a cross-sectional view at a position where the low-pressure gas refrigerant pipe 206 of the rear cooler is shown
  • FIG. 26 is a cross-sectional view at a position where the high-pressure side pipe member 35 is shown.
  • the seal between the internal heat exchanger 18 and the anti-expansion valve side connector 31 is made by the outer pipe side O-ring 191 and the inner pipe side O-ring 192, as in the above embodiment.
  • An O ring 370 seals between the anti-expansion valve side connector 31 and the low pressure side pipe member 37, and an O ring 3800 also seals between the rear cooler low pressure gas refrigerant pipe 206.
  • the high pressure side piping member 35 is also sealed by the O-ring 350.
  • the connection of the double pipe or the piping member by mechanically assembling the O-ring and the bolt is the same as in the above-described embodiment.
  • a low pressure side service valve 33 is attached to the low pressure side piping member 37.
  • a high pressure side service valve 32 is attached to the high pressure side piping member 35.
  • the pressure sensor or pressure switch 34 is attached to the high-pressure side piping member 35 or the outlet side tank of the condenser 13.
  • the pressure switch 34 and the like may be attached to the anti-expansion valve side connector 31 as in the fifth embodiment shown in FIG.
  • the high-temperature and high-pressure liquid refrigerant flowing in the internal-external flow path 18a is heat-exchanged with the low-temperature low-pressure gas refrigerant from the evaporator 15 of the front indoor air conditioning unit 20 to obtain a predetermined subcool. ..
  • the refrigerant flows into the expansion valves 14 and 140 of both the indoor air conditioning unit 20 on the front side and the rear cooler and evaporates in the evaporators 15 and 150, respectively, so that an efficient refrigeration cycle operation can be performed. ..
  • the refrigerant sucked into the compressor 12 is overheated by exchanging heat from the evaporator 15 of the front indoor air conditioning unit 20 with the internal heat exchanger 18, but the refrigerant from the rear cooler evaporator 150. Is not heat exchanged. Therefore, it is possible to prevent the temperature of the refrigerant sucked into the compressor 12 from becoming higher than necessary. In addition, the degree of freedom in handling the low-pressure gas refrigerant pipe 206 of the rear cooler is increased.
  • the inner pipe 182 is fitted into the anti-expansion valve side connector 31, but the expansion valve side connector 186 can be configured in the same manner. As shown in FIG. 29, the inner pipe 182 may penetrate the expansion valve side connector 186 to form a low pressure joint. In this example, the low pressure side O-ring groove 186d is formed in the inner pipe 182 to hold the low pressure side O-ring 194.
  • the low pressure side refrigerant passage corresponds to the end portion 1820 of the inner pipe 182.
  • the inner pipe inserting portion 1860 holding the end portion 1820 corresponds to the low pressure side refrigerant passage.
  • the low pressure side O-ring groove 186d having a circumferential groove is formed in the inner pipe 182 in a state where the double pipe is inserted into the expansion valve side connector 186 and is fixed to the pressing plate 188 with a bolt (not shown). is doing.
  • the inner pipe 182 is deformed and comes into contact with the expansion valve side connector 186, so that the joint between the double pipe and the expansion valve side connector 186 becomes stronger.
  • a double pipe is used from the rear cooler to the expansion valve side connector 186, and further, a double pipe is also used from the expansion valve side connector 186 to the compressor 12 and the condenser 13 sides. Therefore, as compared with the example of FIG. 20, the liquid refrigerant flowing toward the rear cooler is further supercooled. In other words, the amount of superheat of the gas refrigerant flowing from the rear cooler toward the compressor 12 becomes large. Therefore, the adoption of the double pipe connected to the rear cooler determines the efficiency of the entire refrigeration cycle, determines the adoption of the internal heat exchanger 18, and determines the heat exchange amount.
  • a connector that connects two double pipes may be adopted as the anti-expansion valve side connector 31.
  • the internal heat exchanger 18 communicates with the front indoor air conditioning unit 20 arranged in the casing 21, and the rear internal heat exchanger 208 communicates with the rear cooler.
  • the low-pressure gas refrigerant from the front-side indoor air conditioning unit 20 and the rear cooler flows into the anti-expansion valve side connector 31 from the respective inner flow paths 18b and joins in the low-pressure communication space 3120. Then, it is sucked into the compressor 12 from the low-pressure side pipe member 37.
  • the high-pressure liquid refrigerant condensed in the condenser 13 is separated in the high-pressure communication space 3110 of the anti-expansion valve side connector 31, passes through the internal/external flow paths 18a, and flows out to the indoor air conditioning unit 20 on the front side and the rear cooler. ..
  • the high-pressure liquid refrigerant that has flowed into the high-pressure communication space 3110 from the high-pressure side joint portion 313 of the anti-expansion valve side connector 31 flows into the internal-external flow path 18 a of the internal heat exchanger 18.
  • the flow of this high-pressure refrigerant is the same as in FIG.
  • the anti-expansion valve-side connector 31 is formed with the rear-side high-pressure refrigerant flow path 311a toward the rear-side internal heat exchanger 208. Then, the high-pressure refrigerant branches in the high-pressure communication space 3110 and also flows into the rear-side high-pressure refrigerant channel 311a. The liquid refrigerant that has flowed into the rear-side high-pressure refrigerant channel 311a flows into the inside-outside channel 18a of the rear-side internal heat exchanger 208.
  • the low-pressure gas refrigerant flowing from the inner flow path 18b of the internal heat exchanger 18 and the low-pressure gas refrigerant flowing from the inner flow path 18b of the rear internal heat exchanger 208 are connected to each other in the low-pressure communication space 3120 of the anti-expansion valve side connector 31. Join at. Then, the combined low-pressure gas refrigerant flows from the low-pressure side joint portion 314 to the compressor 12 suction port via the low-pressure side piping member 37.
  • the spiral groove on the outer surface of the inner tube 182 is not limited to the three-row spiral groove, and may be a groove section having one, two, four, or the like, or provided so that a plurality of spiral grooves intersect each other. May be. Instead of the spiral groove, a linear groove extending linearly parallel to the axial direction of the inner pipe 182 may be formed. This also applies to the spiral groove 1816 formed in the outer tube 181.
  • the outer pipe 181 and the inner pipe 182 are made of aluminum, but the invention is not limited to this, and they may be made of iron or copper. Other materials may be used as long as they have a good heat transfer coefficient.
  • the internal heat exchanger 18 arranged in the refrigeration cycle device 11 is applied to the vehicle air conditioner 10.
  • the present invention is not limited to this. It may be applied to a stationary air conditioner.
  • a CFC-based refrigerant is used as the refrigerant of the refrigeration cycle device 11 to form a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the refrigerant critical pressure, but carbon dioxide is used as the refrigerant. It may be used to configure a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure is equal to or higher than the refrigerant critical pressure.
  • both ends of the outer pipe 181 and the inner pipe 182 are connected by the expansion valve side connector 186 and the anti-expansion valve side connector 31, but the outer pipe 181 and the inner pipe 182 are connected. Only one end of the condenser 13 and the compressor 12 side may be connected by the anti-expansion valve side connector 31.
  • the end portions of the outer pipe 181 and the inner pipe 182 opposite to the expansion valve 14 are connected to the condenser 13 and the compressor 12 by the anti-expansion valve side connector 31, and the outer pipe 181 and the inner pipe 182 are expanded.
  • the end portion on the valve 14 side may be connected to the expansion valve 14 by a liquid pipe, a suction pipe and a joint.
  • the pressure sensor is used instead of the pressure switch 34, but if necessary, both the pressure switch 34 and the pressure sensor may be used.

Abstract

二重管の内管(182)の内部に低圧側の冷媒が流れる内側流路(18b)が形成され、外管(181)と内管(182)との間に高圧側の冷媒が流れる内外間流路(18a)が形成されている。外管(181)および内管(182)の先端と接続対象部材(14、35、37)との間に介在する膨張弁側コネクタ(186)および反膨張弁側コネクタ(31)を備える。外管の外径は30ミリメートル以下である。外管の内径に対する外管の内径と内管の外径との差との比が25%以下である。冷媒の洩れを防止するシール部材(191、192)を備える。複数の部材は、機械的に固定されている。

Description

内部熱交換器及び内部熱交換器を備える冷凍サイクル装置 関連出願の相互参照
 この出願は、2018年12月5日に日本に出願された特許出願第2018-228035号、および2019年11月21日に日本に出願された特許出願第2019-210354号を基礎としており、これら基礎の出願の内容を、全体的に、参照により援用している。
 本明細書の開示は、冷凍サイクルに用いられる内部熱交換器及び内部熱交換器を備える冷凍サイクル装置に関する。
 特許文献1に記載の内部熱交換器は、外管と内管とを備える二重管を有している。外管と内管との間に形成される内外間流路には、冷凍サイクルの凝縮器からの高圧液冷媒が流れる。内管の内部に形成される流路には、冷凍サイクルの蒸発器で蒸発した低圧ガス冷媒が流れる。これにより、二重管が内部熱交換器として機能する。
 外管の長手方向両端部側の円周壁面にはリキッド配管がろう付けされている。外管の長手方向一端部側のリキッド配管は、凝縮器の冷媒出口と内外間流路とを連通させる高圧配管である。外管の長手方向他端部側のリキッド配管は、内外間流路と膨張弁の高圧冷媒入口とを連通させる高圧配管である。
 内管の長手方向両端部側の円周壁面にはサクション配管がろう付けされている。内管の長手方向一端部側のサクション配管は、内管の内部流路と冷凍サイクルの圧縮機の冷媒吸入口とを連通させる低圧配管である。内管の長手方向他端部側のサクション配管は、膨張弁の低圧冷媒出口と内管の内部流路を連通させる低圧配管である。
 また、特許文献2には、特許文献1とは逆に、内管を凝縮器の冷媒出口と膨張弁の高圧冷媒入口とを連通させる高圧配管とし、内外間流路を冷凍サイクルの蒸発器で蒸発した低圧ガス冷媒が流れる低圧配管とする構造が開示されている。
 そして、特許文献2では、二重管とリキッド配管及びサクション配管とのろう付けを行わず、二重管がコネクタにOリングを介して接合される構造となっている。
特開2006-162241号公報 特開2010-7940号公報
 上記特許文献1の技術では、二重管からリキッド配管やサクション配管を分岐させているため、リキッド配管やサクション配管を配置するための空間が必要となって全体の体格が大きくなる。そのため、搭載のために必要なスペースが大きくなって設計上の制約が大きくなったり、二重管を多数同時に運搬する際の荷姿が悪くなって運搬効率が悪化したりする。二重管の運搬時に、リキッド配管やサクション配管が曲がったり破損したりしてしまうこともある。
 また、リキッド配管やサクション配管を分岐させる部位よりも末端側では内部熱交換を行うことができないので、内部熱交換が行われる部分の長さが短くなってしまい、サイクル効率の向上効果に限界がある。
 さらに、上記特許文献1の技術では、二重管にリキッド配管やサクション配管をろう付けしているため、ろう付け品質が不十分であると冷媒洩れが発生してしまい、安定した製造品質の確保が困難である。
 一方、上記特許文献2の技術では、ろう付けは行わないものの、内管が高圧配管で内外間流路が低圧配管であるため、内管の流路断面積を小さく内外間流路の流路断面積を大きくする必要があり、内管を小径として外管の内径と内管の外径との間の距離を大きくする必要があった。しかも、上記特許文献2の技術は、内外間流路が低圧配管であるため、内管と外管との間に両管を繋ぐリブ等の構造は備えていない。そのため、内管と外管とを同芯上に配置するのが困難であった。
 本明細書の開示は上記点に鑑みて、二重管から分岐する冷媒配管を削減して、二重管を直接コネクタに接合する構造としたうえで、二重管とコネクタとの接合を確実に行えるようにすることを目的とする。
 上記目的を達成するため、開示にかかる内部熱交換器では、二重管の外側の管を形成する外管(181)と、二重管の内側の管を形成する内管(182)とを備えている。
 そして、内管の内部には、冷凍サイクル(11)の低圧側の冷媒が流れる内側流路(18b)が形成されており、外管と内管との間には、冷凍サイクルの高圧側の冷媒が流れる内外間流路(18a)が形成されており、外管の外径は30ミリメートル以下であり、外管の内径に対する外管の内径と内管の外径との差の比が25%以下としている。
 かつ、外管と内管との間には、内外間流路の流路断面積を増すと共に外管と内管とを同芯上に配置する同芯構造が形成され、外管の先端より内管の先端の方が軸方向の外方に延在している。
 さらに、外管および内管と接続対象部材(14、35、37)との間に介在し、内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び内側流路を接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)を備えている。
 かつ、外管の先端はコネクタの被外管挿入部(186e、3111)の最奥部から離間して、高圧連通流路が連通する高圧連通空間(186k、3110)を形成している。そして、外管とコネクタの被外管挿入部(186e、3111)との間に介在して高圧連通空間からの冷媒の洩れを防止する外管側シール部材(191)と、内管とコネクタの被内管挿入部(1860、3113)との間に介在して高圧連通空間からの冷媒の洩れを防止する内管側シール部材(192)とを備え、二重管とコネクタとが機械的に固定されている。
 これによると、内外間流路(18a)及び内側流路(18b)と接続対象部材(14、35、37)の冷媒流路とをコネクタ(186、31)の高圧連通流路(186g、311)及び低圧連通流路(186f、312)によって連通させるので、二重管(外管181、内管182)から冷媒配管を分岐させることなく、内外間流路(18a)と接続対象部材(14、35、37)の冷媒流路とを連通させることができる。そのため、二重管から分岐する冷媒配管を削減できる。
 ここで、「機械的に固定されている」とは、ボルト、ねじ、カシメ、圧入等により固定されていることを意味している。すなわち、溶接、ろう付け、固相接合のような母材間の材料的な結合による固定や、接着のような化学的な固定は、「機械的に固定されている」ことに該当しない。
 開示にかかる内部熱交換器では、内側流路(18b)を低圧冷媒の流路とし、内外間流路(18a)を高圧冷媒の流路とし、かつ、外管の内径に対する外管の内径と内管の外径との差の比が25%以下としているので、内側流路(18b)の流路断面積を大きくし内外間流路(18a)の流路断面積を小さくすることができる。冷媒が流れることによる圧力損失は、ガス冷媒が流れる内側通路の方が液冷媒の流れる内外間流路より大きいので、内側流路の断面積を大きくすることは、冷凍サイクルの効率向上に繋がる。
 加えて、外管の内径に対する外管の内径と内管の外径との差の比が25%以下であるため、内管と外管との軸線が合わせやすくなる。
 また、外管の外径を30ミリメートル以下とすることで、全体としての冷媒流路(内側流路及び内外間流路)の断面積を抑えることができる。その結果、冷凍サイクルを循環する冷媒量を不必要に多くすることが無くなる。冷媒量は液冷媒が流れる内外間流路に多くなるので、外管の内径に対する外管の内径と内管の外径との差の平均値との比が25%以下とすることは、冷凍サイクルを循環する冷媒量を抑える上でも望ましい。
 また、外管と内管との間には、内外間流路の流路断面積を増すと共に外管と内管とを同芯上に配置する同芯構造が形成されているので、内管と外管との軸線は一層正確に合わせられる。そのため、内管の端部及び外管の端部を夫々コネクタの被内管挿入部及び被外管挿入部に挿入して機械的に固定するに際して、シール部材(191、192)は内管の端部及び外管の端部とコネクタの被挿入部との間に適切に挟持される。
 開示にかかる内部熱交換器は、外管の先端とコネクタの被外管挿入部の最奥部との間に高圧連通流路が連通する高圧連通空間(186k、3110)が形成され、この高圧連通空間は外管に配置のシール部材(191)と内管に配置のシール部材(192)により確実にシールされている。
 開示にかかる内部熱交換器は、サービスバルブ(32、33)、圧力スイッチ(34)および圧力センサのうち少なくとも1つが取り付けられる取付部(31a、31b、31c)がコネクタに備えられている。これにより、コネクタをサービスバルブ等の取付部として用いることが可能となり、サービスバルブ等の取付部材が省略できてコストダウンが図られる。
 開示にかかる内部熱交換器では、内管及び内管のいずれか一方に螺旋溝(1816、1822)が形成され、この螺旋溝の峰部(1816a、1822a)が内管及び外管の他方と複数個所で接触する構造で同芯構造を形成している。螺旋溝を形成することで表面積が増加し、かつ、内管と外管とを接触させているので内部熱交換器の熱交換効率を向上させることができる。
 開示にかかる内部熱交換器では、内管の先端(1821)、内管側シール部材(192)、外管の先端(1811)、及び外管側シール部材(191)と、コネクタの被内管挿入部(1860)及び被外管挿入部(186e)との位置関係を、内管及び外管がコネクタに挿入される際に、最初に内管の先端が被内管挿入部に接し、次いで外管の先端が被外管挿入部に接し、その後に、内管側シール部材が被内管挿入部に接し、最後に外管側シール部材が被外管挿入部と接する構造としている。
 その結果、コネクタと内管との間で軸合わせが行われた後にコネクタと外管との間で軸合わせが行われ、内管と外管との軸芯が微小量ずれていてもスムーズな結合が可能となる。かつ、内管側シール部材及び外管側シール部材は軸合わせされた状態で挿入される。内管側シール部材が挿入された後で外管側シール部材が挿入されるので、組付けがスムーズになる。
 開示にかかる内部熱交換器は、内管の先端と被内管挿入部の際奥部との間に隙間が形成されている。開示にかかる内部熱交換器は、外管の端部にコネクタと当接する当接部(181a)が外周方向に形成されており、かつ、内管の先端と被内管挿入部の最奥部との距離の方が、外管の先端と被外管挿入部の最奥部との距離より長いため、内管の先端と被内管挿入部の際奥部との間に隙間を形成することによって、当接部(181a)を確実にコネクタに当接させることができる。
 開示にかかる内部熱交換器は、外管の端部(1810)で先端(1811)より内側の部位は、所定距離に亘って、外管の径方向内側に押圧成形されている。即ち、外管は端部(1810)で径が縮小するように内管に向けて押圧成形される。この縮管により、外管と内管との軸心を端部で一致させることができ、その結果、内管及び外管をコネクタに挿入する際の位置合わせが確実となる。
 開示にかかる内部熱交換器は、コネクタ(186、31)が内管及び外管の両側に配置されている。即ち、両コネクタの間の全長を内部熱交換器(18)が連結する構造である。そのため、内部熱交換器の熱交換量が内管及び外管の長さに基づいて一義的に定まる。
 そこで、開示にかかる内部熱交換器は、内管と外管との間の熱交換効率が、内管と外管との間の一部の部位と他の部位とで異なるようにしている。その結果、一部の部位の長さを調節することで、内部熱交換器全体としての熱交換量を調節でき、冷凍サイクル全体としての熱効率の最適化を図ることができる。
 開示は、内部熱交換器を備える冷凍サイクル装置を提供する。この冷凍サイクル装置(11)は、圧縮機(12)、凝縮器(13)、室内空調ユニット(20)用の膨張弁(14)、室内空調ユニット用の蒸発器(15)、リアクーラ用膨張弁(140)、リアクーラ用蒸発器(150)、及び内部熱交換器(18、208)を備える。
 そして、内部熱交換器は、外管および内管の端部に位置するコネクタ(186、31)を備えている。このコネクタには、内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び内側流路を接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)が形成されている。かつ、内部熱交換器は、凝縮器及び圧縮機と室内空調ユニットの膨張弁との間に介在している。そして、コネクタは、高圧連通流路を凝縮器と少なくとも室内空調ユニットの膨張弁及びリアクーラ用膨張弁とのいずれかとを接続している。また、コネクタは、低圧連通流路を圧縮機と少なくとも室内空調ユニットの膨張弁及びリアクーラ用膨張弁のいずれかとを接続している。
 開示にかかる冷凍サイクル装置は、凝縮器及び圧縮機と室内空調ユニットの膨張弁との間に内部熱交換器を介在させているので、室内空調ユニット及びリアクーラの双方のエンタルピを高めることができる。かつ、凝縮器から室内空調ユニット及びリアクーラの双方に向かって流れる液冷媒を内部熱交換器で纏めることができる。
 なお、この欄および請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
第1実施形態における冷凍サイクル装置の全体構成図である。 第1実施形態における内部熱交換器の全体構成図である。 第1実施形態における内部熱交換器の一部を示す斜視図である。 図3のIV-IV断面図である。 第2実施形態における内部熱交換器の一部を示す断面図である。 第3実施形態における内部熱交換器の一部を示す断面図である。 第4実施形態における内部熱交換器の一部を示す斜視図である。 図7のVIII-VIII断面図である。 第5実施形態における内部熱交換器の一部を示す斜視図である。 図9のX-X断面図である。 第6実施形態における内部熱交換器の一部を示す断面図である。 二重管の断面図である。 縮管工程を示す断面図である。 内部熱交換器を示す斜視図である。 第8実施形態における内部熱交換器の一部を示す断面図である。 第8実施形態における内部熱交換器の一部を示す断面図である。 第8実施形態における内部熱交換器の一部を示す断面図である。 第9実施形態における内部熱交換器の一部を示す断面図である。 第9実施形態における内部熱交換器の一部を示す断面図である。 第10実施形態における内部熱交換器の一部を示す断面図である。 第11実施形態における内部熱交換器の一部を示す断面図である。 第12実施形態における内部熱交換器の一部を示す断面図である。 第12実施形態における内部熱交換器の一部を示す断面図である。 第13実施形態における内部熱交換器の一部を示す断面図である。 第14実施形態における内部熱交換器の一部を示す断面図である。 第14実施形態における内部熱交換器の一部を示す断面図である。 第14実施形態における内部熱交換器の一部を示す斜視図である。 第1実施形態における内部熱交換器の一部を示す斜視図である。 第15実施形態における内部熱交換器の一部を示す斜視図である。 第16実施形態における内部熱交換器の一部を示す斜視図である。
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す車両用空調装置10は、冷凍サイクル装置11を有している。冷凍サイクル装置11には、二重管式の内部熱交換器18が適用されている。冷凍サイクル装置11は、圧縮機12、凝縮器13、膨張弁14および蒸発器15を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置11では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機12および凝縮器13は、図示しない車両のエンジンルームに配置されている。膨張弁14および蒸発器15は、車両の車室に配置されている。圧縮機12、凝縮器13、膨張弁14および蒸発器15は、冷媒の流れにおいて互いに直列に配置されている。
 圧縮機12は、冷凍サイクル装置11の冷媒を吸入して圧縮して吐出する。圧縮機12は、ベルト駆動式圧縮機または電動圧縮機である。ベルト駆動式圧縮機は、エンジン4の駆動力がクランクプーリ5、駆動ベルト6およびプーリ7を介して伝達されることによって駆動される。電動圧縮機は、電池から供給される電力によってモータ駆動される。
 凝縮器13は、圧縮機12から吐出された高圧ガス冷媒と外気とを熱交換させることによって高圧ガス冷媒の熱を外気に放熱させて高圧冷媒を凝縮させる放熱器である。凝縮器13は、エンジンルーム内の最前部に配置されている。凝縮器13で凝縮された液相冷媒は、高圧冷媒配管16を介して膨張弁14の高圧冷媒入口14aに流入する。なお、高圧冷媒配管16には内部熱交換器18の内外間流路18aが対応する。
 膨張弁14は、高圧冷媒配管16から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁14は、感温部を有している。感温部は、蒸発器15出口側冷媒の温度および圧力に基づいて蒸発器15出口側冷媒の過熱度を検出する。膨張弁14は、蒸発器15出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。
 蒸発器15は、膨張弁14を流出した低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させるとともに車室内へ送風される空気を冷却する空気冷却用熱交換器である。蒸発器15で蒸発した気相冷媒は、膨張弁14の感温部に流入する。膨張弁14の感温部を通過した冷媒は、膨張弁14の低圧冷媒出口14bから低圧冷媒配管17へ流出し、低圧冷媒配管17を介して圧縮機12に吸入されて圧縮される。この低圧冷媒配管17は、内部熱交換器18の内側流路18bが対応する。
 蒸発器15は、室内空調ユニット20のケーシング21に収容されている。室内空調ユニット20は、車室の前部にて、図示しない計器盤の内側に配置されている。ケーシング21は、空気通路を形成する空気通路形成部材である。ケーシング21内の空気通路において、蒸発器15の空気流れ下流側には、ヒータコア22が配置されている。ヒータコア22は、エンジン冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。
 ケーシング21には、図示しない内外気切替箱と室内送風機23とが配置されている。内外気切替箱は、ケーシング21内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機23は、内外気切替箱を通してケーシング21内の空気通路に導入された内気および外気を吸入して送風する。
 ケーシング21内の空気通路において、蒸発器15とヒータコア22との間には、エアミックスドア24が配置されている。エアミックスドア24は、蒸発器15を通過した冷風のうちヒータコア22に流入する冷風とヒータコア22をバイパスして流れる冷風との風量割合を調整する。エアミックスドア24は、ケーシング21に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア24の開度位置を調整することによって、ケーシング21から車室内に吹き出される空調風の温度を所望温度に調整できる。
 ケーシング21の空気流れ最下流部には吹出開口部25が形成されている。図1では図示を省略しているが、吹出開口部25は複数個形成されている。ケーシング21にて温度調整された空調風は、これらの吹出開口部25を介して、空調対象空間である車室内へ吹き出される。複数個の吹出開口部25の空気流れ上流側には、図示しない吹出口モード切替ドアが配置されている。吹出口モード切替ドアは、吹出口モードを切り替える。吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、ベントモード等がある。
 高圧冷媒配管16の少なくとも一部および低圧冷媒配管17の少なくとも一部は、図2~図4に示す二重管式の内部熱交換器18で構成されている。内部熱交換器18は、全長が200~1200mm程度の長さを有している。
 この内部熱交換器18の長さは、要求される熱交換能力に応じて定められる。即ち、内部熱交換器18は、圧縮機12に向かう低温低圧の気相冷媒と膨張弁14に向かう高温高圧の液相冷媒との間で熱交換を行って冷凍サイクル装置11のエンタルピを高めるものであるため、内部熱交換器18には所望のエンタルピを得ることができるだけの長さが求められる。一方で、内部熱交換器18での熱交換量が大きすぎると、圧縮機に吸入される冷媒温度が上昇し過ぎ、望ましくない。そこで、内部熱交換器18の長さが定まった場合には、内部熱交換器18での熱交換量を調節することが望まれる。この熱交換量の調節に関しては後述する。
 内部熱交換器18に対する外気からの熱授受を遮断するために、内部熱交換器18は断熱材で覆われる場合がある。例えば、内部熱交換器18がエンジンルームに配置された際に、エンジンからの熱が内部熱交換器18に直接あたるのを防ぐ場合である。
 二重管式の内部熱交換器18は、図2に示すように、外管181と内管182とを備えている。内管182は、外管181を貫通するように外管181の内部に挿入されている。これにより、外管181と内管182とで二重管が形成されている。
 外管181は、例えばアルミニウム製のφ22mm管である。φ22mm管は、外径が22mm、内径が19.6mmの管である。車両用空調装置10のひとつとして、自動車の空調装置に用いられる外管181は、出来る限り小径にすべく、その外径を22mm程度としている。冷媒循環量が多く、外管181を大きくする場合でも28mm未満とするのが望まれる。また、外管181の肉厚も1.2mm程度で、厚くする場合でも2mm未満としている。
 内管182は、例えばアルミニウム製の3/4インチ管としている。3/4インチ管は、外径が19.1mm、内径が16.7mmの管である。このように、内外間流路18aを確保しつつ、内管182の外径をできるだけ外管181の内径に近いサイズを選定することによって内管182の表面積を大きくしている。
 内管182は内部(内側流路18b)を低圧のガス冷媒が流れるため、流路断面積を充分に確保する必要がある。特に、ガス冷媒は液冷媒に比べて体積が大きく流速が早いので、内側流路18bを流れる際の圧力損失は、内外間流路18aを流れる液冷媒に比して非常に大きくなる。そのため、内部熱交換器18の設計思想としては、内管182が充分な流路断面積を持つように内管182の内径を定め、1~2mm程度の肉厚を考慮して内管182の外径を定める。内管182の外径は、15.8~22mm程度としている。
 上記の外管181の径は、この内管182の外径に応じて、内外間流路18aが高圧の液冷媒を流すことができる範囲で最小とするように設計される。これは、内外間流路18aを流れるのは高圧の液冷媒であるため、この内外間流路18aの断面図が大きくなると冷凍サイクルに封入される冷媒量が不必要に多くなるからである。冷凍サイクルに用いる冷媒量を抑えることで、コストダウンを図ることもできる。従って、外管181の内径に対する外管181の内径と内管182の外径との差との比は、25%以下としている。より望ましくは、20%以下としている。
 図12(a)~(o)に二重管の断面形状を示すが、それぞれの外径と肉厚は以下の通りである。また、この寸法に基づいて計算した外管181の内径に対する外管181の内径と内管182の外径との差との比も、以下の通りであり、20%以下である。
図12(a):外管外径25mm、外管肉厚1.2mm、内管外径22.1mm、内管肉厚1.2mm、比2.2%
図12(b):外管外径21.1mm、外管肉厚1.2mm、内管外径19.1mm、内管肉厚1.2mm、比3.0%
図12(c):外管外径27.5mm、外管肉厚1.7mm、内管外径21.9mm、内管肉厚1.5mm、比9.1%
図12(d):外管外径25mm、外管肉厚1.7mm、内管外径19.1mm、内管肉厚1.3mm、比11.6%
図12(e):外管外径25mm、外管肉厚1.6mm、内管外径18.9mm、内管肉厚1.1mm、比13.3%
図12(f):外管外径24mm、外管肉厚2mm、内管外径17.8mm、内管肉厚1.5mm、比11.0%
図12(g):外管外径27mm、外管肉厚1.6mm、内管外径22mm、内管肉厚1.5mm、比7.6%
図12(h):外管外径25mm、外管肉厚1.5mm、内管外径20mm、内管肉厚1.3mm、比9.1%
図12(i):外管外径25mm、外管肉厚1.2mm、内管外径20mm、内管肉厚1.2mm、比11.5%
図12(j):外管外径25mm、外管肉厚1.7mm、内管外径18mm、内管肉厚1.5mm、比16.7%
図12(k):外管外径24.6mm、外管肉厚1.8mm、内管外径19.1mm、内管肉厚1.8mm、比9.1%
図12(l):外管外径24.6mm、外管肉厚1.7mm、内管外径19.1mm、内管肉厚1.3mm比9.9%
図12(m):外管外径25mm、外管肉厚1.5mm、内管外径18mm、内管肉厚1.5mm、比18.2%
図12(n):外管外径25mm、外管肉厚1.6mm、内管外径18mm、内管肉厚1.5mm、比17.4%
図12(o):外管外径22.5mm、外管肉厚1.6mm、内管外径19.1mm、内管肉厚1.6mm、比1.0%
図12(p):外管外径22.5mm、外管肉厚1.6mm、内管外径19.1mm、内管肉厚1.6mm、比1.0%
 なお、図12の(a)、(b)、(f)、(o)及び(p)の二重管は、内管182に螺旋溝1822を形成している。この螺旋溝1822を形成した内管182の外径は、螺旋溝1822を形成する前の状態の寸法、即ち、螺旋溝1822を形成していない部位での内管182の外径寸法で示している。
 そして、螺旋溝1822は窪んだ溝部1822bと峰部1822aとからなり、峰部1822aが複数個所で外管181に当接する構造となっている。そのため、内管182の外周面が外管181の内周面に当接して、内管182と外管181とを同軸状に配置する同芯構造が形成される。
 なお、図12(p)の二重管は峰部1822aに更に窪みを設けて、峰部1822aの幅を広げている。このように、峰部1822aや溝部1822bの形状も、適宜変更可能である。
 また、図12の(k)及び(l)の二重管は、外管181に螺旋溝1816を形成している。外管181の外径は、螺旋溝1816を形成する前の寸法、即ち、螺旋溝1816を形成していない部位での外管181の外径寸法である。
 そして、螺旋溝1816も窪んだ溝部1816bと峰部1816aからなり、峰部1816aが複数個所で内管182の外周面に接触している。これにより、外管181の内周面が内管182の外周面に当接して、内管182と外管181とを同軸状に配置する同芯構造が形成される。なお、峰部は当接する部位を表しているので、内管182の螺旋溝1822と外管181の螺旋溝1816では逆となっている。即ち、内管182の螺旋溝1822では峰部1822aが外方に突出形成され、外管181の螺旋溝1816では峰部1816aは内方に突出形成されている。
 このように、内管182若しくは外管181に螺旋溝1822、1816を形成することで、内管182と外管181とが複数個所で接触可能となり、内管182と外管181が同軸上に配置される同芯構造となる。
 加えて、内管182若しくは外管181に螺旋溝1822、1816を形成することで、内管182若しくは外管181の表面積を大きくすることができる。特に内管182に螺旋溝1822を形成した場合には、内側流路18bと内外間流路18aとの熱交換面積を増加させることができる。
 かつ、内管182若しくは外管181に形成された螺旋溝1822、1816の峰部1822a、1816aにより、内管182と外管181とが接触することによっても、内側流路18bと内外間流路18aとの間の熱交換が促進される。
 また、図12の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管は外管181に内方に向かうリブ1815が等間隔で形成されており、内管182が挿入された際にはリブ1815の先端が、少なくとも一部において内管182の外周面に接触する構造となっている。このリブ1815の接触によっても、内管182と外管181が同軸上に配置される同芯構造となる。
 かつ、リブ1815により内外間流路18aの表面積が増加して熱交換効率を高め、リブ1815が内管182に接触することによっても熱交換効率が高まる。
 図12(h)の二重管は内管182から外方に向けて等間隔でリブ1815が突出形成されている。この内管182のリブ1815の先端が、少なくとも一部において外管181の内周面に接触して、内管182と外管181とを同軸上に配置する構造としている。
 かつ、リブ1815による熱交換効率の向上は、外管181より内方に向けて突出形成した上述の二重管の例と同様である。
 なお、上述の螺旋溝1822、1816であっても、リブ1815であっても、内管182と外管181との軸芯を完全に一致させることは困難である。従って、本件の記載で同芯構造とするのは、内管182と外管181の軸芯を一致させる方向に作用する構造を指している。内管182と外管181との間に何も存在しない構造に比べて、螺旋溝1822、1816やリブ1815を形成すれば、内管182と外管181との軸芯が揃う方向に作用する。
 外管181および内管182は、エンジン4や図示しない各種車載機器および車体等との干渉を避けるため、図2に示すように、曲げ部1801が形成されている。曲げ部1801は、直管状の外管181の内部に直管状の内管182が挿入された状態で外管181および内管182が同時に曲げられることによって形成される。
 この曲げ部1801において、内管182と外管181との間に内外間流路18aが形成されるためにも、螺旋溝1822、1816やリブ1815の同芯構造は有用である。なぜなら、同芯構造が無ければ、曲げ部1801で内管182の外表面と外管181の内表面が直接接触する可能性がある。その場合、内外間流路18aの断面形状が歪となって、流通抵抗が高まる。それに対し、同芯構造を設ければ、曲げ部1801でも同芯構造によって、内管182の外表面と外管181の内表面が直接接触することはない。
 外管181の長手方向の端部1810は、内管182と組み合わされた後に、その全周が径方向内側へ向けて押圧(縮管)されて、内管182の円周表面に接合されている。縮管は図13に示すように、内管182の内方に芯金200を当てた状態で、外管181の外方から三つ爪チャック201を押し付けることで行う。三つ爪チャック201の先端202は外管181の外形に対応した円筒形状となっており、外管181を三方向から押圧する。
 三つ爪チャック201は、一旦外管181を押圧した後で後退して、周方向に60度回転して、再び外管181を押圧する。これにより、図13に示すように、外管181と内管182とは、特にその端部1810、1820に於いて、同芯状の配置となる。なお、端部1810、1820の用語は先端を意味するのではなく、三つ爪チャック201が配置される位置から先端までの部位を示している。外管181と内管182の先端部分はそれぞれ先端1811及び先端1821で図示している(図4)。
 そして、内管182の螺旋溝1822は、この端部1820の内方から始まり、内管182の端部1820より先端1821部分では螺旋溝1822は形成されていなく、円筒状である。そのため、芯金200は円柱でその外面が前面で内管182の内面に接する。
 この縮管により、内管182と外管181とは、その端部1820、1810において、より軸芯が揃うことになる。その結果、後述するコネクタへの挿入がスムーズになる。
 図4に示すように、外管181と内管182との間には空間が形成され、この空間が内外間流路18aとなるようにしている。内管182の内部空間は、内側流路18bとなっている。内外間流路18aおよび内側流路18bにおける冷媒の流れ方向は、互いに逆方向になっている。内外間流路18aを流れる内外間流体は高圧の液冷媒である。内側流路18bを流れる内側流体は低圧のガス冷媒である。
 内管182の外表面には、図12の(a)、(b)、(f)、(o)、(p)に示すように、螺旋溝1822が設けられている。螺旋溝1822は、内管182の長手方向に螺旋状に延びる多条の溝で、図12の(a)、(b)、(o)、(p)では3条としており、図12の(f)では2条としている。
 図4の例では、螺旋溝1822により、内管182は蛇腹状(換言すれば襞状)になっている。そのため、内外間流路18aは内管182の外周に螺旋状に形成され、上述のように、内管182と外管181との接触面積が増え、熱交換効率を向上させることができる。
 なお、図4では図12の(a)、(b)、(f)、(o)、(p)に示す螺旋溝1822を形成した内管182を用いる例を示しているが、他の二重管を用いる場合も、端部1820は同様の形状にしている。図12の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管の場合は、内管182の先端1821の方が外管181の先端1811より軸方向で外方に位置し、内管182の端部1820では外管181およびリブ1815は存在しない(後述する図17図示)。
 図12の(h)の二重管では、内管182のリブ1815を端部1820において切削したうえで、内管182を外管181内に配置して二重管を形成する。従って、組付けられた二重管は、内管182の端部1820において、外管181もリブ1815も存在していない。
 図2に示すように、外管181の長手方向一端部近傍の外周面には、リキッド配管184がろう付けにて接合されている。リキッド配管184は内外間流路18aと連通している。
 リキッド配管184の先端部には、凝縮器13の冷媒出口側に接続されるジョイント184aが設けられている。そのため、上述のように、内外間流路18aには、凝縮器13からの高圧液冷媒が流入する。ジョイント184aは、凝縮器13に直接接続される場合と、図示しない配管部材を介して凝縮器13に接続される場合とがある。
 内管182の長手方向一端部には、サクション配管185が設けられている。サクション配管185は、低圧冷媒配管17をなす配管である。サクション配管185の先端部には、圧縮機12の冷媒吸入側に接続されるジョイント185aが設けられている。蒸発器15から流出した低温低圧の冷媒は、内側流路18bを流れて圧縮機12に吸入される。ジョイント185aは、通常、ホース部材を介して圧縮機12に接続される。
 図4に示すように、外管181の長手方向の端部1810近傍には、バルジ加工部181aが形成されている。バルジ加工部181aは、膨張弁側コネクタ186の端面1865と当接する当接部であり、外管181を外周側にバルジ加工することによって形成されている。
 外管181の長手方向の先端1811とバルジ加工部181aとの間には、円周溝状の外管側Oリング溝181bが形成されている。外管側Oリング溝181bには、環状の外管側Oリング191が配置されている。外管側Oリング191は、内外間流路18aと膨張弁側コネクタ186との間の冷媒の洩れを防止するシール部材である。
 内管182の長手方向の端部1820近傍には、円周溝状の内管側Oリング溝182aが形成されている。内管側Oリング溝182aには、環状の内管側Oリング192が配置されている。内管側Oリング192は、内側流路18bと膨張弁側コネクタ186との間の冷媒の洩れを防止するシール部材である。特に、内管側Oリング192によって、内側流路18bと膨張弁側コネクタ186の高圧連通空間186kとの間のシールが確保される。
 内管182の先端1821の方が外管181の先端1811より軸方向の外方にあるので、膨張弁側コネクタ186には、外管181の先端1811と被外管挿入部186eの最奥部と内管182の端部1820の外周との間に高圧連通空間186kが形成される。そして、この高圧連通空間186kに高圧冷媒流路186gが連通する。外管側シール部材(外管側Oリング)191は、この高圧連通空間186kと大気との間をシールし、内管側シール部材(内管側Oリング192)は、高圧連通空間186kと低圧冷媒流路186fとの間をシールしている。
 膨張弁側コネクタ186は、図3に示すように、外管181および内管182の長手方向の端部1810、1820に配置されている。膨張弁側コネクタ186は、内部熱交換器18と膨張弁14との接続部をなす部材である。膨張弁14は、膨張弁側コネクタ186に接続される接続対象部材である。
 膨張弁側コネクタ186には、高圧側ジョイント186aと低圧側ジョイント186bとが設けられている。高圧側ジョイント186aは、膨張弁14の高圧冷媒入口14aに接続される。低圧側ジョイント186bは、膨張弁14の低圧冷媒出口14bに接続される。低圧側ジョイント186bは、内部熱交換器18の延長線上にオス状に突出するオス形状部である。高圧側ジョイント186aは、低圧側ジョイント186bと平行にオス状に突出するオス形状部である。
 膨張弁14の高圧冷媒入口14aおよび低圧冷媒出口14bは、メス状のジョイント部を形成している。オス状の高圧側ジョイント186aは、膨張弁14のメス状の高圧冷媒入口14aに挿入される。オス状の低圧側ジョイント186bは、膨張弁14のメス状の低圧冷媒出口14bに挿入される。
 図4に示すように、高圧側ジョイント186aの外周面には、円周溝状の高圧側Oリング溝186cが形成されている。高圧側Oリング溝186cには、高圧側Oリング193が配置されている。高圧側Oリング193は、内外間流路18aから流出した冷媒の洩れを防止するシール部材である。
 低圧側ジョイント186bの外周面には、円周溝状の低圧側Oリング溝186dが形成されている。低圧側Oリング溝186dには、低圧側Oリング194が配置されている。低圧側Oリング194は、膨張弁14の低圧冷媒出口14bから流出した冷媒の洩れを防止するシール部材である。
 膨張弁側コネクタ186には、被外管挿入部186e、被内管挿入部1860、低圧冷媒流路186f、高圧冷媒流路186gおよびボルト孔186hが形成されている。被外管挿入部186eには外管181が挿入され、挿入された状態では外管側Oリング191が圧縮変形して、シールを維持している。同様に、被内管挿入部1860には内管182が挿入され、挿入された状態では内管側Oリング192が圧縮変形して、シールを維持している。
 二重管の挿入時には、内管182の先端1821がまず膨張弁側コネクタ186の被内管挿入部1860と当接し、その後に、外管181の先端1811が膨張弁側コネクタ186の被外管挿入部186eと接する。そして、この際の挿入をスムーズに行う為、内管182の先端1821及び外管181の先端1811にはテーパが形成されている。また、上述したように、内管182と外管181の端部1820、1810は、軸芯が揃うように縮管されているので、挿入がスムーズに行われる。
 従って、まず、内管182がテーパ形状によって膨張弁側コネクタ186の被内管挿入部1860と軸合わせされ、その状態で、外管181がテーパ形状によって被外管挿入部186eと軸合わせされることになる。そのため、内管182の軸芯と外管181の軸芯とが多少ずれていても、スムーズな挿入が可能となる。
 低圧冷媒流路186fは、膨張弁14の低圧冷媒出口14bと内側流路18bとを連通する低圧側連通流路である。この低圧冷媒流路186fを介して、膨張弁14の低圧冷媒出口14bから流出した低圧冷媒が内側流路18bへと流れる。低圧冷媒流路186fは、被内管挿入部1860から低圧側ジョイント186bに向かって延びており、低圧側ジョイント186b内を貫通している。
 高圧冷媒流路186gは、内外間流路18aと膨張弁14の高圧冷媒入口14aとを連通する高圧側連通流路である。従って、内外間流路18aから流出した高圧冷媒は、高圧冷媒流路186gを介して、膨張弁14の高圧冷媒入口14aへと流れる。高圧冷媒流路186gは、その一端が被外管挿入部186eに形成された高圧連通空間186kに開口して、図4で下方に向かい、ついで高圧側ジョイント186aに向かって屈曲して延びており、高圧側ジョイント186a内を貫通している。
 高圧冷媒流路186gは、切削加工により形成されている。切削加工の過程で膨張弁側コネクタ186に形成される開口穴は、密栓187によって塞がれている。
 ボルト孔186hは、膨張弁側コネクタ186を外管181および内管182に機械的に固定するために用いられる。具体的には、膨張弁側コネクタ186と押さえ板188とで外管181のバルジ加工部181aを挟み込み、膨張弁側コネクタ186と押さえ板188とをボルト189で締結することによって、膨張弁側コネクタ186が外管181および内管182に機械的に固定される。
 なお、図4においてボルト189が膨張弁側コネクタ186より飛び出ているのは、このボルト189によって膨張弁側コネクタ186と膨張弁14との固定も行うためである。膨張弁側コネクタ186と膨張弁14との固定を行う前の状態では、図28に示すように、皿ねじ1890により押さえ板188は膨張弁側コネクタ186に止められている。
 次に、上記構成における作動を説明する。圧縮機12が駆動されると、圧縮機12は蒸発器15側から低圧のガス冷媒を吸入して圧縮した後、高温の高圧のガス冷媒として凝縮器13側に吐出する。高圧冷媒は、凝縮器13において冷却されて凝縮液化される。ここでの冷媒は、ほぼ液相状態である。凝縮液化された冷媒は、高圧冷媒配管16(内外間流路18a)を流通して、膨張弁14で減圧膨張され、蒸発器15で蒸発される。ここでの冷媒は、過熱度0~3℃のほぼ飽和ガス状態である。蒸発器15では、冷媒の蒸発に伴って空気が冷却される。そして、蒸発器15で蒸発した飽和ガス冷媒は、低温の低圧冷媒として低圧冷媒配管17(内側流路18b)を流通して、圧縮機12に戻る。
 このとき、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とでは温度差があるため、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とが内部熱交換器18で熱交換され、高圧冷媒が冷却され低圧冷媒が加熱されることになる。
 すなわち、凝縮器13から流出した液相冷媒は、内部熱交換器18で過冷却されて低温化が促進される。蒸発器15から流出した飽和ガス冷媒は、内部熱交換器18で加熱されて過熱度を持ったガス冷媒となる。これにより、冷凍サイクル装置11の性能が向上する。
 なお、蒸発器15から圧縮機12に向かう低圧冷媒は低温であるため、低圧冷媒配管17の表面での結露が問題となるが、本例の内部熱交換器18では、内管182は外管181によって覆われている。そして、外管181は内外間流路18aを流れる高圧冷媒によって高温となっているので、外管181の外表面で結露が生じることもない。
 内部熱交換器18の内外間流路18aから流出した高圧冷媒は、膨張弁側コネクタ186の高圧連通空間186kおよび高圧冷媒流路186gを通じて膨張弁14の高圧冷媒入口14aに流入する。内外間流路18aと高圧連通空間186kからの冷媒洩れは、外管側Oリング191によって防止される。高圧冷媒流路186gと膨張弁14の高圧冷媒入口14aとの間からの冷媒洩れは、高圧側Oリング193によって防止される。
 膨張弁14の低圧冷媒出口14bから流出した低圧冷媒は、膨張弁側コネクタ186の低圧冷媒流路186fを通じて内部熱交換器18の内側流路18bに流入する。膨張弁14の低圧冷媒出口14bと低圧冷媒流路186fとの間からの冷媒洩れは、低圧側Oリング194によって防止される。低圧冷媒流路186fと高圧連通空間186kとの間の冷媒洩れは、内管側Oリング192によって防止される。
 本実施形態によると、内外間流路18aと膨張弁14の高圧冷媒入口14aとを、膨張弁側コネクタ186の高圧連通空間186k及び高圧冷媒流路186gによって連通させる。そのため、内外間流路18aと膨張弁14の高圧冷媒入口14aとを連通させるための冷媒配管が不要である。内外間流路18aと膨張弁14の高圧冷媒入口14aとを連通させるための冷媒配管を、以下では膨張弁側リキッド配管と言う。
 膨張弁側リキッド配管が不要であるため、内部熱交換器18全体の体格を小型化できる。膨張弁側リキッド配管を配置するための空間も不要となるので、内部熱交換器18を搭載するために車両側に必要となるスペースを小さくできて設計上の制約を小さくできる。また、内部熱交換器18を多数同時に運搬する際の荷姿が良くなって運搬効率を改善できる。
 膨張弁側リキッド配管は、内部熱交換器18の運搬時に曲がって破損する恐れがあるが、膨張弁側コネクタ186は、内部熱交換器18の運搬時に曲がるおそれがない。そのため、運搬の際の内部熱交換器18の破損を低減できる。かつ、膨張弁側リキッド配管がない分、内部熱交換器18のうち内部熱交換が行われる部分の長さを長くできるので、サイクル効率の向上効果を大きくできる。
 本実施形態では、膨張弁側コネクタ186は、外管181の端部1810および内管182の端部1820と膨張弁14との間に介在していて、高圧連通空間186kと高圧冷媒流路186gを形成している。そして、高圧連通空間186kおよび高圧冷媒流路186gは、内外間流路18aと膨張弁14の冷媒流路とを連通させている。
 1つの膨張弁側コネクタ186を膨張弁14に接続することによって、高圧冷媒流路および低圧冷媒流路の2つの流路の接続が完了するので、内部熱交換器18の膨張弁14への取り付け作業を容易化できる。膨張弁側コネクタ186は、内部熱交換器18と機械的に固定される。膨張弁側コネクタ186と内部熱交換器18との間からの高圧冷媒の洩れは、外管側Oリング191によって防止される。そのため、膨張弁側リキッド配管をろう付けして冷媒洩れを防止する場合と比較して、安定した製造品質を確保しやすくなる。
 本実施形態では、外管181の先端1811と被外管挿入部186eの最奥部との間に高圧連通空間186kが形成されているので、外管181の先端1811と被外管挿入部186eの最奥部に当接することがない。従って、バルジ加工部181aを膨張弁側コネクタ186の端面1865に確実に当接させることができる。
 本実施形態では、シール部材(外管側Oリング191)は、内外間流路18aと高圧連通空間186k及び高圧冷媒流路186gとの間からの冷媒の洩れを防止する。そして、外管181と膨張弁側コネクタ186とが機械的に固定されている。これによると、外管181および内管182から冷媒配管を分岐させることなく、内外間流路18aと膨張弁14の冷媒流路とを連通させることができる。そのため、外管181および内管182から分岐する冷媒配管を削減できる。
 本実施形態では、外管181と膨張弁側コネクタ186とがボルト189によって機械的に固定されている。これにより、簡素な構成にて、外管181と膨張弁側コネクタ186とを機械的に固定できる。
 本実施形態では、膨張弁側コネクタ186は、オス状の高圧側ジョイント186aおよび低圧側ジョイント186bを有している。オス状の高圧側ジョイント186aおよび低圧側ジョイント186bは、膨張弁14の図示しないメス状のジョイント部に挿入される。これにより、メス状の膨張弁14に膨張弁側コネクタ186を接続させることができる。
 本実施形態では、膨張弁側コネクタ186は、高圧冷媒流路186gのうち膨張弁14側の端部が、外管181および内管182の延長方向と平行な方向に開口するように形成されている。これにより、膨張弁14が外管181および内管182の延長方向側に配置されている場合に、膨張弁側コネクタ186を膨張弁14に良好に接続させることができる。
 (第2実施形態)
 上記第1実施形態では、膨張弁側コネクタ186が外管181および内管182にボルト189を利用して固定されているが、本実施形態では、図5に示すように、膨張弁側コネクタ186が外管181および内管182にカシメ固定されている。膨張弁側コネクタ186のうち外管181のバルジ加工部181aの周囲には、カシメ固定部186iが形成されている。カシメ固定部186iは、外管181のバルジ加工部181aを巻き込むようにカシメ加工されている。
 本実施形態においても、膨張弁側コネクタ186が外管181および内管182に機械的に固定されているので、上記第1実施形態と同様の作用効果を奏することができる。本実施形態では、外管181と膨張弁側コネクタ186とが機械的にカシメ固定されている。これにより、外管181と膨張弁側コネクタ186とを確実に機械的に固定できる。
 なお、図5では、膨張弁側コネクタ186にカシメ固定部186iを形成したが、図4のように押さえ板188を用いる場合には、押さえ板188にカシメ固定部を形成してもよい。
 (第3実施形態)
 上記第1実施形態では膨張弁側コネクタ186が外管181および内管182にボルト189を利用して固定されており、上記第2実施形態では膨張弁側コネクタ186が外管181および内管182にカシメ固定されているが、本実施形態では、図6に示すように、膨張弁側コネクタ186が外管181および内管182に、樹脂部材30の弾性力を利用して固定されている。
 樹脂部材30は、弾性を有する樹脂にて円筒状に形成されている。樹脂部材30には、外管側爪部30aとコネクタ側爪部30bとが形成されている。外管側爪部30aは、樹脂部材30の内筒面に周状に形成されている。コネクタ側爪部30bは、樹脂部材30の外筒面に周状に形成されている。
 外管181の外周面には、外管側係合部181cが形成されている。外管側係合部181cは、外管側爪部30aが外管181および内管182の軸方向(図6の左右方向)に係合するように窪んだ形状を有している。膨張弁側コネクタ186の被外管挿入部186eの内周面には、コネクタ側係合部186lが形成されている。コネクタ側係合部186lは、コネクタ側爪部30bが外管181および内管182の軸方向(図6の左右方向)に係合するように窪んだ形状を有している。
 コネクタ側爪部30bの外径は、コネクタ側係合部186lの内径よりも若干大きくなっている。そのため、コネクタ側爪部30bがコネクタ側係合部186lに係合すると、樹脂部材30が径を縮小するように弾性変形し、コネクタ側係合部186lを押圧する付勢力が発生する。したがって、膨張弁側コネクタ186が外管181および内管182に、樹脂部材30の弾性力を利用して固定されるので、膨張弁側コネクタ186が外管181および内管182に機械的に固定される。
 本実施形態では、まず、樹脂部材30の外管側爪部30aを外管側係合部181cに係合させて、外管181の端部1810に樹脂部材30を装着する。その状態で、二重管を膨張弁側コネクタ186に挿入する。その際、まず内管182の先端1821が膨張弁側コネクタ186の被内管挿入部1860に接して軸合わせが行われる。次いで、外管181の先端1811が被外管挿入部186eと接して外管181の軸合わせが行われる。その後、樹脂部材30のコネクタ側爪部30bが膨張弁側コネクタ186のコネクタ側係合部186lに係合する。
 本実施形態では、二重管に樹脂部材30を取り付けた状態で、二重管を膨張弁側コネクタ186に対して軸方向に押し付けるのみで、機械的組付けを完了させることができる。第1実施形態のようにボルト189を締め付けたり、第2実施形態のようにカシメ固定部186iをカシメ加工したりする必要がない。そのため、特に狭い空間での機械的組付けに有効である。
 (第4実施形態)
 上記実施形態では、高圧側ジョイント186aおよび低圧側ジョイント186bは、外管181および内管182の延長方向と平行な方向に突出しているが、本実施形態では、図7および図8に示すように、高圧側ジョイント186aおよび低圧側ジョイント186bは、外管181および内管182の延長方向と直交する方向に突出している。これにより、レイアウト上の制約により膨張弁14を外管181および内管182の延長方向側に配置できない場合であっても、膨張弁側コネクタ186によって内部熱交換器18と膨張弁14とを接続できる。
 本実施形態では、膨張弁側コネクタ186は、高圧冷媒流路186g及び低圧冷媒流路186fのうち膨張弁14側の端部が、外管181および内管182の延長方向と直交する方向に開口するように形成されている。そのため、膨張弁14が外管181および内管182の延長方向と直交する方向側に配置されている場合の接続が良好となる。
 本実施形態では、外管181の先端1811と被外管挿入部186eの最奥部との間に高圧連通空間186kが形成され、内管182の先端1821と被内管挿入部1860の最奥部との間に低圧冷媒流路186fが形成されている。そのため、外管181の先端1811および内管182の先端1821は共にフリーであり膨張弁側コネクタ186の部材に干渉することがない。その結果、外管181のバルジ加工部181aを確実に端面1865に当接させることができる。
 特に二重管に曲げ部1801を形成する結果、内管182の先端1821と外管181の先端1811とが軸方向にずれる恐れもある。そのような場合であっても、本実施形態では、外管181の先端1811および内管182の先端1821は共にフリーであるため、この軸方向のずれを吸収することが可能である。
 (第5実施形態)
 上記実施形態では、外管181および内管182のうち膨張弁14とは反対側の端部をリキッド配管184、サクション配管185およびジョイント184a、185aによって凝縮器13および圧縮機12に接続する構造になっていた。それに対し、本実施形態では、図9および図10に示すように、外管181および内管182のうち膨張弁14とは反対側の端部を反膨張弁側コネクタ31によって凝縮器13および圧縮機12に接続する構造になっている。
 本実施形態では、外管181および内管182の両端を膨張弁側コネクタ186、反膨張弁側コネクタ31によって接続する構造になっている。
 反膨張弁側コネクタ31の基本構造は、膨張弁側コネクタ186と同様である。したがって、以下では、反膨張弁側コネクタ31の基本構造については詳細説明を省略する。図9に示すように、反膨張弁側コネクタ31には、高圧側サービスバルブ32、低圧側サービスバルブ33および圧力スイッチ34が取り付けられている。そのため、高圧側サービスバルブ32等を冷媒配管に取り付けるための取付具が不要となって、部品転する低減によるコストダウンが図れる。なお、後述するように、圧力スイッチに代えて圧力センサを用いてもよい。圧力センサは、冷媒圧力を検出するセンサである。
 ただ、高圧側サービスバルブ32、低圧側サービスバルブ33および圧力スイッチ34は、必ずしも反膨張弁側コネクタ31に全て取り付けられている必要はなく、一部を反膨張弁側コネクタ31の周辺に設けてもよい。取付位置等の制約によっては、高圧側サービスバルブ32等の全てを反膨張弁側コネクタ31の周辺に設けられるようにしてもよい。
 例えば、図示の実施形態では、高圧側サービスバルブ32が上方に向けて配置され、低圧側サービスバルブ33は側方に向けて配置されているが、高圧側サービスバルブ32及び低圧側サービスバルブ33を共に上方に向けて配置したいニーズもある。そのような際には、低圧側サービスバルブ33を反膨張弁側コネクタ31と離れた位置に上方に向けて配置するのが望ましい。
 高圧側サービスバルブ32および低圧側サービスバルブ33は、冷媒の補充填を行う際に使用されるバルブである。圧力スイッチ34は、冷媒圧力が所定値よりも高いか低いかによってオンとオフが切り替わるスイッチである。反膨張弁側コネクタ31には、硬質の高圧側配管部材35が高圧側ジョイント板36および図示しないボルトを用いて固定される。硬質の高圧側配管部材35は、例えば、アルミニウム等の金属や硬質樹脂等の硬質材料で形成された管状部材である。反膨張弁側コネクタ31には、軟質のホース部材の端部における金属製の低圧側配管部材37が低圧側ジョイント板38および図示しないボルトを用いて固定される。軟質のホース部材は、例えば、ゴムや軟質樹脂等の軟質材料で形成された管状部材である。
 図10に示すように、反膨張弁側コネクタ31には、高圧側サービスバルブ取付部31a、低圧側サービスバルブ取付部31bおよび圧力スイッチ取付部31cが形成されている。高圧側サービスバルブ取付部31aには、高圧側サービスバルブ32が取り付けられる。高圧側サービスバルブ取付部31aは、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。低圧側サービスバルブ取付部31bには、低圧側サービスバルブ33が取り付けられる。低圧側サービスバルブ取付部31bは、反膨張弁側コネクタ31の低圧冷媒流路312と連通している。圧力スイッチ取付部31cには、圧力スイッチ34が取り付けられる。圧力スイッチ取付部31cは、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。
 圧力センサを取り付ける場合、圧力センサの大きさ及び形状は圧力スイッチ34とほぼ同等であるので、圧力センサ取付部の形状は圧力スイッチ取付部31cとほぼ同様となる。
 圧力センサ取付部は、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。上述のように、圧力スイッチ34や圧力センサの取付部を反膨張弁側コネクタ31以外に設けることは可能である。例えば、圧力センサを凝縮器13に設けるようにしてもよい。
 高圧側サービスバルブ32は、弾性シール材39(例えばOリング)を介して気密かつ液密に反膨張弁側コネクタ31に取り付けられる。低圧側サービスバルブ33、圧力スイッチ34および圧力センサも同様に、図示しない弾性シール材を介して気密かつ液密に反膨張弁側コネクタ31に取り付けられる。
 反膨張弁側コネクタ31も、被外管挿入部3111に外管181の端部1810が挿入され、外管181のバルジ加工部181aが端面3112に当接している。そして、外管181の先端1811と被外管挿入部3111の最奥部との間に、高圧冷媒流路311と連通する高圧連通空間3110が形成されている。
 また、反膨張弁側コネクタ31にも被内管挿入部3113が形成され、内管182の端部1820がこの被内管挿入部3113に挿入される。そして、この被内管挿入部3113で内管側Oリング192が保持される。また、この被内管挿入部3113の最奥部と内管182の先端1821との間には隙間1821aが形成されている。
 反膨張弁側コネクタ31には、高圧側ジョイント部313および低圧側ジョイント部314が形成されている。高圧側ジョイント部313は、硬質の高圧側配管部材35が挿入されるメス型のジョイントである。低圧側ジョイント部314は、低圧側配管部材37が挿入されるメス型のジョイントである。高圧側ジョイント部313および低圧側ジョイント部314は、メス形状部である。
 なお、図10では、押さえ板390を外管181のバルジ加工部181aに押し付けて、図示しないボルトを用いて、内部熱交換器18を固定している。
 本実施形態では、反膨張弁側コネクタ31は、高圧側サービスバルブ取付部31a、低圧側サービスバルブ取付部31bおよび圧力スイッチ取付部31cを有している。これにより、高圧側サービスバルブ32、低圧側サービスバルブ33、圧力スイッチ34を取り付けるための専用の部材を別個に設ける場合と比較して、部品点数を削減して構成を簡素化できる。
 本実施形態では、反膨張弁側コネクタ31は、オス状の高圧側配管部材35が挿入されるメス状の高圧側ジョイント部313を有している。反膨張弁側コネクタ31は、オス状の低圧側配管部材37が挿入されるメス状の低圧側ジョイント部314部を有している。これにより、オス状の高圧側配管部材35および低圧側配管部材37を反膨張弁側コネクタ31に接続できる。
 本実施形態では、反膨張弁側コネクタ31の被外管挿入部3111の最奥部と外管181の先端1811との間に高圧連通空間3110が形成されている。かつ、反膨張弁側コネクタ31の被内管挿入部3113の最奥部と内管182の先端1821との間に隙間1821aが形成されている。そのため、外管181のバルジ加工部181aを端面3112に確実に当接させることができる。すなわち、挿入時に外管181の先端1811や内管182の先端1821が反膨張弁側コネクタ31の部位に干渉することがない。
 (第6実施形態)
 上記実施形態では、膨張弁側コネクタ186に膨張弁14が接続されるが、本実施形態では、図11に示すように、膨張弁側コネクタ186に膨張弁14が一体化されている。具体的には、膨張弁側コネクタ186に、弁体部141およびエレメント部142が配置されており、膨張弁側コネクタ186の内部に、低圧冷媒通路143、絞り通路144および弁室145が形成されている。
 図11は外管181と内管182が接した部位を示しているが、上述の実施形態と同様、外管181と内管182の間に内外間流路18aが形成されている。そして、この内外間流路18aが高圧連通空間186kに連通し、高圧液冷媒は、高圧冷媒流路186gから弁室145に流入する。
 低圧冷媒通路143は、低圧冷媒の温度および圧力を検知するための冷媒通路であり、蒸発器15から流出した低圧冷媒を流通させる。絞り通路144は、冷媒通路の通路断面積を縮小させることによって、凝縮器13から流出した高圧冷媒を低圧冷媒となるまで減圧させるオリフィスとして機能する冷媒通路である。弁室145は、絞り通路144の冷媒流れ上流側に配置されて、弁体部141を収容する空間である。弁室145は、高圧冷媒流路186gと連通している。
 弁体部141は球体弁である。弁体部141が変位することによって、絞り通路144の通路断面積が変化する。弁室145の内部にはコイルバネ146が収容されている。コイルバネ146は、弁体部141に対して、絞り通路144の通路断面積を縮小させる側の荷重をかける弾性部材である。
 膨張弁側コネクタ186の外表面には、蒸発器側出口14cおよび低圧側入口14dが開口している。蒸発器側出口14cは、絞り通路144で減圧された低圧冷媒を流出させる。低圧側入口14dは、蒸発器15から流出した低圧冷媒を低圧冷媒通路143へ流入させる。
 蒸発器側出口14cおよび低圧側入口14dは、メス型のジョイントである。蒸発器側出口14cおよび低圧側入口14dには、冷媒配管等、蒸発器15側の図示しない接続対象部材が挿入されている。蒸発器側出口14cおよび低圧側入口14dは、膨張弁側コネクタ186の同一面(図11の右側の面)に開口している。
 エレメント部142は、弁体部141を変位させるための駆動力を出力する。エレメント部142は、ダイヤフラム147を有している。ダイヤフラム147は、薄板状の金属で形成されており、低圧冷媒通路143を流通する低圧冷媒の温度および圧力に応じて変形する。ダイヤフラムには作動棒148が連結されている。作動棒148は、ダイヤフラムの変形による変位を弁体部141へ伝達して、弁体部141を変位させる。
 次に、上記構成における作動を説明する。内部熱交換器18の内外間流路18aから流出した高圧冷媒は、膨張弁側コネクタ186の高圧冷媒流路186gを通じて弁室145に流入する。弁室145に流入した冷媒は、絞り通路144で減圧された後、蒸発器側出口14cから蒸発器15へと流出する。
 蒸発器15で蒸発された冷媒は、低圧側入口14dを通じて低圧冷媒通路143に流入する。低圧冷媒通路143を流通する低圧冷媒の温度および圧力に応じてダイヤフラム147が変形し、ダイヤフラム147の変形による変位を作動棒148が弁体部141へ伝達して、弁体部141を変位させる。これにより、蒸発器15に流入する冷媒量が調整され、蒸発器15から流出する冷媒の過熱量が一定になる。低圧冷媒通路143を流通した冷媒は、内部熱交換器18の内側流路18bに流入する。
 本実施形態によると、膨張弁側コネクタ186に膨張弁が一体化されているので、部品点数を削減でき、車体への冷凍サイクル装置11の組付作業工数を低減できる。
 本実施形態では、膨張弁側コネクタ186の内部に、低圧冷媒通路143と絞り通路144とが形成されている。低圧冷媒通路143は、内側流路18bと連通する。絞り通路144は、内外間流路18aと連通して高圧側の冷媒を減圧膨張させる。膨張弁側コネクタ186に、弁体部141とエレメント部142とが配置されている。弁体部141は、絞り通路144の通路断面積を変化させる。エレメント部142は、弁体部141を変位させるための駆動力を出力する。これにより、膨張弁側コネクタ186に膨張弁14を一体化させることができるので、冷凍サイクル装置11の部品点数を削減できる。
 本実施形態でも、上述の第4実施形態や第5実施形態と同様、膨張弁側コネクタ186の被外管挿入部186eの最奥部と外管181の先端1811と内管182の端部1820外周との間に高圧連通空間186kが形成されている。かつ、膨張弁側コネクタ186の被内管挿入部1860の最奥部と内管182の先端1821との間に隙間1821aが形成されている。
 そのため、挿入時に外管181の先端1811や内管182の先端1821が膨張弁側コネクタ186と干渉することがなく、外管181のバルジ加工部181aを端面1865に確実に当接させることができる。特に、内管182の先端1821と外管181の先端1811とが軸方向にずれた場合においても、確実な組付けが可能となっている。
 図11では、押さえ板188をバルジ加工部181aに押し付け、バルジ加工部181aを押さえ板188と膨張弁側コネクタ186の端面1865によって挟持している。そして、その状態で、ボルト189を用いて内部熱交換器18と膨張弁側コネクタ186とを組付けている。ただ、図6に示す第3実施形態のように、樹脂部材30を用いて組付けを行ってもよい。特に、図1に示すように、膨張弁14は、ケーシング21に蒸発器15と共に取り付けられている。
 上述の通り、内部熱交換器18は自動車のエンジンルームに配置され、ケーシング21は車室に配置されている。そして、膨張弁14は、エンジンルームと車室を区切るファイヤーウォールよりエンジンルーム側に露出している。そのため、膨張弁14の露出する部分は作業スペースが制限されている。
 上述のように、樹脂部材30を用いた場合には、内部熱交換器18を軸方向に押し付けるのみで内部熱交換器18を膨張弁側コネクタ186に取り付けることが可能である。従って、膨張弁側コネクタ186に膨張弁14を一体化する例では、樹脂部材30を用いるのが望ましい。
 (第7実施形態)
 上述の実施形態では、端部1820を除き、内管182のほぼ全長に亘って螺旋溝1822を形成していた。螺旋溝1822により内外間流路18aを螺旋状に形成することができ、熱交換効率を高める事ができていた。
 一方で、内部熱交換器18の一端に膨張弁側コネクタ186を配置し、反対側にも反膨張弁側コネクタ31を配置した場合には、膨張弁側コネクタ186と反膨張弁側コネクタ31との間が全て内部熱交換器18となる。そのため、内部熱交換器18の熱交換量は、膨張弁側コネクタ186、反膨張弁側コネクタ31間の距離によって一義的に定まることとなる。
 ただ、熱交換量はシステムとしての最適化を図る必要がある。内部熱交換器18の熱交換量が大きくなると、圧縮機12に流入する冷媒温度が上がる傾向がある。その結果、システムとして最適化が図れない恐れもある。
 例えば、蒸発器15から圧縮機12に向かう低温の吸入冷媒を用いて他の機器を冷却する場合は、吸入冷媒の温度が上がりすぎる事態は望ましくない。他の機器としては、例えば電気自動車やハイブリッド車の電動コンプレッサのインバーターなどがある。
 そこで、内部熱交換器18に求められる熱交換量と内部熱交換器18の長さとの整合性をとるため、図14に示すように、内部熱交換器18の一部に螺旋溝1822を形成し、他の部位では螺旋溝1822を形成しないようにしても良い。特に、内部熱交換器18の熱交換量を少なくする必要がある場合には、螺旋溝1822を形成する部位は短くする。図14では、1802で指示する部位に螺旋溝1822を形成し、残りの部分には螺旋溝1822は形成していない。
 また、螺旋溝1822は、上述のように、内管182と外管181との同芯構造としての機能もある。この同芯構造が要求される部位としては、膨張弁側コネクタ186及び反膨張弁側コネクタ31と組付けられる端部1820、1810の他に、曲げ部1801もある。そのため、図14の例では、端部1820、1810と曲げ部1801に螺旋溝1822を形成している。
 なお、図12の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管のように外管181に内方に向かうリブ1815を突出形成した例や、(h)のように内管182から外方に向かうリブ1815を突出形成した例では、部分的にリブ1815を切削することで熱交換効率を調整することができる。
 また、熱交換効率の調整は、螺旋溝1822やリブ1815の形成の有無で行うのに代え、また、螺旋溝1822等に加えて、断熱材を部分的にコーティングすることでも可能である。
 (第8実施形態)
 上述の実施形態では、内管182及び外管181にそれぞれOリングを保持する内管側Oリング溝182a及び外管側Oリング溝181bを設けたが、内管182及び外管181の端部1820及び1810をストレートな円筒状としてもよい。図15に示すように、外管側Oリング191はバルジ加工部181aと膨張弁側コネクタ186の被外管挿入部186eとの間で挟持する。内管182にも同様に鍔部(バルジ加工部)1825を形成し、このバルジ加工部1825と膨張弁側コネクタ186の内管Oリング保持部1861との間で内管側Oリング192を挟持する。
 この実施形態でも、外管側Oリング191、内管側Oリング192の異常噛み込みが生じないよう、膨張弁側コネクタ186の端面1865から被外管挿入部186eの始点(図15の左端)までの距離及び端面1865から被内管挿入部1860の始点(図15の左端)までの距離と、外管181の先端1811と内管182の先端1821までの距離が設定されている。
 図15に示すように、内部熱交換器18を膨張弁側コネクタ186に挿入する際、内管182の先端1821が最初に膨張弁側コネクタ186の被内管挿入部1860と接する。内管182の先端1821及び膨張弁側コネクタ186の被内管挿入部1860には共にテーパが形成されているので、このテーパにガイドされて内管182は被内管挿入部1860内にスムーズに挿入される。
 次いで、外管181の先端1811が膨張弁側コネクタ186の被外管挿入部186eと接する。この外管181の先端1821及び膨張弁側コネクタ186の被外管挿入部186eにもテーパが形成されているので、テーパにガイドされて外管181も被外管挿入部186eにスムーズに挿入される。
 その状態から更に挿入を進めると、内管側Oリング192が膨張弁側コネクタ186の内管Oリング保持部1861に接する。内管Oリング保持部1861は膨張弁側コネクタ186の被内管挿入部1860の一部であり、被外管挿入部186e側(図15の右側)形成されている。内管Oリング保持部1861の内径は、内管182のバルジ加工部1825の外径より大きく形成されている。この内管Oリング保持部1861にもテーパが形成されているので、内管側Oリング192はテーパに沿って内管Oリング保持部1861内に圧縮変形しながら挿入される。
 更に挿入を進めると、外管側Oリング191が膨張弁側コネクタ186の外管Oリング保持部1862と接する。この外管Oリング保持部1862も、被外管挿入部186eの一部である。被外管挿入部186eのうち、膨張弁側コネクタ186の端面1865側に形成されている。
 そして、上述の内管Oリング保持部1861と同様に、外管Oリング保持部1862にもテーパが形成されているので、外管側Oリング191もテーパに沿って圧縮変形しながら挿入される。外管Oリング保持部1862の内径は、外管181のバルジ加工部181aの外径より小さい。更に挿入を進めると、最後に外管181のバルジ加工部181aが膨張弁側コネクタ186の端面1865に当接する。 そして、以上の挿入がスムーズに行われるために、図13で説明した縮管が内管182と外管181の端部1820、1810でされている。縮管によって、内管182と外管181の軸芯が揃うように成型されている。
 挿入が完了した状態が、図16の状態であり、内管側Oリング192は内管182の端部1820の外周面、バルジ加工部1825及び内管Oリング保持部1861の内周面によって保持される。外管側Oリング191は端部1810の外周面、バルジ加工部181a及び外管Oリング保持部1862の内周面によって保持される。
 本実施形態では、内管の先端1821、内管側Oリング192、外管の先端1811、及び外管側Oリング191と、膨張弁側コネクタ186の被内管挿入部1860及び被外管挿入部186eとの位置関係を、以下の構成としている。内管182及び外管181が膨張弁側コネクタ186に挿入される際に、最初に内管先端1821が被内管挿入部1860に接し、次いで外管181の先端1811が被外管挿入部186eに接する。その後、内管側Oリング192が被内管挿入部1860に接し、次いで外管側Oリング191が被外管挿入部186eと接する。そして、最後にバルジ加工部181aが膨張弁側コネクタ186の端面1865に当接する構造としている。
 その結果、膨張弁側コネクタ186と内管182との間で最初に軸合わせが行われる。その状態で、膨張弁側コネクタ186と外管181との間で軸合わせが行われる。そのため、内管と外管との軸芯が微小量ずれていてもスムーズな結合が可能となる。
 かつ、内管側Oリング192及び外管側Oリング191は、既に、内管182及び外管181が軸合わせされた状態で挿入されるので、噛み込みの恐れが大きく低減する。特に、内管側Oリング192が挿入された後で、外管側Oリング191が挿入されるので、二つのOリングが同時に変形を開始することが無くなり、組付けがスムーズになる。
 この内管182、内管側Oリング192、外管181、及び外管側Oリング191と、膨張弁側コネクタ186との位置関係を、組付けられた状態で説明すると、次のようになる。
 被内管挿入部1860のうち内管182と接する部位の始点、即ち、被内管挿入部1860のうち内管Oリング保持部1861との境界部を、符号1860aで示す。そして、被外管挿入部186eのうち外管181と接する部位の始点、即ち、被外管挿入部186eのうち外管Oリング保持部1862との境界部を、符号186eaで示す。そして、被内管挿入部1860の始点1860aと、被外管挿入部186eの始点186eaとの距離をYとする。
 この距離Yより、内管182の先端1821と外管181の先端1811との距離Xの方が長くしている。これにより、上述したように、内管182の先端1821の方が、外管181の先端1821より先に、被内管挿入部1860に挿入されることとなる。
 また、被内管挿入部1860のうち内管Oリング保持部1861の距離をX1とする。そして、被外管挿入部186eのうち外管Oリング保持部1862の距離をY1とする。
 組付けられた状態では、距離X1の方が、距離Y1より長い構造となっている。即ち、内管Oリング保持部1861の方が外管Oリング保持部1862より長くなる。これにより、上述の通り、内管側Oリング192の方が、外管側Oリング191より先に内管Oリング保持部1861に先に接する構造となる。
 また、組付けられた状態で、内管182の先端1821とバルジ加工部1825の内管側Oリング192側の面1825a(図15で右側の面)との距離をX2とする。この距離X2は、被内管挿入部1860のうち内管182と接する部位の始点1860aまでの距離X1と内管側Oリング192の径との和より長い。なお、被内管挿入部1860のうち内管182と接する部位の始点1860aまでの距離X1は、被内管挿入部1860のうち内管Oリング保持部1861の長さX1でもある。
 これにより、内管側Oリング192は、内管182の先端1821が被内管挿入部1860に挿入されてから、内管Oリング保持部1861に挿入されることとなる。
 外管181も、その先端1811とバルジ加工部181aの外管側Oリング191側の面181aa(図15で右側の面)との距離Y2の方が、被外管挿入部186eのうち外管181と接する部位の始点186eaまでの距離Y1と外管側Oリング191の径との和より長い。この被外管挿入部186eのうち外管181と接する部位の始点186eaまでの距離Y1も、被外管挿入部186eのうち外管Oリング保持部1862の距離Y1である。
 外管181も、外管側Oリング191より先に先端1811が被外管挿入部186eに挿入される。そのため、外管側Oリング191の噛み込みが良好に防止できる。
 本実施形態も上述の第4実施形態と同じく、外管181の先端1811と被外管挿入部186eの最奥部との間に高圧連通空間186kが形成され、内管182の先端1821と被内管挿入部1860の最奥部との間に低圧冷媒流路186fが形成されている。そのため、外管181の先端1811および内管182の先端1821は共にフリーであり膨張弁側コネクタ186の他の部位に干渉することがなく、外管181のバルジ加工部181aを確実に端面1865に当接させることができる。内管182の先端1821と外管181の先端1811との間で位置ずれが生じた際にも、良好な組付けがなされる。
 なお、図15、図16の実施形態では図8の例のように、膨張弁側コネクタ186の高圧冷媒流路186gの出口方向及び低圧冷媒流路186fの入り口は内部熱交換器18に対して軸線が直交している。ただ、図4の実施形態のように、膨張弁側コネクタ186の高圧冷媒流路186gの出口方向及び低圧冷媒流路186fの入り口の軸線と、内部熱交換器18の軸線が同じ方向としてもよいのは勿論である。膨張弁側コネクタ186の形状を変更することで、配置位置に自由度を持たすことができるのは、上述の例と同様である。図17は、高圧冷媒流路186gの出口方向及び低圧冷媒流路186fの入り口の軸線と、内部熱交換器18の軸線とを同じ方向とした例である。
 図17の実施形態も、内管182の先端1821と被内管挿入部1860の最奥部(図17の右側)との間に隙間1821aが形成されているため、外管181のバルジ加工部181aを確実に端面1865に当接させることができている。
 なお、図17の実施形態では、図15、図16の螺旋溝1822に代えてリブ1815を用いている。このリブ1815は、図12の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管のように外管181から内方に向けて一体的に突出形成されている。そのため、外管181の端部1810ではリブ1815を切削して削除し、その状態でバルジ加工部181aを形成している。
 (第9実施形態)
 上述の実施形態では、膨張弁側コネクタ186の内部に高圧冷媒流路186gを形成して、高圧側ジョイント186aと内外間流路18aとを連通していたが、図18に示すように、内管側Oリング192と外管側Oリング191によってシールされる高圧連通空間186kに高圧側ジョイント186aが直接対向するようにしてもよい。
 この場合、高圧側ジョイント186aの内部が高圧冷媒流路186gとなる。そのため、膨張弁側コネクタ186の密栓187(図4)も不要となるので、成形が容易になる。
 図18の実施形態では、高圧側ジョイント186a及び低圧側ジョイント186bをオス形で形成したが、図19に示すように高圧側ジョイント186a及び低圧側ジョイント186bをメス形で形成してもよい。
 この実施形態であっても、外管181の先端1811および内管182の先端1821がフリーとなっており、バルジ加工部181aを端面1865に確実に当接させることができるのは、上述の実施形態と同様である。
 なお、図18及び図19の実施形態では、第1実施形態と同様、内管182に内管側Oリング溝182aを形成して、内管側Oリング192を保持している。そして、外管181は、第8実施形態と同様、端部1810をストレートに形成して外管側Oリング191を外周で保持している。
 ここで、ストレート形状に比して、内管側Oリング溝Oリング溝182aは形成に工程が増えるが、一方で、ストレート形状とすれば内管側Oリング192保持用のバルジ加工部1825の加工が必要となる。いずれの保持方法を採用するのかは、Oリングのシール性能や、内管182および/または外管181の軸方向公差等を考慮して、適宜設定する。
 これは、外管側Oリング溝181bを外管181に形成した例でも同様である。従って、Oリング溝181b、182aを形成するか、ストレート形状とするのかは、シール性能やコスト等を考慮して定めることとなる。
 また、図18及び図19の実施形態は、図5に示した第2実施形態と同様、膨張弁側コネクタ186のカシメ固定部186iで外管181のバルジ加工部181aを固定している。この様に、各実施形態の組合せは適宜選択可能である。
 (第10実施形態)
 以上の実施形態では、膨張弁側コネクタ186の高圧側ジョイント186a及び低圧側ジョイント186bはコネクタの一方側だけに形成したが、図20に示すように両側に形成しても良い。図20で右方向に突出している高圧側ジョイント186a及び低圧側ジョイント186bは、膨張弁14の高圧冷媒入口14a及び低圧冷媒出口14bに接続する。左側にも高圧側ジョイント186a及び低圧側ジョイント186bが形成されており、それぞれ高圧液冷媒配管205及び低圧ガス冷媒配管206に接続している。高圧液冷媒配管205の外径は8mmで、肉厚は1.0mmである。また、低圧ガス冷媒配管206の外径は12.7mmで、肉厚は1.2mmである。
 図20の高圧液冷媒配管205及び低圧ガス冷媒配管206は自動車室内後方に位置するリアクーラ用膨張弁140に接続される。リアクーラ用膨張弁140は、リアクーラ用蒸発器150に取り付けられ、リアクーラ用蒸発器150に流入する冷媒を減圧膨張させる。リアクーラ用膨張弁140及びリアクーラ用蒸発器150の作動は、上述の室内空調ユニット20の膨張弁14及び蒸発器15と同様である。
 (第11実施形態)
図20の実施形態では、高圧液冷媒配管205と低圧ガス冷媒配管206との2つの配管を示しているが、両配管205、206を二重管としてもよい。図21はリアクーラと膨張弁側コネクタ186とを繋ぐリア配管を二重管のリア側内部熱交換器208とした例である。低圧冷媒流路186fには膨張弁14の低圧冷媒出口14bからの低圧冷媒とリア側内部熱交換器208の内管182からの低圧冷媒とが流入し、低圧冷媒流路186fで2つの低圧冷媒が合流して、内管182の内側流路18bを通って圧縮機12に吸入される。
 膨張弁側コネクタ186の高圧冷媒流路186gは分岐部1867で分岐し、一方は高圧側ジョイント186aから膨張弁14の高圧冷媒入口14aに流入する。分岐した他方は、リア側高圧冷媒流路1868からリア側内部熱交換器208の内外間流路18aに流入する。なお、リア側内部熱交換器208の外管181及び内管182と膨張弁側コネクタ186との接続は既述の実施形態と同様である。そして、リア側内部熱交換器208の内管182の外径は12,7mmであり、外管181の外径は15.9mmである。肉厚はそれぞれ1.2mmである。
 (第12実施形態)
 上述の実施形態では、二重管の軸線を高圧側ジョイント186a及び低圧側ジョイント186bの延長方向に合わせるか、直交させるかとしてきた。ただ、二重管の軸線と高圧側ジョイント186a及び低圧側ジョイント186bの延長方向との角度は、自由に設定可能である。
 図22及び図23は、高圧側ジョイント186a及び低圧側ジョイント186bの延長方向と二重管の軸線との角度を鈍角とした例である。この角度は、二重管の組付け方向に合わせて適宜設定することができ、勿論鋭角としてもよい。
 (第13実施形態)
 上述したように、図9及び図10の第5実施形態から圧力スイッチ34等を削除してもよい。図24に圧力スイッチ34等を削除した反膨張弁側コネクタ31を示す。凝縮器13からの高圧液冷媒が流れる高圧側配管部材35は、反膨張弁側コネクタ31の高圧側ジョイント部313に挿入され、高圧側ジョイント板36及び図示しないボルトを用いて固定される。
 圧縮機12の吸入口に向かう低圧ガス冷媒が流れる低圧側配管部材37は、反膨張弁側コネクタ31の低圧側ジョイント部314に挿入され、低圧側ジョイント板38及びボルト381により固定される。この実施形態で、高圧側ジョイント部313及び低圧側ジョイント部314はメス部材である。
 反膨張弁側コネクタ31の被内管挿入部3113に内管182の先端1821が挿入され、被外管挿入部3111に外管181の先端1811が挿入される。挿入された状態では、バルジ加工部181aが端面3112に当接し、押さえ板390とボルト391によって固定される。
 外管181の先端1811は高圧連通空間3110に開口しており、挿入時に干渉されることはない。また、内管182の先端1821は低圧側配管部材37の内側に入り込んで、この先端1821も干渉されることはない。
 高圧連通空間3110は、外管側Oリング191と内管側Oリング192によってシールされている。そして、高圧連通空間3110は内外間流路18aと連通する。そのため、本実施形態では、高圧連通空間3110が高圧冷媒流路をなしている。
 内管182は低圧側配管部材37の内側に入り込み、内側流路18bは内管側Oリング192と低圧側配管部材37のOリング370によってシールされている。そのため、本実施形態では、低圧側冷媒流路は内管182の端部1820が相当する。反膨張弁側コネクタ31の部位では、端部1820を保持する被内管挿入部3113が、低圧側冷媒流路に対応する。
 (第14実施形態)
 図20の第11実施形態や、図21の第12実施形態では、膨張弁側コネクタ186でリアクーラ用の高圧液冷媒配管205及び低圧ガス冷媒配管206の双方を分岐させていた。
 本実施形態は、膨張弁側コネクタ186でリアクーラ用の高圧液冷媒配管205を分岐させる点は、上記第11実施形態及び第12実施形態と同様である。ただし、リアクーラ用の低圧ガス冷媒配管206は、図25~図27に示すように、反膨張弁側コネクタ31に、押さえ板380と図示しないボルトにより固定されている。
 本実施形態では、反膨張弁側コネクタ31の高圧連通空間3110が内部熱交換器18の内外間流路18aに連通している(図26)。そのため、凝縮器13からの高圧液冷媒は、全て内外間流路18aに流れる。そして、膨張弁側コネクタ186で、フロント側の室内空調ユニット20の膨張弁14に流れる流れと、リアクーラの膨張弁に流れる流れとに分岐する。
 一方、低圧ガス冷媒の流れは、反膨張弁側コネクタ31の低圧連通空間3120で合流する(図25)。即ち、内側流路18b及び、リアクーラの低圧ガス冷媒配管206が、低圧連通空間3120に開口している。そして、この低圧連通空間3120には、低圧側配管部材37も接続しており、合流したガス冷媒は、低圧側配管部材37を介して圧縮機12に吸入される。
 図27に示すように、高圧側配管部材35の配置位置とリアクーラの低圧ガス冷媒配管206の配置位置とは直交している。図25は、リアクーラの低圧ガス冷媒配管206が示される位置で断面図示し、図26は、高圧側配管部材35が示される位置で断面図示している。
 内部熱交換器18と反膨張弁側コネクタ31とのシールは、上述の実施形態と同様、外管側Oリング191及び内管側Oリング192によってなされる。また、反膨張弁側コネクタ31と低圧側配管部材37との間はOリング370でシールされ、リアクーラの低圧ガス冷媒配管206との間もOリング3800によってシールされる。高圧側配管部材35もOリング350によってシールされる。Oリングとボルトとの機械的組付けで二重管や配管部材の接続を行うのは、上述の実施形態と同様である。
 図27に示すように、低圧側配管部材37には、低圧側サービスバルブ33が取り付けられている。図示していないが、高圧側配管部材35には、高圧側サービスバルブ32が取り付けられている。圧力センサ若しくは圧力スイッチ34は高圧側配管部材35若しくは凝縮器13の出口側タンクに取り付けられている。ただ、図10に示す第5実施形態のように反膨張弁側コネクタ31に圧力スイッチ34等を取り付けても良い。
 本実施形態では、内外間流路18aを流れる高温高圧の液冷媒は、フロント側の室内空調ユニット20の蒸発器15からの低温低圧のガス冷媒と熱交換し、所定のサブクールを得ることができる。その状態で、フロント側の室内空調ユニット20とリアクーラとの双方の膨張弁14、140に流入し、それぞれの蒸発器15、150で蒸発するため、効率的な冷凍サイクルの運転を行うことができる。
 一方、圧縮機12に吸入される冷媒は、フロント側の室内空調ユニット20の蒸発器15からの冷媒は内部熱交換器18で熱交換して過熱されるが、リアクーラ用蒸発器150からの冷媒は熱交換されない。そのため、圧縮機12に吸入される冷媒温度が必要以上に高くなる事態を防止することができる。加えて、リアクーラの低圧ガス冷媒配管206の取り回しの自由度も高くなる。
 (第15実施形態)
 図24で示した第13実施形態では、内管182が反膨張弁側コネクタ31に嵌り込んでしたが、膨張弁側コネクタ186でも同様に構成できる。図29に示すように、内管182が膨張弁側コネクタ186を貫通して、低圧ジョイントを構成しても良い。この例では内管182に低圧側Oリング溝186dを形成して、低圧側Oリング194を保持している。
 本実施形態でも、低圧側冷媒流路は内管182の端部1820が相当する。膨張弁側コネクタ186では、端部1820を保持する被内管挿入部1860が低圧側冷媒流路に対応する。
 なお、本実施形態では、二重管を膨張弁側コネクタ186に挿入し、押さえ板188と図示しないボルトで固定した状態で、円周溝状の低圧側Oリング溝186dを内管182に形成している。この低圧側Oリング溝186dの形成時に、内管182が変形して膨張弁側コネクタ186に接するので、二重管と膨張弁側コネクタ186との接合がより強固になる。
 (第16実施形態)
 図21の第11実施形態は、リアクーラから膨張弁側コネクタ186までに二重管を用い、更に、膨張弁側コネクタ186から圧縮機12や凝縮器13側も二重管を用いている。そのため、図20の例に比して、リアクーラに向かって流れる液冷媒がより過冷却されることとなる。換言すれば、リアクーラから圧縮機12に向かって流れるガス冷媒の過熱量が大きくなる。従って、リアクーラに繋がる二重管の採用は、冷凍サイクル全体の効率を見極めて、内部熱交換器18の採用や、熱交換量を定めることとなる。
 そこで、図30に示す実施形態のように、二つの二重管を繋ぐコネクタを反膨張弁側コネクタ31に採用してもよい。この場合には、内部熱交換器18がケーシング21に配置されたフロント側の室内空調ユニット20と連通し、リア側内部熱交換器208はリアクーラと連通する。
 フロント側の室内空調ユニット20及びリアクーラからの低圧ガス冷媒は、それぞれの内側流路18bから反膨張弁側コネクタ31に流入して、低圧連通空間3120で合流する。次いで、低圧側配管部材37より、圧縮機12に吸入される。凝縮器13で凝縮した高圧液冷媒は、反膨張弁側コネクタ31の高圧連通空間3110で分離して、それぞれの内外間流路18aを通って、フロント側の室内空調ユニット20及びリアクーラに流出する。
 即ち、反膨張弁側コネクタ31の高圧側ジョイント部313より高圧連通空間3110に流入した高圧液冷媒は、内部熱交換器18の内外間流路18aに流入する。この高圧冷媒の流れは、図26と同様である。
 本実施形態では、反膨張弁側コネクタ31に、リア側内部熱交換器208に向かうリア側高圧冷媒流路311aを形成している。そして、高圧冷媒は、高圧連通空間3110で分岐して、リア側高圧冷媒流路311aにも流入する。このリア側高圧冷媒流路311aに流入した液冷媒は、リア側内部熱交換器208の内外間流路18aに流入する。
 内部熱交換器18の内側流路18bより流入した低圧ガス冷媒と、リア側内部熱交換器208の内側流路18bより流入した低圧ガス冷媒とは、反膨張弁側コネクタ31の低圧連通空間3120で合流する。そして、合流した低圧ガス冷媒は、低圧側ジョイント部314より、低圧側配管部材37を介して、圧縮機12吸入口に流れる。
 (他の実施形態)
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 (1)内管182の外表面の螺旋溝は、3条のものに限らず、1条、2条、4条等の溝部としても良いし、複数の螺旋溝同士が交差するように設けられていてもよい。螺旋溝の代わりに、内管182の軸方向と平行な直線状に延びる直線溝が形成されていてもよい。これは、外管181に形成する螺旋溝1816でも同様である。
 (2)上記実施形態では外管181および内管182をアルミニウム製としたが、これに限らず、鉄製や銅製等のものとしても良い。熱伝達率の良い材料であれば、他の材料を用いてもよい。
 (3)上記実施形態では冷凍サイクル装置11に配設される内部熱交換器18を車両用空調装置10に適用したものとしたが、これに限らず、家庭用やビル用の空調装置等、据置型の空調装置に適用してもよい。
 (4)上記実施形態では冷凍サイクル装置11の冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、冷媒として二酸化炭素を用いて、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 (5)上記第5実施形態では、外管181および内管182の両端を膨張弁側コネクタ186、反膨張弁側コネクタ31によって接続する構造になっているが、外管181および内管182のうち凝縮器13および圧縮機12側の一端のみを反膨張弁側コネクタ31によって接続する構造になっていてもよい。
 すなわち、外管181および内管182のうち膨張弁14とは反対側の端部を反膨張弁側コネクタ31によって凝縮器13および圧縮機12に接続し、外管181および内管182のうち膨張弁14側の端部をリキッド配管、サクション配管およびジョイントによって膨張弁14に接続する構造になっていてもよい。
 (6)同じく第5実施形態では、圧力スイッチ34に代えて圧力センサを用いるとしていたが、必要があれば、圧力スイッチ34と圧力センサとを共に用いてもよい。
 (7)上述の実施形態では、二重管を膨張弁側コネクタ186に挿入する際、内管側Oリング192が外管側Oリング191より先に膨張弁側コネクタ186に接する位置関係としたが、必要に応じ、逆としてもよい。即ち、外管側Oリング191の方が先に膨張弁側コネクタ186に接するようにしてもよい。
 内管側Oリング192及び外管側Oリング191が膨張弁側コネクタ186に接する際には、内管182及び外管181は膨張弁側コネクタ186に挿入されて軸芯が合っているので、内管側Oリング192及び外管側Oリング191の噛み込みは良好に防止できる。

Claims (31)

  1.  二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)とを備え、
     前記内管の内部には、冷凍サイクルの低圧側の冷媒が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記冷凍サイクルの高圧側の前記冷媒が流れる内外間流路(18a)が形成されており、
     前記外管の外径は30ミリメートル以下であり、前記外管の内径に対する前記外管の内径と前記内管の外径との差との比が25%以下であり、
     前記外管と前記内管との間には、前記内外間流路の流路断面積を増すと共に前記外管と前記内管とを同芯上に配置する同芯構造が形成され、
     前記外管の先端より前記内管の先端の方が軸方向の外方に延在し、
     さらに、前記外管および前記内管と接続対象部材(14、35、37)との間に介在し、前記内外間流路を前記接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び前記内側流路を前記接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)とを備え、
     かつ、前記外管の先端は前記コネクタの被外管挿入部(186e、3111)の最奥部から離間して、前記高圧連通流路が連通する高圧連通空間(186k、3110)を形成し、
     前記外管と前記コネクタの前記被外管挿入部との間に介在して、前記高圧連通空間からの冷媒の洩れを防止する外管側シール部材(191)と、
     前記内管と前記コネクタの被内管挿入部(1860、3113)との間に介在して、前記高圧連通空間からの冷媒の洩れを防止する内管側シール部材(192)とを備え、
     前記二重管と前記コネクタとが機械的に固定されている内部熱交換器(18)。
  2.  前記外管および前記内管と前記コネクタとがボルト(189)によって機械的に固定されている請求項1に記載の内部熱交換器。
  3.  前記外管と前記コネクタとが機械的にカシメ固定されている請求項1に記載の内部熱交換器。
  4.  前記コネクタは、サービスバルブ(32、33)、圧力スイッチ(34)および圧力センサのうち少なくとも1つが取り付けられる取付部(31a、31b、31c)を有している請求項1ないし3のいずれか1つに記載の内部熱交換器。
  5.  前記コネクタは、前記接続対象部材のうち前記冷媒流路の開口部を形成するメス状の部位(14a)に挿入されるオス形状部(186a)を有している請求項1ないし4のいずれか1つに記載の内部熱交換器。
  6.  前記コネクタは、前記接続対象部材のうち前記冷媒流路の開口部を形成するオス状の部位が挿入されるメス形状部(313、314)を有している請求項1ないし4のいずれか1つに記載の内部熱交換器。
  7.  前記コネクタは、前記高圧連通流路及び前記低圧連通流路の前記接続対象部材側の端部が、前記外管および前記内管の延長方向と平行な方向に開口するように形成されている請求項1ないし6のいずれか1つに記載の内部熱交換器。
  8.  前記コネクタは、前記高圧連通流路及び前記低圧連通流路の前記接続対象部材側の端部が、前記外管および前記内管の延長方向と直交する方向に開口するように形成されている請求項1ないし6のいずれか1つに記載の内部熱交換器。
  9.  前記コネクタは、前記高圧連通流路の軸方向と前記低圧連通流路の軸方向が並行であり、この軸方向が前記外管および前記内管の延長方向と所定の角度で傾斜するように形成されている請求項1ないし6のいずれか1つに記載の内部熱交換器。
  10.  前記接続対象部材は、前記高圧側の冷媒を減圧膨張させる膨張弁(14)である請求項1ないし9のいずれか1つに記載の内部熱交換器。
  11.  前記接続対象部材は、前記冷媒が流れる配管部材(35、37)である請求項1ないし9のいずれか1つに記載の内部熱交換器。
  12.  前記コネクタの内部に、前記内側流路と連通する低圧冷媒通路(143)と、前記内外間流路と連通して前記高圧側の冷媒を減圧膨張させる絞り通路(144)とが形成されており、
     前記コネクタに、前記絞り通路の通路断面積を変化させる弁体部(141)と、前記弁体部を変位させるための駆動力を出力するエレメント部(142)とが配置されている請求項1ないし10のいずれか1つに記載の内部熱交換器。
  13.  前記同芯構造は、前記内管及び前記内管のいずれか一方に螺旋溝(1816、1822)が形成され、この螺旋溝の峰部(1816a、1822a)が前記内管及び前記外管の他方と複数個所で接触する構造であることを特徴とする請求項1ないし12のいずれか1つに記載の内部熱交換器。
  14.  前記同芯構造は、前記内管及び前記外管のいずれか一方から前記内管及び前記外管のいずれか他方に向けて突出形成されたリブで、このリブの先端は、前記内管及び前記外管のいずれか他方に複数個所で接触する構造であることを特徴とする請求項1ないし12のいずれか1つに記載の内部熱交換器。
  15.  前記内管の端部には、前記内管側シール部材を保持する溝(182a)が形成され、前記外管の端部には、前記外管側シール部材を保持する溝(181b)が形成されていることを特徴とする請求項1ないし14のいずれか1つに記載の内部熱交換器。
  16.  前記内管の端部は円筒状であり、前記内管側シール部材はこの円筒状の前記内管の端部と前記コネクタの前記被内管挿入部(1860)との間に挟持され、前記外管の端部は円筒状であり、前記外管側シール部材はこの円筒状の前記外管の端部と前記コネクタの前記被外管挿入部(186e)との間に挟持されていることを特徴とする請求項1ないし14のいずれか1つに記載の内部熱交換器。
  17.  前記内管の先端、前記内管側シール部材、前記外管の先端、及び前記外管側シール部材と、前記コネクタの前記被内管挿入部及び前記被外管挿入部との位置関係は、
     前記内管及び前記外管が前記コネクタに挿入される際に、
     最初に前記内管の先端が前記被内管挿入部に接し、次いで前記外管の先端が前記被外管挿入部に接し、その後に、前記内管側シール部材が前記被内管挿入部に接し、最後に前記外管側シール部材が前記被外管挿入部と接する構造であることを特徴とする請求項1ないし16のいずれか1つに記載の内部熱交換器。
  18.  前記外管の端部には、前記コネクタと当接する当接部(181a)が外周方向に形成され、
     前記内管の先端と前記被内管挿入部の最奥部との距離の方が、前記外管の先端と前記被外管挿入部の最奥部との距離より長く、
     前記内管の先端と前記被内管挿入部の際奥部との間に隙間が形成されていることを特徴とする請求項1ないし17のいずれか1つに記載の内部熱交換器。
  19.  前記内管の端部は円筒状であり、かつ端部に鍔部(1825)を形成し、前記内管側シール部材はこの円筒状の前記内管の鍔部と前記コネクタの前記被内管挿入部(1860)との間に挟持され、
     前記外管の端部は円筒状であり、前記外管側シール部材はこの円筒状の前記外管の前記当接部と前記コネクタの前記被外管挿入部(186e)との間に挟持されていることを特徴とする請求項16に従属する請求項18に記載の内部熱交換器。
  20.  前記内管の先端、前記内管側シール部材、前記外管の先端、及び前記外管側シール部材と、前記コネクタの前記被内管挿入部、前記被外管挿入部、及び前記当接部との位置関係は、
     前記内管及び前記外管が前記コネクタに挿入される際に、
     最初に前記内管の先端が前記被内管挿入部に接し、次いで前記外管の先端が前記被外管挿入部に接し、その後に、前記内管側シール部材が前記被内管挿入部に接し、その後に、前記外管側シール部材が前記被外管挿入部と接し、最後に前記当接部が前記コネクタに当接する構造であることを特徴とする請求項19に記載の内部熱交換器。
  21.  前記内管の先端、前記内管側シール部材、前記外管の先端、及び前記外管側シール部材と、前記コネクタの前記被内管挿入部、前記被外管挿入部、及び前記当接部との位置関係は、
     前記内管の先端(1821)と前記外管の先端(1811)との距離(X)の方が、前記被内管挿入部のうち前記内管と接する部位の始点と前記被外管挿入部のうち前記外管と接する部位の始点との距離(Y)より長い構造であることを特徴とする請求項19または20に記載の内部熱交換器。
  22.  前記内管の先端、前記鍔部、前記内管側シール部材、前記外管の先端、及び前記外管側シール部材と、前記コネクタの前記被内管挿入部、前記被外管挿入部、及び前記当接部との位置関係は、
     前記被内管挿入部のうち内管Oリング保持部の距離(X1)の方が、前記被外管挿入部のうち外管Oリング保持部の距離(Y1)より長い構造であることを特徴とする請求項19ないし21のいずれか1つに記載の内部熱交換器。
  23.  前記内管の先端、前記鍔部、前記内管側シール部材、前記外管の先端、及び前記外管側シール部材と、前記コネクタの前記被内管挿入部、前記被外管挿入部、及び前記当接部との位置関係は、
     前記内管の先端(1821)と前記鍔部(1825)との距離(X2)の方が、前記被内管挿入部のうち前記内管Oリング保持部の距離(X1)と前記内管側シール部材の径との和より長い構造であり、
     前記外管の先端(1811)と前記当接部(181a)との距離(Y2)の方が、前記被外管挿入部のうち前記外管Oリング保持部の距離(Y1)と前記外管側シール部材の径との和より長い構造であることを特徴とする請求項22に記載の内部熱交換器。
  24.  前記外管の端部は、所定距離に亘って、前記外管の径方向内側に押圧成形されている請求項13記載の内部熱交換器。
  25.  前記コネクタは前記内管及び前記外管の両側の先端に配置され、前記内管と前記外管との間の熱交換効率は、前記内管と前記外管との間の一部の部位と前記内管と前記外管との間の他の部位とで異なることを特徴とする請求項1ないし24のいずれか1つに記載の内部熱交換器。
  26.  前記螺旋溝は、前記内管と前記外管との間の一部の部位で形成され、前記内管と前記外管との間の他の部位では形成されていない請求項13に従属する請求項25に記載の内部熱交換器。
  27.  圧縮機(12)、凝縮器(13)、室内空調ユニット(20)用の膨張弁(14)、前記室内空調ユニットの蒸発器(15)、リアクーラ用膨張弁(14)、リアクーラ用蒸発器(150)、及び内部熱交換器(18、208)を備える冷凍サイクル装置(11)であって、
     前記内部熱交換器は、
     二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)とを備え、
     前記内管の内部には、冷凍サイクル(11)の低圧側の冷媒が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記冷凍サイクルの高圧側の前記冷媒が流れる内外間流路(18a)が形成されており、
     前記外管の外径は30ミリメートル以下であり、前記外管の内径に対する前記外管の内径と前記内管の外径との差との比が25%以下であり、
     前記外管と前記内管との間には、前記内外間流路の流路断面積を増すと共に前記外管と前記内管とを同芯上に配置する同芯構造が形成され、
     さらに、前記外管および前記内管の端部に位置し、前記内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び前記内側流路を前記接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)とを備え、
     かつ、前記外管の前記端部に位置して、冷媒の洩れを防止する外管側シール部材(191)と、
     前記内管の前記端部に位置して、冷媒の洩れを防止する内管側シール部材(192)とを備え、
     前記二重管と前記コネクタとが機械的に固定されており、
     前記内部熱交換器は、前記凝縮器及び前記圧縮機と、前記室内空調ユニットの膨張弁及び前記リアクーラ用膨張弁との間に介在し、
     前記コネクタは、前記高圧連通流路と少なくとも前記凝縮器若しくは前記室内空調ユニットの膨張弁及び前記リアクーラ用膨張弁とのいずれかとを接続し、かつ、前記低圧連通流路と少なくとも前記室内空調ユニットの膨張弁及び前記リアクーラ用膨張弁若しくは前記圧縮機とのいずれかとを接続する冷凍サイクル装置。
  28.  前記コネクタは、前記内部熱交換器の前記室内空調ユニットの膨張弁側に配置され、
     前記室内空調ユニットの膨張弁とは、高圧側ジョイント(186a)及び低圧側ジョイント(186b)で接続し、
     前記リアクーラ用膨張弁とは、高圧液冷媒配管(205)及び低圧ガス冷媒配管(206)で接続する請求項27に記載の冷凍サイクル装置。
  29.  前記コネクタは、前記内部熱交換器の前記室内空調ユニットの膨張弁側に配置され、
     前記室内空調ユニットの膨張弁とは、高圧側ジョイント(186a)及び低圧側ジョイント(186b)で接続し、
     前記リアクーラ用膨張弁とは、リアクーラ用内部熱交換器(208)で接続する請求項27に記載の冷凍サイクル装置。
  30.  前記コネクタは、前記内部熱交換器の前記室内空調ユニットの膨張弁側と反膨張弁側との双方に配置され、
     前記室内空調ユニットの膨張弁とは、高圧側ジョイント(186a)及び低圧側ジョイント(186b)で接続し、
     前記リアクーラ用膨張弁とは、膨張弁側コネクタと繋がる高圧液冷媒配管(205)、及び反膨張弁側コネクタと繋がる低圧ガス冷媒配管(206)で接続する請求項27に記載の冷凍サイクル装置。
  31.  前記コネクタは、前記内部熱交換器の前記室内空調ユニットの膨張弁側と反膨張弁側との双方に配置され、
     前記室内空調ユニットの膨張弁とは、膨張弁側コネクタの高圧側ジョイント(186a)及び低圧側ジョイント(186b)で接続し、
     前記リアクーラ用膨張弁とは、反膨張弁側コネクタに接続するリアクーラ用内部熱交換器(208)を介して接続する請求項27に記載の冷凍サイクル装置。

     
PCT/JP2019/046331 2018-12-05 2019-11-27 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置 WO2020116271A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112019006055.4T DE112019006055T5 (de) 2018-12-05 2019-11-27 Interner Wärmetauscher und Kältekreisvorrichtung mit dem internen Wärmetauscher
CN201980078971.9A CN113167516B (zh) 2018-12-05 2019-11-27 内部换热器及具有内部换热器的制冷循环装置
US17/179,592 US11873935B2 (en) 2018-12-05 2021-02-19 Internal heat exchanger and refrigeration cycle apparatus having the internal heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018228035 2018-12-05
JP2018-228035 2018-12-05
JP2019210354A JP6824366B2 (ja) 2018-12-05 2019-11-21 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
JP2019-210354 2019-11-21

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/179,592 Continuation US11873935B2 (en) 2018-12-05 2021-02-19 Internal heat exchanger and refrigeration cycle apparatus having the internal heat exchanger

Publications (1)

Publication Number Publication Date
WO2020116271A1 true WO2020116271A1 (ja) 2020-06-11

Family

ID=70973490

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046331 WO2020116271A1 (ja) 2018-12-05 2019-11-27 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置

Country Status (1)

Country Link
WO (1) WO2020116271A1 (ja)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249378A (ja) * 1993-02-26 1994-09-06 Atsumi Kogyo:Kk 流体配管用フランジ部材
JPH0875074A (ja) * 1994-09-07 1996-03-19 Kayaba Ind Co Ltd ポンプ用サクションコネクター
JP2003207083A (ja) * 2000-09-29 2003-07-25 Scania Cv Ab パイプ貫入部における補強構造
JP2004190875A (ja) * 2002-12-06 2004-07-08 Denso Corp 冷凍サイクル装置
JP2006132653A (ja) * 2004-11-05 2006-05-25 Denso Corp 二重管、二重管の製造方法、二重管の支持部材
JP2006162238A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管
JP2006162241A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管、その製造方法、およびそれを備える冷凍サイクル装置
JP2007285693A (ja) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh 冷却機械用内部熱交換器
JP2007298196A (ja) * 2006-04-28 2007-11-15 Denso Corp 内部熱交換器付配管およびそれを備える冷凍サイクル装置
JP2007298273A (ja) * 2007-07-23 2007-11-15 Denso Corp 蒸気圧縮式冷凍機
JP2010096225A (ja) * 2008-10-15 2010-04-30 Denso Corp 管継手、熱交換チューブと管継手の接合構造、および熱交換チューブと管継手の接合方法
JP2019132509A (ja) * 2018-01-31 2019-08-08 株式会社デンソー 二重管式熱交換器

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06249378A (ja) * 1993-02-26 1994-09-06 Atsumi Kogyo:Kk 流体配管用フランジ部材
JPH0875074A (ja) * 1994-09-07 1996-03-19 Kayaba Ind Co Ltd ポンプ用サクションコネクター
JP2003207083A (ja) * 2000-09-29 2003-07-25 Scania Cv Ab パイプ貫入部における補強構造
JP2004190875A (ja) * 2002-12-06 2004-07-08 Denso Corp 冷凍サイクル装置
JP2006132653A (ja) * 2004-11-05 2006-05-25 Denso Corp 二重管、二重管の製造方法、二重管の支持部材
JP2006162238A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管
JP2006162241A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管、その製造方法、およびそれを備える冷凍サイクル装置
JP2007285693A (ja) * 2006-04-13 2007-11-01 Eaton Fluid Power Gmbh 冷却機械用内部熱交換器
JP2007298196A (ja) * 2006-04-28 2007-11-15 Denso Corp 内部熱交換器付配管およびそれを備える冷凍サイクル装置
JP2007298273A (ja) * 2007-07-23 2007-11-15 Denso Corp 蒸気圧縮式冷凍機
JP2010096225A (ja) * 2008-10-15 2010-04-30 Denso Corp 管継手、熱交換チューブと管継手の接合構造、および熱交換チューブと管継手の接合方法
JP2019132509A (ja) * 2018-01-31 2019-08-08 株式会社デンソー 二重管式熱交換器

Similar Documents

Publication Publication Date Title
JP6824366B2 (ja) 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
US7887099B2 (en) Compound tube and method of producing the same
US7886420B2 (en) Method of manufacturing double pipe
US20060096314A1 (en) Double-wall pipe and refrigerant cycle device using the same
US7753413B2 (en) Vapour-compression type refrigerating machine and double pipe structure and double pipe joint structure preferably used therefor
JP5086840B2 (ja) 二重管接続構造および二重管接続方法
US20070251265A1 (en) Piping structure with inner heat exchanger and refrigeration cycle device having the same
JP4014349B2 (ja) 二重管用継手
JP2006162241A (ja) 二重管、その製造方法、およびそれを備える冷凍サイクル装置
US20190345937A1 (en) Refrigerant pipe and refrigeration cycle device
JP2020094793A5 (ja)
KR20150069354A (ko) 차량용 에어컨시스템
JP2009270802A (ja) 内部熱交換器
WO2019150968A1 (ja) 二重管式熱交換器
WO2020116271A1 (ja) 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
US11231233B2 (en) Double-pipe heat exchanger including integrated connector
JP2014055748A (ja) 内部熱交換器とその製造方法
WO2021241422A1 (ja) 内部熱交換器及び内部熱交換器の製造方法
JP2021188786A (ja) 内部熱交換器及び内部熱交換器の製造方法
JP2021188788A (ja) 内部熱交換器の製造方法
JP2021188787A (ja) 内部熱交換器の製造方法
JP2009092276A (ja) 冷凍サイクル
WO2015004156A1 (en) Heat exchanger and method of manufacturing a heat exchanger
JP2010014165A (ja) 二重配管
JP2005207463A (ja) 通路の接続構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892380

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19892380

Country of ref document: EP

Kind code of ref document: A1