WO2019150968A1 - 二重管式熱交換器 - Google Patents

二重管式熱交換器 Download PDF

Info

Publication number
WO2019150968A1
WO2019150968A1 PCT/JP2019/001222 JP2019001222W WO2019150968A1 WO 2019150968 A1 WO2019150968 A1 WO 2019150968A1 JP 2019001222 W JP2019001222 W JP 2019001222W WO 2019150968 A1 WO2019150968 A1 WO 2019150968A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
inner tube
outer tube
joint
Prior art date
Application number
PCT/JP2019/001222
Other languages
English (en)
French (fr)
Inventor
伊藤 誠
山本 憲
吉野 誠
中嶋 亮太
小野 潤一
Original Assignee
株式会社デンソー
株式会社デンソーエアシステムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, 株式会社デンソーエアシステムズ filed Critical 株式会社デンソー
Publication of WO2019150968A1 publication Critical patent/WO2019150968A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/02Tubular elements of cross-section which is non-circular
    • F28F1/06Tubular elements of cross-section which is non-circular crimped or corrugated in cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/34Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely
    • F28F1/36Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending obliquely the means being helically wound fins or wire spirals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation

Definitions

  • the present disclosure relates to a double tube heat exchanger having an inner tube and an outer tube.
  • Patent Documents 1 and 2 describe a double-tube heat exchanger having an inner tube and an outer tube.
  • the first flow path is formed inside the inner pipe
  • the second flow path is formed between the inner pipe and the outer pipe. Then, the fluid flowing through the first flow path and the fluid flowing through the second flow path exchange heat through the inner pipe.
  • Such a double-pipe heat exchanger is excellent in mountability on a vehicle because of its compact size.
  • an object of the present disclosure is to increase the heat exchange amount while suppressing an increase in pressure loss of the fluid flowing inside the inner pipe in the double pipe heat exchanger.
  • the double tube heat exchanger includes an outer tube, an inner tube, and a joint.
  • the outer tube forms the outer tube of the double tube.
  • the inner tube forms the inner tube of the double tube.
  • the joint part metallurgically joins the inner surface of the outer tube and the outer surface of the inner tube.
  • the outer tube and the inner tube are made of metal.
  • An inner flow path through which an inner fluid flows is formed inside the inner tube. Between the outer tube and the inner tube, an inner / outer flow path through which an inner / outer fluid having a temperature difference with respect to the inner fluid flows is formed.
  • heat can be transferred from the outer tube to the inner tube through the joint portion, and the amount of heat exchange can be increased.
  • the joint part metallurgically joins the inner surface of the outer tube and the outer surface of the inner tube, the contact thermal resistance is small. Therefore, conventionally, it becomes possible to use an outer tube that does not contribute to heat transfer as a heat transfer surface, and heat can be effectively transferred from the outer tube to the inner tube. That is, the amount of heat exchange can be increased while suppressing an increase in pressure loss of the inner fluid.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 3. It is an expanded sectional view which shows the V section of FIG. It is sectional drawing of the double pipe in 2nd Embodiment.
  • FIG. 7 is a sectional view taken along line VII-VII in FIG. 6. It is sectional drawing of the double pipe in 3rd Embodiment.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG. 8. It is sectional drawing of the double pipe in 4th Embodiment.
  • FIG. It is XI-XI sectional drawing of FIG. It is sectional drawing which shows a part of double pipe in 5th Embodiment. It is sectional drawing which shows a part of double pipe in 6th Embodiment. It is a side view which shows a part of double pipe in 6th Embodiment. It is a side view which shows a part of double pipe in 7th Embodiment. It is a side view which shows a part of double pipe in 8th Embodiment. It is sectional drawing which shows a part of double pipe in 9th Embodiment. It is a side view which shows a part of double pipe in 1st Example of 9th Embodiment.
  • FIG. 34 is a sectional view taken along line XXXIV-XXXIV in FIG. 33. It is sectional drawing of the double pipe in 14th Embodiment.
  • FIG. 36 is a cross-sectional view of XXXVI-XXXVI in FIG. 35. It is sectional drawing of the double tube
  • FIG. 38 is a sectional view of XXXVIII-XXXVIII in FIG. 37.
  • a vehicle air conditioner 10 shown in FIG. 1 has a refrigeration cycle apparatus 11.
  • a double pipe heat exchanger is applied to the refrigeration cycle apparatus 11.
  • the refrigeration cycle apparatus 11 is a vapor compression refrigerator that includes a compressor 12, a condenser 13, an expansion valve 14, and an evaporator 15.
  • a chlorofluorocarbon refrigerant is used as the refrigerant, and a subcritical refrigeration cycle in which the high-pressure side refrigerant pressure does not exceed the critical pressure of the refrigerant is configured.
  • the compressor 12 and the condenser 13 are disposed in the engine room 1 of the vehicle.
  • the expansion valve 14 and the evaporator 15 are disposed in the vehicle compartment 2 of the vehicle.
  • the engine room 1 and the vehicle compartment 2 of the vehicle are partitioned by a partition wall 3.
  • the compressor 12, the condenser 13, the expansion valve 14 and the evaporator 15 are arranged in series with each other in the refrigerant flow.
  • the compressor 12 sucks and compresses the refrigerant of the refrigeration cycle apparatus 11 and discharges it.
  • the compressor 12 is a belt-driven compressor or an electric compressor.
  • the belt-driven compressor is a compressor that is driven when the driving force of the engine 4 is transmitted through the crank pulley 5, the driving belt 6, and the pulley 7.
  • the electric compressor is an electric compressor driven by electric power supplied from a battery.
  • the compressor 12 is disposed in the engine room 1.
  • the condenser 13 is a radiator that causes heat exchange between the high-pressure refrigerant discharged from the compressor 12 and the outside air to dissipate the high-pressure refrigerant to the outside air and condense the high-pressure refrigerant.
  • the condenser 13 is arranged at the foremost part in the engine room 1.
  • the liquid phase refrigerant condensed in the condenser 13 flows into the expansion valve 14 through the high-pressure refrigerant pipe 16.
  • the expansion valve 14 is a decompression unit that decompresses and expands the liquid-phase refrigerant flowing out from the high-pressure refrigerant pipe 16.
  • the expansion valve 14 has a temperature sensing part.
  • the temperature sensing unit detects the degree of superheat of the evaporator 15 outlet-side refrigerant based on the temperature and pressure of the evaporator 15 outlet-side refrigerant.
  • the expansion valve 14 is a temperature type expansion valve that adjusts the throttle passage area by a mechanical mechanism so that the degree of superheat of the refrigerant on the outlet side of the evaporator 15 falls within a predetermined range.
  • the expansion valve 14 may be an electric expansion valve that adjusts the throttle passage area by an electric mechanism.
  • the evaporator 15 heat-exchanges the low-pressure refrigerant that has flowed out of the expansion valve 14 and the air blown into the passenger compartment, thereby evaporating the low-pressure refrigerant and cooling the air blown into the passenger compartment. It is.
  • the gas-phase refrigerant evaporated in the evaporator 15 is sucked into the compressor 12 through the low-pressure refrigerant pipe 17 and compressed.
  • the evaporator 15 is accommodated in the casing 21 of the indoor air conditioning unit 20.
  • the indoor air conditioning unit 20 is disposed inside a dashboard (not shown) at the front of the passenger compartment 2.
  • the casing 21 is an air passage forming member that forms an air passage.
  • a heater core 22 is disposed on the downstream side of the air flow of the evaporator 15.
  • the heater core 22 is an air heating heat exchanger that heats air that is blown into the passenger compartment by exchanging heat between the engine coolant and the air that is blown into the passenger compartment.
  • the casing 21 is provided with an inside / outside air switching box (not shown) and an indoor blower 23.
  • the inside / outside air switching box is an inside / outside air switching unit that switches between introducing the inside air and the outside air into the air passage in the casing 21.
  • the indoor blower 23 sucks and blows in the inside air and outside air introduced into the air passage in the casing 21 through the inside / outside air switching box.
  • An air mix door 24 is disposed between the evaporator 15 and the heater core 22 in the air passage in the casing 21.
  • the air mix door 24 adjusts the air volume ratio between the cool air that has passed through the evaporator 15 and the cool air that flows into the heater core 22 and the cool air that bypasses the heater core 22.
  • the air mix door 24 is a rotary door having a rotary shaft that is rotatably supported with respect to the casing 21 and a door substrate portion coupled to the rotary shaft. By adjusting the opening position of the air mix door 24, the temperature of the conditioned air blown from the casing 21 into the vehicle compartment can be adjusted to a desired temperature.
  • a blowout opening 25 is formed in the most downstream part of the air flow of the casing 21. Although not shown in FIG. 1, a plurality of outlet openings 25 are formed. The conditioned air whose temperature has been adjusted in the casing 21 is blown out into the vehicle interior, which is the air-conditioning target space, through these blowing openings 25.
  • a blower outlet mode switching door (not shown) is arranged on the upstream side of the air flow of the plurality of blowout openings 25.
  • the outlet mode switching door switches the outlet mode.
  • a blower outlet mode there are a face mode, a bilevel mode, a foot mode, and the like.
  • At least a part of the high-pressure refrigerant pipe 16 and at least a part of the low-pressure refrigerant pipe 17 are constituted by a double pipe 18 shown in FIGS.
  • the double pipe 18 is a double pipe heat exchanger.
  • the double pipe 18 has a total length of about 500 to 1200 mm and is disposed in the engine room 1.
  • the double pipe 18 may be covered with a heat insulating material.
  • the double pipe 18 includes an outer pipe 181 and an inner pipe 182, and is arranged so that the inner pipe 182 penetrates the inside of the outer pipe 181.
  • the outer tube 181 is a ⁇ 22 mm tube made of aluminum, for example.
  • the ⁇ 22 mm tube is a tube having an outer diameter of 22 mm and an inner diameter of 19.6 mm.
  • the inner tube 182 is a tube having an outer diameter of 19.1 mm.
  • the inner space of the inner pipe 182 is an inner flow path 18b.
  • Liquid pipes 184 and 185 are joined to the circumferential wall surface in the vicinity of both ends in the longitudinal direction of the outer pipe 181 by brazing.
  • the liquid pipes 184 and 185 communicate with the inner-outer flow path 18a.
  • a joint 184 a connected to the refrigerant outlet side of the condenser 13 is provided at the tip of one liquid pipe 184.
  • a joint 185 a connected to the refrigerant inlet side of the expansion valve 14 is provided at the tip of the other liquid pipe 185.
  • the high-temperature and high-pressure refrigerant that has flowed out of the condenser 13 flows into the expansion valve 14 through the inner-outer flow path 18a.
  • the joints 184a and 185a may be directly connected to the condenser 13 or the expansion valve 14, or may be connected to the condenser 13 or the expansion valve 14 via a connection pipe (not shown).
  • a suction pipe 186 is provided at one end of the inner pipe 182.
  • the suction pipe 186 is a pipe forming the low-pressure refrigerant pipe 17.
  • a joint 186 a connected to the refrigerant outlet side of the evaporator 15 is provided at the tip of the suction pipe 186.
  • a suction pipe 187 is provided at the other end of the inner pipe 182.
  • the suction pipe 187 is a pipe forming the low-pressure refrigerant pipe 17.
  • a joint 187a connected to the refrigerant suction side of the compressor 12 is provided.
  • the low-temperature and low-pressure refrigerant that has flowed out of the evaporator 15 flows through the inner flow path 18 b and is sucked into the compressor 12.
  • the joint 187a is usually connected to the compressor 12 via a hose pipe.
  • the inner / outer flow path 18a and the inner flow path 18b are refrigerant flow paths in which refrigerant flows in parallel to each other.
  • the flow directions of the refrigerant in the inner-outer channel 18a and the inner channel 18b are opposite to each other.
  • the inner / outer flow path 18a is a first flow path section, and the inner flow path 18b is a second flow path section.
  • the refrigerant flowing through the inner-outer flow path 18a is an inner-outer fluid.
  • the refrigerant flowing through the inner flow path 18b is an inner fluid.
  • the inner pipe 182 is, for example, an aluminum 3/4 inch pipe.
  • the 3/4 inch tube is a tube having an outer diameter of 19.1 mm and an inner diameter of 16.7 mm.
  • the surface area of the inner tube 182 is increased by selecting a size that is as close as possible to the outer tube 181 as the outer diameter of the inner tube 182 while securing the inner-outer flow path 18a.
  • a circular groove 182a and a spiral groove 182b are provided on the outer surface of the inner tube 182.
  • the circumferential groove portion 182 a is a groove extending in the circumferential direction of the inner tube 182, and two grooves are provided corresponding to the connection portions of the liquid pipes 184 and 185 with respect to the outer tube 181.
  • the spiral groove portion 182b is a multi-slot (three strips in this example) extending spirally in the longitudinal direction of the inner tube 182 between the two circumferential groove portions 182a, and is connected to the two circumferential groove portions 182a.
  • a ridge 182c is formed between the spiral grooves 182b.
  • the ridge portion 182c is a multiple (three in this example) ridge-like portion extending spirally in the longitudinal direction of the inner tube 182 between the two circumferential groove portions 182a.
  • the outer diameter of the inner tube 182 is substantially maintained.
  • the internal / external flow path 18a is enlarged by the two circular grooves 182a and the spiral groove 182b.
  • the groove depth in the spiral groove portion 182b is set within a range of 15% or less of the outer diameter of the inner tube 182.
  • the groove depth in the spiral groove portion 182b is a difference in outer radius between a portion of the inner tube 182 where the spiral groove portion 182b is not present and a portion where the spiral groove portion 182b is present.
  • the total length of the spiral groove 182b is set in the range of 150 to 800 mm.
  • the two circumferential groove portions 182a and the spiral groove portion 182b of the inner pipe 182 are formed by, for example, a grooving tool.
  • the spiral groove portion 182b and the peak portion 182c form a wavy wall in the inner tube 182.
  • the spiral groove part 182b and the peak part 182c form a bellows-like (in other words, bowl-like) wall in the inner pipe 182.
  • a protrusion 182d is provided on a part of the ridge 182c of the inner tube 182.
  • the protruding portion 182d protrudes from the peak portion 182c of the inner tube 182 toward the outer tube 181.
  • the portion of the inner tube 182 where the protrusion 182d is formed is thicker than the other portions by the height of the protrusion 182d. That is, the protrusion 182d is solid.
  • the protruding portion 182d is provided in a dot shape on the peak portion 182c of the inner tube 182.
  • the number of protrusions 182d per round of the peak portion 182c is three.
  • the three protrusions 182d are provided at substantially equal intervals in the longitudinal direction of the peak 182c. That is, when viewed from the axial direction of the inner tube 182, the protrusions 182d are provided at intervals of about 120 degrees.
  • the tip of the protrusion 182d is in contact with the inner surface of the outer tube 181. That is, the inner tube 182 is not in contact with the inner surface of the outer tube 181 except for the protruding portion 182d, and is separated from the inner surface of the outer tube 181.
  • the tip of the protrusion 182d is brazed to the inner surface of the outer tube 181. That is, the inner tube 182 is not brazed and joined to the outer tube 181 except for the protruding portion 182d. That is, a joint 183 that metal-joins the inner tube 182 and the outer tube 181 is formed in the vicinity of the tip of the protrusion 182d, and the inner tube 182 and the outer tube 181 are partially metal-joined at the joint 183. ing. Specifically, the peak portion 182c of the inner tube 182 is partially metal-bonded with the outer tube 181.
  • the joint part 183 metallurgically joins the inner surface of the outer tube 181 and the outer surface of the inner tube 182.
  • the joint portion 183 joins the inner surface of the outer tube 181 and the outer surface of the inner tube 182 in material.
  • the joint portion 183 is provided in a dot shape at the ridge portion 182c of the inner tube 182 similarly to the projection portion 182d.
  • the number of the joint portions 183 per one turn of the ridge portion 182c is three.
  • the three joint portions 183 are provided at substantially equal intervals in the longitudinal direction of the peak portion 182c. That is, when viewed from the axial direction of the inner pipe 182, the joints 183 are provided at intervals of about 120 degrees.
  • the clearance flow F ⁇ b> 1 is a refrigerant flow generated in a clearance between the outer surface of the inner tube 182 and the inner surface of the outer tube 181.
  • the in-groove flow F2 is a refrigerant flow generated in the spiral groove 182b.
  • the gap flow F ⁇ b> 1 is a first flow along the axial direction of the outer tube 181 and the inner tube 182.
  • the in-groove flow F ⁇ b> 2 is a second flow having velocity components in the circumferential direction of the outer tube 181 and the inner tube 182.
  • the circumferential velocity component of the outer tube 181 and the inner tube 182 in the in-groove flow F2 is larger than the circumferential velocity component of the outer tube 181 and the inner tube 182 in the gap flow F1.
  • the inner tube 182 is inserted into the outer tube 181.
  • a minimum clearance is set between the protrusion 182d of the inner tube 182 and the inner surface of the outer tube 181.
  • the inner tube 182 After inserting the inner tube 182 into the outer tube 181, the inner tube 182 is contracted and caulked to bring the projection 182d of the inner tube 182 into contact with the inner surface of the outer tube 181.
  • the brazing material is melted and brazed using a brazing furnace or an induction heating device.
  • the brazing material is melted starting from the protrusion 182d to form a fillet, and the protrusion 182d of the inner tube 182 and the inner surface of the outer tube 181 are metal-bonded.
  • the compressor 12 When the compressor 12 is driven, the compressor 12 sucks and compresses the refrigerant from the evaporator 15 side, and then discharges it to the condenser 13 side as a high-temperature high-pressure refrigerant.
  • the high-pressure refrigerant is cooled and condensed and liquefied in the condenser 13.
  • the refrigerant here is almost in a liquid phase.
  • the condensed and liquefied refrigerant flows through the high-pressure refrigerant pipe 16, is decompressed and expanded by the expansion valve 14, and is evaporated by the evaporator 15.
  • the refrigerant here is in a substantially saturated gas state with a superheat degree of 0 to 3 ° C.
  • the conditioned air is cooled as the refrigerant evaporates. Then, the saturated gas refrigerant evaporated in the evaporator 15 flows through the low-pressure refrigerant pipe 17 as a low-temperature low-pressure refrigerant and returns to the compressor 12.
  • the high-pressure refrigerant flowing through the high-pressure refrigerant pipe 16 and the low-pressure refrigerant flowing through the low-pressure refrigerant pipe 17 Is exchanged by the double pipe 18, and the high-pressure refrigerant is cooled and the low-pressure refrigerant is heated.
  • the liquid-phase refrigerant that has flowed out of the condenser 13 is supercooled by the double pipe 18 and the temperature reduction is promoted.
  • the saturated gas refrigerant flowing out of the evaporator 15 is heated by the double pipe 18 and becomes a gas refrigerant having a superheat degree. Thereby, the performance of the refrigeration cycle apparatus 11 is improved.
  • the outer surface of the inner pipe 182 and the inner surface of the outer pipe 181 are metallurgically joined at the joint portion 183. Therefore, as shown by the arrows in FIG.
  • the heat of the high-temperature refrigerant in the interflow path 18a is transmitted in the order of the outer tube 181 ⁇ the joint 183 ⁇ the inner tube 182. Therefore, it is possible to increase the heat exchange area by increasing the heat transfer area.
  • the gap flow F1 is obstructed and the flow passage area through which the refrigerant passes is reduced, so that the pressure loss of the inner and outer flow passage 18a increases. End up. If the pressure loss in the internal / external flow path 18a becomes too large, the liquid refrigerant passing through the flow path becomes a two-phase state, and there is a concern that a predetermined flow rate does not flow through the expansion valve.
  • joint portion 183 metallurgically joins the inner surface of the outer tube 181 and the outer surface of the inner tube 182, heat is transmitted from the outer tube 181 to the inner tube 182 via the joint portion 183. This can increase the amount of heat exchange.
  • the joint portion 183 metallurgically joins the inner surface of the outer tube 181 and the outer surface of the inner tube 182, the thermal contact resistance is small. Therefore, heat can be effectively transferred from the outer tube 181 to the inner tube 182 using the outer tube 181 as a heat transfer surface, so that an increase in pressure loss can be suppressed as much as possible.
  • the joint portion 183 is formed so as to maintain the axial flow F1 and the circumferential flow F2, an increase in pressure loss can be suppressed.
  • the joint 183 metallurgically joins the ridge 182c of the inner pipe 182 and the inner surface of the outer pipe 181, so that the circumferential flow F2 is reliably maintained and the pressure loss is increased. Can be suppressed.
  • the number of the joint portions 183 per one turn of the ridge portion 182c is three. However, in this embodiment, as shown in FIGS. The number of joints 183 per circumference is one.
  • the present embodiment it is possible to further suppress the inhibition of the gap flow F1 with respect to the first embodiment. That is, an increase in pressure loss can be suppressed.
  • the joint portion 183 is provided in a dot shape, but in this embodiment, the joint portion 183 is provided in a line shape as shown in FIGS.
  • the joint portion 183 extends in a spiral shape along each of the multiple spiral groove portions 182b.
  • the joint portion 183 extends along each of the multiple spiral groove portions 182b.
  • the spiral groove 182b extends along one spiral groove 182b.
  • the protrusion 182d extends along each of the multiple spiral groove portions 182b, it is possible to further suppress the gap flow F1 from being inhibited, and to reduce the pressure loss. The rise can be further suppressed.
  • the ridge portion 182c of the inner tube 182 is provided with a projection 182d that is the starting point of brazing joint, but in this embodiment, as shown in FIG. 12, on the inner surface of the outer tube 181, A protrusion 181a is provided as a starting point for brazing and joining.
  • the protrusion 181 a is provided on the inner surface of the outer tube 181 in a dot shape or a linear shape extending in the axial direction of the outer tube 181.
  • the protrusion 182d protrudes from the inner surface of the outer tube 181.
  • the portion of the outer tube 181 where the protrusion 181a is formed is thicker than the other portions by the height of the protrusion 181a.
  • the joint portion 183 is provided in a dot shape, like the protrusion portion 181a, or in a linear shape extending in the axial direction of the outer tube 181.
  • the joint portion 183 is formed between the protruding portion 181a of the outer tube 181 and the outer surface of the inner tube 182, heat is reliably transmitted from the outer tube 181 to the inner tube 182 via the joint portion 183. It is possible to reliably increase the amount of heat exchange.
  • the protrusions 181a are provided in the form of dots or lines on the inner surface of the outer tube 181, but in this embodiment, as shown in FIGS. It is formed by partially contracting 181.
  • the protrusions 181 a are provided in a circumferential shape perpendicular to the axial direction of the outer tube 181.
  • the protrusion 181a is provided in a circumferential shape perpendicular to the axial direction of the outer tube 181, but in this embodiment, the protrusion 181a is a peak 182c of the inner tube 182 as shown in FIG. Are provided in a spiral shape.
  • the protrusion 181a is formed by partially contracting the outer tube 181, but in this embodiment, as shown in FIG. It is formed by contracting the tube 181 as a whole.
  • the outer tube 181 is caulked to the inner tube 182 by making the outer tube 181 contract as a whole. Thereafter, the outer tube 181 and the inner tube 182 are brazed and joined to form the double tube 18.
  • the outer surface of the inner pipe 182 and the inner surface of the outer pipe 181 are metallurgically joined at the joint portion 183 as in the above embodiment, the high-temperature refrigerant in the inner-outer flow path 18a Heat is transmitted in the order of the outer tube 181 ⁇ the joint 183 ⁇ the inner tube 182. Therefore, it is possible to increase the heat exchange area by increasing the heat transfer area.
  • the protruding portion 181a is formed by plastically deforming the outer tube 181 so as to be recessed from the outside to the inside.
  • the protrusion 181a is formed by recessing the outer tube 181 in a perfect circle.
  • the protrusion 181a is formed by recessing the outer tube 181 in a rectangular shape.
  • the protrusion 181a is formed by recessing the outer tube 181 in a straight line.
  • the protrusion 181a extends in a direction intersecting with the spiral groove 182b and has a closed annular shape.
  • the protrusion 181a is formed by a part of the outer tube 181 being recessed from the outside to the inside. According to this, heat can be reliably transmitted from the outer tube 181 to the inner tube 182 via the joint portion 183, and the heat exchange amount can be reliably increased.
  • the protrusion 181a is formed by recessing the outer tube 181 from the outside to the inside.
  • the protrusion 181a is formed by the outer tube 181 as shown in FIG. Is formed by burring.
  • annular protrusion 181a is formed by making a hole in the outer tube 181 and then plastically deforming the edge of the hole and bending it from the outside to the inside of the outer tube 181.
  • the joint portion 183 is formed in a plug shape on the entire inner side of the annular protrusion 181a.
  • the protrusion 181a is formed in a circular shape by burring the outer tube 181 into a circular shape.
  • the protrusion 181a is formed in a rectangular ring shape by burring the outer tube 181 into a rectangular shape.
  • the protrusion 181a is formed by burring in a straight line extending in the axial direction of the outer tube 181.
  • the annular projection 181a is brought into contact with the inner pipe 182, and brazing is performed after applying a brazing material and a flux. .
  • the brazing material is applied so as to spread over the entire inside of the annular protrusion 181a.
  • the joint 183 is formed in a plug shape on the entire inside of the annular protrusion 181a.
  • the joint 183 is an annular protrusion.
  • the joint 183 is formed in a circular shape at the tip of the projecting portion 181a having a circular shape.
  • the joint 183 is formed in a rectangular ring shape at the tip of a rectangular ring-shaped protrusion 181a.
  • the joint 183 is formed in an elliptical ring shape at the tip of an elliptical ring-shaped protrusion 181a.
  • the protrusion 181a of the outer tube 181 is joined to the inner tube 182, but in this embodiment, the outer tube 181 and the inner tube 182 are interposed members as shown in FIG. It is joined via 188.
  • the outer pipe 181 and the inner pipe 182 are joined via the interposition member 188. To do.
  • a cylindrical interposition member 188 is inserted into the hole, and then the outer tube 181 and the inner tube 182 are joined via the interposition member 188. To do.
  • a rectangular hole is formed in the outer tube 181, a rectangular columnar interposed member 188 is inserted into the hole, and then the outer tube 181 and the inner tube 182 are joined via the interposed member 188. .
  • an elliptical columnar interposed member 188 is inserted into the hole, and then the outer tube 181 and the inner tube 182 are joined via the interposed member 188.
  • the circumferential groove 182a and the spiral groove 182b are provided on the outer surface of the inner tube 182, but in this embodiment, the spiral groove 182b is formed on the outer surface of the inner tube 182 as shown in FIG. Instead, many circumferential groove portions 182a are provided at substantially equal intervals.
  • the peak portion 182c is a peak-shaped portion extending in the circumferential direction of the inner tube 182 between the circumferential groove portions 182a.
  • the circumferential groove part 182a and the peak part 182c form a wavy wall in the inner tube 182.
  • the circumferential groove part 182a and the peak part 182c form a bellows-like (in other words, bowl-like) wall in the inner pipe 182.
  • the inner tube 182 and the outer tube 181 are partially metal-bonded at a joint 183.
  • the joint portion 183 metal-joins a part of the ridge portion 182c of the inner tube 182 and the inner surface of the outer tube 181.
  • the joint portion 183 is provided in a dot shape.
  • the number of the joint portions 183 per one peak portion 182c is three.
  • the three joints 183 are provided at substantially equal intervals in the circumferential direction of the inner tube 182. That is, when viewed from the axial direction of the inner pipe 182, the joints 183 are provided at intervals of about 120 degrees.
  • the joint 183 is formed in the vicinity of the tip of a projection (not shown) of the inner tube 182.
  • the protrusion protrudes from the ridge 182 c of the inner tube 182 toward the outer tube 181.
  • the heat transfer area between the inner tube 182 and the outer tube 181 can be increased by the large number of circumferential groove portions 182a.
  • the straight groove portion 182e is a groove extending in the axial direction of the inner tube 182. In this example, three straight groove portions 182e are provided.
  • the three straight groove portions 182e are provided at substantially equal intervals in the circumferential direction of the inner tube 182. That is, when viewed from the axial direction of the inner tube 182, the straight groove portions 182e are provided at intervals of about 120 degrees.
  • the peak portion 182c is a peak-shaped portion extending in the axial direction of the inner tube 182 between the linear groove portions 182e.
  • the inner tube 182 and the outer tube 181 are partially metal-bonded at a joint 183.
  • the joint portion 183 metal-joins a part of the ridge portion 182c of the inner tube 182 and the inner surface of the outer tube 181.
  • the joint portion 183 is provided in a dot shape.
  • the joints 183 are aligned in a line in the axial direction of the inner pipe 182 at each ridge 182c.
  • the joint portions 183 are provided at substantially equal intervals in the circumferential direction of the inner tube 182. That is, when viewed from the axial direction of the inner pipe 182, the joints 183 are provided at 120 degree intervals.
  • the joint 183 is formed in the vicinity of the tip of a projection (not shown) of the inner tube 182.
  • the protrusion protrudes from the ridge 182 c of the inner tube 182 toward the outer tube 181.
  • a large number of circular grooves 182a are provided on the outer surface of the inner tube 182.
  • a plurality of linear grooves 182e are provided on the outer surface of the inner tube 182.
  • a large number of circular grooves 182a are provided on the outer surface of the inner tube 182, and a plurality of linear grooves 182e are provided.
  • the straight groove portion 182e is a groove extending in the axial direction of the inner tube 182. In this example, three straight groove portions 182e are provided.
  • the three straight groove portions 182e are provided at substantially equal intervals in the circumferential direction of the inner tube 182. That is, when viewed from the axial direction of the inner tube 182, the straight groove portions 182e are provided at intervals of about 120 degrees.
  • the peak portion 182c is a peak-shaped portion extending in the circumferential direction of the inner tube 182 and surrounded by the circumferential groove portion 182a and the straight groove portion 182e.
  • the inner tube 182 and the outer tube 181 are partially metal-bonded at a joint 183.
  • the joint portion 183 metal-joins a part of the ridge portion 182c of the inner tube 182 and the inner surface of the outer tube 181.
  • the joint portion 183 is provided in a dot shape. One joining portion 183 is provided at each peak portion 182c. The joint portions 183 are provided at substantially equal intervals in the circumferential direction of the inner tube 182. That is, when viewed from the axial direction of the inner pipe 182, the joints 183 are provided at intervals of about 120 degrees.
  • the joint 183 is formed in the vicinity of the tip of a projection (not shown) of the inner tube 182.
  • the protrusion protrudes from the ridge 182 c of the inner tube 182 toward the outer tube 181.
  • the inner tube 182 and the outer tube 181 are joined by brazing, but the inner tube 182 and the outer tube 181 are joined by metallurgical joining (in other words, material joining) other than brazing joining. It may be.
  • the joining between the inner tube 182 and the outer tube 181 may be welding, frictional pressure welding, or the like.
  • the spiral groove portion 182b is not limited to three, and may be one, two, four, or the like, or may be provided such that a plurality of spiral groove portions 182b intersect each other.
  • the outer tube 181 and the inner tube 182 are made of aluminum, but the present invention is not limited to this, and may be made of iron or copper.
  • the double pipe 18 disposed in the refrigeration cycle apparatus 11 is applied to the vehicle air conditioner 10.
  • the present invention is not limited to this and is applied to a stationary air conditioner such as a home air conditioner. You may do it.
  • a chlorofluorocarbon refrigerant is used as the refrigerant of the refrigeration cycle apparatus 11, and the high-pressure side refrigerant pressure constitutes a subcritical refrigeration cycle that does not exceed the critical pressure of the refrigerant, but carbon dioxide is used as the refrigerant,
  • a supercritical refrigeration cycle in which the high-pressure side refrigerant pressure is equal to or higher than the critical pressure of the refrigerant may be configured.
  • the fluid that exchanges heat with the double pipe 18 is the refrigerant of the refrigeration cycle apparatus 11, but the double pipe 18 can exchange heat between various fluids other than the refrigerant.

Abstract

二重管式熱交換器は、外管(181)と、内管(182)と、接合部(183)と、を備える。外管は二重管の外側の管を形成する。内管は二重管の内側の管を形成する。接合部は、外管の内表面と内管の外表面とを冶金的に接合している。外管および内管は金属で形成されている。内管の内部には、内側流体が流れる内側流路(18b)が形成されている。外管と内管との間には、内側流体に対して温度差を有する内外間流体が流れる内外間流路(18a)が形成されている。これによると、外管から内管へ接合部を介して熱を伝えて熱交換量を増大させることができる。

Description

二重管式熱交換器 関連出願の相互参照
 本出願は、2018年1月31日に出願された日本特許出願番号2018-014556号に基づくもので、ここにその記載内容を援用する。
 本開示は、内管と外管とを有する二重管式熱交換器に関する。
 従来、特許文献1、2には、内管と外管とを有する二重管式熱交換器が記載されている。これらの従来技術では、内管の内側に第1流路が形成され、内管と外管との間に第2流路が形成されている。そして、第1流路を流れる流体と、第2流路を流れる流体とが内管を介して熱交換する。
 このような二重管式熱交換器は、体格がコンパクトになることから車両への搭載性に優れている。
 特許文献2の従来技術では、内管にコルゲート状フィンが挿入されている。これにより、熱伝達率と伝熱面積を増大させて熱交換量を増大させている。
特開2006-162241号公報 特開2014-224670号公報
 特許文献2の従来技術では、内管にコルゲート状フィンが挿入されているので、流路面積が狭小化されて圧力損失が増大してしまうおそれがある。
 そのため、この二重管式熱交換器を冷凍サイクルに適用した場合、圧縮機の吸入冷媒密度が低下してしまい、サイクル性能が向上しない懸念がある。
 本開示は上記点に鑑みて、二重管式熱交換器において、内管の内側を流れる流体の圧力損失の増大を抑制しつつ熱交換量を増大させることを目的とする。
 二重管式熱交換器は、外管と、内管と、接合部と、を備える。外管は二重管の外側の管を形成する。内管は二重管の内側の管を形成する。接合部は、外管の内表面と内管の外表面とを冶金的に接合している。外管および内管は金属で形成されている。内管の内部には、内側流体が流れる内側流路が形成されている。外管と内管との間には、内側流体に対して温度差を有する内外間流体が流れる内外間流路が形成されている。
 これによると、外管から内管へ接合部を介して熱を伝えて熱交換量を増大させることができる。
 接合部は外管の内表面と内管の外表面とを冶金的に接合しているので接触熱抵抗が小さい。そのため、従来は伝熱に寄与しない外管を伝熱面として活用することが可能になり、外管から内管へ熱を有効に伝えることができる。即ち、内側流体の圧力損失の増大を抑制しつつ熱交換量を増大させることができる。
第1実施形態における冷凍サイクル装置の全体構成図である。 第1実施形態における二重管の外観図である。 図2のIII部に対応する二重管の断面図である。 図3のIV-IV断面図である。 図4のV部を示す拡大断面図である。 第2実施形態における二重管の断面図である。 図6のVII-VII断面図である。 第3実施形態における二重管の断面図である。 図8のIX-IX断面図である。 第4実施形態における二重管の断面図である。 図10のXI-XI断面図である。 第5実施形態における二重管の一部を示す断面図である。 第6実施形態における二重管の一部を示す断面図である。 第6実施形態における二重管の一部を示す側面図である。 第7実施形態における二重管の一部を示す側面図である。 第8実施形態における二重管の一部を示す側面図である。 第9実施形態における二重管の一部を示す断面図である。 第9実施形態の第1実施例における二重管の一部を示す側面図である。 第9実施形態の第2実施例における二重管の一部を示す側面図である。 第9実施形態の第3実施例における二重管の一部を示す側面図である。 第10実施形態における二重管の一部を示す断面図である。 第10実施形態の第1実施例における二重管の一部を示す側面図である。 第10実施形態の第2実施例における二重管の一部を示す側面図である。 第10実施形態の第3実施例における二重管の一部を示す側面図である。 第11実施形態における二重管の一部を示す断面図である。 第11実施形態の第1実施例における二重管の一部を示す側面図である。 第11実施形態の第2実施例における二重管の一部を示す側面図である。 第11実施形態の第3実施例における二重管の一部を示す側面図である。 第12実施形態における二重管の一部を示す断面図である。 第12実施形態の第1実施例における二重管の一部を示す側面図である。 第12実施形態の第2実施例における二重管の一部を示す側面図である。 第12実施形態の第3実施例における二重管の一部を示す側面図である。 第13実施形態における二重管の断面図である。 図33のXXXIV-XXXIV断面図である。 第14実施形態における二重管の断面図である。 図35のXXXVI-XXXVI断面図である。 第15実施形態における二重管の断面図である。 図37のXXXVIII-XXXVIII断面図である。
 以下に、図面を参照しながら本開示を実施するための複数の形態を説明する。各形態において先行する形態で説明した事項に対応する部分には同一の参照符号を付して重複する説明を省略する場合がある。各形態において構成の一部のみを説明している場合は、構成の他の部分については先行して説明した他の形態を適用することができる。各実施形態で具体的に組合せが可能であることを明示している部分同士の組合せばかりではなく、特に組合せに支障が生じなければ、明示してなくとも実施形態同士を部分的に組み合せることも可能である。
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 (第1実施形態)
 図1に示す車両用空調装置10は冷凍サイクル装置11を有している。冷凍サイクル装置11には二重管式熱交換器が適用されている。冷凍サイクル装置11は、圧縮機12、凝縮器13、膨張弁14および蒸発器15を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置11では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機12および凝縮器13は車両のエンジンルーム1に配置されている。膨張弁14および蒸発器15は車両の車室2に配置されている。車両のエンジンルーム1および車室2は隔壁3によって区画されている。
 圧縮機12、凝縮器13、膨張弁14および蒸発器15は、冷媒の流れにおいて互いに直列に配置されている。
 圧縮機12は、冷凍サイクル装置11の冷媒を吸入して圧縮して吐出する。圧縮機12は、ベルト駆動式圧縮機または電動圧縮機である。ベルト駆動式圧縮機は、エンジン4の駆動力がクランクプーリ5、駆動ベルト6およびプーリ7を介して伝達されることによって駆動される圧縮機である。電動圧縮機は、電池から供給される電力によって駆動される電動圧縮機である。圧縮機12はエンジンルーム1内に配置されている。
 凝縮器13は、圧縮機12から吐出された高圧側冷媒と外気とを熱交換させることによって高圧側冷媒を外気に放熱させて高圧側冷媒を凝縮させる放熱器である。凝縮器13はエンジンルーム1内の最前部に配置されている。凝縮器13で凝縮された液相冷媒は高圧冷媒配管16を介して膨張弁14に流入する。
 膨張弁14は、高圧冷媒配管16から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁14は感温部を有している。感温部は、蒸発器15出口側冷媒の温度および圧力に基づいて蒸発器15出口側冷媒の過熱度を検出する。膨張弁14は、蒸発器15出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。膨張弁14は、電気的機構によって絞り通路面積を調節する電気式膨張弁であってもよい。
 蒸発器15は、膨張弁14を流出した低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させるとともに車室内へ送風される空気を冷却する空気冷却用熱交換器である。蒸発器15で蒸発した気相冷媒は低圧冷媒配管17を介して圧縮機12に吸入されて圧縮される。
 蒸発器15は、室内空調ユニット20のケーシング21に収容されている。室内空調ユニット20は、車室2の前部にて、図示しない計器盤の内側に配置されている。ケーシング21は、空気通路を形成する空気通路形成部材である。
 ケーシング21内の空気通路において、蒸発器15の空気流れ下流側には、ヒータコア22が配置されている。ヒータコア22は、エンジン冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。
 ケーシング21には、図示しない内外気切替箱と室内送風機23とが配置されている。内外気切替箱は、ケーシング21内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機23は、内外気切替箱を通してケーシング21内の空気通路に導入された内気および外気を吸入して送風する。
 ケーシング21内の空気通路において蒸発器15とヒータコア22との間には、エアミックスドア24が配置されている。エアミックスドア24は、蒸発器15を通過した冷風のうちヒータコア22に流入する冷風とヒータコア22をバイパスして流れる冷風との風量割合を調整する。
 エアミックスドア24は、ケーシング21に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア24の開度位置を調整することによって、ケーシング21から車室内に吹き出される空調風の温度を所望温度に調整できる。
 ケーシング21の空気流れ最下流部には吹出開口部25が形成されている。図1では図示を省略しているが、吹出開口部25は複数個形成されている。ケーシング21にて温度調整された空調風は、これらの吹出開口部25を介して、空調対象空間である車室内へ吹き出される。
 複数個の吹出開口部25の空気流れ上流側には、図示しない吹出口モード切替ドアが配置されている。吹出口モード切替ドアは、吹出口モードを切り替える。吹出口モードとしては、フェイスモード、バイレベルモード、フットモード等がある。
 高圧冷媒配管16の少なくとも一部および低圧冷媒配管17の少なくとも一部は、図2および図3に示す二重管18で構成されている。二重管18は二重管式熱交換器である。二重管18は、全長が500~1200mm程度の長さを有しており、エンジンルーム1内に配置されている。
 二重管18に対する外気からの熱授受を遮断するために、二重管18は断熱材で覆われる場合がある。
 二重管18は、外管181と内管182とを備え、外管181の内部を内管182が貫通するように配設されている。外管181は、例えばアルミニウム製のφ22mm管である。φ22mm管は、外径が22mm、内径が19.6mmの管である。内管182は、外径が19.1mmの管である。
 外管181の長手方向両端部は、内管182と組み合わされた後に、その全周が径方向内側へ向けて縮管されて、内管182の円周表面に気密あるいは液密となるようにろう付けにより接合されている。
 これにより、外管181と内管182との間には空間が形成され、この空間が内外間流路18aとなるようにしている。内管182の内部空間は、内側流路18bとなっている。
 外管181の長手方向両端部近傍の円周壁面には、リキッド配管184、185がろう付けにて接合されている。リキッド配管184、185は内外間流路18aと連通している。
 一方のリキッド配管184の先端部には、凝縮器13の冷媒出口側に接続されるジョイント184aが設けられている。他方のリキッド配管185の先端部には、膨張弁14の冷媒入口側に接続されるジョイント185aが設けられている。凝縮器13から流出した高温高圧の冷媒は、内外間流路18aを流れて膨張弁14に流入する。
 ジョイント184a、185aは、凝縮器13や膨張弁14に直接接続される場合と、図示しない接続配管を介して凝縮器13や膨張弁14に接続される場合とがある。
 内管182の一端部にはサクション配管186が設けられている。サクション配管186は低圧冷媒配管17をなす配管である。サクション配管186の先端部には、蒸発器15の冷媒出口側に接続されるジョイント186aが設けられている。内管182の他端部にはサクション配管187が設けられている。サクション配管187は低圧冷媒配管17をなす配管である。
 サクション配管187の先端部には、圧縮機12の冷媒吸入側に接続されるジョイント187aが設けられている。蒸発器15から流出した低温低圧の冷媒は、内側流路18bを流れて圧縮機12に吸入される。ジョイント187aは、通常、ホース配管を介して圧縮機12に接続される。
 内外間流路18aおよび内側流路18bは、冷媒が互いに並行に流れる冷媒流路である。内外間流路18aおよび内側流路18bにおける冷媒の流れ方向は、互いに逆方向になっている。
 内外間流路18aは第1流路部であり、内側流路18bは第2流路部である。内外間流路18aを流れる冷媒は内外間流体である。内側流路18bを流れる冷媒は内側流体である。
 内管182は、例えばアルミニウム製の3/4インチ管としている。3/4インチ管は、外径が19.1mm、内径が16.7mmの管である。このように、内外間流路18aを確保しつつ、内管182の外径をできるだけ外管181に近いサイズを選定することによって内管182の表面積を大きくしている。
 内管182の外表面には、周回溝部182aおよび螺旋溝部182bが設けられている。
 周回溝部182aは、内管182の周方向に延びる溝であり、外管181に対するリキッド配管184、185の接続部に対応して2つ設けられている。
 螺旋溝部182bは、2つの周回溝部182aの間で内管182の長手方向に螺旋状に延びる多条(本例では3条)の溝であり、2つの周回溝部182aと接続されている。
 図4に示すように、螺旋溝部182b同士の間には峰部182cが形成されている。峰部182cは、2つの周回溝部182aの間で内管182の長手方向に螺旋状に延びる多条(本例では3条)の峰状の部位である。
 峰部182cでは、内管182の外径寸法がほぼ保持されている。2つの周回溝部182aおよび螺旋溝部182bによって、内外間流路18aが拡大されている。
 螺旋溝部182bにおける溝深さは、内管182の外径寸法の15%以下の範囲で設定されている。螺旋溝部182bにおける溝深さとは、内管182のうち螺旋溝部182bがない部位と螺旋溝部182bがある部位との外半径の差のことである。螺旋溝部182bの全長は、150~800mmの範囲で設定されている。
 内管182の2つの周回溝部182aおよび螺旋溝部182bは、例えば溝付け工具によって形成されている。
 螺旋溝部182bおよび峰部182cは、内管182に波状の壁を形成している。螺旋溝部182bおよび峰部182cは、内管182に蛇腹状(換言すれば襞状)の壁を形成している。
 図5に示すように、内管182の峰部182cの一部に突起部182dが設けられている。突起部182dは、内管182の峰部182cから外管181に向かって突出している。内管182のうち突起部182dが形成されている部位は、突起部182dの高さの分だけ他の部位よりも肉厚になっている。すなわち、突起部182dは中実になっている。
 突起部182dは、内管182の峰部182cに点状に設けられている。峰部182cの1周分あたりの突起部182dの個数は3個になっている。
 3個の突起部182dは、峰部182cの長手方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各突起部182dは約120度間隔で設けられている。
 突起部182dの先端は外管181の内面に接触している。すなわち、内管182は、突起部182d以外では外管181の内面に接触しておらず、外管181の内面に対して離間している。
 突起部182dの先端は外管181の内面とろう付け接合されている。すなわち、内管182は、突起部182d以外では外管181とろう付け接合されていない。すなわち、突起部182dの先端近傍に、内管182と外管181とを金属接合する接合部183が形成されており、内管182および外管181は接合部183にて部分的に金属接合されている。具体的には、内管182の峰部182cは外管181と部分的に金属接合されている。
 接合部183は、外管181の内表面と内管182の外表面とを冶金的に接合している。換言すれば、接合部183は、外管181の内表面と内管182の外表面とを材質的に接合している。
 接合部183は、突起部182dと同様に、内管182の峰部182cに点状に設けられている。峰部182cの1周分あたりの接合部183の個数は3個になっている。
 3個の接合部183は、峰部182cの長手方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各接合部183は約120度間隔で設けられている。
 内外間流路18aに生じる冷媒流れとして、図3の実線矢印に示す隙間流れF1と図3の一点鎖線矢印に示す溝内流れF2とがある。隙間流れF1は、内管182の外面と外管181の内面との間の隙間に生じる冷媒流れである。溝内流れF2は、螺旋溝部182bに生じる冷媒流れである。
 隙間流れF1は、外管181および内管182の軸方向に沿う第1流れである。溝内流れF2は、外管181および内管182の周方向の速度成分を有する第2流れである。溝内流れF2における外管181および内管182の周方向の速度成分は、隙間流れF1における外管181および内管182の周方向の速度成分よりも大きくなっている。
 次に、二重管18の製造方法の概要を説明する。まず、内管182を外管181に挿入する。このとき、挿入性を考慮して、内管182の突起部182dと外管181の内面との間に最低限のクリアランスが設定されている。
 内管182を外管181に挿入した後、内管182を縮管させてかしめるなどして内管182の突起部182dと外管181の内面とを接触させる。
 この状態で、ろう付け炉や誘導加熱装置等を用いてろう材を溶融させてろう付けする。これにより、突起部182dを起点としてろう材が溶融してフィレットが形成され、内管182の突起部182dと外管181の内面とが金属接合される。
 次に、上記構成における作動を説明する。圧縮機12が駆動されると、圧縮機12は蒸発器15側から冷媒を吸入して圧縮した後、高温の高圧冷媒として凝縮器13側に吐出する。高圧冷媒は凝縮器13において、冷却されて凝縮液化される。ここでの冷媒は、ほぼ液相状態である。凝縮液化された冷媒は、高圧冷媒配管16を流通して、膨張弁14で減圧膨張され、蒸発器15で蒸発される。ここでの冷媒は、過熱度0~3℃のほぼ飽和ガス状態である。蒸発器15では、冷媒の蒸発に伴って空調空気が冷却される。そして、蒸発器15で蒸発した飽和ガス冷媒は、低温の低圧冷媒として低圧冷媒配管17を流通して、圧縮機12に戻る。
 このとき、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とでは温度差があるため、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とが二重管18で熱交換され、高圧冷媒が冷却され低圧冷媒が加熱されることになる。
 すなわち、凝縮器13から流出した液相冷媒は、二重管18で過冷却されて低温化が促進される。蒸発器15から流出した飽和ガス冷媒は、二重管18で加熱されて過熱度を持ったガス冷媒となる。これにより、冷凍サイクル装置11の性能が向上する。
 さらに、本実施形態の二重管18では、内管182の外表面と外管181の内表面が接合部183にて冶金的に接合されているので、図4の矢印に示すように、内外間流路18aの高温冷媒の熱が外管181→接合部183→内管182の順番に熱が伝わる。そのため、伝熱面積を増大させて熱交換量を向上させることができる。
 内管182と外管181とを冶金的に接合することに伴って隙間流れF1が阻害されるとともに冷媒が通過する流路面積が狭くなるので、内外間流路18aの圧力損失が増大してしまう。内外間流路18aの圧力損失が大きくなりすぎると、流路を通過する液冷媒が二相状態となり、膨張弁にて所定の流量が流れなくなることが懸念される。
 このような懸念を考慮して、本実施形態では、内管182の峰部182cが外管181と部分的に接合されているので、隙間流れF1が阻害されることを極力抑制し、液冷媒が二相状態とならない程度の圧力損失の増大に抑えることができる。
 本実施形態では、接合部183は、外管181の内表面と内管182の外表面とを冶金的に接合しているので、外管181から内管182へ接合部183を介して熱を伝えて熱交換量を増大させることができる。
 接合部183は外管181の内表面と内管182の外表面とを冶金的に接合しているので熱接触抵抗が小さい。そのため、外管181を伝熱面として活用して、外管181から内管182へ熱を有効に伝えることができるので、圧力損失の増大を極力抑制できる。
 本実施形態では、接合部183は、軸方向流れF1および周方向流れF2が維持されるように形成されているので、圧力損失の増大を抑制できる。
 本実施形態では、接合部183は、内管182の峰部182cと外管181の内表面とを冶金的に接合しているので、周方向流れF2を確実に維持して圧力損失の増大を抑制できる。
 (第2実施形態)
 上記第1実施形態では、峰部182cの1周分あたりの接合部183の個数は3個になっているが、本実施形態では、図6~図7に示すように、峰部182cの1周分あたりの接合部183の個数は1個になっている。
 本実施形態によると、上記第1実施形態に対して隙間流れF1が阻害されることをさらに抑制できる。即ち、圧力損失の上昇を抑制できる。
 (第3実施形態)
 上記第1実施形態では、接合部183は点状に設けられているが、本実施形態では、図8~9に示すように、接合部183は線状に設けられている。接合部183は、多条の螺旋溝部182bのそれぞれに沿って螺旋状に延びている。
 (第4実施形態)
 上記第3実施形態では、接合部183は、多条の螺旋溝部182bのそれぞれに沿って延びているが、本実施形態では、図10~11に示すように、接合部183は、多条の螺旋溝部182bのうち1つの螺旋溝部182bに沿って延びている。
 本実施形態によると、突起部182dが多条の螺旋溝部182bのそれぞれに沿って延びている上記第3実施形態と比較して、隙間流れF1が阻害されることを一層抑制でき、圧力損失の上昇を一層抑制できる。
 (第5実施形態)
 上記実施形態では、内管182の峰部182cに、ろう付け接合の起点となる突起部182dが設けられているが、本実施形態では、図12に示すように、外管181の内面に、ろう付け接合の起点となる突起部181aが設けられている。突起部181aは、外管181の内面に点状、または外管181の軸方向に延びる線状に設けられている。
 突起部182dは、外管181の内面から突出している。外管181のうち突起部181aが形成されている部位は、突起部181aの高さの分だけ他の部位よりも肉厚になっている。接合部183は、突起部181aと同様に点状、または外管181の軸方向に延びる線状に設けられている。
 本実施形態では、外管181の突起部181aと内管182の外表面との間に接合部183が形成されているので、外管181から内管182へ接合部183を介して熱を確実に伝えて熱交換量を確実に増大させることができる。
 (第6実施形態)
 上記第5実施形態では、外管181の内面に突起部181aが点状または線状に設けられているが、本実施形態では、図13~14に示すように、突起部181aは、外管181を部分的に縮管させることによって形成されている。
 具体的には、図14に示すように、突起部181aが外管181の軸方向に垂直な周状に設けられている。
 外管181を部分的に縮管させることによって外管181の一部が内管182にかしめられて接触する。その後、外管181と内管182とがろう付け接合されることによって二重管18が形成される。
 (第7実施形態)
 上記実施形態では、突起部181aが外管181の軸方向に垂直な周状に設けられているが、本実施形態では、図15に示すように、突起部181aが内管182の峰部182cに対応した螺旋状に設けられている。
 (第8実施形態)
 上記第6~7実施形態では、突起部181aは、外管181を部分的に縮管させることによって形成されているが、本実施形態では、図16に示すように、突起部181aは、外管181を全体的に縮管させることによって形成されている。
 外管181を全体的に縮管させることによって外管181が内管182にかしめられて接触する。その後、外管181と内管182とがろう付け接合されることによって二重管18が形成される。
 本実施形態においても、上記実施形態と同様に、内管182の外表面と外管181の内表面が接合部183にて冶金的に接合されているので、内外間流路18aの高温冷媒の熱が外管181→接合部183→内管182の順番に熱が伝わる。そのため、伝熱面積を増大させて熱交換量を向上させることができる。
 (第9実施形態)
 上記第5実施形態では、外管181のうち突起部181aが形成されている部位は、突起部181aの高さの分だけ他の部位よりも肉厚になっているが、本実施形態では、図17に示すように外管181のうち突起部181aが形成されている部位は、他の部位とほぼ同じ肉厚になっている。
 突起部181aは、外管181を塑性変形させて外側から内側に窪ませることによって形成されている。
 図18の実施例では、突起部181aは、外管181を正円状に窪ませることによって形成されている。
 図19の実施例では、突起部181aは、外管181を矩形状に窪ませることによって形成されている。
 図20の実施例では、突起部181aは、外管181を直線状に窪ませることによって形成されている。突起部181aは、螺旋溝部182bと交差する方向に延びていて、閉じた環状になっている。
 本実施形態では、突起部181aは、外管181の一部が外側から内側に向かって窪んでいることによって形成されている。これによると、外管181から内管182へ接合部183を介して熱を確実に伝えて熱交換量を確実に増大させることができる。
 (第10実施形態)
 上記第9実施形態では、突起部181aは、外管181を外側から内側に窪ませることによって形成されているが、本実施形態では、図21に示すように、突起部181aは、外管181をバーリング加工することによって形成されている。
 具体的には、外管181に孔を開けた後、孔の縁部を塑性変形させて外管181の外側から内側に向かって曲げることによって、環状の突起部181aが形成されている。
 接合部183は、環状の突起部181aの内側全体に栓状に形成されている。
 図22の実施例では、突起部181aは、外管181を正円形状にバーリング加工することによって正円環状に形成されている。
 図23の実施例では、突起部181aは、外管181を矩形状にバーリング加工することによって矩形環状に形成されている。
 図24の実施例では、突起部181aは、外管181の軸方向に延びる直線状にバーリング加工することによって形成されている。
 本実施形態の二重管18の製造方法としては、外管181に内管182を挿入した後、環状の突起部181aを内管182に接触させ、ろう材とフラックスの塗布を経てろう付けする。ろう材は、環状の突起部181a内側全体に行き渡るように塗布される。
 本実施形態においても、上記第9実施形態と同様の作用効果を奏することができる。
 (第11実施形態)
 上記第10実施形態では、接合部183は、環状の突起部181aの内側全体に栓状に形成されているが、本実施形態では、図25に示すように、接合部183は、環状の突起部181aの先端に環状に形成されている
 図26の実施例では、接合部183は、正円環状の突起部181aの先端に正円環状に形成されている。
 図27の実施例では、接合部183は、矩形環状の突起部181aの先端に矩形環状に形成されている。
 図28の実施例では、接合部183は、楕円環状の突起部181aの先端に楕円環状に形成されている。
 本実施形態においても、上記第10実施形態と同様の作用効果を奏することができる。
 (第12実施形態)
 上記第5~11実施形態では、外管181の突起部181aが内管182に接合されているが、本実施形態では、図29に示すように、外管181と内管182とが介在部材188を介して接合されている。
 本実施形態の二重管18の製造方法としては、外管181に孔を開けた後、孔に介在部材188を挿入した後、外管181と内管182とを介在部材188を介して接合する。
 図30の実施例では、外管181に正円形状の孔を開けた後、孔に円柱状の介在部材188を挿入した後、外管181と内管182とを介在部材188を介して接合する。
 図31の実施例では、外管181に矩形状の孔を開けた後、孔に矩形柱状の介在部材188を挿入した後、外管181と内管182とを介在部材188を介して接合する。
 図32の実施例では、外管181に楕円形状の孔を開けた後、孔に楕円柱状の介在部材188を挿入した後、外管181と内管182とを介在部材188を介して接合する。
 本実施形態においても、上記第5~11実施形態と同様の作用効果を奏することができる。
 (第13実施形態)
 上記実施形態では、内管182の外表面に周回溝部182aおよび螺旋溝部182bが設けられているが、本実施形態では、図33に示すように、内管182の外表面に、螺旋溝部182bの代わりに周回溝部182aが多数、ほぼ等間隔で設けられている。
 峰部182cは、周回溝部182a同士の間で、内管182の周方向に延びる峰状の部位である。周回溝部182aおよび峰部182cは、内管182に波状の壁を形成している。周回溝部182aおよび峰部182cは、内管182に蛇腹状(換言すれば襞状)の壁を形成している。
 図34に示すように、内管182および外管181は接合部183にて部分的に金属接合されている。接合部183は内管182の峰部182cの一部と外管181の内面とを金属接合している。接合部183は点状に設けられている。1つの峰部182cあたりの接合部183の個数は3個になっている。
 3個の接合部183は、内管182の周方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各接合部183は約120度間隔で設けられている。
 接合部183は、内管182の図示しない突起部の先端近傍に形成されている。突起部は、内管182の峰部182cから外管181に向かって突出している。
 本実施形態によると、多数の周回溝部182aによって内管182と外管181との間の伝熱面積を増加させることができる。
 (第14実施形態)
 上記実施形態では、内管182の外表面に多数の周回溝部182aが設けられているが、本実施形態では、図35に示すように、内管182の外表面に、複数の直線溝部182eが設けられている。
 直線溝部182eは、内管182の軸方向に延びる溝である。本例では、直線溝部182eは3個設けられている。
 3個の直線溝部182eは、内管182の周方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各直線溝部182eは約120度間隔で設けられている。
 峰部182cは、直線溝部182e同士の間で、内管182の軸方向に延びる峰状の部位である。
 図36に示すように、内管182および外管181は接合部183にて部分的に金属接合されている。接合部183は内管182の峰部182cの一部と外管181の内面とを金属接合している。
 接合部183は点状に設けられている。各接合部183は、各峰部182cにおいて、内管182の軸方向に1列に整列されている。接合部183は、内管182の周方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各接合部183は120度間隔で設けられている。
 接合部183は、内管182の図示しない突起部の先端近傍に形成されている。突起部は、内管182の峰部182cから外管181に向かって突出している。
 (第15実施形態)
 上記第13実施形態では、内管182の外表面に周回溝部182aが多数設けられており、上記第14実施形態では、内管182の外表面に、複数の直線溝部182eが設けられているが、本実施形態では、図37に示すように、内管182の外表面に、周回溝部182aが多数設けられ、且つ複数の直線溝部182eが設けられている。
 直線溝部182eは、内管182の軸方向に延びる溝である。本例では、直線溝部182eは3個設けられている。
 3個の直線溝部182eは、内管182の周方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各直線溝部182eは約120度間隔で設けられている。
 峰部182cは、周回溝部182aと直線溝部182eとに囲まれた、内管182の周方向に延びる峰状の部位である。
 図38に示すように、内管182および外管181は接合部183にて部分的に金属接合されている。接合部183は内管182の峰部182cの一部と外管181の内面とを金属接合している。
 接合部183は点状に設けられている。接合部183は各峰部182cに1個ずつ設けられている。接合部183は、内管182の周方向において、ほぼ等間隔に設けられている。すなわち、内管182の軸方向から見たときに、各接合部183は約120度間隔で設けられている。
 接合部183は、内管182の図示しない突起部の先端近傍に形成されている。突起部は、内管182の峰部182cから外管181に向かって突出している。
 上記実施形態を適宜組み合わせ可能である。上記実施形態を例えば以下のように種々変形可能である。
 上記実施形態では、内管182と外管181との接合はろう付け接合であるが、内管182と外管181との接合はろう付け接合以外の冶金的接合(換言すれば材質的接合)であってもよい。例えば、内管182と外管181との接合は、溶接や摩擦的圧接等であってもよい。
 螺旋溝部182bは、3条のものに限らず、1条、2条、4条等の溝部としても良いし、複数の螺旋溝部182b同士が交差するように設けられていてもよい。
 上記実施形態では外管181および内管182をアルミニウム製としたが、これに限らず、鉄製や銅製等のものとしても良い。
 上記実施形態では冷凍サイクル装置11に配設される二重管18を車両用空調装置10に適用したものとしたが、これに限らず、家庭用の空調装置等、据置型の空調装置に適用しても良い。
 上記実施形態では冷凍サイクル装置11の冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、冷媒として二酸化炭素を用いて、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 上記実施形態では、二重管18で熱交換させる流体は冷凍サイクル装置11の冷媒であるが、二重管18は、冷媒以外の種々の流体同士を熱交換させることが可能である。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態が本開示に示されているが、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。

Claims (6)

  1.  二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)と、
     前記外管の内表面と前記内管の外表面とを冶金的に接合している接合部(183)と、を備え、
     前記外管および前記内管は金属で形成されており、
     前記内管の内部には、内側流体が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記内側流体に対して温度差を有する内外間流体が流れる内外間流路(18a)が形成されている、二重管式熱交換器。
  2.  前記外管および前記内管は、前記内外間流路において、前記外管および前記内管の軸方向に沿う第1流れ(F1)と、前記外管および前記内管の周方向の速度成分を有する第2流れ(F2)とを生じさせるようになっており、
     前記接合部は、前記第1流れおよび前記第2流れが維持されるように形成されている請求項1に記載の二重管式熱交換器。
  3.  前記内管の外表面には、前記内管の長手方向に螺旋状に延びて前記第2流れを生じさせる溝部(182b)が形成されており、
     前記接合部は、前記内管の外表面のうち前記溝部同士の間にある峰部(182c)と前記外管の内表面とを冶金的に接合している請求項2に記載の二重管式熱交換器。
  4.  前記内管の外表面には、前記外管の内表面に向かって突出した突起部(182d)が形成されており、
     前記突起部と前記外管との間に前記接合部が形成されている請求項1ないし3のいずれか1つに記載の二重管式熱交換器。
  5.  前記外管の内表面には、前記内管の外表面に向かって突出した突起部(181a)が形成されており、
     前記突起部と前記内管の外表面との間に前記接合部が形成されている請求項1ないし3のいずれか1つに記載の二重管式熱交換器。
  6.  前記突起部は、前記外管の一部が外側から内側に向かって窪んでいることによって形成されている請求項5に記載の二重管式熱交換器。
PCT/JP2019/001222 2018-01-31 2019-01-17 二重管式熱交換器 WO2019150968A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018014556A JP2019132509A (ja) 2018-01-31 2018-01-31 二重管式熱交換器
JP2018-014556 2018-01-31

Publications (1)

Publication Number Publication Date
WO2019150968A1 true WO2019150968A1 (ja) 2019-08-08

Family

ID=67478685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001222 WO2019150968A1 (ja) 2018-01-31 2019-01-17 二重管式熱交換器

Country Status (2)

Country Link
JP (1) JP2019132509A (ja)
WO (1) WO2019150968A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220347737A1 (en) * 2018-11-21 2022-11-03 Nichirin Co., Ltd. Method for manufacturing double-pipe heat exchanger

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6824366B2 (ja) * 2018-12-05 2021-02-03 株式会社デンソーエアシステムズ 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
WO2020116271A1 (ja) * 2018-12-05 2020-06-11 株式会社デンソーエアシステムズ 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529115U (ja) * 1975-07-08 1977-01-22
JPH05187787A (ja) * 1992-01-11 1993-07-27 Noritz Corp 熱交換器
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
JP2014055748A (ja) * 2012-09-13 2014-03-27 Calsonic Kansei Corp 内部熱交換器とその製造方法
JP2016095132A (ja) * 2016-02-26 2016-05-26 株式会社ヴァレオジャパン 二重管の製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529115U (ja) * 1975-07-08 1977-01-22
JPH05187787A (ja) * 1992-01-11 1993-07-27 Noritz Corp 熱交換器
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
JP2014055748A (ja) * 2012-09-13 2014-03-27 Calsonic Kansei Corp 内部熱交換器とその製造方法
JP2016095132A (ja) * 2016-02-26 2016-05-26 株式会社ヴァレオジャパン 二重管の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220347737A1 (en) * 2018-11-21 2022-11-03 Nichirin Co., Ltd. Method for manufacturing double-pipe heat exchanger
US11534818B2 (en) * 2018-11-21 2022-12-27 Nichirin Co., Ltd. Method for manufacturing double-pipe heat exchanger

Also Published As

Publication number Publication date
JP2019132509A (ja) 2019-08-08

Similar Documents

Publication Publication Date Title
US7887099B2 (en) Compound tube and method of producing the same
US7886420B2 (en) Method of manufacturing double pipe
US20060096314A1 (en) Double-wall pipe and refrigerant cycle device using the same
JP4350058B2 (ja) 冷媒用二重管
KR101091063B1 (ko) 공기조화시스템용 내장형 열교환기 조립체
WO2019150968A1 (ja) 二重管式熱交換器
JP4350079B2 (ja) 二重管、その製造方法、およびそれを備える冷凍サイクル装置
JP7156413B2 (ja) 内部熱交換器
JP2007298196A (ja) 内部熱交換器付配管およびそれを備える冷凍サイクル装置
KR101797176B1 (ko) 대체냉매적용 공조시스템의 내부 열교환기 이중관 구조
JP2007032949A (ja) 熱交換器
JP2006132905A (ja) 冷凍サイクル
WO2018147063A1 (ja) 冷媒配管および冷凍サイクル装置
JP2014224670A (ja) 二重管式熱交換器
JP2009041798A (ja) 熱交換器
JP5540816B2 (ja) 蒸発器ユニット
JP2003042597A (ja) 一体型熱交換器
WO2012108112A1 (ja) 冷凍サイクル装置
WO2018134975A1 (ja) 熱交換器および冷凍サイクル装置並びに熱交換器の製造方法
JP2014095482A (ja) 二重管式熱交換器
WO2020116271A1 (ja) 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
WO2021241422A1 (ja) 内部熱交換器及び内部熱交換器の製造方法
JP2021188788A (ja) 内部熱交換器の製造方法
JP2021188786A (ja) 内部熱交換器及び内部熱交換器の製造方法
KR102018855B1 (ko) 내부 열교환기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19746683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19746683

Country of ref document: EP

Kind code of ref document: A1