WO2021241422A1 - 内部熱交換器及び内部熱交換器の製造方法 - Google Patents

内部熱交換器及び内部熱交換器の製造方法 Download PDF

Info

Publication number
WO2021241422A1
WO2021241422A1 PCT/JP2021/019296 JP2021019296W WO2021241422A1 WO 2021241422 A1 WO2021241422 A1 WO 2021241422A1 JP 2021019296 W JP2021019296 W JP 2021019296W WO 2021241422 A1 WO2021241422 A1 WO 2021241422A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
tube
connector
double
inner pipe
Prior art date
Application number
PCT/JP2021/019296
Other languages
English (en)
French (fr)
Inventor
文昭 中村
正夫 務台
Original Assignee
株式会社デンソーエアシステムズ
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020092352A external-priority patent/JP2021188786A/ja
Priority claimed from JP2020092354A external-priority patent/JP2021188788A/ja
Priority claimed from JP2020092353A external-priority patent/JP2021188787A/ja
Application filed by 株式会社デンソーエアシステムズ, 株式会社デンソー filed Critical 株式会社デンソーエアシステムズ
Publication of WO2021241422A1 publication Critical patent/WO2021241422A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/24Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely
    • F28F1/32Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending transversely the means having portions engaging further tubular elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/42Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being both outside and inside the tubular element

Abstract

内部熱交換器(18)は、外管(181)と内管(182)とを有する。内部熱交換器(18)は、反膨張弁側コネクタ(31)において流体的な連通関係を提供するように接続されている。内部熱交換器(18)は、膨張弁側コネクタ(186)において流体的な連通関係を提供するように接続されている。外管(181)と内管(182)とは、同芯構造を介して互いに圧着されている。圧着は、外管(181)と内管(182)との相対的なずれの抑制に貢献する。反膨張弁側コネクタ(31)と膨張弁側コネクタ(186)との少なくとも一方は、内管(182)の移動を許容する。製造方法は、外管(181)の先端と内管(182)の先端との同軸度を回復させる工程を含む。

Description

内部熱交換器及び内部熱交換器の製造方法 関連出願の相互参照
 この出願は、2020年5月27日に日本に出願された特許出願第2020-092352号、2020年5月27日に日本に出願された特許出願第2020-092353号、および2020年5月27日に日本に出願された特許出願第2020-092354号を基礎としており、基礎の出願の内容を、全体的に、参照により援用している。
 本明細書の開示は、冷凍サイクル装置に用いられる内部熱交換器及び内部熱交換器の製造方法に関する。
 特許文献1に記載の内部熱交換器は、外管と内管とを備える二重管を有している。外管と内管との間に形成される内外間流路には、冷凍サイクルの凝縮器からの高圧液冷媒が流れる。内管の内部に形成される流路には、冷凍サイクルの蒸発器で蒸発した低圧ガス冷媒が流れる。これにより、二重管が内部熱交換器として機能する。
 また、特許文献1では、二重管と接続対象部材との接続にろう付けを用いず、二重管がコネクタにOリングを介してカップリング構造で機械的に接合される構造となっている。
特開2007-285693号公報
 冷凍サイクル装置に用いられる内部熱交換器では、他の機器との干渉を避けるため、屈曲形成されることが多い。ここで、内管が外管の内部に挿入される構成の内部熱交換器では、内管と外管とが別々に構成されるため、内部熱交換器を屈曲形成する際に、内管と外管との間でずれが生じてしまう。そのため、特許文献1の内部熱交換器では、屈曲形成してもずれが生じないよう、内管と外管とを一体に成形している。一方で、内管と外管とを一体成形するのは、特に内部熱交換器の長さが長くなった場合には、生産性が劣ることとなる。
 本明細書の開示は、内部熱交換器を内管と外管とを別体として、内管を外管の内部に挿入する構造として、内部熱交換器の長さが長くなったときでも製造が容易であることを前提としている。その上で、本開示では、内部熱交換器を屈曲形成しても端部で内管と外管とのずれが生じにくく、内部熱交換器の端部にコネクタを機械的に固定しても、内部熱交換器とコネクタとの間のシールが確実に行えるようにすることを目的とする。
 本明細書の開示は、内部熱交換器を内管と外管とを別体として、内管を外管の内部に挿入する生産性がよい構造として、内部熱交換器の長さが長くなったときでも製造が容易であることを前提としている。その上で、本開示では、内部熱交換器を屈曲形成して端部で内管と外管とのずれが生じたとしても、内部熱交換器の先端とのコネクタとの組付けがに確実に維持でき、内部熱交換器とコネクタとの間のシールが良好に行えるようにすることを目的とする。
 その上で、本開示では、内部熱交換器を屈曲形成して端部で内管と外管とのずれが生じたとしても、内部熱交換器の先端をコネクタに確実に挿入でき、内部熱交換器とコネクタとの間のシールが良好に行えるようにすることを目的とする。
 上記目的を達成するため、ひとつの開示では、二重管の外側の管を形成する外管と、二重管の内側の管を形成する内管とを別体として備えている。そして、内管の内部には、冷凍サイクル装置の低圧側の冷媒が流れる内側流路を形成し、外管と内管との間には、冷凍サイクルの高圧側の冷媒が流れる内外間流路を形成している。即ち、内管と外管とが軸方向や径方向にずれる可能性のある内部熱交換器であることを前提としている。
 また、ひとつの開示では、外管と内管との間に、外管および内管の少なくとも一方の表面積を増加させると共に外管と内管とを同芯上に配置する同芯構造を形成している。上記のように内管と外管とが軸方向や径方向にずれる可能性のあるのが前提であるが、同芯構造を用いることで、特に径方向のずれを抑制する構造としている。
 そして、ひとつの開示では、外管および内管と接続対象部材との間に介在し、内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路及び内側流路を接続対象部材の冷媒通路と連通させる低圧連通流路を形成するコネクタを備え、二重管とコネクタとを機械的に固定している。ここで、「機械的に固定されている」とは、ボルト、ねじ、カシメ、圧入等により固定されていることを意味している。すなわち、溶接、ろう付け、固相接合のような母材間の材料的な結合による固定や、接着のような化学的な固定は、「機械的に固定されている」ことに該当しない。そのため、内部熱交換器の端部において、二重管とコネクタとの間で位置ずれの生じる可能性があることを前提としている。
 これらの前提の上で、ひとつの開示では、外管は、少なくとも1カ所で所定距離に亘って外管及び内管の少なくともいずれか一方が他方側に押圧変形されており、これにより、外管及び内管は、同芯構造を介して互いに圧着する構造としている。即ち、外管の縮管及び/もしくは内管の拡管によって、内部熱交換器は、内管と外管とが充分な強度で固着している。
 その上で、ひとつの開示では、外管及び内管が互いに圧着した状態で、二重管を少なくとも1カ所で屈曲する構造としている。二重管を屈曲形成すれば、本来的に内管と外管とのずれが生じる構造であるが、外管の縮管及び/もしくは内管の拡管によって、外管と内管とが圧着しているので、内部熱交換器での内管と外管とのずれが抑えられる。そのため、内部熱交換器をコネクタとボルト等によって機械的に固定しても、コネクタとの間のシールが維持できる。
 ひとつの開示は、外管とコネクタの被外管挿入部との間に介在して、高圧連通流路からの冷媒の洩れを防止するシール部材と、内管とコネクタの被内管挿入部との間に介在して、高圧連通空間からの冷媒の洩れを防止するシール部材とを備えている。内部熱交換器の端部とコネクタとが機械的に固定されるため、シール部材を用いて、シール性能を確保している。
 ひとつの開示は、同芯構造を特定するものである。すなわち、ひとつの開示では、同芯構造は、内管及び内管のいずれかに螺旋溝が形成されて、内管の外周の一部が外管の内周の一部に接触する構造としている。また、ひとつの開示では、同芯構造は、内管と外管とを繋ぐリブ構造としている。いずれの同芯構造も、内管と外管とが接触しており、外管の縮管による圧着を促進する構造である。
 ひとつの開示では、二重管とコネクタとの機械的な固定を、外管及び内管が互いに圧着した後の状態で行っている。すなわち、先に内管と外管とを圧着させて、その状態で二重管の端部にコネクタを機械的に固定する。内管と外管との圧着により、内管と外管との軸芯を揃えることができるので、二重管とコネクタとの接合が確実となる。
 ひとつの開示は、逆に、二重管とコネクタとの機械的な固定を、外管及び内管が互いに圧着する前の状態で行っている。すなわち、まず二重管の端部にコネクタを機械的に固定して、その状態で内管と外管とを圧着させ、その後、二重管を屈曲形成する。二重管を屈曲形成する際には、内管と外管とは圧着されているので、内管と外管とのずれは抑制されている。
 ひとつの開示は、外管と内管との圧着をコネクタの近傍で行っている。近傍で圧着されているので、コネクタでの内管のずれが確実に防止でき、シール性能の維持が確実となる。
 ひとつの開示は、内管と外管との圧着構造に関する。ひとつの開示は外管を縮管することで圧着構造を達成している。ひとつの開示は内管を拡管することで圧着構造を達成している。いずれも内管と外管とは機械的に強固に固定される。
 ひとつの開示は、二重管の端部にコネクタを機械的に組付ける内部熱交換器の製造方法である。まず、外管の内側に同芯構造を介して内管を配置して、二重管を形成する二重管形成工程を行い、次いで、外管の少なくとも1カ所を所定距離に亘って外管の径方向内側に押圧変形させて、外管及び内管を、同芯構造を介して互いに圧着させる二重管圧着工程を行う。その後、二重管を少なくとも1カ所で屈曲する二重管屈曲工程を行う。屈曲工程を行う際には、外管及び内管は同芯構造を介して互いに圧着しているので、内管と外管とのずれを抑制することができる。
 ひとつの開示も内部熱交換器の製造方法である。ともに、内管の先端をコネクタの被内管挿入部に挿入し、外管の先端をコネクタの被外管挿入部に挿入し、二重管をコネクタに機械的に組付けるコネクタ組付工程を行採用する。
 ひとつの開示では、二重管圧着工程の後で、このコネクタ組付工程を行い、その後で、二重管屈曲工程を行う。予め二重管を圧着しているので、二重管の同芯度が向上し、コネクタの組付工程がスムーズになる。逆に、ひとつの開示では、このコネクタ組付工程の後で、二重管圧着工程を行う。二重管が圧着されていないので、内管と外管とを別々に組付けることも可能である。
 ひとつの開示は、二重管圧着工程を行う部位での特定である。二重管圧着工程は、外管の端部を所定距離に亘って外管の径方向内側に押圧変形させて行っている。端部で二重管圧着工程を採用するので、コネクタにおける内管のずれが確実に防止できる。
 上記目的を達成するため、ひとつの開示では、二重管の外側の管を形成する外管と、二重管の内側の管を形成する内管とを別体として備えている。そして、内管の内部には、冷凍サイクル装置の低圧側の冷媒が流れる内側流路を形成し、外管と内管との間には、冷凍サイクルの高圧側の冷媒が流れる内外間流路を形成している。即ち、内管と外管とが軸方向や径方向にずれる可能性のある内部熱交換器であることを前提としている。
 また、ひとつの開示では、外管と内管との間に、外管および内管の少なくとも一方の表面積を増加させると共に外管と内管とを同芯上に配置する同芯構造を形成している。上記のように内管と外管とが軸方向や径方向にずれる可能性のあるのが前提であるが、同芯構造を用いることで、特に径方向のずれを抑制する構造としている。
 そして、ひとつの開示では、外管および内管と接続対象部材との間に介在し、内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路及び内側流路を接続対象部材の冷媒通路と連通させる低圧連通流路を形成するコネクタを備え、二重管とコネクタとを機械的に固定している。ここで、「機械的に固定されている」とは、ボルト、ねじ、カシメ、圧入等により固定されていることを意味している。すなわち、溶接、ろう付け、固相接合のような母材間の材料的な結合による固定や、接着のような化学的な固定は、「機械的に固定されている」ことに該当しない。そのため、内部熱交換器の端部において、二重管とコネクタとの間で位置ずれの生じる可能性があることを前提としている。
 これらの前提の上で、ひとつの開示では、まず、外管の内側に同芯構造を介して内管を配置して、二重管を形成する二重管形成工程を行う。次いで、内管の先端をコネクタの被内管挿入部に挿入し、かつ、外管の先端をコネクタの被外管挿入部に挿入し、二重管をコネクタに機械的に組付けるコネクタ組付工程を行う。その後に、二重管を少なくとも1カ所で屈曲する二重管屈曲工程を行って、二重管に曲げ部を形成する。そして、二重管屈曲工程時に、内管がコネクタの被内管挿入部内で移動可能としている。
 ひとつの開示では、二重管屈曲工程によって内部熱交換器の端部で内管と外管とが軸方向及び径方向にずれる可能性があるため、予め内管と外管とをそれぞれ被内管挿入部と被外管挿入部に挿入しておき、径方向のずれを防止する。そして、軸方向のずれは、内管が被内管挿入部内で移動可能とすることで、吸収する。その結果、二重管とコネクタとのシール性能は良好に維持できる。
 ひとつの開示は、コネクタ組付工程で、外管とコネクタの被外管挿入部との間に、高圧連通流路からの冷媒の洩れを防止するシール部材介在させ、かつ、内管とコネクタの被内管挿入部との間に、高圧連通空間からの冷媒の洩れを防止するシール部材を介在させている。内部熱交換器の端部とコネクタとが機械的に固定されるため、シール部材を用いて、シール性能を確保している。
 ひとつの開示は、同芯構造を特定するものである。すなわち、ひとつの開示では、同芯構造は、内管及び内管のいずれかに螺旋溝が形成されて、内管の外周の一部が外管の内周の一部に接触する構造としている。また、ひとつの開示では、同芯構造は、内管と外管とを繋ぐリブ構造としている。いずれの同芯構造も、内管と外管とが部分的に接触しており、二重管屈曲工程で二重管を曲げても内外間流路が維持できる構造である。
 ひとつの開示は、二重管屈曲工程時におけるコネクタと内管との状態を規定する。すなわち、内管と被内管挿入部とは、シール部材を挟持して、シール部材のシール性能を維持した状態で相対的に移動可能としている。内管と被内管挿入部とが軸方向に摺動して相対的に移動可能であり、かつ、シール部材もコネクタのシール部材保持部で保持される。これにより、シール部材のシール性能を維持できる。
 ひとつの開示も、二重管屈曲工程時におけるコネクタと内管との状態を規定する。ひとつの開示では、シール部材を内管に形成されたシール部材溝で保持して、シール部材のシール性能を維持した状態で相対的に移動可能としている。ひとつの開示でも、内管と被内管挿入部とが軸方向に摺動して相対的に移動可能であり、かつ、シール部材も内管のシール部材溝で保持される。これにより、シール部材のシール性能を維持できる。
 ひとつの開示は、コネクタ組付け工程に関する。外管及び内管がコネクタに挿入された状態で、外管とコネクタとが機械的に固定されるようにしている。例えば、外管にバルジ加工部を形成し、押さえ板でコネクタの端面にこのバルジ加工部を挟持してもよい。外管はコネクタに機械的に固定されているので、内管とコネクタとが相対的に移動しても、外管とコネクタとは移動しない。
 上記目的を達成するため、ひとつの開示では、二重管の外側の管を形成する外管と、二重管の内側の管を形成する内管とを別体として備えている。そして、内管の内部には、冷凍サイクル装置の低圧側の冷媒が流れる内側流路を形成し、外管と内管との間には、冷凍サイクルの高圧側の冷媒が流れる内外間流路を形成している。即ち、内管と外管とが軸方向や径方向にずれる可能性のある内部熱交換器であることを前提としている。
 また、ひとつの開示では、外管と内管との間に、外管および内管の少なくとも一方の表面積を増加させると共に外管と内管とを同芯上に配置する同芯構造を形成している。上記のように内管と外管とが軸方向や径方向にずれる可能性のあるのが前提であるが、同芯構造を用いることで、特に径方向のずれを抑制する構造としている。
 そして、ひとつの開示では、外管および内管と接続対象部材との間に介在し、内外間流路を接続対象部材の冷媒流路と連通させる高圧連通流路及び内側流路を接続対象部材の冷媒通路と連通させる低圧連通流路を形成するコネクタを備え、二重管とコネクタとを機械的に固定している。ここで、「機械的に固定されている」とは、ボルト、ねじ、カシメ、圧入等により固定されていることを意味している。すなわち、溶接、ろう付け、固相接合のような母材間の材料的な結合による固定や、接着のような化学的な固定は、「機械的に固定されている」ことに該当しない。そのため、内部熱交換器の端部において、二重管とコネクタとの間で位置ずれの生じる可能性があることを前提としている。
 これらの前提の上で、ひとつの開示では、まず、外管の内側に同芯構造を介して内管を配置して、二重管を形成する二重管形成工程を行う。次いで、二重管を少なくとも1カ所で屈曲する二重管屈曲工程を行って、二重管に曲げ部を形成する。次いで、内管の先端と外管の先端との同軸度を回復させる二重管同軸度回復工程を行って、二重管の形状を整える。そして、その状態で、内管の先端をコネクタの被内管挿入部に挿入し、かつ、外管の先端をコネクタの被外管挿入部に挿入し、二重管をコネクタに機械的に組付けるコネクタ組付工程を行う。
 ひとつの開示では、二重管屈曲工程によって内部熱交換器の端部で内管と外管とが軸方向及び径方向にずれるため、このずれを二重管同軸度回復工程で修正して、内管の軸芯と外管の軸芯との位置合わせを行う。その状態で、コネクタ組付け工程を行うので、二重管はコネクタに正確に組付けられる。
 ひとつの開示は、コネクタ組付工程で、外管とコネクタの被外管挿入部との間に、高圧連通流路からの冷媒の洩れを防止するシール部材介在させ、かつ、内管とコネクタの被内管挿入部との間に、高圧連通空間からの冷媒の洩れを防止するシール部材を介在させている。内部熱交換器の端部とコネクタとが機械的に固定されるため、シール部材を用いて、シール性能を確保している。
 ひとつの開示は、同芯構造を特定するものである。すなわち、ひとつの開示では、同芯構造は、内管及び内管のいずれかに螺旋溝が形成されて、内管の外周の一部が外管の内周の一部に接触する構造としている。また、ひとつの開示では、同芯構造は、内管と外管とを繋ぐリブ構造としている。いずれの同芯構造も、内管と外管とが部分的に接触しており、二重管屈曲工程で二重管を曲げても内外間流路が維持できる構造である。
 ひとつの開示は、同軸度回復工程とコネクタ組付け工程に関する。まず、コネクタの被内管挿入部の内方に先端に径小部のある内管用芯金を配置して、コネクタの位置を固定する。次いで、外管を外管用クランプで把持して、二重管をコネクタ側に移動させ、内管用芯金で内管の先端をコネクタの被内管挿入部にガイドしつつ、外管用クランプで外管の先端をコネクタの被外管挿入部に挿入する。内管の先端は内管用芯金で位置が正確にガイドされ、かつ、外管の先端も外管用クランプで位置が正確に定められるので、二重管とコネクタとの組付けを良好に行うことができる。
 この明細書の開示は、ひとつの観点では、内部熱交換器を屈曲形成しても端部で内管と外管とのずれが生じなく、内部熱交換器とコネクタとの間のシールが確実に行えるようにすることを目的とする。内管と外管とが軸方向や径方向にずれる可能性のある内部熱交換器であることを前提とし、外管及び内管の少なくともいずれか一方を、少なくとも1カ所で他方側に押圧変形して、外管及び内管が同芯構造を介して互いに圧着する構造としている。即ち、外管の縮管及び/又は内管の拡管によって、内部熱交換器は、内管と外管とが充分な強度で固着している。その上で、二重管を少なくとも1カ所で屈曲する構造としている。二重管を屈曲形成すれば、本来的に内管と外管とのずれが生じる構造であるが、外管と内管とが圧着しているので、ずれが抑えられ、コネクタとボルト等によって機械的に固定しても、コネクタとの間のシールが維持できる。
 この明細書の開示は、ひとつの観点では、内部熱交換器を屈曲形成する際に不可避的に生じる端部で内管と外管とのずれを許容して、内部熱交換器とコネクタとの間のシールが確実に行えるようにする。まず、外管の内側に同芯構造を介して内管を配置して、二重管を形成する二重管形成工程を行う。次いで、内管の先端をコネクタの被内管挿入部に挿入し、かつ、外管の先端をコネクタの被外管挿入部に挿入し、二重管をコネクタに機械的に組付けるコネクタ組付工程を行う。その後に、二重管を少なくとも1カ所で屈曲する二重管屈曲工程を行って、二重管に曲げ部を形成する。そして、二重管屈曲工程時に、内管がコネクタの被内管挿入部内で移動可能としている。軸方向のずれは、内管が被内管挿入部内で移動可能とすることで吸収する。その結果、二重管とコネクタとのシール性能は良好に維持できる。
 この明細書の開示は、ひとつの観点では、内部熱交換器を屈曲形成しても端部で内管と外管とのずれを矯正して、内部熱交換器とコネクタとの間のシールを確実にすることを目的とする。内管と外管とが軸方向や径方向にずれる可能性のある内部熱交換器であることを前提とし、まず、外管の内側に同芯構造を介して内管を配置して、二重管を形成する二重管形成工程を行う。次いで、二重管を少なくとも1カ所で屈曲する二重管屈曲工程を行って、二重管に曲げ部を形成する。次に、内管の先端と外管の先端との同軸度を回復させる二重管同軸度回復工程を行って、その状態で、内管の先端をコネクタの被内管挿入部に挿入し、かつ、外管の先端をコネクタの被外管挿入部に挿入し、二重管をコネクタに機械的に組付けるコネクタ組付工程を行う。二重管屈曲工程によるずれを二重管同軸度回復工程で修正して、コネクタ組付け工程を行うので、二重管はコネクタに正確に組付けられる。
 なお、この欄および請求の範囲で記載した各手段の括弧内の符号は、後述する実施形態に記載の具体的手段との対応関係を示すものである。
冷凍サイクル装置の全体構成図である。 内部熱交換器の全体構成図である。 内部熱交換器の一部を示す斜視図である。 図3のIV-IV断面図である。 二重管の断面図である。 内部熱交換器の一部を示す断面図である。 内部熱交換器の一部を示す断面図である。 内部熱交換器のずれを説明する断面図である。 二重管圧着工程を示す断面図である。 コネクタ組付工程を示す断面図である。 コネクタ組付工程を示す断面図である。 コネクタ組付工程を示す断面図である。 二重管屈曲工程に用いる治具を示す正面図である。 図13図示治具の移動状態を示す正面図である。 コネクタ組付工程の他の例を示す断面図である。 コネクタ組付工程の他の例を示す断面図である。 コネクタ組付工程の他の例を示す断面図である。 二重管形成工程の他の挿入工程を示す断面図である。 二重管圧着工程の他の例を示す断面図である。 図3のIV-IV断面に相当する他の実施形態の断面図である。 内部熱交換器の一部を示す他の実施形態の断面図である。 内部熱交換器のずれを説明する断面図である。 二重管圧着工程を示す断面図である。 内部熱交換器のずれを説明する断面図である。 内部熱交換器の一部を示す断面図である。 コネクタ組付工程を示す他の実施形態の断面図である。
 以下、実施形態について図に基づいて説明する。以下の各実施形態相互において、互いに同一もしくは均等である部分には、図中、同一符号を付してある。
 図1に示す車両用空調装置10は、冷凍サイクル装置11を有している。冷凍サイクル装置11には、二重管式の内部熱交換器18が適用されている。冷凍サイクル装置11は、圧縮機12、凝縮器13、膨張弁14および蒸発器15を備える蒸気圧縮式冷凍機である。本実施形態の冷凍サイクル装置11では、冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成している。
 圧縮機12および凝縮器13は、図示しない車両のエンジンルームに配置されている。膨張弁14および蒸発器15は、車両の車室に配置されている。圧縮機12、凝縮器13、膨張弁14および蒸発器15は、冷媒の流れにおいて互いに直列に配置されている。
 圧縮機12は、冷凍サイクル装置11の冷媒を吸入して圧縮して吐出する。圧縮機12は、ベルト駆動式圧縮機または電動圧縮機である。ベルト駆動式圧縮機は、エンジン4の駆動力がクランクプーリ5、駆動ベルト6およびプーリ7を介して伝達されることによって駆動される。電動圧縮機は、電池から供給される電力によってモータ駆動される。
 凝縮器13は、圧縮機12から吐出された高圧ガス冷媒と外気とを熱交換させることによって高圧ガス冷媒の熱を外気に放熱させて高圧冷媒を凝縮させる放熱器である。凝縮器13は、エンジンルーム内の最前部に配置されている。凝縮器13で凝縮された液相冷媒は、高圧冷媒配管16を介して膨張弁14の高圧冷媒入口14aに流入する。なお、高圧冷媒配管16には、図4で示す内部熱交換器18の内外間流路18aが対応する。
 膨張弁14は、高圧冷媒配管16から流出した液相冷媒を減圧膨張させる減圧部である。膨張弁14は、感温部を有している。感温部は、蒸発器15出口側冷媒の温度および圧力に基づいて蒸発器15出口側冷媒の過熱度を検出する。膨張弁14は、蒸発器15出口側冷媒の過熱度が予め定めた所定範囲となるように機械的機構によって絞り通路面積を調節する温度式膨張弁である。
 蒸発器15は、膨張弁14を流出した低圧冷媒と車室内へ送風される空気とを熱交換させることによって低圧冷媒を蒸発させるとともに車室内へ送風される空気を冷却する空気冷却用熱交換器である。蒸発器15で蒸発した気相冷媒は、膨張弁14の感温部に流入する。膨張弁14の感温部を通過した冷媒は、膨張弁14の低圧冷媒出口14bから低圧冷媒配管17へ流出し、低圧冷媒配管17を介して圧縮機12に吸入されて圧縮される。この低圧冷媒配管17は、図4で示す内部熱交換器18の内側流路18bが対応する。
 蒸発器15は、室内空調ユニット20のケーシング21に収容されている。室内空調ユニット20は、車室の前部にて、図示しない計器盤の内側に配置されている。ケーシング21は、空気通路を形成する空気通路形成部材である。ケーシング21内の空気通路において、蒸発器15の空気流れ下流側には、ヒータコア22が配置されている。ヒータコア22は、エンジン冷却水と車室内へ送風される空気とを熱交換させて車室内へ送風される空気を加熱する空気加熱用熱交換器である。
 ケーシング21には、図示しない内外気切替箱と室内送風機23とが配置されている。内外気切替箱は、ケーシング21内の空気通路に内気と外気とを切替導入する内外気切替部である。室内送風機23は、内外気切替箱を通してケーシング21内の空気通路に導入された内気および外気を吸入して送風する。
 ケーシング21内の空気通路において、蒸発器15とヒータコア22との間には、エアミックスドア24が配置されている。エアミックスドア24は、蒸発器15を通過した冷風のうちヒータコア22に流入する冷風とヒータコア22をバイパスして流れる冷風との風量割合を調整する。エアミックスドア24は、ケーシング21に対して回転可能に支持された回転軸と、回転軸に結合されたドア基板部とを有する回転式ドアである。エアミックスドア24の開度位置を調整することによって、ケーシング21から車室内に吹き出される空調風の温度を所望温度に調整できる。
 ケーシング21の空気流れ最下流部には吹出開口部25が形成されている。図1では図示を省略しているが、吹出開口部25は複数個形成されている。ケーシング21にて温度調整された空調風は、これらの吹出開口部25を介して、空調対象空間である車室内へ吹き出される。複数個の吹出開口部25の空気流れ上流側には、図示しない吹出口モード切替ドアが配置されている。吹出口モード切替ドアは、吹出口モードを切り替える。吹出口モードとしては、フェイスモード、バイレベルモード、フットモード、ベントモード等がある。
 高圧冷媒配管16の少なくとも一部および低圧冷媒配管17の少なくとも一部は、図2~図4に示す二重管式の内部熱交換器18で構成されている。内部熱交換器18は、全長が200~1200mm程度の長さを有している。
 この内部熱交換器18の長さは、要求される熱交換能力に応じて定められる。即ち、内部熱交換器18は、圧縮機12に向かう低温低圧の気相冷媒と膨張弁14に向かう高温高圧の液相冷媒との間で熱交換を行って冷凍サイクル装置11のエンタルピを高めるものであるため、内部熱交換器18には所望のエンタルピを得ることができるだけの長さが求められる。一方で、内部熱交換器18での熱交換量が大きすぎると、圧縮機に吸入される冷媒温度が上昇し過ぎ、望ましくない。そこで、内部熱交換器18の長さが定まった場合には、内部熱交換器18での熱交換量を調節することが望まれる。この熱交換量の調節に関しては後述する。
 二重管式の内部熱交換器18は、図4に示すように、外管181と内管182とを備えている。内管182は、外管181を貫通するように外管181の内部に挿入されている。これにより、外管181と内管182とで二重管が形成されている。内部熱交換器18は、外管181と内管182とを同芯上に配置する同芯構造を有している。同芯構造は、内外間流路の流路面積を規定している。同芯構造は、外管181および内管182の少なくとも一方の表面積を増加させている。この表面積は、内管182内の内部冷媒と、外管181と内管182との間の外部冷媒との間における熱交換の促進に貢献する。この表面積は、外管181と内管182との間の外部冷媒と外管181の外にある外気との間の熱交換の促進に貢献する場合がある。
 外管181は、例えばアルミニウム製のφ22mm管である。φ22mm管は、外径が22mm、内径が19.6mmの管である。自動車の空調装置10に用いられる外管181は、出来る限り小径にすべく、その外径を22mm程度としている。冷媒循環量が多く、外管181を大きくする場合でも28mm未満とするのが望まれる。また、外管181の肉厚も1.2mm程度で、厚くする場合でも2mm未満としている。
 内管182は、例えばアルミニウム製の3/4インチ管としている。3/4インチ管は、外径が19.1mm、内径が16.7mmの管である。このように、内外間流路18aを確保しつつ、内管182の外径をできるだけ外管181の内径に近いサイズを選定することによって内管182の表面積を大きくしている。
 内管182は内部(内側流路18b)を低圧のガス冷媒が流れるため、流路断面積を充分に確保する必要がある。特に、ガス冷媒は液冷媒に比べて体積が大きく流速が早いので、内側流路18bを流れる際の圧力損失は、内外間流路18aを流れる液冷媒に比して非常に大きくなる。そのため、内部熱交換器18の設計思想としては、内管182が充分な流路断面積を持つように内管182の内径を定め、1~2mm程度の肉厚を考慮して内管182の外径を定める。内管182の外径は、15.8~22mm程度としている。
 上記の外管181の径は、この内管182の外径に応じて、内外間流路18aが高圧の液冷媒を流すことができる範囲で最小とするように設計される。これは、内外間流路18aを流れるのは高圧の液冷媒であるため、この内外間流路18aの断面図が大きくなると冷凍サイクルに封入される冷媒量が不必要に多くなるからである。冷凍サイクルに用いる冷媒量を抑えることで、コストダウンを図ることもできる。従って、外管181の内径に対する外管181の内径と内管182の外径との差との比は、25%以下としている。より望ましくは、20%以下としている。
 図5(a)~(p)に二重管の断面形状を示す。このうち、図5の(a)、(b)、(f)、(o)及び(p)の二重管は、内管182に螺旋溝1822を形成している。そして、螺旋溝1822は窪んだ溝部1822bと峰部1822aとからなり、峰部1822aが複数個所で外管181に当接する構造となっている。そのため、内管182の外周面が外管181の内周面に当接して、内管182と外管181とを同軸状に配置する同芯構造が形成される。なお、図5(p)の二重管は峰部1822aに更に窪みを設けて、峰部1822aの幅を広げている。このように、峰部1822aや溝部1822bの形状も、適宜変更可能である。
 また、図5の(k)及び(l)の二重管は、外管181に螺旋溝1816を形成している。そして、螺旋溝1816も窪んだ溝部1816bと峰部1816aからなり、峰部1816aが複数個所で内管182の外周面に接触している。これにより、外管181の内周面が内管182の外周面に当接して、内管182と外管181とを同軸状に配置する同芯構造が形成される。なお、峰部1816aは当接する部位を表しているので、内管182の螺旋溝1822と外管181の螺旋溝1816では逆となっている。即ち、内管182の螺旋溝1822では峰部1822aが外方に突出形成され、外管181の螺旋溝1816では峰部1816aは内方に突出形成されている。
 このように、内管182若しくは外管181に螺旋溝1822、1816を形成することで、内管182と外管181とが複数個所で接触可能となり、内管182と外管181が同軸上に配置される同芯構造となる。
 加えて、内管182若しくは外管181に螺旋溝1822、1816を形成することで、内管182若しくは外管181の表面積を大きくすることができる。特に内管182に螺旋溝1822を形成した場合には、内側流路18bと内外間流路18aとの熱交換面積を増加させることができる。
 かつ、内管182若しくは外管181に形成された螺旋溝1822、1816の峰部1822a、1816aにより、内管182と外管181とが接触することによっても、内側流路18bと内外間流路18aとの間の熱交換が促進される。
 また、図5の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管は外管181に内方に向かうリブ1815が等間隔で形成されており、内管182が挿入された際にはリブ1815の先端が、少なくとも一部において内管182の外周面に接触する構造となっている。このリブ1815の接触によっても、内管182と外管181が同軸上に配置される同芯構造となる。かつ、リブ1815により内外間流路18aの表面積が増加して熱交換効率を高め、リブ1815が内管182に接触することによっても熱交換効率が高まる。
 図5(h)の二重管は内管182から外方に向けて等間隔でリブ1815が突出形成されている。この内管182のリブ1815の先端が、少なくとも一部において外管181の内周面に接触して、内管182と外管181とを同軸上に配置する構造としている。かつ、リブ1815による熱交換効率の向上は、外管181より内方に向けて突出形成した上述の二重管の例と同様である。
 なお、上述の螺旋溝1822、1816であっても、リブ1815であっても、内管182と外管181との軸芯を完全に一致させることは困難である。従って、本件の記載で同芯構造とするのは、内管182と外管181の軸芯を一致させる方向に作用する構造を指している。内管182と外管181との間に何も存在しない構造に比べて、螺旋溝1822、1816やリブ1815を形成すれば、内管182と外管181との軸芯が揃う方向に作用する。
 外管181および内管182は、エンジン4や図示しない各種車載機器および車体等との干渉を避けるため、図2に示すように、曲げ部1801が形成されている。曲げ部1801は、直管状の外管181の内部に直管状の内管182が挿入された状態で外管181および内管182が同時に曲げられることによって形成される。二重管屈曲工程に関しては後述する。
 この曲げ部1801において、内管182と外管181との間に内外間流路18aが形成されるためにも、螺旋溝1822、1816やリブ1815の同芯構造は有用である。なぜなら、同芯構造が無ければ、曲げ部1801で内管182の外表面と外管181の内表面が直接接触する可能性がある。その場合、内外間流路18aの断面形状が歪となって、流通抵抗が高まる。それに対し、同芯構造を設ければ、曲げ部1801でも同芯構造によって、内管182の外表面と外管181の内表面が直接接触することはない。
 図4に示すように、外管181と内管182との間には空間が形成され、この空間が内外間流路18aとなるようにしている。内管182の内部空間は、内側流路18bとなっている。内外間流路18aおよび内側流路18bにおける冷媒の流れ方向は、互いに逆方向になっている。内外間流路18aを流れる内外間流体は高圧の液冷媒である。内側流路18bを流れる内側流体は低圧のガス冷媒である。
 内管182の外表面には、図5の(a)、(b)、(f)、(o)、(p)に示すように、螺旋溝1822が設けられている。螺旋溝1822は、内管182の長手方向に螺旋状に延びる多条の溝で、図5の(a)、(b)、(o)、(p)では3条としており、図12の(f)では2条としている。
 図4の例では、螺旋溝1822により、内管182は蛇腹状(換言すれば襞状)になっている。そのため、内外間流路18aは内管182の外周に螺旋状に形成され、上述のように、内管182と外管181との接触面積が増え、熱交換効率を向上させることができる。
 なお、図4では図5の(a)、(b)、(f)、(o)、(p)に示す螺旋溝1822を形成した内管182を用いる例を示しているが、他の二重管を用いる場合も、端部1820は同様の形状にしている。図5の(c)、(d)、(e)、(g)、(i)、(j)、(m)及び(n)の二重管の場合は、内管182の先端1821の方が外管181の先端1811より軸方向で外方に位置し、内管182の端部1820では外管181およびリブ1815は存在しない。
 図5の(h)の二重管では、内管182のリブ1815を端部1820において切削したうえで、内管182を外管181内に配置して二重管を形成する。従って、組付けられた二重管は、内管182の端部1820において、螺旋溝1822もリブ1815も存在していない。
 螺旋溝1822は、端部1820を除き内管182のほぼ全長に亘って形成している。螺旋溝1822により内外間流路18aを螺旋状に形成することができ、熱交換効率を高める事ができている。
 一方で、螺旋溝1822を内管182のほぼ全長に亘って形成した場合には、膨張弁側コネクタ186と反膨張弁側コネクタ31との間が全て内部熱交換器18となる。そのため、内部熱交換器18の熱交換量は、膨張弁側コネクタ186、反膨張弁側コネクタ31間の距離によって一義的に定まることとなる。ただ、熱交換量はシステムとしての最適化を図る必要がある。内部熱交換器18の熱交換量が大きくなると、圧縮機12に流入する冷媒温度が上がる傾向がある。その結果、システムとして最適化が図れない恐れもある。
 例えば、蒸発器15から圧縮機12に向かう低温の吸入冷媒を用いて他の機器を冷却する場合は、吸入冷媒の温度が上がりすぎる事態は望ましくない。他の機器としては、例えば電気自動車やハイブリッド車の電動コンプレッサのインバーターなどがある。
 そこで、内部熱交換器18に求められる熱交換量と内部熱交換器18の長さとの整合性をとるため、内部熱交換器18の一部に螺旋溝1822を形成し、他の部位では螺旋溝1822を形成しないようにしても良い。特に、内部熱交換器18の熱交換量を少なくする必要がある場合には、螺旋溝1822を形成する部位は短くする。図2で、符号1802で指示する部位にのみ螺旋溝1822を形成し、残りの部分には螺旋溝1822は形成しないようにしてもよい。
 上述のように螺旋溝1822は、内管182と外管181との同芯構造としての機能もある。この同芯構造が要求される部位としては、膨張弁側コネクタ186及び反膨張弁側コネクタ31と組付けられる端部1820、1810の他に、曲げ部1801もある。そのため、端部1820、1810と曲げ部1801に螺旋溝1822を形成している。
 図4に示すように、外管181の長手方向端部1810近傍には、バルジ加工部181aが形成されている。バルジ加工部181aは、膨張弁側コネクタ186の端面1865と当接する当接部であり、外管181を外周側にバルジ加工することによって形成されている。
 外管181の長手方向の先端1811とバルジ加工部181aとの間には、円周溝状の外管側Oリング溝181bが形成されている。外管側Oリング溝181bには、環状の外管側Oリング191が配置されている。外管側Oリング191は、内外間流路18aと膨張弁側コネクタ186との間の冷媒の洩れを防止するシール部材である。
 内管182の長手方向端部1820近傍には、円周溝状の内管側Oリング溝182aが形成されている。内管側Oリング溝182aには、環状の内管側Oリング192が配置されている。内管側Oリング192は、内側流路18bと膨張弁側コネクタ186との間の冷媒の洩れを防止するシール部材である。また、内管側Oリング溝182aは、シール部材を保持するシール部材溝である。特に、内管側Oリング192によって、内側流路18bと膨張弁側コネクタ186の高圧連通空間186kとの間のシールが確保される。
 内管182の先端1821の方が外管181の先端1811より軸方向の外方にあるので、膨張弁側コネクタ186には、外管181の先端1811と被外管挿入部186eの最奥部と内管182の端部1820の外周との間に高圧連通空間186kが形成される。そして、この高圧連通空間186kに高圧冷媒流路186gが連通する。外管側シール部材(外管側Oリング)191は、この高圧連通空間186kと大気との間をシールし、内管側シール部材(内管側Oリング192)は、高圧連通空間186kと低圧冷媒流路186fとの間をシールしている。
 膨張弁側コネクタ186は、図3に示すように、外管181および内管182の長手方向端部1810、1820に配置されている。膨張弁側コネクタ186は、内部熱交換器18と膨張弁14との接続部をなす部材である。膨張弁14は、膨張弁側コネクタ186に接続される接続対象部材である。
 膨張弁側コネクタ186には、高圧側ジョイント186aと低圧側ジョイント186bとが設けられている。高圧側ジョイント186aは、膨張弁14の高圧冷媒入口14aに接続される。低圧側ジョイント186bは、膨張弁14の低圧冷媒出口14bに接続される。低圧側ジョイント186bは、内部熱交換器18の延長線上にオス状に突出するオス形状部である。高圧側ジョイント186aは、低圧側ジョイント186bと平行にオス状に突出するオス形状部である。
 膨張弁14の高圧冷媒入口14aおよび低圧冷媒出口14bは、メス状のジョイント部を形成している。オス状の高圧側ジョイント186aは、膨張弁14のメス状の高圧冷媒入口14aに挿入される。オス状の低圧側ジョイント186bは、膨張弁14のメス状の低圧冷媒出口14bに挿入される。
 図4に示すように、高圧側ジョイント186aの外周面には、円周溝状の高圧側Oリング溝186cが形成されている。高圧側Oリング溝186cには、高圧側Oリング193が配置されている。高圧側Oリング193は、内外間流路18aから流出した冷媒の洩れを防止するシール部材である。
 低圧側ジョイント186bの外周面には、円周溝状の低圧側Oリング溝186dが形成されている。低圧側Oリング溝186dには、低圧側Oリング194が配置されている。低圧側Oリング194は、膨張弁14の低圧冷媒出口14bから流出した冷媒の洩れを防止するシール部材である。
 膨張弁側コネクタ186には、被外管挿入部186e、被内管挿入部1860、低圧冷媒流路186f、高圧冷媒流路186gおよびボルト孔186hが形成されている。被外管挿入部186eには外管181が挿入され、挿入された状態では外管側Oリング191が圧縮変形して、シールを維持している。同様に、被内管挿入部1860には内管182が挿入され、挿入された状態では内管側Oリング192が圧縮変形して、シールを維持している。
 低圧冷媒流路186fは、膨張弁14の低圧冷媒出口14bと内側流路18bとを連通する低圧側連通流路である。この低圧冷媒流路186fを介して、膨張弁14の低圧冷媒出口14bから流出した低圧冷媒が内側流路18bへと流れる。低圧冷媒流路186fは、被内管挿入部1860から低圧側ジョイント186bに向かって延びており、低圧側ジョイント186b内を貫通している。
 高圧冷媒流路186gは、内外間流路18aと膨張弁14の高圧冷媒入口14aとを連通する高圧側連通流路である。従って、内外間流路18aから流出した高圧冷媒は、高圧冷媒流路186gを介して、膨張弁14の高圧冷媒入口14aへと流れる。高圧冷媒流路186gは、その一端が被外管挿入部186eに形成された高圧連通空間186kに開口して、図4で下方に向かい、ついで高圧側ジョイント186aに向かって屈曲して延びており、高圧側ジョイント186a内を貫通している。
 高圧冷媒流路186gは、切削加工により形成されている。切削加工の過程で膨張弁側コネクタ186に形成される開口穴は、密栓187によって塞がれている。
 ボルト孔186hは、膨張弁側コネクタ186を外管181および内管182に機械的に固定するために用いられる。具体的には、膨張弁側コネクタ186と押さえ板188とで外管181のバルジ加工部181aを挟み込み、膨張弁側コネクタ186と押さえ板188とをボルト189で締結することによって、膨張弁側コネクタ186が外管181および内管182に機械的に固定される。
 なお、図4においてボルト189が膨張弁側コネクタ186より飛び出ているのは、このボルト189によって膨張弁側コネクタ186と膨張弁14との固定も行うためである。膨張弁側コネクタ186と膨張弁14との固定を行う前の状態では、図6に示すように、皿ねじ1890により押さえ板188は膨張弁側コネクタ186に止められている。
 図2および図7に示すように、外管181および内管182のうち膨張弁14とは反対側の端部を反膨張弁側コネクタ31によって凝縮器13および圧縮機12に接続する構造になっている。従って、外管181および内管182の両方の端部を膨張弁側コネクタ186、反膨張弁側コネクタ31によって接続する構造になっている。
 反膨張弁側コネクタ31の基本構造は、膨張弁側コネクタ186と同様である。従って、以下では、反膨張弁側コネクタ31の基本構造については詳細説明を省略する。反膨張弁側コネクタ31には、高圧側サービスバルブ32、低圧側サービスバルブ33および圧力スイッチ34が取り付けられている。そのため、高圧側サービスバルブ32等を冷媒配管に取り付けるための取付具が不要となって、部品転する低減によるコストダウンが図れる。なお、後述するように、圧力スイッチに代えて圧力センサを用いてもよい。圧力センサは、冷媒圧力を検出するセンサである。
 ただ、高圧側サービスバルブ32、低圧側サービスバルブ33および圧力スイッチ34は、必ずしも反膨張弁側コネクタ31に全て取り付けられている必要はなく、一部を反膨張弁側コネクタ31の周辺に設けてもよい。取付位置等の制約によっては、高圧側サービスバルブ32等の全てを反膨張弁側コネクタ31の周辺に設けられるようにしてもよい。
 例えば、図2の実施形態では、高圧側サービスバルブ32が上方に向けて配置され、低圧側サービスバルブ33は側方に向けて配置されているが、高圧側サービスバルブ32及び低圧側サービスバルブ33を共に上方に向けて配置したいニーズもある。そのような際には、低圧側サービスバルブ33を反膨張弁側コネクタ31と離れた位置に上方に向けて配置するのが望ましい。
 高圧側サービスバルブ32および低圧側サービスバルブ33は、冷媒の補充填を行う際に使用されるバルブである。圧力スイッチ34は、冷媒圧力が所定値よりも高いか低いかによってオンとオフが切り替わるスイッチである。
 反膨張弁側コネクタ31には、硬質の高圧側配管部材35が高圧側ジョイント板36および図示しないボルトを用いて固定される。硬質の配管部材35は、例えば、アルミニウム等の金属や硬質樹脂等の硬質材料で形成された管状部材である。反膨張弁側コネクタ31には、軟質のホース部材の端部の金属製配管部材37が低圧側ジョイント板38および図示しないボルトを用いて固定される。軟質のホース部材は、例えば、ゴムや軟質樹脂等の軟質材料で形成された管状部材である。
 図7に示すように、反膨張弁側コネクタ31には、高圧側サービスバルブ取付部31a、低圧側サービスバルブ取付部31bおよび圧力スイッチ取付部31cが形成されている。高圧側サービスバルブ取付部31aには、高圧側サービスバルブ32が取り付けられる。高圧側サービスバルブ取付部31aは、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。低圧側サービスバルブ取付部31bには、低圧側サービスバルブ33が取り付けられる。低圧側サービスバルブ取付部31bは、反膨張弁側コネクタ31の低圧冷媒流路312と連通している。圧力スイッチ取付部31cには、圧力スイッチ34が取り付けられる。圧力スイッチ取付部31cは、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。
 圧力センサを取り付ける場合、圧力センサの大きさ及び形状は圧力スイッチ34とほぼ同等であるので、圧力センサ取付部の形状は圧力スイッチ取付部31cとほぼ同様となる。
 圧力センサ取付部は、反膨張弁側コネクタ31の高圧冷媒流路311と連通している。上述のように、圧力スイッチ34や圧力センサの取付部を反膨張弁側コネクタ31以外に設けることは可能である。例えば、圧力センサを凝縮器13に設けるようにしてもよい。
 高圧側サービスバルブ32は、弾性シール材39(例えばOリング)を介して気密かつ液密に反膨張弁側コネクタ31に取り付けられる。低圧側サービスバルブ33、圧力スイッチ34および圧力センサも同様に、図示しない弾性シール材を介して気密かつ液密に反膨張弁側コネクタ31に取り付けられる。
 反膨張弁側コネクタ31も、被外管挿入部3111に外管181の端部1810が挿入され、外管181のバルジ加工部181aが端面3112に当接している。そして、外管181の先端1811と被外管挿入部3111の最奥部との間に、高圧冷媒流路311と連通する高圧連通空間3110が形成されている。
 また、反膨張弁側コネクタ31にも被内管挿入部3113が形成され、内管182の端部1820がこの被内管挿入部3113に挿入される。そして、この被内管挿入部3113で内管側Oリング192が保持される。また、この被内管挿入部3113の最奥部と内管182の先端1821との間には隙間1821aが形成されている。
 反膨張弁側コネクタ31には、高圧側ジョイント部313および低圧側ジョイント部314が形成されている。高圧側ジョイント部313は、硬質の配管部材35が挿入されるメス型のジョイントである。低圧側ジョイント部314は、低圧側配管部材37が挿入されるメス型のジョイントである。なお、押さえ板390を外管181のバルジ加工部181aに押し付けて、図示しないボルトを用いて、内部熱交換器18を固定している。
 次に、上記構成の内部熱交換器18の製造工程を説明する。まず、二重管形成工程により二重管を形成する。外管181を所定の長さに切断し、端部1810にバルジ加工部181aを形成する。内管182も、所定の長さに切断して螺旋溝1822を形成する。螺旋溝1822により内管182の長さが変わるので、所定の長さに調整する。内管182にもバルジ加工部を形成する場合には、次いで、バルジ加工部を形成する。
 次いで、内管182を外管181の内部に挿入し、外管側Оリング191及び内管側Оリング192も挿入する。図8は内管182を外管181に挿入した状態を示すが、スムーズな挿入が可能なように、外管181の内面と内管182の外面との間には0.3ミリメートル程度の隙間が形成されている。なお、図8では隙間が強調されている。
 図2に示すように、内部熱交換器18には複数個所の曲げ部1801で屈曲形成されるので、外管181と内管182の径の相違や、螺旋溝1822の変形具合により、二重管屈曲工程を経ると外管181と内管182にずれが生じる。このずれは、外管181の端部1810と内管182の端部1820で顕著となる。図8は、ずれを強調しているが、内管182の方が短くなり(図8のL)、中心線もずれる(図8のM)ことになる。
 そこで、内部熱交換器18を屈曲形成する前(二重管屈曲工程前)に、内管182と外管181とを圧着させて、ずれの発生を抑制する二重管圧着工程を行う。そのため、外管181の長手方向端部1810は、内管182と組み合わされた後に、その全周が径方向内側へ向けて押圧(縮管)されて、内管182の円周表面に接合されている。縮管は図9に示すように、内管182の内方に芯金200を当てた状態で、外管181の外方から三つ爪チャック201を押し付けることで行う。三つ爪チャック201の先端202は外管181の外形に対応した円筒形状となっており、外管181を三方向から押圧する。なお、芯金200は必ずしも必須ではなく、必要に応じ芯金200を廃止し、三つ爪チャック201での押圧のみとしてもよい。
 三つ爪チャック201は、一旦外管181を押圧した後で後退して、周方向に60度回転して、再び外管181を押圧する。これにより、図9に示すように、外管181と内管182とは、特にその端部1810、1820に於いて、同芯状の配置となって、両者が圧着される。なお、端部1810、1820の用語は先端を意味するのではなく、三つ爪チャック201が配置される位置から先端までの部位を示している。外管181と内管182の先端部分はそれぞれ1811及び1821で図示している(図4)。
 そして、内管182の螺旋溝1822は、この端部1820の内方から始まり、内管182の端部1820より先端1821部分では螺旋溝1822は形成されていなく、円筒状である。そのため、芯金200は円柱でその外面が前面で内管182の内面に接する。
 この二重管圧着工程は、内部熱交換器18の両方の端部(外管181の端部1810)でなされる。即ち、膨張弁側コネクタ186及び反膨張弁側コネクタ31の近傍で、外管181と内管182とを圧着させている。そのため、この縮管(二重管圧着工程)により、内管182と外管181とは、その端部1820、1810において密着し、後工程でなされる屈曲時(二重管屈曲工程)にもずれが生じにくくなる。併せて、内管182と外管181の軸芯が揃うことになり、その結果、コネクタへの挿入もスムーズになる。図9では、内部熱交換器18の一方側の端部1810及び1820側を示しているが、外管181の縮管は、内部熱交換器18の他方側の端部1810及び1820側でも同様になされる。
 次に、内部熱交換器18と膨張弁側コネクタ186及び反膨張弁側コネクタ31とを組付けるコネクタ組付工程を行う。なお、図4の実施態様では、内管182及び外管181にそれぞれOリングを保持する内管側Oリング溝182a及び外管側Oリング溝181bを設けたが、内管182及び外管181の端部1820及び1810をストレートな円筒状としてもよい。そこで、図10に示す内管182及び外管181の端部1820及び1810をストレートな円筒状の形態に基づきコネクタ組付工程を説明する。外管側Oリング191はバルジ加工部181aと膨張弁側コネクタ186の被外管挿入部186eとの間で挟持する。内管182にも同様に鍔部(バルジ加工部)1825を形成し、このバルジ加工部1825と膨張弁側コネクタ186の内管Oリング保持部1861との間で内管側Oリング192を挟持する。
 コネクタ組付工程は、図11に示すように、外管クランプ221で外管181を掴み、図中右方向に移動して、外管181の先端1811を膨張弁側コネクタ186の被外管挿入部186eに挿入する。より具体的には、外管側Oリング191、内管側Oリング192の異常噛み込みが生じないよう、膨張弁側コネクタ186の端面1865から被外管挿入部186eの始点(図10の左端)までの距離及び端面1865から被内管挿入部1860の始点(図10の左端)までの距離と、外管181の先端1811と内管182の先端1821までの距離が設定されている。
 図10に示すように、内部熱交換器18を膨張弁側コネクタ186に挿入する際、内管182の先端1821が最初に膨張弁側コネクタ186の被内管挿入部1860と接する。内管182の先端1821及び膨張弁側コネクタ186の被内管挿入部1860には共にテーパが形成されているので、このテーパにガイドされて内管182は被内管挿入部1860内にスムーズに挿入される。
 次いで、外管181の先端1811が膨張弁側コネクタ186の被外管挿入部186eと接する。この外管181の先端1821及び膨張弁側コネクタ186の被外管挿入部186eにもテーパが形成されているので、テーパにガイドされて外管181も被外管挿入部186eにスムーズに挿入される。
 その状態から更に挿入を進めると、内管側Oリング192が膨張弁側コネクタ186の内管Oリング保持部1861に接する。内管Oリング保持部1861は膨張弁側コネクタ186の被内管挿入部1860の一部であり、被外管挿入部186e側(図10の右側)形成されている。内管Oリング保持部1861の内径は、内管182のバルジ加工部1825の外径より大きく形成されている。この内管Oリング保持部1861にもテーパが形成されているので、内管側Oリング192はテーパに沿って内管Oリング保持部1861内に圧縮変形しながら挿入される。
 更に挿入を進めると、外管側Oリング191が膨張弁側コネクタ186の外管Oリング保持部1862と接する。この外管Oリング保持部1862も、被外管挿入部186eの一部である。被外管挿入部186eのうち、膨張弁側コネクタ186の端面1865側に形成されている。
 そして、上述の内管Oリング保持部1861と同様に、外管Oリング保持部1862にもテーパが形成されているので、外管側Oリング191もテーパに沿って圧縮変形しながら挿入される。外管Oリング保持部1862の内径は、外管181のバルジ加工部181aの外径より小さい。更に挿入を進めると、最後に外管181のバルジ加工部181aが膨張弁側コネクタ186の端面1865に当接する。
 挿入が完了した状態が、図12の状態であり、内管側Oリング192は内管182の端部1820の外周面、バルジ加工部1825及び内管Oリング保持部1861の内周面によって保持される。外管側Oリング191は端部1810の外周面、バルジ加工部181a及び外管Oリング保持部1862の内周面によって保持される。
 そして、内部熱交換器18を膨張弁側コネクタ186に組付けた後、外管クランプ221を外して、押さえ板188をバルジ加工部181aに当接させて、膨張弁側コネクタ186にボルト189で固定する。これにより、外管181のバルジ加工部181aが膨張弁側コネクタ186と押さえ板188とによって挟持されて、内部熱交換器18と膨張弁側コネクタ186との接続が安定する。この押さえ板188の取付によりコネクタ組付工程を終了する。なお、図12では押さえ板188をボルト189で固定しているが、図6に示す実施形態のようにボルト189によって膨張弁14に組付ける場合には、皿ねじ1890によって押さえ板188を固定する。
 ただ、押さえ板188による二重管と膨張弁側コネクタ186との機械的組付けは、ボルト189や皿ねじ1890に代えて、他の組付け方法を採用しても良い。例えば、バルジ加工部181aを膨張弁側コネクタ186でカシメ固定してもよく、スナップリングで固定したり、カップリング部材で固定してもよい。
 なお、図11では内部熱交換器18の一方側の端部1810及び1820側に膨張弁側コネクタ186を組付ける態様を示しているが、内部熱交換器18の他方側の端部1810及び1820側に反膨張弁側コネクタ31を組付ける形態も同様になされる。
 本実施形態では、内管の先端1821、内管側Oリング192、外管181の先端1811、及び外管側Oリング191と、膨張弁側コネクタ186の被内管挿入部1860及び被外管挿入部186eとの位置関係を、以下の構成としている。内管182及び外管181が膨張弁側コネクタ186に挿入される際に、最初に内管182の先端1821が被内管挿入部1860に接し、次いで外管181の先端1811が被外管挿入部186eに接する。その後、内管側Oリング192が被内管挿入部1860に接し、次いで外管側Oリング191が被外管挿入部186eと接する。そして、最後にバルジ加工部181aが膨張弁側コネクタ186の端面1865に当接する構造としている。これは、内部熱交換器18の膨張弁側コネクタ186への挿入に先立ち、二重管圧着工程を採用して、内管182と外管181とをほぼ同軸に配置しているから達成可能な構造である。
 その結果、膨張弁側コネクタ186と内管182との間で最初に軸合わせが行われる。その状態で、膨張弁側コネクタ186と外管181との間で軸合わせが行われる。そのため、内管と外管との軸芯が微小量ずれていてもスムーズな結合が可能となる。
 かつ、内管側Oリング192及び外管側Oリング191は、既に、内管182及び外管181が軸合わせされた状態で挿入されるので、噛み込みの恐れが大きく低減する。特に、内管側Oリング192が挿入された後で、外管側Oリング191が挿入されるので、二つのOリングが同時に変形を開始することが無くなり、組付けがスムーズになる。
 内部熱交換器18の屈曲(二重管屈曲工程)は、膨張弁側コネクタ186及び反膨張弁側コネクタ31を取り付けた状態で行う。上述のとおり、二重管屈曲工程の前に外管181を縮管して内管182と外管181とを圧着させているので、二重管屈曲工程においても端部1810及び1820のずれは抑制される。その結果、内部熱交換器18と膨張弁側コネクタ186とのシールは良好に維持できる。
 二重管屈曲工程は、図13に示すように、曲面治具210とクランプ211で内部熱交換器18の曲げ部1801の端を挟んで、内部熱交換器18を固定する。その状態で、外管181の外径形状に対応した形状を有する圧力治具212を外管181に当接させる。次いで、図14に示すように、曲面治具210とクランプ211で外管181を挟持した状態で、曲面治具210とクランプ211とが回転し、内部熱交換器18を曲面治具210の外形に合わせて屈曲させる。この曲面治具210とクランプ211の回転時に圧力治具212も内部熱交換器18の移動方向に移動しつつ、内部熱交換器18を曲面治具210の外形に押さえ付ける。
 二重管屈曲工程では、曲面治具210とクランプ211とによって内部熱交換器18は固定されているので、圧力治具212の押圧により曲面治具210の外形に対応して内部熱交換器18は屈曲する。曲面治具210の曲面は、曲げ部1801の曲率によって異なるが、例えば35~40ミリメートル程度の半径である。内部熱交換器18をどの程度の角度まで曲げるかは、圧力治具212の移動量及び曲面治具210とクランプ211の回動量により異なる。図14の例では、圧力治具212と、曲面治具210及びクランプ211との角度Nは相対的に90度移動している。
 二重管屈曲工程終了後は、圧力治具212が図14で上方向に移動して内部熱交換器18から外れる。同様に、クランプ211は、図14で右方向に移動して内部熱交換器18から外れる。なお、図2では、曲げ部1801は端部1810から離れた中央寄りの位置に形成していたが、図13及び図14では、曲面治具210とクランプ211は外管181の端部1810付近を挟んでいる。曲げ部1801をどこに形成するのかは、他の機器との干渉を避けるために適宜設定される。
 次に、上記構成における冷凍サイクル装置11の作動を説明する。圧縮機12が駆動されると、圧縮機12は蒸発器15側から低圧のガス冷媒を吸入して圧縮した後、高温の高圧のガス冷媒として凝縮器13側に吐出する。高圧冷媒は、凝縮器13において冷却されて凝縮液化される。ここでの冷媒は、ほぼ液相状態である。凝縮液化された冷媒は、高圧冷媒配管16(内外間流路18a)を流通して、膨張弁14で減圧膨張され、蒸発器15で蒸発される。ここでの冷媒は、過熱度0~3℃のほぼ飽和ガス状態である。蒸発器15では、冷媒の蒸発に伴って空気が冷却される。そして、蒸発器15で蒸発した飽和ガス冷媒は、低温の低圧冷媒として低圧冷媒配管17(内側流路18b)を流通して、圧縮機12に戻る。
 このとき、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とでは温度差があるため、高圧冷媒配管16を流通する高圧冷媒と低圧冷媒配管17を流通する低圧冷媒とが内部熱交換器18で熱交換され、高圧冷媒が冷却され低圧冷媒が加熱されることになる。
 すなわち、凝縮器13から流出した液相冷媒は、内部熱交換器18で過冷却されて低温化が促進される。蒸発器15から流出した飽和ガス冷媒は、内部熱交換器18で加熱されて過熱度を持ったガス冷媒となる。これにより、冷凍サイクル装置11の性能が向上する。
 本実施形態によれば、外管181を縮管して内管182と外管181とを圧着させて(二重管圧着工程)、その状態で、内部熱交換器18と膨張弁側コネクタ186及び反膨張弁側コネクタ31と接続を行うので、内管182と被内管挿入部1860との位置合わせ、及び、外管181と被外管挿入部186eとの位置合わせが正確に行える。
 本実施形態によれば、二重管屈曲工程時には内管182と外管181とは圧着しており、内部熱交換器18の端部で内管182と外管181とがずれるのが抑制される。さらに、内部熱交換器18と膨張弁側コネクタ186及び反膨張弁側コネクタ31とを接続した状態で、内部熱交換器18の屈曲工程を行うので、二重管屈曲工程によっても、内部熱交換器18と膨張弁側コネクタ186及び反膨張弁側コネクタ31との間のシール性能が損なわれることはない。
 上述の実施形態は望ましい形態であるが、本件の開示は他にも種々の形態がある。上述の実施形態では、図9に示すように、外管181を縮管して(二重管圧着工程)、その後で、膨張弁側コネクタ186を組付けた(コネクタ組付工程)が、工程を逆にして、コネクタ組付工程の後に二重管圧着工程を行うようにしてもよい。
 その場合のコネクタ組付工程は、図15に示すように、膨張弁側コネクタ186の位置を固定し、内管クランプ250で内管182を掴んで、内管クランプ250を図中右方向に移動して、内管182の先端1821を膨張弁側コネクタ186の被内管挿入部1860に挿入する。その後、図16に示すように、外管クランプ221で外管181を掴み、同じく図中右方向に移動して、外管181の先端1811を膨張弁側コネクタ186の被外管挿入部186eに挿入する。そして、バルジ加工部181aを膨張弁側コネクタ186の端面1865に当接させる。
 この実施形態では、内管182と外管181とで別々に被内管挿入部1860及び被外管挿入部186eとの位置決めができる。そのため、膨張弁側コネクタ186との組付けを正確に行うことができる。もっとも、この実施形態は、膨張弁側コネクタ186若しくは反膨張弁側コネクタ31のいずれか一方に適用可能であるが、他方のコネクタは内管182と外管181とが組付けられた内部熱交換器18が挿入される。
 そこで、図17に示すように、内管用芯金220をまず、反膨張弁側コネクタ31にセットする。その状態で、内部熱交換器18を外管クランプ221で掴んで図中右方向に移動させる。内管182の先端1821は内管用芯金220の先端に形成された屈曲面によって外管181と同軸に保持され、反膨張弁側コネクタ31の被内管挿入部3113に挿入される。外管181は外管クランプ221によって位置決めされて、反膨張弁側コネクタ31の被外管挿入部3111に挿入される。なお、組付けは反膨張弁側コネクタ31を先に行っても良い。その場合には、反膨張弁側コネクタ31を図15及び図16に示した内管クランプ250と外管クランプ221によって組付け、膨張弁側コネクタ186の組付けに図17で示す内管用芯金220を用いることになる。
 この図17に示す内管用芯金220を用いて、内管182と外管181とを同時に組付けるコネクタ組付工程は、膨張弁側コネクタ186と反膨張弁側コネクタ31との双方に採用することも可能である。例えば、膨張弁側コネクタ186を反膨張弁側コネクタ31より先に組付ける場合には、外管クランプ221は外管181の膨張弁側コネクタ186側の端部1810を挟持する。一方、内管クランプ250は、内管182の反膨張弁側コネクタ31側の端部1820を挟持し、その状態で内管182を膨張弁側コネクタ186の被内管挿入部1860に所定の押圧力を加えて挿入し、かつ、外管181を被外管挿入部186eに挿入する。この挿入は同時に行うが、まず、内管182の先端1821が内管用芯金220の先端の曲面にガイドされて被内管挿入部1860に挿入され、次いで、外管181の先端1811が外管クランプ221によって位置決めされて被外管挿入部186eに挿入される。
 膨張弁側コネクタ186を組付けた後の反膨張弁側コネクタ31の組付けは、図17に示す形態と同じである。外管クランプ221によって位置決めを行いつつ、内管182と外管181とを外管クランプ221により反膨張弁側コネクタ31の被内管挿入部3113と被外管挿入部3111にそれぞれ挿入する。反膨張弁側コネクタ31の組付けを膨張弁側コネクタ186より先に行うことは、勿論可能である。
 内部熱交換器18を膨張弁側コネクタ186に組付けた後、外管クランプ221を外して、押さえ板188を膨張弁側コネクタ186にボルト189や皿ねじ1890で固定する。そして、三つ爪チャック201を用いて外管181を縮管する。この三つ爪チャック201の配置は図9と同様である。三つ爪チャック201により外管181を縮管して、内管182と外管181とを圧着させる。
 この実施形態でも、二重管屈曲工程の前には、内部熱交換器18と膨張弁側コネクタ186とは取り付けられており、かつ、外管181が縮管されて内管182と外管181とが圧着している(二重管圧着工程)ので、内部熱交換器18と膨張弁側コネクタ186とのシール性能は確保できている。
 なお、膨張弁側コネクタ186と内部熱交換器18の組付け(二重管形成工程)と外管181の縮管(二重管圧着工程)とを一連の工程で行うことも可能である。即ち、上記の実施形態では、外管クランプ221を外して、押さえ板188を膨張弁側コネクタ186に皿ねじ1890で固定してから三つ爪チャック201による縮管を行ったが、外管クランプ221を外したのち三つ爪チャック201による縮管を行って、その後に押さえ板188を固定しても良い。また、三つ爪チャック201に外管クランプ221の動作を併せ持たせるようにしてもよい。
 また、図17では内管用芯金220を用いているが、膨張弁側コネクタ186や反膨張弁側コネクタ31にガイドとなるテーパを大きめに形成したような場合には、内管用芯金220を用いずにコネクタ組付工程を行うことも可能である。
 外管181の縮管に三つ爪チャック201を用いたが、三つ爪チャックは一例であり、四つ爪チャックにしても、他の形状のチャックを用いても良い。例えば、ローラーにより、外管181を内管182に押さえ付けてもよい。図5(k)や(l)の内部熱交換器18では、外管181に螺旋溝1822を形成する工程と二重管圧着工程とを同じ工程とすることも可能である。
 また、外管181を縮管して内管182と外管181とを圧着させる二重管圧着工程は、1回で行ってもよく、3回以上複数回に分けて繰り返しても良い。かつ、二重管圧着工程を外管181と内管182の端部1810及び1820に加え、それ以外の個所で行ってもよい。
 また、上述の実施形態では、二重管圧着工程を内部熱交換器18の両側の端部(外管181の端部1810)で行っていたが、片方の端部(例えば膨張弁側コネクタ186)のみで行ってもよい。この場合、二重管屈曲工程は、二重管圧着工程を行っていない側(例えば反膨張弁側コネクタ31)の端部から順次行うとよい。二重管圧着工程を行っていない側(例えば反膨張弁側コネクタ31)では、最初の二重管屈曲工程が近くでなされるので、内管182と外管181とのずれは少ない。そのため、二重管圧着工程を採用していなくても、内管側Oリング192及び外管側Oリング191によるシールを維持することが可能である。一方、反対側(例えば膨張弁側コネクタ186)では、二重管屈曲工程によるずれは多くなるが、二重管圧着工程を採用しているので、そのずれが防止でき、内管側Oリング192及び外管側Oリング191によるシールを維持することができる。
 更に、片方の端部でのみ行う場合、例えば、一方の端部(反膨張弁側コネクタ31)は、図7に示すように内管182の先端1821と反膨張弁側コネクタ31との間に隙間1821aを形成し、他方の端部(膨張弁側コネクタ186)は、図4に示すように内管182の先端1821が膨張弁側コネクタ186に当接する構造とする。このような例では、隙間1821aを設けた側(膨張弁側コネクタ186)の端部に二重管圧着工程を採用する。
 二重管圧着工程は、膨張弁側コネクタ186や反膨張弁側コネクタ31のシール性能を維持するためには、内部熱交換器18の端部で行うことが望ましいが、三つ爪チャック201の配置位置の制限があるような場合、端部以外の個所で二重管圧着工程を行ってもよい。シール性能は多少劣ることとなるが、二重管圧着工程を採用しない場合に比較すれば、シール性能の向上が可能となる。二重管圧着工程を内部熱交換器18の中央部で採用した場合でも、二重管圧着工程を採用しない場合に比較すれば、シール性能は向上する。
 上述の実施形態では、二重管屈曲工程の前にコネクタ組付工程を採用している。二重管屈曲工程によって、内管182と外管181とのずれが発生する以前に膨張弁側コネクタ186及び反膨張弁側コネクタ31を組付けているため、コネクタ組付けがスムーズになる。ただ、本件の開示では、二重管屈曲工程の前に二重管圧着工程を採用しているので、二重管屈曲工程の後でも、内管182と外管181との同軸度は確保できている。そのため、コネクタ組付工程を二重管屈曲工程の後に行うことも可能である。
 上述の実施形態では、外管181を縮管して内管182と外管181とを圧着していたが、逆に内管182を拡管して圧着させてもよく、外管181を縮管と内管182の拡管とを同時に行ってもよい。例えば、図18に示すように内管182を外管181の内部に挿入し、外管181の図示している側の端部1810を外管クランプ221によって保持する。内管182は図示していない側の端部1820を内管クランプ250によって保持する。その状態で、図19に示すような内管拡管治具251を内管182の図示している側の端部1820より圧入して、内管拡管治具251先端のテーパ2511によって内管182を拡管し、内管182の外面を外管181のリブ1815に圧着させる。
 内管拡管治具251で内管182の拡管を行う際に、外管181を三つ爪チャック201によって同時に縮管してもよい。その際、外管クランプ221は内管拡管治具251及び三つ爪チャック201の位置しない部位で、外管181を把持する。
 なお、図18及び図19は図5(c)、(d)、(e)、(g)、(i)、(j)、(m)、(n)に示した、外管181にリブ1815を形成した二重管に内管182の拡管を行う実施形態を示したが、図5(a)、(b)、(f)、(o)、(p)に示すような内管182に螺旋溝1822を形成する二重管にも同様に適用できる。内管182の先端1821が端部1820や内管182の他の部位より狭いような例では、内管拡管治具251を内管182に挿入後、内管拡管治具251を開いて内管182の拡管を行う。
 上述の実施形態では、二重管とコネクタとの機械的に組付けに、押さえ板188をバルジ加工部181aに当接させて、ボルト189で固定していたが、他の組付け方法を採用しても良い。例えば、バルジ加工部181aを膨張弁側コネクタ186や反膨張弁側コネクタ31でカシメ固定してもよく、スナップリングで固定したり、カップリング部材で固定してもよい。
 図20は、この明細書に開示される他の実施形態の断面図を示す。図21は、この明細書に開示されるさらに他の実施形態の断面図を示す。これらにおいて、被内管挿入部1860の最奥部と内管182の先端1821との間には隙間1821aが形成されている。内管側Oリング192は、内管182に形成されたOリング溝(シール部材溝)に保持されている。
 次に、コネクタ組付工程を説明する。ここでは、図15及び図16に示す内管182及び外管181の端部1820及び1810をストレートな円筒状の形態に基づき組付工程を説明する。外管側Oリング191はバルジ加工部181aと膨張弁側コネクタ186の被外管挿入部186eとの間で挟持する。内管182にも同様に鍔部(バルジ加工部)1825を形成し、このバルジ加工部1825と膨張弁側コネクタ186の内管Oリング保持部1861との間で内管側Oリング192を挟持する。
 コネクタ組付工程は、図15に示すように、膨張弁側コネクタ186の位置を固定し、内管クランプ250で内管182を掴んで、内管クランプ250を図中右方向に移動して、内管182の先端1821を膨張弁側コネクタ186の被内管挿入部1860に挿入する。その後、図16に示すように、外管クランプ221で外管181を掴み、同じく図中右方向に移動して、外管181の先端1811を膨張弁側コネクタ186の被外管挿入部186eに挿入する。そして、バルジ加工部181aを膨張弁側コネクタ186の端面1865に当接させる。
 この実施形態では、内管182と外管181とで別々に被内管挿入部1860及び被外管挿入部186eとの位置決めができる。そのため、膨張弁側コネクタ186との組付けを正確に行うことができる。もっとも、この実施形態は、膨張弁側コネクタ186若しくは反膨張弁側コネクタ31のいずれか一方に適用可能であるが、他方のコネクタは内管182と外管181とが組付けられた内部熱交換器18が挿入される。
 そこで、図17に示すように、内管用芯金220をまず、反膨張弁側コネクタ31にセットする。その状態で、内部熱交換器18を外管クランプ221で掴んで図中右方向に移動させる。内管182の先端1821は内管用芯金220の先端に形成された屈曲面によって外管181と同軸に保持され、反膨張弁側コネクタ31の被内管挿入部3113に挿入される。外管181は外管クランプ221によって位置決めされて、反膨張弁側コネクタ31の被外管挿入部3111に挿入される。なお、組付けは反膨張弁側コネクタ31を先に行っても良い。その場合には、反膨張弁側コネクタ31を図15及び図16に示した内管クランプ250と外管クランプ221によって組付け、膨張弁側コネクタ186の組付けに図10で示す内管用芯金220を用いることになる。
 この図17に示す内管用芯金220を用いて、内管182と外管181とを同時に組付けるコネクタ組付工程は、膨張弁側コネクタ186と反膨張弁側コネクタ31との双方に採用することも可能である。例えば、膨張弁側コネクタ186を反膨張弁側コネクタ31より先に組付ける場合には、外管クランプ221は外管181の膨張弁側コネクタ186側の端部1810を挟持する。一方、内管クランプ250は、内管182の反膨張弁側コネクタ31側の端部1820を挟持し、その状態で内管182を膨張弁側コネクタ186の被内管挿入部1860に所定の押圧力を加えて挿入し、かつ、外管181を被外管挿入部186eに挿入する。この挿入は同時に行うが、まず、内管182の先端1821が内管用芯金220の先端の曲面にガイドされて被内管挿入部1860に挿入され、次いで、外管181の先端1811が外管クランプ221によって位置決めされて被外管挿入部186eに挿入される。
 膨張弁側コネクタ186を組付けた後の反膨張弁側コネクタ31の組付けは、図17に示す形態と同じである。外管クランプ221によって位置決めを行いつつ、内管182と外管181とを外管クランプ221により反膨張弁側コネクタ31の被内管挿入部3113と被外管挿入部3111にそれぞれ挿入する。反膨張弁側コネクタ31の組付けを膨張弁側コネクタ186より先に行うことは、勿論可能である。
 挿入が完了した状態が、図16や図17の状態であり、内管側Oリング192は内管182の端部1820の外周面、バルジ加工部1825及び内管Oリング保持部の内周面によって保持される。外管側Oリング191は端部1810の外周面、バルジ加工部181a及び外管Oリング保持部の内周面によって保持される。
 そして、内部熱交換器18を膨張弁側コネクタ186に組付けた後、外管クランプ221を外して、押さえ板188をバルジ加工部181aに当接させて、膨張弁側コネクタ186にボルト189で固定する。これにより、外管181のバルジ加工部181aが膨張弁側コネクタ186と押さえ板188とによって挟持されて、内部熱交換器18と膨張弁側コネクタ186との接続が安定する。この押さえ板188の取付によりコネクタ組付工程を終了する。なお、図4では押さえ板188をボルト189で固定しているが、図6に示す実施形態のようにボルト189によって膨張弁14に組付ける場合には、皿ねじ1890によって押さえ板188を固定する。
 ただ、押さえ板188による二重管と膨張弁側コネクタ186との機械的組付けは、ボルト189や皿ねじ1890に代えて、他の組付け方法を採用しても良い。例えば、バルジ加工部181aを膨張弁側コネクタ186でカシメ固定してもよく、スナップリングで固定したり、カップリング部材で固定してもよい。
 図2に示すように、内部熱交換器18には複数個所の曲げ部1801で屈曲形成されるので、この曲げ部1801を二重管屈曲工程で形成する。二重管屈曲工程は、図13に示すように、曲面治具210とクランプ211で内部熱交換器18の曲げ部1801の端を挟んで、内部熱交換器18を固定する。その状態で、外管181の外径形状に対応した形状を有する圧力治具212を外管181に当接させる。次いで、図14に示すように、曲面治具210とクランプ211で外管181を挟持した状態で、曲面治具210とクランプ211とが回転し、内部熱交換器18を曲面治具210の外形に合わせて屈曲させる。この曲面治具210とクランプ211の回転時に圧力治具212も内部熱交換器18の移動方向に移動しつつ、内部熱交換器18を曲面治具210の外形に押さえ付ける。
 二重管屈曲工程では、曲面治具210とクランプ211とによって内部熱交換器18は固定されているので、圧力治具212の押圧により曲面治具210の外形に対応して内部熱交換器18は屈曲する。曲面治具210の曲面は、曲げ部1801の曲率によって異なるが、例えば35~40ミリメートル程度の半径である。内部熱交換器18をどの程度の角度まで曲げるかは、圧力治具212の移動量及び曲面治具210とクランプ211の回動量により異なる。図14の例では、押さえ治具212と、曲面治具210及びクランプ211との角度Nは相対的に90度移動している。
 二重管屈曲工程終了後は、圧力治具212が図14で上方向に移動して内部熱交換器18から外れる。同様に、クランプ211は、図14で右方向に移動して内部熱交換器18から外れる。なお、図2では、曲げ部1801は端部1810から離れた中央寄りの位置に形成していたが、図13及び図14では、曲面治具210とクランプ211は外管181の端部1810付近を挟んでいる。曲げ部1801をどこに形成するのかは、他の機器との干渉を避けるために適宜設定される。
 二重管屈曲工程は、内部熱交換器18の形状を最適形状とする上で必須である。一方で、二重管屈曲工程を行うと、外管181と内管182の径の相違や、螺旋溝1822の変形具合により、外管181と内管182にずれが生じる。このずれは、外管181の端部1810と内管182の端部1820で顕著となる。図22は、ずれを強調しているが、内管182の方が短くなり(図22のL)、中心線もずれる(図22のM)ことになる。
 そこで、内部熱交換器18を屈曲形成する前(二重管屈曲工程前)に、内管182と外管181とを圧着させて、ずれの発生を抑制する二重管圧着工程を採用することも検討できる。二重管圧着工程を採用する場合は、図23に示すように、内管182の内方に芯金200を当てた状態で、外管181の外方から三つ爪チャック201を押し付けることで行う。三つ爪チャック201の先端202は外管181の外形に対応した円筒形状となっており、外管181を三方向から押圧する。これにより、外管181と内管182とは、特にその端部1810、1820に於いて両者が圧着される。
 なお、端部1810、1820の用語は先端を意味するのではなく、三つ爪チャック201が配置される位置から先端までの部位を示している。外管181と内管182の先端部分はそれぞれ1811及び1821で図示している(図4)。そして、内管182の螺旋溝1822は、この端部1820の内方から始まり、内管182の端部1820より先端1821部分では螺旋溝1822は形成されていなく、円筒状である。そのため、芯金200は円柱でその外面が前面で内管182の内面に接する。
 この二重管圧着工程を採用すれば、内管182と外管181とは、その端部1820、1810において密着し、二重管屈曲工程にもずれが生じにくくなる。一方で、二重管圧着工程を採用すると、二重管屈曲工程において内管182と外管181との位置関係が拘束されることになり、二重管をスムーズに曲げることが難しくなる。加えて、二重管圧着工程によって内外間流路18aの通路断面積が減り、結果として高圧側冷媒の流れの圧力損失の上昇をきたす恐れもある。可能性としては、内外間流路18aが詰まる恐れも考えられる。
 それに対し、二重管圧着工程を採用しなければ、二重管屈曲工程において内管182と外管181との間の相対的位置関係が拘束されないので、二重管をスムーズに曲げることが出来て、外管181や内管182に曲げ皺が生じにくい。また、二重管圧着工程を採用しないので、製造工程も減り、製造コストを抑制することができる。
 ただ、二重管圧着工程を採用しなければ、図22に示すようなずれL、Mの発生が避けられない。そこで、本実施形態では、二重管屈曲工程に先立ち、内部熱交換器18に膨張弁側コネクタ186及び反膨張弁側コネクタ31を組付けるコネクタ組付け工程を採用している。上述のように、内管182の両方の先端1821は膨張弁側コネクタ186の被内管挿入部1860と反膨張弁側コネクタ31の被内管挿入部3113とによってそれぞれに保持されている。同様に、外管181の両方の先端1811も、膨張弁側コネクタ186の被外管挿入部186e及び反膨張弁側コネクタ31の被外管挿入部3111に保持されている。そのため、径方向のずれ(図22のM)は、膨張弁側コネクタ186及び反膨張弁側コネクタ31によって抑制される。
 その結果、二重管屈曲工程によるずれは、図24に示すように、軸方向のずれLのみとなる。軸方向のずれLは内部熱交換器18の長さや、螺旋溝1822の形成状態、曲げ部1801の数や曲げ角度等によりことなるが、長くても数ミリメートル程度である。
 ここで、上述のように、コネクタ組付工程は押さえ板188及び押さえ板390で外管181のバルジ加工部181aを押さえ付けることで終了するため、外管181は膨張弁側コネクタ186及び反膨張弁側コネクタ31に当接した状態で位置ずれは生じない。軸方向のずれLが生じるのは、内管182と膨張弁側コネクタ186及び反膨張弁側コネクタ31との間のみである。一方、図25に示すように、内管182の先端と被内管挿入部1860の接触長さXの方が、このずれLの量より長くなっている。従って、二重管屈曲工程で軸方向のずれLが生じたとしても、内管182の先端1821が被内管挿入部1860から抜け出ることはない。
 また、内管Oリング保持部1861の長さYも軸方向のずれLより長く形成されており、二重管屈曲工程で軸方向のずれLが生じたとしても、内管側Oリング192は膨張弁側コネクタ186と内管182との間で挟持されている。反膨張弁側コネクタ31であっても同様である。従って、二重管屈曲工程で軸方向のずれLが生じたとしても、内管側Oリング192によるシール性能は良好のまま保持できる。
 特に、本実施形態では、膨張弁側コネクタ186の被内管挿入部1860及び内管Oリング保持部1861が円筒状に形成されており、内管182の軸方向の移動が可能な形状であるため、二重管屈曲工程における外管181と内管182との軸方向のずれLを吸収できる。これは、反膨張弁側コネクタ31の被内管挿入部3113であっても同様である。本実施形態では、膨張弁側コネクタ186と反膨張弁側コネクタ31との両者によって、軸方向のずれLを吸収することができる。
 本実施形態によれば、二重管圧着工程を採用していないので、内管182と外管181との間の相対的移動を許容することができる。その結果、二重管屈曲工程での外管181及び内管182の曲げがスムーズに行える。一方、二重管圧着工程を採用していない結果、二重管屈曲工程終了後には内管182と外管181とがずれることとなるが、二重管屈曲工程の前にコネクタ組付工程を採用するので、外管181は膨張弁側コネクタ186及び反膨張弁側コネクタ31に機械的に固定されている。また、内管182も膨張弁側コネクタ186の被内管挿入部1860及び反膨張弁側コネクタ31の被内管挿入部3113に挿入されているので、径方向にずれることはない。かつ、二重管屈曲工程の際には、内管182は被内管挿入部1860及び被内管挿入部3113を移動可能となっているので、軸方向のずれLは吸収できる。
 上述の実施形態は望ましい形態であるが、本件の開示は他にも種々の形態がある。上述の実施形態では、コネクタ組付工程を、図15に示す外管181や内管182の端部1810や1820がストレートな形状で説明したが、図4に示すような外管側Oリング溝181bや内管側Oリング溝182aを備える形状であっても、同様の組付けを行う。二重管屈曲工程における軸方向のずれLは、内管側Oリング192が内管側Oリング溝182aに保持された状態で被内管挿入部1860及び被内管挿入部3113を移動することで、吸収される。
 また、上述の実施形態では、軸方向のずれLは内管182が外管181に比して縮む方向のずれであったが、螺旋溝1822やリブ1815の形状によっては、逆に内管182が外管181に比して伸びる方向のずれとなる場合もありうる。そのような場合であっても、二重管屈曲工程時に内管182の先端1820が被内管挿入部1860及び被内管挿入部3113で移動可能とすることで、ずれLの吸収は図れる。図4や図7に示す実施形態では、膨張弁側コネクタ186の被内管挿入部1860及び反膨張弁側コネクタ31の被内管挿入部3113の際奥部と内管182の先端1821との間には、それぞれ隙間1821aが形成されているので、縮む方向のずれLのみならず、伸びる方向のずれLも吸収することができる。
 二重管圧着工程を採用しなければ、図8に示すようなずれL、Mの発生が避けられない場合がある。そこで、内部熱交換器18に膨張弁側コネクタ186や反膨張弁側コネクタ31を組付けるコネクタ組付け工程に先立ち、内管182と外管181との同軸度を回復させる同軸度回復工程を採用する。
 図26に示すように、内管用芯金220を膨張弁側コネクタ186にセットしておき、その状態で、外管クランプ221を用いて外管181を保持し、かつ、膨張弁側コネクタ186との位置合わせを行いつつ、内管182を被内管挿入部1860に挿入し、外管181を被外管挿入部186eに挿入する。この際、内管用芯金220の先端が曲面となって径小部222を構成しており、この径小部222によって、内管182の端部1820が膨張弁側コネクタ186の被内管挿入部1860にガイドされる。また、外管クランプ221によって、外管181の端部1810は被外管挿入部186eに正確にガイドされる。その結果、内管用芯金220と外管クランプ221によって、内管182の先端1821と外管181の先端1811との同軸度が高められる。
 二重管同軸度回復工程とコネクタ組付工程とは、一連の動作で行っているが、内管182と外管181との同軸度を高めた上で(二重管同軸度回復工程の後)、内部熱交換器18を膨張弁側コネクタ186に組付ける(コネクタ組付工程)こととなる。二重管の挿入は、内管182の先端1821がまず膨張弁側コネクタ186の被内管挿入部1860と当接し、その後外管181の先端1811が膨張弁側コネクタ186の被外管挿入部186eと接する。そして、この際の挿入をスムーズに行う為、内管182の先端1821及び外管181の先端1811にはテーパが形成されている。
 そして、内部熱交換器18を膨張弁側コネクタ186に組付けた後、外管クランプ221を外して、押さえ板188をバルジ加工部181aに当接させて、膨張弁側コネクタ186に皿ねじ1890で固定する。これにより、外管181のバルジ加工部181aが膨張弁側コネクタ186と押さえ板188とによって挟持されて、内部熱交換器18と膨張弁側コネクタ186との接続が安定する。この押さえ板188の取付によりコネクタ組付工程を終了する。
 本実施形態によれば、二重管圧着工程を採用していないので、内管182と外管181との間の相対的移動を許容することができる。その結果、二重管屈曲工程での外管181及び内管182の曲げがスムーズに行える。一方、二重管圧着工程を採用していない結果、二重管屈曲工程終了後には内管182と外管181との軸芯がずれることとなるが、コネクタ組付工程の前に同軸度回復工程を採用するので、内管182と被内管挿入部1860との位置合わせ、及び、外管181と被外管挿入部186eとの位置合わせが正確に行える。
 上述の実施形態は望ましい形態であるが、本件の開示は他にも種々の形態がある。上述の実施形態では、二重管同軸度回復工程とコネクタ組付工程とは、一連の動作で行ったが、必要に応じ別工程としてもよい。まず、治具を用いて内管182と外管181との軸芯を一致させるように修正し、その後に、膨張弁側コネクタ186や反膨張弁側コネクタ31を組付けるようにしてもよい。
 上記実施形態を例えば以下のように種々変形可能である。
 (1)内管182の外表面の螺旋溝は、3条のものに限らず、1条、2条、4条等の溝部としても良いし、複数の螺旋溝同士が交差するように設けられていてもよい。螺旋溝の代わりに、内管182の軸方向と平行な直線状に延びる直線溝が形成されていてもよい。これは、外管181に形成する螺旋溝1816でも同様である。
 (2)上記実施形態では外管181および内管182をアルミニウム製としたが、これに限らず、鉄製や銅製等のものとしても良い。熱伝達率の良い材料であれば、他の材料を用いてもよい。
 (3)上記実施形態では冷凍サイクル装置11に配設される内部熱交換器18を車両用空調装置10に適用したものとしたが、これに限らず、家庭用やビル用の空調装置等、据置型の空調装置に適用してもよい。
 (4)上記実施形態では冷凍サイクル装置11の冷媒としてフロン系冷媒を用いており、高圧側冷媒圧力が冷媒の臨界圧力を超えない亜臨界冷凍サイクルを構成しているが、冷媒として二酸化炭素を用いて、高圧側冷媒圧力が冷媒の臨界圧力以上となる超臨界冷凍サイクルを構成してもよい。
 (5)上記実施形態では、圧力スイッチ34に代えて圧力センサを用いるとしていたが、必要があれば、圧力スイッチ34と圧力センサとを共に用いてもよい。
 (6)上述の実施形態では、二重管を膨張弁側コネクタ186に挿入する際、内管側Oリング192が外管側Oリング191より先に膨張弁側コネクタ186に接する位置関係としたが、必要に応じ、逆としてもよい。即ち、外管側Oリング191の方が先に膨張弁側コネクタ186に接するようにしてもよい。内管側Oリング192及び外管側Oリング191が膨張弁側コネクタ186に接する際には、内管182及び外管181は膨張弁側コネクタ186に挿入されて軸芯が合っているので、内管側Oリング192及び外管側Oリング191の噛み込みは良好に防止できる。
 (7)シール部材は、Oリングが望ましいが、ガスケット等他の部材を用いても良い。また、Oリングとガスケットとを併用してもよい。
 (8)同芯構造として、螺旋溝1822に代えてストレート形状の溝としてもよい。このストレート形状の溝は、図5(a)、(b)、(f)、(O)及び(q)に示すような内管182に形成してもよく、図5(k)、(l)に示すように外管181に形成してもよい。

 

Claims (25)

  1.  二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)とを備え、
     前記内管の内部には、冷凍サイクル装置(11)の低圧側の冷媒が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記冷凍サイクル装置の高圧側の前記冷媒が流れる内外間流路(18a)が形成されており、
     前記外管と前記内管との間には、前記外管および前記内管の少なくとも一方の表面積を増加させると共に前記外管と前記内管とを同芯上に配置する同芯構造が形成され、
     前記外管および前記内管と接続対象部材(14、35、37)との間に介在し、前記内外間流路を前記接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び前記内側流路を前記接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)とを備え、
     前記二重管と前記コネクタとが機械的に固定されており、
     前記外管及び前記内管の少なくともいずれか一方は、少なくとも1カ所で所定距離に亘って前記外管及び前記内管の他方側に押圧変形され、
     前記外管及び前記内管は、前記同芯構造を介して少なくとも1カ所で互いに圧着し、
     前記外管及び前記内管が互いに圧着した状態で、前記二重管が少なくとも1カ所で屈曲する
     ことを特徴とする内部熱交換器。
  2.  前記外管と前記コネクタの被外管挿入部(186e、3111)との間に介在して、前記高圧連通流路からの冷媒の洩れを防止するシール部材(191)と、
     前記内管と前記コネクタの被内管挿入部(1860、3113)との間に介在して、前記高圧連通流路からの冷媒の洩れを防止するシール部材(192)とを備える
     ことを特徴とする請求項1記載の内部熱交換器。
  3.  前記同芯構造は、前記内管及び前記内管のいずれかに螺旋溝が形成され前記内管の外周の一部が前記外管の内周の一部に接触する構造である
     ことを特徴とする請求項1もしくは2に記載の内部熱交換器。
  4.  前記同芯構造は、前記内管と前記外管とを接触させるリブ構造である
     ことを特徴とする請求項1もしくは2に記載の内部熱交換器。
  5.  前記二重管と前記コネクタとの機械的な固定は、前記外管及び前記内管が互いに圧着した後の状態でなされ、
     その状態で前記二重管が屈曲する
     ことを特徴とする請求項1ないし4のいずれか1つに記載の内部熱交換器。
  6.  前記二重管と前記コネクタとが機械的な固定は、前記外管及び前記内管が互いに圧着する前の状態でなされ、
     その後、前記外管及び前記内管が互いに圧着して、その状態で前記二重管が屈曲する
     ことを特徴とする請求項1ないし4のいずれか1つに記載の内部熱交換器。
  7.  前記外管及び前記内管は、前記同芯構造を介して前記コネクタの近傍で互いに圧着している
     ことを特徴とする請求項1ないし6のいずれか1つに記載の内部熱交換器。
  8.  前記外管及び前記内管の前記同芯構造を介しての圧着構造は、前記外管が径方向内側に押圧変形されて形成されている
     ことを特徴とする請求項1ないし7のいずれか1つに記載の内部熱交換器。
  9.  前記外管及び前記内管の前記同芯構造を介しての圧着構造は、前記内管が径方向外側に押圧変形されて形成されている
     ことを特徴とする請求項1ないし7のいずれか1つに記載の内部熱交換器。
  10.  外管(181)の内側に同芯構造を介して内管(182)を配置して、二重管を形成する二重管形成工程と、
     前記外管及び前記内管の少なくともいずれか一方を所定距離に亘って前記外管及び前記内管の他方側に押圧変形させて、前記外管及び前記内管を、前記同芯構造を介して互いに圧着させる二重管圧着工程と、
     前記二重管を少なくとも1カ所で屈曲する二重管屈曲工程とを経時順に行い、
     前記外管および前記内管の端部に、接続対象部材(14、35、37)と前記二重管とを連結するコネクタ(186、31)を配置し、前記二重管と前記コネクタとを機械的に固定するコネクタ組付工程を行うことを特徴とする内部熱交換器の製造方法。
  11.  前記二重管圧着工程の後で、
     前記内管の先端(1821)を前記コネクタの被内管挿入部(1860)に挿入し、前記外管の先端(1811)を前記コネクタの被外管挿入部(186e)に挿入し、前記二重管を前記コネクタに機械的に組付けるコネクタ組付工程を行い、
     このコネクタ組付工程の後で、前記二重管屈曲工程を行う
     ことを特徴とする請求項10記載の内部熱交換器の製造方法。
  12.  前記内管の先端(1821)を前記コネクタの被内管挿入部(1860)に挿入し、前記外管の先端(1811)を前記コネクタの被外管挿入部(186e)に挿入し、前記二重管を前記コネクタに機械的に組付けるコネクタ組付工程を行い、
     このコネクタ組付工程の後で、前記二重管圧着工程を行う
     ことを特徴とする請求項10記載の内部熱交換器の製造方法。
  13.  前記二重管圧着工程は、前記外管の端部を所定距離に亘って前記外管の径方向内側に押圧変形させて、前記外管及び前記内管の前記端部を、前記同芯構造を介して互いに圧着させる
     ことを特徴とする請求項10ないし12のいずれか1つに記載の内部熱交換器の製造方法。
  14.  二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)とを備え、
     前記内管の内部には、冷凍サイクル装置(11)の低圧側の冷媒が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記冷凍サイクル装置の高圧側の前記冷媒が流れる内外間流路(18a)が形成されており、
     前記外管と前記内管との間には、前記外管および前記内管の少なくとも一方の表面積を増加させると共に前記外管と前記内管とを同芯上に配置する同芯構造が形成され、
     前記外管および前記内管と接続対象部材(14、35、37)との間に介在し、前記内外間流路を前記接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び前記内側流路を前記接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)とを備える内部熱交換器の製造方法であって、
     前記外管(181)の内側に前記同芯構造を介して前記内管(182)を配置して、前記二重管を形成する二重管形成工程と、
     前記内管の先端(1821)を前記コネクタの被内管挿入部(1860、3113)に挿入し、前記外管の先端(1811)を前記コネクタの被外管挿入部(186e、3111)に挿入し、前記二重管を前記コネクタに機械的に組付けるコネクタ組付工程と、
     前記二重管を少なくとも1カ所で屈曲する二重管屈曲工程とを経時順に行い、
     前記二重管屈曲工程時に、前記内管が前記コネクタの前記被内管挿入部内で移動可能とすることを特徴とする内部熱交換器の製造方法。
  15.  前記コネクタ組付工程では、
     前記外管と前記コネクタの前記被外管挿入部(186e、3111)との間に、前記高圧連通流路からの冷媒の洩れを防止するシール部材(191)介在させ、かつ、前記内管と前記コネクタの前記被内管挿入部(1860、3113)との間に、前記高圧連通流路からの冷媒の洩れを防止するシール部材(192)を介在させることを特徴とする請求項14に記載の内部熱交換器の製造方法。
  16.  前記二重管屈曲工程時に、前記シール部材は前記コネクタのシール部材保持部(1861)に保持され、前記内管と前記被内管挿入部とは、前記シール部材保持部に前記シール部材を挟持して、前記シール部材のシール性能を維持した状態で相対的に移動可能とする請求項15に記載の内部熱交換器の製造方法。
  17.  前記二重管屈曲工程時に、前記シール部材は前記内管のシール部材溝(182a)に保持され、前記内管と前記被内管挿入部とは、前記シール部材溝で前記シール部材を挟持して、前記シール部材のシール性能を維持した状態で相対的に移動可能とする請求項15もしくは16に記載の内部熱交換器の製造方法。
  18.  前記同芯構造は、前記内管及び前記内管のいずれかに螺旋溝が形成され前記内管の外周の一部が前記外管の内周の一部に接触する構造であることを特徴とする請求項14ないし17のいずれか1つに記載の内部熱交換器の製造方法。
  19.  前記同芯構造は、前記内管と前記外管とを接触させるリブ構造であることを特徴とする請求項14ないし17のいずれか1つに記載の内部熱交換器の製造方法。
  20.  前記コネクタ組付工程は、前記外管及び前記内管が前記コネクタに挿入された状態で、前記外管と前記コネクタとが機械的に固定されることを特徴とする請求項14ないし19のいずれか1つに記載の内部熱交換器の製造方法。
  21.  二重管の外側の管を形成する外管(181)と、
     前記二重管の内側の管を形成する内管(182)とを備え、
     前記内管の内部には、冷凍サイクル装置(11)の低圧側の冷媒が流れる内側流路(18b)が形成されており、
     前記外管と前記内管との間には、前記冷凍サイクル装置の高圧側の前記冷媒が流れる内外間流路(18a)が形成されており、
     前記外管と前記内管との間には、前記外管および前記内管の少なくとも一方の表面積を増加させると共に前記外管と前記内管とを同芯上に配置する同芯構造が形成され、
     前記外管および前記内管と接続対象部材(14、35、37)との間に介在し、前記内外間流路を前記接続対象部材の冷媒流路と連通させる高圧連通流路(186g、311)及び前記内側流路を前記接続対象部材の冷媒通路と連通させる低圧連通流路(186f、312)を形成するコネクタ(186、31)とを備える内部熱交換器の製造方法であって、
     前記外管(181)の内側に前記同芯構造を介して前記内管(182)を配置して、前記二重管を形成する二重管形成工程と、
     前記二重管を少なくとも1カ所で屈曲する二重管屈曲工程と、
     前記内管の先端(1821)と前記外管の先端(1811)との同軸度を回復させる二重管同軸度回復工程と、
     前記内管の先端(1821)を前記コネクタの被内管挿入部(1860、3113)に挿入し、前記外管の先端(1811)を前記コネクタの被外管挿入部(186e、3111)に挿入し、前記二重管を前記コネクタに機械的に組付けるコネクタ組付工程とを
     経時順に行うことを特徴とする内部熱交換器の製造方法。
  22.  前記コネクタ組付工程では、
     前記外管と前記コネクタの前記被外管挿入部(186e、3111)との間に、前記高圧連通流路からの冷媒の洩れを防止するシール部材(191)介在させ、かつ、前記内管と前記コネクタの前記被内管挿入部(1860、3113)との間に、前記高圧連通流路からの冷媒の洩れを防止するシール部材(192)を介在させることを特徴とする請求項21に記載の内部熱交換器の製造方法。
  23.  前記同芯構造は、前記内管及び前記内管のいずれかに螺旋溝が形成され前記内管の外周の一部が前記外管の内周の一部に接触する構造であることを特徴とする請求項21もしくは22に記載の内部熱交換器の製造方法。
  24.  前記同芯構造は、前記内管と前記外管とを接触させるリブ構造であることを特徴とする請求項21もしくは22に記載の内部熱交換器の製造方法。
  25.  前記二重管同軸度回復工程及び前記コネクタ組付工程は、前記コネクタの前記被内管挿入部の内方に先端に径小部のある内管用芯金を配置して、前記コネクタの位置を固定し、
     前記外管を外管用クランプで把持して、前記二重管を前記コネクタ側に移動させ、
     前記内管用芯金で前記内管の先端を前記コネクタの前記被内管挿入部にガイドしつつ、前記外管用クランプで前記外管の先端を前記コネクタの前記被外管挿入部に挿入することを特徴とする請求項21ないし24のいずれか1つに記載の内部熱交換器の製造方法。

     
PCT/JP2021/019296 2020-05-27 2021-05-21 内部熱交換器及び内部熱交換器の製造方法 WO2021241422A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-092352 2020-05-27
JP2020-092353 2020-05-27
JP2020092352A JP2021188786A (ja) 2020-05-27 2020-05-27 内部熱交換器及び内部熱交換器の製造方法
JP2020-092354 2020-05-27
JP2020092354A JP2021188788A (ja) 2020-05-27 2020-05-27 内部熱交換器の製造方法
JP2020092353A JP2021188787A (ja) 2020-05-27 2020-05-27 内部熱交換器の製造方法

Publications (1)

Publication Number Publication Date
WO2021241422A1 true WO2021241422A1 (ja) 2021-12-02

Family

ID=78744724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019296 WO2021241422A1 (ja) 2020-05-27 2021-05-21 内部熱交換器及び内部熱交換器の製造方法

Country Status (1)

Country Link
WO (1) WO2021241422A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522029A (ja) * 1997-10-30 2001-11-13 ティーアイ グループ オートモーティヴ システムズ コーポレーション 補助暖房および空調設備のためのチューブアセンブリ
JP2006162238A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管
WO2007013439A1 (ja) * 2005-07-28 2007-02-01 Showa Denko K.K. 熱交換器
JP2010007940A (ja) * 2008-06-26 2010-01-14 Calsonic Kansei Corp 膨張弁ユニット
US20110284196A1 (en) * 2008-11-24 2011-11-24 Mariofelice Zanadi Heat exchanger with an improved connector for an air conditioning circuit of a motor vehicle
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
KR20130055104A (ko) * 2011-11-18 2013-05-28 현대자동차주식회사 차량용 에어컨 배관
JP2014055748A (ja) * 2012-09-13 2014-03-27 Calsonic Kansei Corp 内部熱交換器とその製造方法
KR20150069354A (ko) * 2013-12-13 2015-06-23 한라비스테온공조 주식회사 차량용 에어컨시스템
JP2016095132A (ja) * 2016-02-26 2016-05-26 株式会社ヴァレオジャパン 二重管の製造方法
JP2018025374A (ja) * 2016-08-10 2018-02-15 ファスン アールアンドエー カンパニー リミテッド 二重管熱交換器及びその製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001522029A (ja) * 1997-10-30 2001-11-13 ティーアイ グループ オートモーティヴ システムズ コーポレーション 補助暖房および空調設備のためのチューブアセンブリ
JP2006162238A (ja) * 2004-11-09 2006-06-22 Denso Corp 二重管
WO2007013439A1 (ja) * 2005-07-28 2007-02-01 Showa Denko K.K. 熱交換器
JP2010007940A (ja) * 2008-06-26 2010-01-14 Calsonic Kansei Corp 膨張弁ユニット
US20110284196A1 (en) * 2008-11-24 2011-11-24 Mariofelice Zanadi Heat exchanger with an improved connector for an air conditioning circuit of a motor vehicle
US20120043055A1 (en) * 2010-08-18 2012-02-23 Halla Climate Control Corp. Double Pipe Type Heat Exchanger and Method for Manufacturing the Same
KR20130055104A (ko) * 2011-11-18 2013-05-28 현대자동차주식회사 차량용 에어컨 배관
JP2014055748A (ja) * 2012-09-13 2014-03-27 Calsonic Kansei Corp 内部熱交換器とその製造方法
KR20150069354A (ko) * 2013-12-13 2015-06-23 한라비스테온공조 주식회사 차량용 에어컨시스템
JP2016095132A (ja) * 2016-02-26 2016-05-26 株式会社ヴァレオジャパン 二重管の製造方法
JP2018025374A (ja) * 2016-08-10 2018-02-15 ファスン アールアンドエー カンパニー リミテッド 二重管熱交換器及びその製造方法

Similar Documents

Publication Publication Date Title
JP6824366B2 (ja) 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
US7887099B2 (en) Compound tube and method of producing the same
US9669499B2 (en) Double-wall pipe, method of manufacturing the same and refrigerant cycle device provided with the same
US7886420B2 (en) Method of manufacturing double pipe
US7753413B2 (en) Vapour-compression type refrigerating machine and double pipe structure and double pipe joint structure preferably used therefor
JP4350079B2 (ja) 二重管、その製造方法、およびそれを備える冷凍サイクル装置
US8205667B2 (en) Heat exchanger with connector
JP4014349B2 (ja) 二重管用継手
EP2425193B1 (en) Heat exchanger
US9539631B2 (en) Manufacturing process for tube-in-tube internal heat exchanger
US20190345937A1 (en) Refrigerant pipe and refrigeration cycle device
WO2019150968A1 (ja) 二重管式熱交換器
WO2021241422A1 (ja) 内部熱交換器及び内部熱交換器の製造方法
JP2021188786A (ja) 内部熱交換器及び内部熱交換器の製造方法
JP2021188787A (ja) 内部熱交換器の製造方法
JP2021188788A (ja) 内部熱交換器の製造方法
WO2018025692A1 (ja) 二重管及びその製造方法
WO2020116271A1 (ja) 内部熱交換器及び内部熱交換器を備える冷凍サイクル装置
JP2014055748A (ja) 内部熱交換器とその製造方法
WO2015004156A1 (en) Heat exchanger and method of manufacturing a heat exchanger
JP2010014165A (ja) 二重配管
KR20090029892A (ko) 이중관 제조방법
JP2009198069A (ja) 膨張弁の装着構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813320

Country of ref document: EP

Kind code of ref document: A1