WO2020115932A1 - 銅合金 - Google Patents

銅合金 Download PDF

Info

Publication number
WO2020115932A1
WO2020115932A1 PCT/JP2019/023496 JP2019023496W WO2020115932A1 WO 2020115932 A1 WO2020115932 A1 WO 2020115932A1 JP 2019023496 W JP2019023496 W JP 2019023496W WO 2020115932 A1 WO2020115932 A1 WO 2020115932A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
copper alloy
copper
content
zinc
Prior art date
Application number
PCT/JP2019/023496
Other languages
English (en)
French (fr)
Inventor
良政 平井
耕平 小川
了 宍戸
達哉 大塚
Original Assignee
株式会社栗本鐵工所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社栗本鐵工所 filed Critical 株式会社栗本鐵工所
Publication of WO2020115932A1 publication Critical patent/WO2020115932A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent

Definitions

  • the present invention relates to a copper alloy used for sliding members and the like.
  • beryllium copper is known as a high-strength copper alloy, but beryllium copper has the problems that the beryllium compound is toxic and the cost is high.
  • a copper-nickel-tin (Cu-Ni-Sn)-based copper alloy which has no toxicity and whose strength can be improved by age hardening treatment, is drawing attention.
  • the balance consists of copper and unavoidable impurities.
  • Copper alloys have been proposed. Then, it is described that by using such a copper alloy, it is possible to provide a copper alloy having improved strength and conductivity in a well-balanced manner (see, for example, Patent Document 1).
  • Patent Document 1 has a problem in that although it is possible to secure strength with nickel and tin, it is not possible to secure sufficient machinability and slidability.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a copper alloy having high strength and excellent machinability and slidability.
  • the copper alloy according to the present invention has a nickel content of more than 7.0 to 20.0 mass %, tin of 4.0 to 20.0 mass %, and sulfur of 0.1 to 1. It is characterized by containing 0 mass% and the balance being copper and inevitable impurities.
  • the copper alloy according to this embodiment will be described below.
  • the copper alloy of the present embodiment is a copper alloy that contains predetermined amounts of nickel, tin, and sulfur (S), and the balance is copper and inevitable impurities.
  • the copper alloy of the present embodiment it is necessary to contain nickel in excess of 7.0 to 20.0 mass% from the viewpoint of ensuring strength.
  • the content is 7.0% by mass or less, the material strength decreases. If it is more than 20.0% by mass, it may not be suitable for casting.
  • the nickel content is preferably more than 7.0 to 19.0 mass%, particularly preferably more than 7.0 to 16.0 mass%.
  • Tin is for improving the strength of the copper alloy due to the synergistic effect with the above nickel.
  • it is necessary to contain tin in an amount of 4.0 to 20.0 mass %. If it is less than 4.0% by mass, the material strength will decrease. On the other hand, if it is more than 20.0 mass %, the thermal conductivity will be lowered, and it will not be suitable for use in a high temperature environment.
  • the tin content is preferably 4.0 to 18.0% by mass, and particularly preferably 4.0 to 15.5% by mass.
  • sulfur reacts with copper, iron (Fe), etc. to form sulfides. Similar to lead, graphite and molybdenum disulfide, this sulfide has solid lubricity, reduces the coefficient of friction, improves familiarity, and imparts good slidability in a sliding state. .. Also, due to the presence of these sulfides, the copper alloy becomes short chips in which chips are cut off during cutting, which makes it less likely to wind around a blade used for cutting, and as a result, The machinability can be improved.
  • the copper alloy of the present embodiment needs to contain sulfur in an amount of 0.1 to 1.0 mass %.
  • the amount of sulfur is less than 0.1% by mass, the above-mentioned effects of machinability and slidability may not be sufficiently obtained.
  • it exceeds 1.0 mass %, it becomes unsuitable for casting. From the Cu-S metal phase diagram, in order to exert sufficient sliding performance, it is preferably 0.6% by mass or less.
  • the copper alloy of the present embodiment contains 0.1 to 1.0 mass% of sulfur, sulfides are dispersed and present in the alloy as a solid lubricant for improving sliding characteristics. It will be. Further, sulfides will be dispersed in the copper alloy, and since this sulfide acts as a chip breaker during cutting, the machinability is also improved.
  • the copper alloy of the present embodiment may contain iron. Iron forms, together with the above-mentioned sulfur, sulfides that improve the slidability of the copper alloy.
  • the iron content is preferably 0.03 mass% or more from the viewpoint of forming a sulfide necessary for ensuring the slidability.
  • the iron content is preferably 1.0% by mass or less. This is because if the iron content exceeds 1.0% by mass, the slidability may not be secured.
  • the copper alloy of this embodiment may contain phosphorus (P).
  • Phosphorus exhibits the effect of deoxidizing the molten copper alloy according to its content. Furthermore, when sintering the powder generated by the atomization method, if impurities existing at the boundaries between the particles of the powder to be sintered together are reduced by deoxidation, there will be fewer obstacles during sintering. The effect of improving is exhibited. In order to fully exert these effects, it is preferable to contain 0.01% by mass or more. On the other hand, if it exceeds 0.5% by mass, the performance as a sliding member may be impaired, which is not preferable. That is, in the copper alloy of this embodiment, the phosphorus content is preferably 0.01 to 0.5 mass %.
  • the zinc alloy may be contained in the copper alloy of the present embodiment.
  • Zinc further improves the strength of the copper alloy.
  • the strength may be slightly decreased as compared with the case of 20 mass% or less. That is, in the copper alloy of the present embodiment, when zinc is contained, the content of zinc is not particularly limited, but from the viewpoint of maintaining excellent strength, it is 20.0 mass% or less (however, 0 mass. % Is not included).
  • the copper alloy of the present embodiment contains, in addition to the above-mentioned elements and copper that is the balance, impurities that are inevitably contained, and are contained to such an extent that the characteristics of the copper alloy are not impaired. Good.
  • This impurity is a component that is inevitably included when recycled materials are used in consideration of the environment, or when equipment is shared in the preparation of the above copper alloy and casting of sliding members.
  • the amount of cobalt contained in the copper alloy is preferably 0.1% by mass or less. This is because if the content exceeds 0.1% by mass, the quality of the cast product deteriorates.
  • the amount of molybdenum contained in the copper alloy as the above impurities is preferably 0.1% by mass or less, and more preferably less than the detection limit.
  • the molybdenum disulfide is oxidized during the preparation of the copper alloy, the manufacturing of the sliding member, and the use of the sliding member. This is because there is a possibility that undesired sulfur content will be generated and attack the copper alloy.
  • the amount of silicon (Si) contained in the copper alloy is preferably 0.1 mass% or less.
  • the mass mixing ratio of each component specified in the present invention is not the mixing ratio of the raw materials in the manufacturing stage, but the mass mixing ratio of the components in the alloy obtained by melting the raw materials.
  • the balance of the copper alloy is copper, and the alloy containing the above elemental components can be obtained by a general copper alloy manufacturing method. Can be manufactured by.
  • Examples of the sliding member using the copper alloy of the present embodiment include bushes, bearings, liners, plates and the like.
  • Examples 1 to 15, Comparative Examples 1 to 3 First, the amount of nickel, the amount of tin, the amount of sulfur, the amount of iron, the amount of phosphorus, and the amount of zinc are appropriately changed, and the rest is added as copper and unavoidable impurities. At 1200° C., ingots were produced by the die casting method, and then the samples of Examples 1 to 15 and Comparative Examples 1 to 3 were produced, and the components were analyzed. The above results are shown in Tables 1 to 3.
  • Example 15 in which the content of zinc was higher than 20.0% by mass.
  • Tables 1 to 3 in Examples 1 to 14 in which the content of zinc was 20.0% by mass or less, compared with Example 15 in which the content of zinc was higher than 20.0% by mass.
  • Example 15 Even in Example 15 in which the content of zinc was more than 20.0 mass %, nickel was more than 7.0 to 20.0 mass %, tin was 4.0 to 20.0 mass %, and sulfur was 0. It can be seen that the content of 0.1 to 1.0% by mass, compared to Comparative Examples 1 and 2 in Table 1, has excellent hardness and high age hardening.
  • Example 4 without zinc
  • Example 10 without zinc
  • Example 5 without zinc
  • Example 11 with 3 zinc
  • the present invention is particularly useful for copper alloys for sliding members that require high slidability and machinability.

Abstract

銅合金は、ニッケルを7.0超~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有し、残分が銅と不可避的不純物である。

Description

銅合金
 本発明は、摺動部材等に用いる銅合金に関する。
 従来、高強度銅合金としてベリリウム銅が知られているが、ベリリウム銅はベリリウム化合物が毒性を有することやコストが高いという問題がある。これに対し、毒性が無く、時効硬化処理により強度を向上させることができる銅-ニッケル-スズ(Cu-Ni-Sn)系の銅合金が注目されている。
 例えば、3.0~25.0質量%のニッケルと、3.0~9.0質量%のスズと、0~0.10質量%のリンとを含有し、残部が銅および不可避不純物からなる銅合金が提案されている。そして、このような銅合金を使用することにより、強度と導電率をバランスよく向上させた銅合金を提供することができると記載されている(例えば、特許文献1参照)。
特許6210572号公報
 しかしながら、上記特許文献1に記載の銅合金では、ニッケルとスズにより強度を確保することはできるものの、切削性と摺動性を十分に確保することができないという問題があった。
 そこで、本発明は、上述の問題に鑑みてなされたものであり、高い強度を有するとともに、切削性と摺動性に優れた銅合金を提供することを目的とする。
 上記目的を達成するために、本発明に係る銅合金は、ニッケルを7.0超~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有し、残分が銅と不可避的不純物であることを特徴とする。
 本発明によれば、高い強度を有するとともに、優れた切削性と摺動性を両立することができる銅合金を提供することができる。
 以下、本実施形態における銅合金について説明する。
 本実施形態の銅合金は、ニッケルとスズと硫黄(S)とを所定量含有し、残分が銅と不可避的不純物である銅合金である。
 本実施形態の銅合金においては、強度を確保するとの観点から、ニッケルを7.0超~20.0質量%含むことが必要である。7.0質量%以下であると材料強度が低下する。また、20.0質量%よりも多い場合は、鋳造に適さなくなる場合がある。なお、ニッケルの含有量は7.0超~19.0質量%が好ましく、7.0超~16.0質量%が特に好ましい。
 スズは、上記ニッケルとの相乗効果により、銅合金の強度を向上させるためのものである。本実施形態の銅合金においては、スズを4.0~20.0質量%含むことが必要である。4.0質量%未満であると材料強度が低下する。また、20.0質量%よりも多い場合は、熱伝導率が低下し、高温環境下での使用に適さなくなる。なお、スズの含有量は4.0~18.0質量%が好ましく、4.0~15.5質量%が特に好ましい。
 また、硫黄は、銅、鉄(Fe)等と反応して硫化物を形成する。この硫化物は、鉛やグラファイト、二硫化モリブデンと同様に固体潤滑性を有しており、摩擦係数を低下させ、なじみを良好にし、摺動状態において良好な摺動性を付与するものとなる。また、これらの硫化物があることにより、上記銅合金は切削の際に切り屑が寸断された短い切粉となるため、切削に用いる刃物に巻き付いたりするといったことが起こりにくくなり、結果として、切削性を向上させることができる。
 本実施形態の銅合金においては、硫黄を0.1~1.0質量%含むことが必要である。硫黄が0.1質量%未満であると、上述の切削性と摺動性の効果が十分に得られない場合がある。一方で、1.0質量%を超えると鋳造に適さなくなる。なお、Cu-Sの金属状態図から、十分な摺動性能を発揮させるためには、0.6質量%以下であると好ましい。
 即ち、本実施形態の銅合金においては、硫黄を0.1~1.0質量%含有しているため、摺動特性を改善する固体潤滑材として、硫化物が合金中に分散して存在することになる。また、銅合金において硫化物が分散することになり、この硫化物は切削加工時においてチップブレーカとして作用するため、切削性も改善することになる。
 本実施形態の銅合金においては、鉄を含有してもよい。鉄は、上述の硫黄とともに、上記銅合金の摺動性を向上させる硫化物を形成する。なお、摺動性を確保するために必要な硫化物を形成するとの観点から、鉄の含有量は0.03質量%以上であることが好ましい。また、鉄の含有量は1.0質量%以下であることが好ましい。鉄の含有量が1.0質量%を超えると、摺動性が確保できなくなる場合があるためである。
 本実施形態の銅合金においては、リン(P)を含有してもよい。リンは、その含有量に応じて銅合金溶湯を脱酸させる効果を発揮する。さらに、アトマイズ法で生成させた粉末を焼結する場合、互いに焼結する粉末の粒子同士の境界に存在する不純物が脱酸によって減少すると、焼結の際に障害が少なくなるため、焼結密度を向上させる効果が発揮される。これらの効果を十分に発揮させるには、0.01質量%以上含有することが好ましい。一方、0.5質量%を超えると、摺動部材としての性能を阻害するおそれがあるため、好ましくない。即ち、本実施形態の銅合金においては、リンの含有量は0.01~0.5質量%が好ましい。
 本実施形態の銅合金においては、亜鉛(Zn)を含有してもよい。亜鉛は、銅合金の強度をさらに向上させるものである。なお、亜鉛の含有量が20.0質量%を超えると、20質量%以下の場合に比し、強度が、若干、低下する場合がある。即ち、本実施形態の銅合金においては、亜鉛を含有させる場合、亜鉛の含有量については、特に限定されないが、優れた強度を維持するとの観点から、20.0質量%以下(但し、0質量%を含まない)であることが好ましい。
 本実施形態の銅合金は、上記の各元素と残分である銅以外に、不可避的に含まれてしまう不純物であって、上記銅合金の特性を阻害しない程度に含まれるものを含有してもよい。
 この不純物は、環境に配慮してリサイクル材料を用いる場合や、上記銅合金の調製や摺動部材の鋳造において設備を共有する場合に、不可避的に含まれてしまう成分である。もちろん、物性上はこの不純物の含有量は少ないほど好ましく、不純物を含有しないことがより好ましいが、0にすることは困難である。
 例えば、上記不純物として、銅合金に含まれるコバルトの量は、0.1質量%以下であることが好ましい。0.1質量%を超えると、鋳造品の品質が悪化するためである。
 また、上記不純物として、銅合金に含まれるモリブデンの量は、0.1質量%以下であることが好ましく、検出限界未満であることがより好ましい。モリブデンが銅合金に硫黄と結合した二硫化モリブデンとして含まれていると、銅合金の調製時や、摺動部材の製造時、及び摺動部材の使用時に、二硫化モリブデンが酸化されて、意図せぬ硫黄分が生じてしまい、銅合金を侵すおそれがあるためである。
 また、この不純物として、銅合金に含まれるシリコン(Si)の量は、0.1質量%以下であると好ましい。
 なお、この発明において規定するそれぞれの成分の質量混合比は、製造段階での原料の混合比ではなく、原料を溶融して得られた合金における成分の質量混合比である。
 また、銅合金の残分は銅であり、上記の元素成分を含む合金は、一般的な銅合金の製造方法で得ることができ、この銅合金からなる摺動部材は、一般的な鋳造法により製造することができる。
 本実施形態の銅合金を用いた摺動部材としては、例えば、ブッシュ、軸受、ライナー、プレートなどが挙げられる。
 以下、本発明の銅合金について、具体的な実施例を挙げて説明する。なお、本発明はこれらの実施例には限定されない。
  (実施例1~15、比較例1~3)
 まず、ニッケルの配合量、スズの配合量、硫黄の配合量、鉄の配合量、リンの配合量、及び亜鉛の配合量を適宜変化させ、残りを銅及び不可避的不純物として配合し、溶解温度を1200℃として、金型鋳造方法によりインゴットを作製した後、実施例1~15、及び比較例1~3の試料を作製し、成分を分析した。以上の結果を表1~3に示す。
 <硬度試験>
 実施例1~15および比較例1~3の各試験片において、JIS Z 2244(ビッカース硬さ試験-試験方法)に準拠して、所定の熱処理条件下(溶体化処理:800℃で2時間保持、時効処理:350℃で4時間保持の熱処理条件下)で、硬さ(ビッカース硬度)を測定した。また、実施例1~15および比較例1~3の各試験片において、当該熱処理前の硬さも測定し、以下の式(1)に基づいて、熱処理前の硬さに対する熱処理後の硬度の上昇率(時効硬化性)を算出した。
 [数1]
 時効硬化性[%]=[(熱処理後の硬さ-熱処理前の硬さ)/熱処理前の硬さ]×100  (1)
 また、実施例1~3、比較例1~3の各試験片においては、鋳造欠陥の発生を、下記評価基準に従って、目視にて評価した。以上の結果を表1~3に示す。
 鋳造欠陥が発生しなかった:○
 鋳造欠陥が発生した:×
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1に示すように、ニッケルの含有量が7.0超~20.0質量%である実施例1~3においては、ニッケルの含有量が7.0質量%以下である比較例1~2に比し、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。
 なお、比較例3においては、ニッケルの含有量が20.0質量%よりも多いため、鋳造欠陥が発生していることが分かる。
 また、表2に示すように、スズの含有量が4.0~20.0質量%である実施例4~9においては、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。
 また、表1~3に示すように、亜鉛の含有量が20.0質量%以下である実施例1~14においては、亜鉛の含有量が20.0質量%よりも多い実施例15に比し、熱処理前後において、優れた硬度を有するとともに、時効硬化性が高いことが分かる。
 なお、亜鉛の含有量が20.0質量%よりも多い実施例15においても、ニッケルを7.0超~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有しているため、表1における比較例1~2に比し、優れた硬度を有するとともに、時効硬化性も高いことが分かる。
 また、特に、実施例4(亜鉛を含有せず)と実施例10(亜鉛を2.97質量%含有)の対比、及び実施例5(亜鉛を含有せず)と実施例11(亜鉛を3.16質量%含有)の対比から、20.0質量%以下の亜鉛を含有することにより、熱処理前後の硬度が顕著に向上することが分かる。
 以上に説明したように、本発明は、高い摺動性と切削性が要求される摺動部材用の銅合金について、特に有用である。

Claims (3)

  1.  ニッケルを7.0超~20.0質量%、スズを4.0~20.0質量%、及び硫黄を0.1~1.0質量%含有し、残分が銅と不可避的不純物であることを特徴とする銅合金。
  2.  鉄を0.03~1.0質量%、及びリンを0.01~0.5質量%含有することを特徴とする請求項1に記載の銅合金。
  3.  亜鉛を20.0質量%以下(0質量%を含まない)含有することを特徴とする請求項1または請求項2に記載の銅合金。
PCT/JP2019/023496 2018-02-13 2019-06-13 銅合金 WO2020115932A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2018023492 2018-02-13
JP2018-226248 2018-12-03
JP2018226248A JP7214451B2 (ja) 2018-02-13 2018-12-03 銅合金

Publications (1)

Publication Number Publication Date
WO2020115932A1 true WO2020115932A1 (ja) 2020-06-11

Family

ID=67695054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/023496 WO2020115932A1 (ja) 2018-02-13 2019-06-13 銅合金

Country Status (2)

Country Link
JP (1) JP7214451B2 (ja)
WO (1) WO2020115932A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220316029A1 (en) * 2021-03-31 2022-10-06 Ngk Insulators, Ltd. Copper alloy and method for producing same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023191053A1 (ja) * 2022-03-31 2023-10-05

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210572B2 (ja) * 1982-04-21 1987-03-06 Mitsubishi Electric Corp
JPS62156240A (ja) * 1985-12-19 1987-07-11 イーエムエー コーポレーション 銅−ニツケル−スズ スピノ−ダル 合金品の粉末や金的製造方法
JP2005226097A (ja) * 2004-02-10 2005-08-25 Kobe Steel Ltd 電気・電子部品用錫めっき銅合金材及びその製造方法
JP2006152373A (ja) * 2004-11-29 2006-06-15 Shiga Valve Cooperative 耐圧性に優れた鋳物用無鉛銅合金
WO2007126006A1 (ja) * 2006-04-28 2007-11-08 Kaibara Corporation 軸受性に優れた摺動材料用銅合金
JP2007297706A (ja) * 2006-04-28 2007-11-15 Wieland Werke Ag バンド形材料複合体およびその使用方法並びにそのバンド形材料複合体からなる複合すべり素子
JP2019014946A (ja) * 2017-07-07 2019-01-31 株式会社藤井製作所 無鉛快削りん青銅棒線材及び無鉛快削りん青銅棒線材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6210572B1 (ja) 2016-07-06 2017-10-11 古河電気工業株式会社 銅合金線棒材およびその製造方法
JP7126198B2 (ja) 2018-09-27 2022-08-26 株式会社栗本鐵工所 無鉛快削りん青銅棒線材

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6210572B2 (ja) * 1982-04-21 1987-03-06 Mitsubishi Electric Corp
JPS62156240A (ja) * 1985-12-19 1987-07-11 イーエムエー コーポレーション 銅−ニツケル−スズ スピノ−ダル 合金品の粉末や金的製造方法
JP2005226097A (ja) * 2004-02-10 2005-08-25 Kobe Steel Ltd 電気・電子部品用錫めっき銅合金材及びその製造方法
JP2006152373A (ja) * 2004-11-29 2006-06-15 Shiga Valve Cooperative 耐圧性に優れた鋳物用無鉛銅合金
WO2007126006A1 (ja) * 2006-04-28 2007-11-08 Kaibara Corporation 軸受性に優れた摺動材料用銅合金
JP2007297706A (ja) * 2006-04-28 2007-11-15 Wieland Werke Ag バンド形材料複合体およびその使用方法並びにそのバンド形材料複合体からなる複合すべり素子
JP2019014946A (ja) * 2017-07-07 2019-01-31 株式会社藤井製作所 無鉛快削りん青銅棒線材及び無鉛快削りん青銅棒線材の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220316029A1 (en) * 2021-03-31 2022-10-06 Ngk Insulators, Ltd. Copper alloy and method for producing same

Also Published As

Publication number Publication date
JP7214451B2 (ja) 2023-01-30
JP2019137913A (ja) 2019-08-22

Similar Documents

Publication Publication Date Title
US10543571B2 (en) Cu-added Ni—Cr—Fe-based alloy brazing material
JP6239767B2 (ja) 無鉛、高硫黄、かつ易切削性の銅マンガン合金、およびその調製方法
WO2010137483A1 (ja) 機械的特性に優れた鋳物用無鉛銅合金
WO2016166779A1 (ja) ダイカスト用アルミニウム合金およびこれを用いたアルミニウム合金ダイカスト
JP2004225093A (ja) 銅基合金およびその製造方法
JP2017511841A (ja) 潤滑剤適合性銅合金
JP3957308B2 (ja) 耐圧性に優れた鋳物用無鉛銅合金
WO2020115932A1 (ja) 銅合金
JP2015517608A (ja) アンチモン−変性低−鉛銅合金
JP6363611B2 (ja) 抗菌性を有する白色銅合金
US4818487A (en) Aluminum bearing alloy
JP2002105571A (ja) 熱伝導性に優れたヒートシンク用アルミニウム合金材
WO2016117158A1 (ja) 耐摩耗性銅合金
JP2007297675A (ja) 被削性に優れた鋳物用無鉛銅合金
WO2011121799A1 (ja) 鋳造用無鉛快削黄銅合金
JP2003027169A (ja) アルミニウム合金およびアルミニウム合金鋳物品
JP7126198B2 (ja) 無鉛快削りん青銅棒線材
TWI539016B (zh) High strength copper alloy forged material
KR102103327B1 (ko) 무연 고강도 동합금
JP2020094239A (ja) 無鉛快削りん青銅棒線材
JP6224992B2 (ja) 摺動部材用銅合金及びそれを用いた摺動部材
JP7126197B2 (ja) 無鉛快削りん青銅棒線材
JP2006037178A (ja) 耐焼付性に優れたPbフリー銅合金摺動材
US20100172791A1 (en) Aluminum-bronze alloy as raw materials for semi solid metal casting
KR102523587B1 (ko) 고력계 무연 황동 및 이를 이용한 제품

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19892886

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19892886

Country of ref document: EP

Kind code of ref document: A1