WO2011121799A1 - 鋳造用無鉛快削黄銅合金 - Google Patents

鋳造用無鉛快削黄銅合金 Download PDF

Info

Publication number
WO2011121799A1
WO2011121799A1 PCT/JP2010/058213 JP2010058213W WO2011121799A1 WO 2011121799 A1 WO2011121799 A1 WO 2011121799A1 JP 2010058213 W JP2010058213 W JP 2010058213W WO 2011121799 A1 WO2011121799 A1 WO 2011121799A1
Authority
WO
WIPO (PCT)
Prior art keywords
free
alloy
casting
erosion
lead
Prior art date
Application number
PCT/JP2010/058213
Other languages
English (en)
French (fr)
Inventor
秀樹 山本
耕 星野
智樹 伊藤
誠 上野
Original Assignee
Jマテ.カッパープロダクツ 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jマテ.カッパープロダクツ 株式会社 filed Critical Jマテ.カッパープロダクツ 株式会社
Publication of WO2011121799A1 publication Critical patent/WO2011121799A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D21/00Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
    • B22D21/02Casting exceedingly oxidisable non-ferrous metals, e.g. in inert atmosphere
    • B22D21/025Casting heavy metals with high melting point, i.e. 1000 - 1600 degrees C, e.g. Co 1490 degrees C, Ni 1450 degrees C, Mn 1240 degrees C, Cu 1083 degrees C

Definitions

  • the present invention relates to a lead-free free-cutting brass alloy for casting having excellent erosion / corrosion resistance and mechanical properties in a cast structure, and further having good machinability.
  • bronze alloys such as JIS H5120 CAC406 with good machinability contain 4 to 6 wt% Pb
  • brass alloys such as JIS H3250 C3604 and C3771 contain Pb in an amount of 1 to 4 wt%. Therefore, it has been desired to develop a free-cutting copper alloy that does not contain Pb.
  • JIS H5120 includes CAC801 to CAC804 Cu—Zn—Si based copper alloys called silgin bronze. Since the machinability of Cu—Zn—Si based copper alloys represented by CAC804 is slightly inferior to those containing Pb, an alloy with improved machinability as disclosed in Patent Document 1 is also proposed. Has been. According to JIS H5120, these Cu-Zn-Si based copper alloys are said to have excellent mechanical properties and corrosion resistance, but in terms of corrosion resistance, they are dezincification corrosion resistance and erosion / corrosion resistance. Of these, only the former is satisfactory in terms of performance at present, and it cannot be used in water having a flow rate as a water-contacting part for water supply, and its use must be limited.
  • Dezincification corrosion can be achieved by adding Sn to the Cu-Zn-Si based copper alloy of Patent Document 2 in the range of 0.2 to 4.0 wt%. Although there is a research result on dezincification corrosion in the examples, no data on erosion / corrosion resistance is shown. On the other hand, when Sn exceeds 4 wt%, the effect is saturated and a hard and brittle phase is produced, which impairs the toughness of the material. In particular, although it may work preferably in the range of 0.5 to 2 wt%, no data on the mechanical properties of how much the toughness is impaired is shown.
  • the erosion / corrosion resistance of the Cu—Zn—Si based copper alloy is almost ineffective even when Sn is added in an amount of about 0.2 wt%. It is recognized that the greatest effect can be obtained, and at least 1 wt% or more is required. At the same time, it was found that when Sn is added in an amount of 0.5 wt% or more, the toughness is remarkably lowered in the cast structure.
  • the present invention has been made in view of the above-mentioned situation, and in a Cu—Zn—Si based copper alloy containing no Pb, it has erosion / corrosion resistance and good mechanical properties in a cast structure ( Providing lead-free free-cutting brass alloy for casting that is extremely practical and can be used for castings such as continuous casting, die casting, and sand casting in casting parts such as water-contact parts for waterworks. The purpose is that.
  • the gist of the present invention will be described.
  • the present invention relates to a lead-free free-cutting brass alloy for casting, characterized in that the remainder is composed of Cu and inevitable impurities.
  • the present invention relates to a lead-free free-cutting brass alloy for casting characterized by containing 01 to 1.0 wt%, Pb: 0.20 wt% or less, and the balance being made of Cu and inevitable impurities.
  • Cu—Zn—Si based copper alloy containing no Pb can have erosion / corrosion resistance and ensure good mechanical properties (toughness) in the cast structure.
  • the present invention reduces toughness by reducing Si to 1 to 2 wt% in order to secure toughness in the cast structure while ensuring good erosion and corrosion resistance by adding 1 to 2 wt% of Sn.
  • Si acts with Zn to appear as a hard phase that functions as a chip breaker during cutting and has an effect of improving machinability.
  • Si acts with Zn to appear as a hard phase that functions as a chip breaker during cutting and has an effect of improving machinability.
  • Si acts with Zn to appear as a hard phase that functions as a chip breaker during cutting and has an effect of improving machinability.
  • the hard phase is reduced. Therefore, the machinability is slightly reduced.
  • Bi at 0.5 to 1.5 wt%, Bi that is dispersed in a granular form as in Pb compensates for it, and almost the same machinability can be secured.
  • Sn is 1.0 to 2.0 wt%
  • Si is 1.0 to 2.0 wt%
  • Zn is 19.0 to 22.0 wt%
  • Bi is 0.5 to 1.5 wt%.
  • Zn dissolves in the matrix of Cu-Zn-Si copper alloy and has the effect of improving fluidity to improve castability and mechanical strength, but on the other hand, it is hard in relation to the amount of Si added. Since the phase appears, the toughness is lowered. For these reasons, the Zn content is set to 19.0 to 22.0 wt%.
  • Si Si acts as a deoxidizer when dissolved, and improves the fluidity of the molten metal and improves the castability.
  • a part is dissolved in the matrix to increase the mechanical strength, and a part acts with Zn to appear a hard phase that functions as a chip breaker at the time of cutting to improve machinability. Addition of 1.0 wt% or more is desirable for improving machinability.
  • the hard phase that precipitates in a network shape due to the coexistence with Sn described later remarkably lowers the toughness, so the Si content needs to be suppressed to 2.0 wt% or less in order to ensure the toughness.
  • Sn is contained in an amount exceeding 1.0 wt%, it becomes easier to form a corrosion film even in water having a flow rate, so that the erosion / corrosion resistance is improved, and 2.0 wt% has the best erosion / corrosion resistance. Become. Some of them are dissolved in the matrix to increase the mechanical strength, but on the other hand, they act with Si to cause a network-like hard phase to appear, so if the content exceeds 0.5 wt%, the toughness is significantly reduced. However, as described above, when Si that decreases the toughness by acting with Sn is reduced to 2.0 wt% or less, Sn does not decrease the toughness even if it is added by 1 to 2 wt%. Therefore, the erosion and corrosion resistance is improved. Satisfactory and good toughness can be ensured. For these reasons, it is necessary to contain 1.0 to 2.0 wt% of Sn in order to balance these effects.
  • Bi does not dissolve in the copper alloy matrix like Pb, but functions as a chip breaker because it is dispersed in the matrix in a granular form.
  • Bi is contained in an amount exceeding 1.5 wt%, the mechanical properties are deteriorated and it becomes difficult to obtain a machinability improving effect commensurate with the addition of expensive Bi.
  • the Bi content is set to 0.5 to 1.5 wt%.
  • Al increases the fluidity of the molten metal and improves the castability. Like Sn, it also has a function of promoting the growth of the hard phase when contained in a large amount. However, by adding in place of Zn within a range not exceeding 1 wt%, erosion / corrosion resistance, mechanical Since the material cost can be reduced without impairing the mechanical properties and machinability, the content is set to 0.01 to 1.0 wt%.
  • Pb content of 0.20 wt% or less leads to lead damage to the human body and environmental sanitation due to evaporation during alloy melting / casting process or elution into drinking water when used as water-contact parts. Can be substantially avoided. For these reasons, the Pb content is regulated to 0.20 wt% or less.
  • Cu is an element that weakens susceptibility to Zn-free corrosion and improves corrosion resistance and mechanical properties.
  • the content remains as a balance due to the balance with the contents of Zn, Sn, Bi, Si and Al.
  • the substantial content is 72.0 to 78.0 wt%.
  • Test material The chemical composition of the test material according to the alloy of the present invention is shown in No. 1 of FIG. 2 to 11, 13 to 18, 20 and 21, the component compositions of the comparative alloys are No. 1 in Table 1. 1, no. 12 and no. 19 shows. They are melted in an electric furnace using a graphite crucible, and in accordance with the test application, no. Nos. 1 to 11 are JIS H5120 B die, No. Nos. 12 to 21 were each cast with a mold having a diameter of 40 mm and a height of 100 mm, and test pieces were collected.
  • JIS Z2201 No. 4 test specimens were collected from No. B-11 die casting test materials (No. 1 to 11) of each alloy shown in FIG. Provided.
  • each of the alloys shown in FIG. 1 was machined into a test piece shape shown in FIG. 2 from a die casting test material (No. 12 to 18) having a diameter of 40 mm and a height of 100 mm. Under the conditions shown in FIG. 3, the test solution is ejected vigorously from a distance of 4 mm onto a flat test surface portion having a diameter of 30 mm to forcibly cause erosion and corrosion, reducing the corrosion weight of the test piece and the maximum corrosion depth. The erosion / corrosion resistance was evaluated.
  • each alloy shown in FIG. 1 was machined from a die casting test material (No. 19 to 21) having a diameter of 40 mm and a height of 100 mm to a disk having a diameter of 40 mm and a height of 15 mm, The sample was subjected to a drilling test under the conditions shown in FIG. Each alloy was subjected to 10 drilling tests, and the time required for drilling between 5 mm was measured, and the average time was taken as the drilling time for machinability evaluation.
  • FIG. 5 shows the tensile test results.
  • Sn is No. in the component system of the comparative material (No. 1) of the alloy according to Patent Document 1 (hereinafter referred to as Patent Alloy 1).
  • Patent Alloy 1 When the addition amount is increased as in 2 to 4, if it exceeds 0.5 wt%, a brittle hard phase appears in a network form by acting with the contained Si or Zn, so that the brittle hard phase part It is easy to break, and the toughness is remarkably lowered in the cast structure.
  • FIG. 9 shows the erosion / corrosion test results.
  • FIG. 12 shows the results of a drilling test.
  • the present invention adds not only basic machinability in the alloy according to Patent Document 1 but also good machinability as well as better erosion / corrosion resistance and mechanical properties in the cast structure.
  • it is a lead-free free-cutting brass alloy suitable for casting for continuous casting, die casting, and sand casting.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Powder Metallurgy (AREA)

Abstract

 Pbを含有しないCu-Zn-Si系銅合金において、耐エロージョン・コロージョン性を持たせ、且つ鋳造組織での良好な機械的性質(靭性)を確保でき、水道用接水部品等の鋳造品において、連続鋳造、金型鋳造、砂型鋳造といった各種鋳造も可能になる極めて実用性に秀れた鋳造用無鉛快削黄銅合金の提供。Zn:19.0~22.0wt%、Si:1.0~2.0wt%、Bi:0.5~1.5wt%、Sn:1.0~2.0wt%、Pb:0.20wt%以下を含有し、残部がCu及び不可避不純物から成る鋳造用無鉛快削黄銅合金。

Description

鋳造用無鉛快削黄銅合金
 本発明は、耐エロージョン・コロージョン性及び鋳造組織での機械的性質に優れ、さらに良好な被削性を併せ持つ、鋳造用無鉛快削黄銅合金に関するものである。
 近年、水道用水栓金具や一般配管用接水器具、あるいは各種バルブに含有されるPbは、合金の溶解・鋳造過程における蒸発、あるいは接水部品として使用した際の飲料水への溶出などにより、人体や環境衛生へ悪影響を及ぼす有害元素との認識が深まり、その含有は厳しく制限される傾向にある。
 しかしながら、被削性が良いJIS H5120 CAC406等の青銅系合金は、Pbを4~6wt%、JIS H3250 C3604やC3771等の黄銅系合金は、Pbを1~4wt%程含有させることにより、工業的に満足しうる被削性を確保したものであるため、Pbを含有しない快削性銅合金の開発が望まれてきた。
 また、Pbを実質的に含有せずに、Si添加により快削性を与えた銅合金として、JIS H5120 に、シルジン青銅と称されるCAC801~CAC804のCu-Zn-Si系銅合金がある。このCAC804等に代表されるCu-Zn-Si系銅合金の被削性は、Pbを含有したものに比べ若干劣るため、特許文献1に開示されるような被削性を改善した合金も提案されている。JIS H5120によると、これらのCu-Zn-Si系銅合金は、優れた機械的性質と耐食性を具備しているとされているが、耐食性で言えば耐脱亜鉛腐食性と耐エロージョン・コロージョン性のうち、前者しか性能的に満足したものが得られていないのが現状であり、水道用接水部品として流速を持つ水中では使用できずに、用途を限定せざるを得なかった。
特開2009-7657号公報 特開2001-64742号公報
 前述した背景により、Cu-Zn-Si系銅合金の耐エロージョン・コロージョン性は必ずしも工業的に満足し得ないものであり、水道用接水部品として流速を持つ水中では使用できずに、用途を限定せざるを得なかった。
 耐食性の改善にはSnの添加が非常に有効であり、特許文献2のCu-Zn-Si系銅合金には、Snを0.2~4.0wt%の範囲で添加することで脱亜鉛腐食と選択腐食の防止に効果があると述べられているが、実施例には脱亜鉛腐食に関する調査結果はあるものの、耐エロージョン・コロージョン性についてのデータは示されていない。また、Snは4wt%を超えると効果が飽和すると共に硬くて脆い相が生じ、材料の靭性を損なう。特に0.5~2wt%の範囲で好ましく作用するともあるが、これについても靭性がどの程度損なわれるかの機械的性質のデータは示されていない。
 発明者等の調査結果では、Cu-Zn-Si系銅合金の耐エロージョン・コロージョン性は、Snを0.2wt%程度含有させてもほとんど効果が得られず、さらに添加し2.0wt%で最も大きな効果が得られることが認められ、最低でも1wt%以上の添加が必要とされる。と同時にSnは0.5wt%以上添加すると、鋳造組織において著しく靭性が低下することを見出した。
 以上の理由から、耐エロージョン・コロージョン性を確保するために、Snは最低でも1wt%以上添加しなければならないが、その場合、鋳造組織での良好な靭性が得られなくなってしまうという二律背反の関係にあるため、両者を満足させることが大きな課題であり、良好な耐エロージョン・コロージョン性を保ちつつ、靭性の改善を図ることが必要不可欠となる。
 本発明は、上述のような現状に鑑みなされたもので、Pbを含有しないCu-Zn-Si系銅合金において、耐エロージョン・コロージョン性を持たせ、且つ鋳造組織での良好な機械的性質(靭性)を確保でき、水道用接水部品等の鋳造品において、連続鋳造、金型鋳造、砂型鋳造といった各種鋳造も可能になる極めて実用性に秀れた鋳造用無鉛快削黄銅合金を提供することを目的としている。
 本発明の要旨を説明する。
 Zn:19.0~22.0wt%、Si:1.0~2.0wt%、Bi:0.5~1.5wt%、Sn:1.0~2.0wt%、Pb:0.20wt%以下を含有し、残部がCu及び不可避不純物から成ることを特徴とする鋳造用無鉛快削黄銅合金に係るものである。
 また、Zn:19.0~22.0wt%、Si:1.0~2.0wt%、Bi:0.5~1.5wt%、Sn:1.0~2.0wt%、Al:0.01~1.0wt%、Pb:0.20wt%以下を含有し、残部がCu及び不可避不純物から成ることを特徴とする鋳造用無鉛快削黄銅合金に係るものである。
 本発明は上述のように構成したから、Pbを含有しないCu-Zn-Si系銅合金において、耐エロージョン・コロージョン性を持たせ、且つ鋳造組織での良好な機械的性質(靭性)を確保でき、水道用接水部品等の鋳造品において、連続鋳造、金型鋳造、砂型鋳造といった各種鋳造も可能になる極めて実用性に秀れた鋳造用無鉛快削黄銅合金となる。
供試材の化学成分を示す表である。 エロージョン・コロージョン試験の試験片形状を示す概略図である。 エロージョン・コロージョン試験の試験条件を示す表である。 穿孔試験の試験条件を示す表である。 引張試験の試験結果を示す表である。 Sn含有量と機械的性質との関係を示すグラフである。 Si含有量と機械的性質との関係を示すグラフである。 機械的性質を比較したグラフである。 エロージョン・コロージョン試験の試験結果を示す表である。 Sn含有量とエロージョン・コロージョン性との関係を示すグラフである。 エロージョン・コロージョン性を比較したグラフである。 穿孔試験の試験結果を示す表である。 穿孔性を比較したグラフである。
 好適と考える本発明の実施形態を本発明の作用を示して簡単に説明する。
 本発明は、Snを1~2wt%添加して良好な耐エロージョン・コロージョン性を確保しつつも、鋳造組織での靭性を確保するために、Siを1~2wt%まで下げることで、靭性を劣化させる硬質相を減らし、且つこれらの成分範囲を狭く限定することにより両者の最適なバランスを見出し、この合金組成を提案するに至ったものである。
 また、SiはZnと作用して切削加工時のチップブレーカとして機能する硬質相を出現させ、被削性を改善する効果を持つが、Siを1~2wt%まで下げることで、硬質相が減るため若干被削性を低下させる。しかしながら、Biを0.5~1.5wt%で添加することで、Pbと同様に粒状に分散して存在するBiがそれを補い、ほぼ同等の被削性を担保することができる。
 ところで、水道用接水部品としての耐エロージョン・コロージョン性、鋳造組織での良好な機械的性質(靭性)及び被削性を求めた場合、その成分バランスが極めて重要となり、特許文献2のような広範囲の成分設計ではそれらを満足させ得ず、極めて限定的な成分設計にせざるを得ない状況となる。
 そこで、本発明は、Snを1.0~2.0wt%、Siを1.0~2.0wt%、Znを19.0~22.0wt%及びBiを0.5~1.5wt%とそれぞれの元素を極めて限定的な成分範囲とすることで、Pbを含有しないCu-Zn-Si系銅合金において、耐エロージョン・コロージョン性を持たせ、且つ鋳造組織での良好な機械的性質(靭性)を確保したことを大きな特徴とし、水道用接水部品等の鋳造品において、連続鋳造、金型鋳造、砂型鋳造といった各種鋳造も可能になる鋳造用無鉛快削黄銅合金を実現した。
 本発明において上記のように成分組成を特定した理由について具体的に説明する。
 Znは、Cu-Zn-Si銅合金のマトリックスに固溶し、流動性を高めて鋳造性を良化することや機械的強度を高める作用があるが、一方、Si添加量との関係で硬質相が出現するため、靭性を低下させてしまう。このような理由から、Znの含有量を19.0~22.0wt%とした。
 Siは、溶解時に脱酸材として作用し、溶湯の流動性を高めて鋳造性を良化させる。また、一部はマトリックスに固溶し機械的強度を高めると共に、一部はZnと作用して切削加工時のチップブレーカとして機能する硬質相を出現させ被削性を改善する。被削性改善の為には1.0wt%以上の添加が望ましい。一方で、後述するSnとの共存作用により、網目状に析出する硬質相が、著しく靭性を低下させる為、靭性確保の為にはSi含有量を2.0wt%以下に抑える必要がある。
 Snは、1.0wt%を超えて含有させると、流速を持つ水中でも腐食皮膜をより作りやすくなるため、耐エロージョン・コロージョン性を向上させ、2.0wt%で耐エロージョン・コロージョン性が最良となる。また、一部はマトリックスに固溶し機械的強度を高めるが、一方でSiと作用して網目状の硬質相を出現させるため、0.5wt%を超えて含有させると著しく靭性を低下させる。ところが、上述したようにSnと作用して靭性を低下させるSiを2.0wt%以下まで低下させると、Snは、1~2wt%添加しても靭性は低下しないため、耐エロージョン・コロージョン性を満足し、且つ良好な靭性を確保することができるようになる。このような理由から、これらの影響を考慮しバランスをとるためには、1.0~2.0wt%のSnを含有させる必要がある。
 Biは、Pbと同じように銅合金のマトリックスには固溶せず、粒状にマトリックス中に分散するためチップブレーカとして機能する。一方、Biは1.5wt%を越えて含有させると、機械的性質の劣化を招くと共に、高価なBiの添加に見合う被削性改善効果が得難くなる。このような理由から、Biの含有量を0.5~1.5wt%とした。
 Alは、溶湯の流動性を高めて鋳造性を良化させる。またSnと同様に、多量に含有させると硬質相の成長を促進させる機能を有するものでもあるが、1wt%を超えない範囲で、Znに代えて添加することにより、耐エロージョン・コロージョン性、機械的性質及び被削性を損なわずに、材料コストを下げられる利点を持つため、0.01~1.0wt%とした。
 Pbは、その含有量を0.20wt%以下とすることにより、合金の溶解・鋳造過程における蒸発、あるいは接水部品として使用した際の飲料水への溶出などによる人体や環境衛生への鉛害を、実質的に回避することが可能となる。このような理由から、Pbの含有量を0.20wt%以下に規制した。
 Cuは、脱Zn腐食感受性を弱め、耐食性や機械的性質を改善する元素であるが、本発明合金においては、その含有量はZn、Sn、Bi、Si及びAl含有量とのバランスにより残余として決定されるものであり、実質的な含有量は72.0~78.0wt%である。
 本発明の具体的な実施例について図面に基づいて説明する。
 (1)供試材
 本発明合金に係る供試材の化学成分組成を、図1のNo.2~11、13~18、20及び21に、比較合金の成分組成を表1のNo.1、No.12及びNo.19に示す。それらは黒鉛坩堝を用いて電気炉にて溶解し、試験用途に応じて、No.1~11は、JIS H5120 B号金型、No.12~21は直径40mm、高さ100mmの金型にて各々鋳造し、試験片を採取した。
 機械的性質(引張強さと伸び)を評価するために、図1に示す各合金のB号金型鋳造試験材(No.1~11)からJIS Z2201 4号試験片を採取し、引張試験に供した。
 耐エロージョン・コロージョン性を評価する為に、図1に示す各合金の直径40mm、高さ100mmの金型鋳造試験材(No.12~18)から、図2に示す試験片形状に機械加工し、図3に示す条件で、直径30mmの平試験面部に、4mm離れたところから勢い良く試験溶液を噴射し、強制的にエロージョン・コロージョンを起こさせ、試験片の腐食重量減耗、最大腐食深さを測定し、耐エロージョン・コロージョン性を評価した。
 被削性を評価するために、図1に示す各合金の直径40mm、高さ100mmの金型鋳造試験材(No.19~21)から、直径40mm、高さ15mmの円盤に機械加工し、図4に示す条件で穿孔試験に供した。各合金について10回の穿孔試験を行い、5mm間の穿孔にかかる毎回の時間を測定し、それらの平均時間を被削性評価のための穿孔時間とした。
 (2)機械的性質の評価
 図5は、引張試験結果を示したものである。
 図6に示すように、Snは、特許文献1に係る合金(以下、特許合金1という。)の比較材(No.1)の成分系において、No.2~4のように添加量を増加させた場合、0.5wt%を超えて添加すると、含有しているSiやZnと作用して脆い硬質相が網目状に出現するため、脆い硬質相部で破断しやすくなり、鋳造組織において著しく靭性が低下する。
 図7に示すNo.5~9のようにSnを1.5wt%添加した成分系では、Siを1.5wt%付近まで下げないと、鋳造組織において満足した靭性は得られない。
 また、図8に示すNo.7の合金のように、Snを1.5wt%、Siを1.5wt%添加した成分系において、Znに替えてAlを添加した場合でも、機械的性質は遜色ない結果が得られている。
 (3)耐エロージョン・コロージョン性の評価
 図9は、エロージョン・コロージョン試験結果を示したものである。
 図10に示すように、特許合金1の比較材(No.12)の成分系においては、耐エロージョン・コロージョン性は工業的に満足し得ないものである。しかし、No.13~16のようにSnの添加量を増加させた場合、1.0wt%を超えた付近から、腐食重量減耗、最大腐食深さが減り始め、2.0wt%では耐エロージョン・コロージョン性が劇的に向上する。
 機械的性質(靭性)を確保するためにNo.17のようにSiを1.5wt%まで下げた場合でも、良好な耐エロージョン・コロージョン性が得られているため、他の成分如何に関わらず、Cu-Zn-Si合金系での耐エロージョン・コロージョン性は、Snの含有量によって決定され、最低でも1.0wt%を超えて添加することが必要である。
 また、図11に示すNo.18のように、Znに替えてAlを添加した場合でも、良好な耐エロージョン・コロージョン性が得られている。
 (4)被削性の評価
 図12は、穿孔試験の結果を示したものである。
 特許合金1の比較材(No.19)に対し、No.20のようにSnを1.5wt%添加しSiを1.5wt%まで下げた場合、チップブレーカとして機能する硬質相が減るために被削性は若干低下する可能性が考えられるが、同様の効果を持つBiを0.5~1.5wt%含有しているため、図13に示すように被削性はほぼ同等まで補うことができている。
 また、No.21のようにZnに替えてAlを添加した場合でも、結果は同様である。
 (2)~(4)の各種調査結果より、耐エロージョン・コロージョン性は、特許合金1の比較材に対し、Snを1.0wt%以上添加しないと満足するものと成り得ない。しかし、Snを添加すると、0.5wt%以上では著しく靭性が低下するため、良好な耐エロージョン・コロージョン性を確保したまま、鋳造組織において満足し得る靭性は得られない。従って、Snを1.0~2.0wt%にし、Siを1.0~2.0wt%にすることで、硬質相を減少させて靭性を改善し、良好な耐エロージョン・コロージョン性を確保したまま、鋳造組織における靭性を確保することが可能となる。
 さらに本発明の成分構成にしても、被削性は特許合金1の比較材に対しほぼ同等の性能を有することが確認できる。
 よって、本発明は、特許文献1に係る合金における基本特性を損なうことなく、良好な被削性を具備することは勿論、さらに良好な耐エロージョン・コロージョン性と鋳造組織での機械的性質を付加し、連続鋳造、金型鋳造、砂型鋳造用としても好適な鋳造用無鉛快削黄銅合金となる。

Claims (2)

  1.  Zn:19.0~22.0wt%、Si:1.0~2.0wt%、Bi:0.5~1.5wt%、Sn:1.0~2.0wt%、Pb:0.20wt%以下を含有し、残部がCu及び不可避不純物から成ることを特徴とする鋳造用無鉛快削黄銅合金。
  2.  Zn:19.0~22.0wt%、Si:1.0~2.0wt%、Bi:0.5~1.5wt%、Sn:1.0~2.0wt%、Al:0.01~1.0wt%、Pb:0.20wt%以下を含有し、残部がCu及び不可避不純物から成ることを特徴とする鋳造用無鉛快削黄銅合金。
PCT/JP2010/058213 2010-03-31 2010-05-14 鋳造用無鉛快削黄銅合金 WO2011121799A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-084232 2010-03-31
JP2010084232A JP2011214095A (ja) 2010-03-31 2010-03-31 鋳造用無鉛快削黄銅合金

Publications (1)

Publication Number Publication Date
WO2011121799A1 true WO2011121799A1 (ja) 2011-10-06

Family

ID=44711581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058213 WO2011121799A1 (ja) 2010-03-31 2010-05-14 鋳造用無鉛快削黄銅合金

Country Status (2)

Country Link
JP (1) JP2011214095A (ja)
WO (1) WO2011121799A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960350A1 (de) 2014-06-27 2015-12-30 Gebr. Kemper GmbH + Co. KG Metallwerke Kupfergusslegierung

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5916544B2 (ja) * 2012-01-17 2016-05-11 株式会社Lixil 鋳造用銅基合金及び水道用器具
JP5552664B1 (ja) * 2013-03-08 2014-07-16 株式会社桜井鋳造 銅合金鋳物の製造方法及びその方法に用いられるブリケット
JP5406405B1 (ja) * 2013-06-12 2014-02-05 株式会社栗本鐵工所 水道部材用銅合金
JP6000300B2 (ja) * 2014-05-30 2016-09-28 Jマテ.カッパープロダクツ 株式会社 鋳造用無鉛快削青銅合金

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310133A (ja) * 1994-05-12 1995-11-28 Chuetsu Gokin Chuko Kk 無鉛快削黄銅合金
JP2000119775A (ja) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd 無鉛快削性銅合金
JP2001064742A (ja) * 1999-06-24 2001-03-13 Chuetsu Metal Works Co Ltd 耐食性、被削性、熱間加工性に優れた黄銅合金
JP2002012927A (ja) * 2000-06-30 2002-01-15 Dowa Mining Co Ltd 耐脱亜鉛性銅基合金
JP2009007657A (ja) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp 無鉛快削性銅合金並びに連続鋳造用無鉛快削性銅合金

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310133A (ja) * 1994-05-12 1995-11-28 Chuetsu Gokin Chuko Kk 無鉛快削黄銅合金
JP2000119775A (ja) * 1998-10-12 2000-04-25 Sanbo Copper Alloy Co Ltd 無鉛快削性銅合金
JP2001064742A (ja) * 1999-06-24 2001-03-13 Chuetsu Metal Works Co Ltd 耐食性、被削性、熱間加工性に優れた黄銅合金
JP2002012927A (ja) * 2000-06-30 2002-01-15 Dowa Mining Co Ltd 耐脱亜鉛性銅基合金
JP2009007657A (ja) * 2007-06-29 2009-01-15 Joetsu Bronz1 Corp 無鉛快削性銅合金並びに連続鋳造用無鉛快削性銅合金

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2960350A1 (de) 2014-06-27 2015-12-30 Gebr. Kemper GmbH + Co. KG Metallwerke Kupfergusslegierung

Also Published As

Publication number Publication date
JP2011214095A (ja) 2011-10-27

Similar Documents

Publication Publication Date Title
JP5383730B2 (ja) 環境に優しいマンガン黄銅合金およびそれらの製造方法
JP5591661B2 (ja) 耐脱亜鉛腐食性に優れた金型鋳造用銅基合金
JP2007517981A (ja) アンチモンを含む無鉛快削性黄銅合金
KR102623143B1 (ko) 쾌삭성 구리 합금 주물, 및 쾌삭성 구리 합금 주물의 제조 방법
JP5522582B2 (ja) 水道部材用黄銅合金
WO2011121799A1 (ja) 鋳造用無鉛快削黄銅合金
JP3957308B2 (ja) 耐圧性に優れた鋳物用無鉛銅合金
JP2019504209A (ja) 鋳造用の低コストで鉛非含有の脱亜鉛耐性黄銅合金
JP4294793B2 (ja) 無鉛快削青銅合金
JP5642603B2 (ja) 鋳造用無鉛快削黄銅合金
JP2010242184A (ja) 鋳造性及び耐食性に優れた無鉛快削性黄銅
JP2000239765A (ja) 金型鋳造用若しくは砂型鋳造用無鉛耐食性黄銅合金又は金型鋳物若しくは砂型鋳物並びに連続鋳造用無鉛耐食性黄銅合金又は連続鋳造鋳物
KR101301290B1 (ko) 내식성과 소성가공성 및 형상기억성이 향상된 무연쾌삭 황동합금
JP5953432B2 (ja) 銅基合金
KR100555854B1 (ko) 무연 쾌삭 청동합금
JP2002060868A (ja) 無鉛青銅合金
JP2009041088A (ja) 鋳造性に優れた無鉛快削性黄銅
JP2009007657A (ja) 無鉛快削性銅合金並びに連続鋳造用無鉛快削性銅合金
JP2011038130A (ja) 切削性および耐高温脆性に優れたアルミニウム合金
KR100969509B1 (ko) 가공용 고절삭 구리합금
JP6000300B2 (ja) 鋳造用無鉛快削青銅合金
TWI622657B (zh) Copper-based alloy for mold casting excellent in dezincification resistance
KR101249402B1 (ko) 비스무트가 첨가되지 않은 무연 쾌삭성 동합금
KR20120042483A (ko) 납 함량이 적은 내식 황동 합금
CN110938761B (zh) 一种低铅易切削镁黄铜合金及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848973

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848973

Country of ref document: EP

Kind code of ref document: A1