WO2020114386A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2020114386A1
WO2020114386A1 PCT/CN2019/122648 CN2019122648W WO2020114386A1 WO 2020114386 A1 WO2020114386 A1 WO 2020114386A1 CN 2019122648 W CN2019122648 W CN 2019122648W WO 2020114386 A1 WO2020114386 A1 WO 2020114386A1
Authority
WO
WIPO (PCT)
Prior art keywords
condenser
fan
micro
control device
air
Prior art date
Application number
PCT/CN2019/122648
Other languages
English (en)
French (fr)
Inventor
青木均史
土田俊之
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN201980028123.7A priority Critical patent/CN112055801A/zh
Publication of WO2020114386A1 publication Critical patent/WO2020114386A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D19/00Arrangement or mounting of refrigeration units with respect to devices or objects to be refrigerated, e.g. infrared detectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays

Definitions

  • the invention relates to a refrigerator, in particular to a refrigerator that uses a micro-channel condenser as a condenser.
  • a storage room such as a refrigerating room is formed inside a heat-insulating box, and the storage room is cooled by a freezing loop to form a temperature region suitable for storing objects to be stored.
  • the refrigeration loop is composed of a compressor, a condenser, an expansion unit, and an evaporator.
  • the condenser exchanges heat between the high-pressure and high-temperature refrigerant and the external atmosphere, and has a large structural volume.
  • it is composed of refrigerant pipes that meander in the vicinity of the rear surface or the bottom surface of the heat insulation box.
  • Patent Document 1 describes a refrigerator in which a compressor and an evaporator are arranged in a machine room of a heat-insulated box. Specifically, a machine room is formed at the lowermost part on the rear side of the heat insulation box, and a compressor and a condenser are arranged inside the machine room. In addition, a fan is arranged between the compressor and the condenser. When the freezing loop is operated, the fan sends air to the condenser, which can accelerate the heat exchange in the condenser and improve the operating efficiency of the freezing loop (Patent Document 1: JP-A No. 2015-1344).
  • the above refrigerator usually has a larger finned tube condenser, and further miniaturization of the refrigerator is not simple.
  • the finned tube condenser also has room for improvement from the viewpoint of heat transfer efficiency.
  • there is a technical problem that when the refrigeration loop is operated, air is sent to the condenser to promote heat exchange, and dust will accumulate on the heat sink fins of the condenser, hindering heat exchange and Air supply.
  • An object of the present invention is to provide a refrigerator equipped with a small-sized condenser with improved heat transfer efficiency and capable of ensuring the heat exchange efficiency and the air supply performance of the condenser.
  • the present invention provides a refrigerator including a heat insulation box, a storage room formed in the heat insulation box and a hollow machine room, a refrigeration loop, a fan, and an arithmetic control for controlling the operation of the fan Device
  • the refrigeration loop is composed of a compressor, a condenser, an expansion unit, and an evaporator; the fan can send air to the condenser, and the condenser and the fan are stored in the machine room, and the condenser
  • the condenser uses a micro-channel condenser.
  • the operation control device cools the storage compartment by operating the freezing loop
  • the fan is rotated in one direction, so that air flows in one direction relative to the microchannel condenser; in the freezing
  • the arithmetic control device rotates the fan in the reverse direction, so that the air flows in the reverse direction relative to the micro-channel condenser. This can prevent dust from accumulating on the surface of the micro-channel condenser, resulting in a decrease in the heat transfer efficiency of the micro-channel condenser.
  • the arithmetic control device causes the fan to rotate in the reverse direction, so that the air flows in the reverse direction with respect to the micro-channel condenser.
  • an evaporating dish is provided below the micro-channel condenser.
  • the evaporating dish is used to receive and contain the dust peeled from the surface of the micro-channel condenser, thereby preventing the dust from polluting the surrounding environment.
  • the machine room is provided with a first air vent near the microchannel condenser, and the machine room is provided with a second air vent near the fan; by rotating the fan in one direction , So that the air sucked from the first vent port is discharged from the second vent port to the outside after passing through the micro-channel condenser, and the fan is reversely rotated to suck in the second vent port After passing through the micro-channel condenser, the air is discharged from the first vent to the outside.
  • the refrigerator of the present invention whether the fan is rotated in one direction or the fan is rotated in the reverse direction, the air can be smoothly circulated through the first vent and the second vent.
  • the micro-channel condenser can perform good heat exchange during the operation of the refrigeration loop, and at the same time, the dust attached to the micro-channel condenser can be removed well when the fan is reversed.
  • the arithmetic control device sets the time for the fan to rotate in the reverse direction to be shorter than the time for performing the defrosting stroke. It can reduce the power consumed by the fan to remove the dust from the micro-channel condenser.
  • a shielding member is arranged between the microchannel condenser and the side wall of the machine room.
  • the shielding member shields the microchannel condenser and the side wall of the machine room, so that most of the wind generated by the rotation of the fan can pass through the microchannel condenser. Thereby, the heat exchange of the micro-channel condenser can be performed efficiently, and the dust can also be removed efficiently.
  • FIG. 1 is a perspective view showing the refrigerator according to the embodiment of the present invention as viewed from the upper rear side.
  • FIG. 2 is a perspective view illustrating the refrigerator according to the embodiment of the present invention, as viewed from the upper side of the rear side of the refrigerator machine room.
  • FIG. 3(A) is a diagram showing a refrigerator according to an embodiment of the present invention as viewed from the left of a micro-channel condenser
  • FIG. 3(B) is a cross-sectional view showing a heat transfer tube in the refrigerator according to an embodiment of the present invention
  • FIG. 3(C) is a diagram showing a refrigerator according to an embodiment of the present invention when the shielding member is viewed from the left.
  • FIG. 4 is a block diagram showing each component of the refrigerator according to the embodiment of the present invention.
  • FIG. 5 is a flowchart showing a method of operating a refrigerator according to an embodiment of the present invention.
  • FIG. 6(A) is a schematic view showing the flow of air inside the machine room during the cooling operation of the refrigerator according to the embodiment of the present invention
  • FIG. 6(B) is a view showing that the refrigerator according to the embodiment of the present invention reverses the fan Schematic diagram of the flow of air inside the machine room.
  • FIG. 1 is a perspective view of the refrigerator 10 according to the embodiment of the present invention viewed from the upper rear side.
  • the refrigerator 10 has a heat insulation box 11 and a refrigerator compartment 12 and a freezer compartment 13 formed as storage rooms inside the heat insulation box 11.
  • the front opening of the refrigerator compartment 12 is closed by a rotary heat insulation door 18, and the front opening of the freezing compartment 13 is closed by a pull-out heat insulation door 19 and a heat insulation door 20.
  • the heat insulation box 11 is composed of an outer box, an inner box, and a heat insulation material.
  • the outer box forms the outer surface of the heat insulation box 11 and is composed of a steel plate.
  • the inner box is formed inside the outer box. It is composed of a synthetic resin plate, the heat insulating material is filled between the outer box and the inner box, and is made of foamed resin.
  • a hollow machine room 14 is formed.
  • the machine room 14 is continuously formed from the left end to the right end of the heat insulation box 11.
  • the first vent 26 is formed by opening the side panel 17 covering the machine room 14 from the right.
  • the second vent 27 is formed by opening the side panel 16 covering the machine room 14 from the left.
  • the first vent 26 and the second vent 27 are provided in a slit shape.
  • the mechanical chamber 14 is provided with a micro-channel condenser 23 as a condenser and a compressor 22.
  • the microchannel condenser 23 and the compressor 22 form a vapor compression refrigeration loop together with an evaporator and an expansion unit not shown here.
  • a fan 21 is arranged between the compressor 22 and the micro-channel condenser 23.
  • the fan 21 for example, an axial fan can be used.
  • FIG. 2 is a perspective view of the machine room 14 and its vicinity viewed from above the rear side.
  • the cover 35 that closes the machine room 14 from the rear and the shielding member 29 included in the microchannel condenser 23 are omitted.
  • the first vent 26, the micro-channel condenser 23, the fan 21, and the compressor 22 are arranged in this order from right to left.
  • an evaporating dish 25 is arranged below the microchannel condenser 23 and the fan 21.
  • an axial fan is used that can rotate in one direction and the opposite direction, blow air to the left by rotating in one direction, and blow air to the right by rotating in the reverse direction.
  • FIG. 3(A) is a side view of the micro-channel condenser 23 viewed from the left.
  • FIG. 3(B) is a cross-sectional view of the heat transfer tube 30 constituting the micro-channel condenser 23.
  • a micro-channel condenser 23 is used as a condenser.
  • the microchannel condenser 23 is a microchannelized condenser, and is composed of a heat transfer tube 30 and heat radiation fins 31.
  • the heat transfer tubes 30 are formed with narrow channels that extend and bend at predetermined intervals. If the contact area of the refrigerant flowing in the tube and the tube wall increases, the heat transfer area becomes larger, so the heat exchange efficiency is improved. Thus, by using the narrow heat transfer tube 30 as a path for circulating the refrigerant, a high heat transfer rate can be obtained. Specifically, as shown in FIG. 3(B), inside the heat transfer tube 30, a plurality of narrow flow channels 37 are formed.
  • the heat dissipation fins 31 are composed of corrugated metal plates with a size of several millimeters, and are arranged between the heat transfer tubes 30. Both the upper end and the lower end of the heat dissipation fin 31 are in contact with the heat transfer tube 30, so that the heat dissipation fin 31 and the heat transfer tube 30 are thermally coupled.
  • the refrigerant circulating in the heat transfer tube 30 exchanges heat with outside air via the heat radiation fins 31.
  • the shielding member 29 will be described with reference to FIG. 3(C).
  • 3(C) is a side view of the shielding member 29 viewed from the left.
  • the shielding member 29 is composed of a plate-shaped expanded polyethylene or the like shaped into a given shape, and has a thickness of about several centimeters.
  • the shape of the inner edge of the shielding member 29 is substantially the same as the shape of the outer edge of the microchannel condenser 23.
  • the outer edge of the shielding member 29 has substantially the same shape and size as the machine room 14 shown in FIG. 2.
  • the rear outer surface of the shielding member 29 is in close contact with the inner surface of the cover 35 that closes the machine room 14.
  • the upper outer surface and the front outer surface of the shielding member 29 are in close contact with the inner surface of the machine room wall portion 36 that partitions the machine room 14 inside the heat insulation box 11.
  • the connection structure of the refrigerator 10 having the above-mentioned structure will be described with reference to the block diagram of FIG. 4.
  • the refrigerator 10 includes an arithmetic control device 24, a temperature sensor 32, a timer 33, a compressor 22, a fan 21, and a defrost heater 34.
  • the arithmetic control device 24 is composed of, for example, a CPU, receives inputs from the sensors described below, performs corresponding arithmetic processing, and controls operations of the compressor 22 and the like based on the processing results.
  • the arithmetic control device 24 may include a semiconductor storage device that stores various constants or programs for cooling operation. The arithmetic control device 24 makes each storage room reach an indoor temperature range suitable for storing the storage object, performs a defrosting stroke at an appropriate time, and reverses the fan 21 so that the micro-channel condenser 23 is not blocked.
  • a temperature sensor 32 and a timer 33 are connected to the input side terminal of the arithmetic control device 24.
  • the temperature sensor 32 is attached to one or more of the refrigerator compartment 12 and the freezer compartment 13, and measures the indoor temperature of these.
  • the timer 33 measures the cooling time for cooling the refrigerator compartment 12 and the freezer compartment 13, the operation time of the defrost heater 34, and the like.
  • the compressor 22, the fan 21, and the defrost heater 34 are connected to the output side terminal of the arithmetic control device 24.
  • the compressor 22 and the like operate based on the output signal output from the arithmetic control device 24.
  • FIG. 5 is a flowchart showing the operation of the refrigerator 10
  • FIG. 6(A) is a schematic diagram showing the flow of air inside the machine room 14 during the normal cooling operation of the refrigerator 10
  • FIG. 6(B) is a diagram showing when the fan 21 is reversed
  • step S10 first, the arithmetic control device 24 cools each storage room by operating a freezing loop. Specifically, the indoor temperature of the refrigerator compartment 12 and the freezer compartment 13 is measured by the temperature sensor 32, and the arithmetic control device 24 operates a freezing loop so that the indoor temperature of the refrigerator compartment 12 and the freezer compartment 13 reaches a predetermined temperature range. Specifically, by operating the freezing circuit, the cooled cold air is sent to the refrigerator compartment 12 and the freezer compartment 13.
  • the high-temperature and high-pressure refrigerant is heat-exchanged by the micro-channel condenser 23 to become a low-temperature and high-pressure state.
  • the arithmetic control device 24 rotates the fan 21 in one direction.
  • the air sucked from the first vent 26 passes through the microchannel condenser 23, the fan 21, the compressor 22, and the second vent 27 in this order, and is discharged to the outside.
  • the refrigerant in the micro-channel condenser 23 exchanges heat with air.
  • the compressor 22 is also cooled.
  • the dust 28 accumulates on the right side of the micro-channel condenser 23, and the dust 28 also enters the heat dissipation fins 31 shown in FIG. 3(A) and accumulates.
  • step S11 that is, when the indoor temperature of the refrigerator compartment 12 and the freezer compartment 13 measured by the temperature sensor 32 is a predetermined temperature, the arithmetic control device 24 controls to stop the compressor 22 based on freezing The cooling of the loop also stopped. And the arithmetic control device 24 controls to stop the fan 21, and the air supply to the micro-channel condenser 23 is also stopped.
  • step S11 that is, the indoor temperature of the refrigerator compartment 12 or the freezer compartment 13 is higher than the set temperature
  • the arithmetic control device 24 continues the operation of the freezer loop in step S10.
  • frost will grow in the evaporator (not shown). Frost interferes with heat transfer and air supply in the evaporator. Therefore, when the operation of the freezing circuit detected by the timer 33 reaches a certain period, the arithmetic control device 24 performs a defrosting stroke. That is, the arithmetic control device 24 controls to stop the compressor 22 and the fan 21, and energizes the defrost heater 34. Thus, the frost attached to the evaporator is melted and removed by the heat generated from the defrost heater 34. The defrosted water generated by the defrosting stroke is stored in the evaporating dish 25 shown in FIG.
  • step S12 is NO
  • the arithmetic control device 24 shifts to step S10 or step S11.
  • the arithmetic control device 24 rotates the fan 21 in the reverse direction to remove the dust 28 adhering to the microchannel condenser 23. Specifically, referring to FIG. 6(B), the arithmetic control device 24 rotates the fan 21 in the reverse direction, so that the air sucked from the second vent 27 is ventilated by the compressor 22, the fan 21, the micro-channel condenser 23, and the first vent
  • the ports 26 circulate in order and are discharged to the outside.
  • the dust 28 adhering to the right side surface and the inside of the microchannel condenser 23 peels off the microchannel condenser 23 based on the air flowing to the right, and falls to the evaporating dish 25 below.
  • the dust 28 is received and absorbed by the evaporating dish 25, thereby preventing the dust 28 from polluting the surrounding environment of the refrigerator 10.
  • the arithmetic control device 24 controls the fan 21 to rotate in the reverse direction until a predetermined time, that is, during a period of "No" in step S14, the fan 21 rotates in the reverse direction.
  • a predetermined time that is, during a period of "No" in step S14
  • the arithmetic control device 24 stops the fan 21 and moves to step S12 where the defrosting stroke is performed.
  • the time for the fan 21 to perform reverse rotation is shorter than the time for the defrost stroke. Thereby, the time for the fan 21 to reverse can be shortened, and the energy required for the dust removal of the micro-channel condenser 23 can be reduced.
  • the dust 21 adhering to the micro-channel condenser 23 is removed by reversing the fan 21 during the defrosting stroke, but the fan 21 can also be reversed at other times. For example, it is also possible to reverse the fan 21 when the defrosting stroke is not performed while the freezing circuit is stopped.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)

Abstract

一种冰箱(10),包括:形成有贮藏室的隔热箱体(11),由压缩机(22)、凝结器、膨胀单元及蒸发器构成的冷冻环路,形成于隔热箱体(11)上的中空的机械室(14),向凝结器送风的风机(21)以及控制风机(21)动作的运算控制装置(24)。其中,机械室(14)收纳凝结器以及风机(21),凝结器采用微通道冷凝器(23)。当冷冻环路运行为冷却贮藏室时,运算控制装置(24)使风机(21)朝一个方向旋转,从而使空气相对于微通道冷凝器(23)朝一个方向流通;当冷冻环路停止时,运算控制装置(24)使风机(21)逆向旋转,从而使空气相对于微通道冷凝器(23)逆向流通,由此,能去除微通道冷凝器(23)的尘埃。

Description

冰箱 技术领域
本发明涉及冰箱,尤其涉及采用微通道冷凝器作为凝结器的冰箱。
背景技术
一般的冰箱中,在隔热箱体的内部形成冷藏室等贮藏室,并通过冷冻环路对该贮藏室进行冷却,以形成适于保存待贮藏的被贮藏物的温度区域。
冷冻环路由压缩机、凝结器、膨胀单元以及蒸发器构成。其中,凝结器对高压高温状态的冷媒与外部氛围气体进行热交换,结构体积较大,通常由在隔热箱体的后面附近或底面附近蜿蜒延伸的冷媒配管构成。
在以下的专利文献1中,记载有在隔热箱体的机械室配置压缩机以及蒸发器的冰箱。具体而言,在隔热箱体的后侧最下部形成有机械室,在该机械室的内部配置有压缩机以及凝结器。另外,在压缩机与凝结器之间配置有风机。在运行冷冻环路时,风机向凝结器送风,从而能加快凝结器中的热交换,提高冷冻环路的运行效率(专利文献1:JP特开2015-1344号公报)。
然而,上述冰箱通常具有较大的翅片管式凝结器,冰箱的进一步小型化并不简单。为了进一步提高冷冻环路的冷却效率,所述翅片管式凝结器从热传递效率的角度出发也存在改善的余地。另外,在采用小型的凝结器的情况下,存在如下技术问题:在运行冷冻环路时,为了促进热交换而向凝结器送风,尘埃会堆积于凝结器的散热翅片上,阻碍热交换以及送风。
发明内容
本发明目的在于,提供一种具备热传递效率得以提高的小型的凝结器且能保证该凝结器的热交换效率以及送风性的冰箱。
为实现上述发明目的,本发明提供一种冰箱,包括隔热箱体、形成在隔热箱体中的贮藏室与中空的机械室、冷冻环路、风机及控制所述风机的动作的运算控制装置,所述冷冻环路由压缩机、凝结器、膨胀单元以及蒸发器构成;所述风机可向所述凝结器送风,在所述机械室收纳所述凝结器以及所述风机,所述凝结器采用微通道冷凝器。所述运算控制装置在通过 运行所述冷冻环路来冷却所述贮藏室时,使所述风机朝一个方向旋转,从而使空气相对于所述微通道冷凝器朝一个方向流通;在所述冷冻环路停止时,所述运算控制装置通过使所述风机逆向旋转,从而使空气相对于所述微通道冷凝器逆向流通。由此,能够防止尘埃堆积于微通道冷凝器的表面,导致微通道冷凝器的热传导效率下降。
进一步地,在进行除霜行程的期间,所述运算控制装置通过使所述风机逆向旋转,从而使空气相对于所述微通道冷凝器逆向流通。通过在除霜行程中使风机逆转,能去除微通道冷凝器的尘埃,因此无需为了去除尘埃而使冷冻环路停止。
进一步地,所述微通道冷凝器的下方设置有蒸发皿。所述蒸发皿用以接收容纳从微通道冷凝器的表面剥离的尘埃,从而防止上述尘埃污染周围的环境。
进一步地,所述机械室在所述微通道冷凝器的附近开设有第一通气口,且所述机械室在所述风机的附近开设有第二通气口;通过使所述风机朝一个方向旋转,从而使从所述第一通气口吸入的空气经过所述微通道冷凝器后从所述第二通气口向外部排出,通过使所述风机逆向旋转,从而使从所述第二通气口吸入的空气经过所述微通道冷凝器后从所述第一通气口向外部排出。由此,根据本发明的冰箱,无论是在使风机朝一个方向旋转的情况下,还是使风机逆向旋转的情况下,均能使空气经由第一通气口以及第二通气口良好地流通。在运行冷冻环路时能由微通道冷凝器良好地进行热交换,同时,风机逆转时也能良好地去除附着于微通道冷凝器的尘埃。
进一步地,所述运算控制装置将所述风机逆向旋转的时间设定得比进行所述除霜行程的时间短。能减少为了去除微通道冷凝器的尘埃而由风机消耗的电力。
进一步地,在所述微通道冷凝器与所述机械室的侧壁之间配设遮蔽构件。通过遮蔽构件来对微通道冷凝器与机械室的侧壁之间进行遮蔽,从而能使因风机旋转而产生的风的大部分经由微通道冷凝器。由此,能高效地进行微通道冷凝器的热交换,也能高效地进行尘埃的去除。
附图说明
图1是表示本发明的实施方式所涉及的冰箱从后侧上方观察的立体图。
图2是表示本发明的实施方式所涉及的冰箱从后侧上方观察冰箱的机械室的立体图。
图3(A)是表示本发明的实施方式所涉及的冰箱从左方观察微通道冷凝器的图;图3(B)是表示本发明的实施方式所涉及的冰箱中传热管的剖视图;图3(C)是表示本发明的实施方式所涉及的冰箱从左方观察遮蔽构件的图。
图4是表示本发明的实施方式所涉及的冰箱各构成部分的框图。
图5是表示本发明的实施方式所涉及的冰箱的运行方法的流程图。
图6(A)是表示本发明的实施方式所涉及的冰箱冷却运行时的机械室的内部的空气的流动示意图;图6(B)是表示本发明的实施方式所涉及的冰箱使风机逆转时的机械室内部的空气的流动示意图。
10-冰箱;11-隔热箱体;12-冷藏室;13-冷冻室;14-机械室;16、17-侧面板;18、19、20-隔热门;21-风机;22-压缩机;23-微通道冷凝器;24-运算控制装置;25-蒸发皿;26-第一通气口;27-第二通气口;28-尘埃;29-遮蔽构件;30-传热管;31-散热翅片;32-温度传感器;33-定时器;34-除霜加热器;35-盖部;36-机械室壁部;37-流路。
具体实施方式
附图仅用于示例性说明,不能理解为对本专利的限制;为了更好说明本实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
以下,基于附图来详细说明本发明的实施方式所涉及的冰箱10。在说明本实施方式时,对同一构件原则上使用同一标号,并省略重复的说明。
图1是从后侧上方观察本发明的实施方式所涉及的冰箱10的立体图。冰箱10具有隔热箱体11、以及在隔热箱体11的内部形成为贮藏室的冷藏室12及冷冻室13。冷藏室12的前方开口由旋转式的隔热门18进行封闭,冷冻室13的前方开口由拉出式的隔热门19以及隔热门20进行封闭。
在此虽未图示,但隔热箱体11由外箱、内箱和隔热材构成,外箱形成隔热箱体11的外表面,由钢板构成,内箱形成于外箱的内部,由合成树脂板构成,隔热材填充于外箱与内箱之间,由发泡树脂构成。
在隔热箱体11的后侧最下部,形成有中空的机械室14。机械室14从隔热箱体11的左端到右端连续地形成。
通过使从右方覆盖机械室14的侧面板17开口,形成有第一通气口26。另外,通过使从左方覆盖机械室14的侧面板16开口,形成有第二通气口27。为了防止异物从外部侵入机械室14,第一通气口26以及第二通气口27设置呈狭缝状。
所述机械室14内配设有作为凝结器的微通道冷凝器23以及压缩机22。微通道冷凝器23以及压缩机22与在此未图示的蒸发器以及膨胀单元一起形成了蒸气压缩式冷冻环路。通过将由蒸气压缩式冷冻环路冷却后的冷气送至冷藏室12及冷冻室13,从而将冷藏室12冷却至冷藏温度范围,且将冷冻室13冷却至冷冻温度范围。
在压缩机22与微通道冷凝器23之间配设有风机21。作为风机21,例如能采用轴流风扇。
参照图2,详述机械室14的内部构成。图2是从后侧上方观察机械室14及其附近的立体图。在该图中,省略了从后方封闭机械室14的盖部35以及微通道冷凝器23所具备的遮蔽构件29。
如上所述,在机械室14内,从右向左依次配设有第一通气口26、微通道冷凝器23、风机21以及压缩机22。另外,在微通道冷凝器23以及风机21的下方,配设有蒸发皿25。
作为风机21,采用如下轴流风扇,即能朝一个方向及其相反方向旋转,通过朝一个方向旋转而朝左方送风,通过逆向旋转而朝右方送风。
参照图3(A)以及图3(B)来说明微通道冷凝器23。图3(A)是从左方观察微通道冷凝器23的侧视图。图3(B)是构成微通道冷凝器23的传热管30的剖视图。
参照图3(A),在本实施方式中,采用了微通道冷凝器23作为凝结器。微通道冷凝器23是经微通道化的凝结器,由传热管30以及散热翅片31构成。作为传热管30以及散热翅片31的材料,能采用铜或者铝。
传热管30根据既定间隔形成有弯折延伸的狭窄通道。若在管内流动的冷媒与管壁的接触面积增加,则传热面积变大,因此热交换效率提升。由此,通过采用狭窄的传热管30来作为使冷媒流通的路径,能得到高热传递率。具体而言,如图3(B)所示,在传热管30的 内部,形成有多个狭窄的流路37。
散热翅片31由尺寸大致在数毫米且呈波纹状的金属板构成,配设于传热管30彼此之间。散热翅片31的上端部以及下端部均与传热管30接触,从而散热翅片31与传热管30热性结合。在传热管30内流通的冷媒经由散热翅片31与外部气体进行热交换。
参照图3(C)来说明遮蔽构件29。图3(C)是从左方观察遮蔽构件29的侧视图。遮蔽构件29由成形为给定形状的板状的发泡聚乙烯等组成,厚度约为数厘米。遮蔽构件29的内侧缘部的形状设为与微通道冷凝器23的外侧缘部的形状大致相同。由此,在将遮蔽构件29紧贴于微通道冷凝器23时,微通道冷凝器23的外侧缘部与遮蔽构件29的内侧缘部将几乎无间隙地紧贴。
遮蔽构件29的外侧缘部呈与图2所示的机械室14大致相同的形状以及大小。由此,在将遮蔽构件29配置于机械室14时,遮蔽构件29的后方侧外表面与对上述机械室14进行封闭的盖部35的内表面紧贴。另外,遮蔽构件29的上方侧外表面以及前方侧外表面在隔热箱体11的内部与分隔机械室14的机械室壁部36的内表面紧贴。通过该构成,微通道冷凝器23的外侧外表面与机械室壁部36以及盖部35之间的间隙被遮蔽构件29填埋,使空气顺利地通过微通道冷凝器23,能更高效地进行空气与冷媒的热交换。
参照图4的框图来说明具有上述构成的冰箱10的连接构成。冰箱10具备:运算控制装置24、温度传感器32、定时器33、压缩机22、风机21以及除霜加热器34。
运算控制装置24例如由CPU构成,接受来自下述各传感器的输入来进行相应的运算处理,并基于处理结果来控制压缩机22等构成的动作。另外,运算控制装置24可以具备半导体存储装置,该半导体存储装置对用于进行冷却运行的各种常数或程序进行存储。通过运算控制装置24,使各贮藏室达成对于保存被贮藏物而言合适的室内温度范围,在适当的时候进行除霜行程,并使风机21逆转以使微通道冷凝器23不闭塞。
运算控制装置24的输入侧端子连接有温度传感器32以及定时器33。温度传感器32安装于上述冷藏室12及冷冻室13当中的一个或多个,对它们的室内温度进行计测。定时器33计测对冷藏室12及冷冻室13进行冷却的冷却时间、除霜加热器34的运行时间等。
运算控制装置24的输出侧端子连接有压缩机22、风机21以及除霜加热器34。压缩机 22等基于从运算控制装置24输出的输出信号而动作。
参照图5、图6以及上述各图,说明具备上述构成的冰箱10的动作。图5是表示冰箱10的运行的流程图,图6(A)是表示冰箱10的通常冷却运行时的机械室14的内部的空气的流动示意图,图6(B)是表示使风机21逆转时的机械室14的内部的空气的流动示意图。
在步骤S10中,首先,运算控制装置24通过运行冷冻环路来冷却各贮藏室。具体而言,由温度传感器32测量冷藏室12及冷冻室13的室内温度,运算控制装置24运行冷冻环路以使冷藏室12及冷冻室13的室内温度达到给定的温度范围。具体而言,通过运行冷冻环路,并将冷却后的冷气送至冷藏室12及冷冻室13。
在冷冻环路中,高温高压的冷媒由微通道冷凝器23进行热交换而成为低温高压的状态。此时,运算控制装置24使风机21朝一个方向转动。如此,如图6(A)所示,从第一通气口26吸入的空气以微通道冷凝器23、风机21、压缩机22、第二通气口27的顺序通过,并被排出到外部。此时,所述微通道冷凝器23中的冷媒与空气进行热交换。另外,压缩机22也被冷却。此过程中,尘埃28堆积于微通道冷凝器23的右方侧的侧面,并且,尘埃28还进入图3(A)所示的散热翅片31的内部进行堆积。
在步骤S11中为“是”的情况下,即温度传感器32测出的冷藏室12及冷冻室13的室内温度为给定的温度时,则运算控制装置24控制停止压缩机22,从而基于冷冻环路的冷却也停止。且所述运算控制装置24控制停止风机21,向微通道冷凝器23的送风也停止。另一方面,在步骤S11中为“否”的情况下,即冷藏室12或者冷冻室13的室内温度高于设定温度,则运算控制装置24继续步骤S10中的冷冻环路的运行。
若上述冷冻环路持续运行,霜会在未图示的蒸发器生长。霜会妨碍蒸发器中的传热以及送风,因此若在定时器33测出的冷冻环路的运行达到一定期间,则运算控制装置24会执行除霜行程。即运算控制装置24控制停止压缩机22以及风机21,并对除霜加热器34通电。由此,通过从除霜加热器34发出的热,将附着于蒸发器的霜融化去除。通过除霜行程而产生的除霜水会储存于图2所示的蒸发皿25内,利用从在蒸发皿25的下方延伸的冷媒配管内流通的冷媒发出的热来进行蒸发。若蒸发器上的霜的附着量较少时,即步骤S12为“否”,则运算控制装置24转移至步骤S10或者步骤S11。
在进行上述除霜行程的情况下,即步骤S12中为“是”的情况下,在步骤S13中,运算控制装置24使风机21逆向旋转,来去除附着于微通道冷凝器23的尘埃28。具体而言,参照图6(B),运算控制装置24通过使风机21逆向旋转,从而使从第二通气口27吸入的空气以压缩机22、风机21、微通道冷凝器23以及第一通气口26的顺序进行流通,并排出至外部。
通过本行程,附着于微通道冷凝器23的右侧面以及内部的尘埃28基于朝右方流通的空气而从微通道冷凝器23剥离,并落下至下方的蒸发皿25。此时,空气在图3(A)所示的呈波纹状的散热翅片31之间、散热翅片31与传热管30之间等流通。尘埃28被蒸发皿25接纳吸收,从而避免尘埃28污染冰箱10的周边的环境。
运算控制装置24控制风机21逆向旋转直至给定时间,即步骤S14为“否”的期间,使风机21逆向旋转。另一方面,若步骤S13中的风机21的逆转运行经过所定时间,即步骤S14为“是”,则运算控制装置24使风机21停止,转移至进行除霜行程的步骤S12。风机21进行逆转旋转的时间比进行除霜行程的时间短。由此,能缩短风机21逆转的时间,能减小微通道冷凝器23的尘埃去除所需的能量。
本发明不限于上述实施方式,此外,能在不脱离本发明的主旨的范围内实施各种变更。
例如,在上述实施方式中,通过在除霜行程中使风机21逆转来去除了附着于微通道冷凝器23的尘埃28,但还能在其它时候定时使风机21逆转。例如,还能在停止冷冻环路的期间,在未进行除霜行程时使风机21逆转。

Claims (6)

  1. 一种冰箱,其特征在于,包括:
    隔热箱体,其形成有贮藏室;
    冷冻环路,其由压缩机、凝结器、膨胀单元以及蒸发器构成;
    中空的机械室,其形成于所述隔热箱体;
    风机,其向所述凝结器送风;以及
    运算控制装置,其控制所述风机的动作,
    所述机械室收纳所述凝结器以及所述风机,
    所述凝结器采用微通道冷凝器,
    所述运算控制装置在通过运行所述冷冻环路来冷却所述贮藏室时,使所述风机朝一个方向旋转,从而使空气相对于所述微通道冷凝器朝一个方向流通,
    在所述冷冻环路停止时,所述运算控制装置通过使所述风机逆向旋转,从而使空气相对于所述微通道冷凝器逆向流通。
  2. 根据权利要求1所述的冰箱,其特征在于,
    在进行除霜行程的期间,所述运算控制装置通过使所述风机逆向旋转,从而使空气相对于所述微通道冷凝器逆向流通。
  3. 根据权利要求1所述的冰箱,其特征在于,
    所述微通道冷凝器的下方设置有蒸发皿。
  4. 根据权利要求1所述的冰箱,其特征在于,
    所述机械室在所述微通道冷凝器的附近开设有第一通气口;以及
    在所述风机的附近开设有第二通气口,
    通过使所述风机朝一个方向旋转,从而使从所述第一通气口吸入的空气经过所述微通道 冷凝器后从所述第二通气口向外部排出,
    通过使所述风机逆向旋转,从而使从所述第二通气口吸入的空气经过所述微通道冷凝器后从所述第一通气口向外部排出。
  5. 根据权利要求2所述的冰箱,其特征在于,
    所述运算控制装置将所述风机逆向旋转的时间设定得比进行所述除霜行程的时间短。
  6. 根据权利要求1至5中任一项所述的冰箱,其特征在于,
    在所述微通道冷凝器与所述机械室的侧壁之间配设遮蔽构件。
PCT/CN2019/122648 2018-12-07 2019-12-03 冰箱 WO2020114386A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980028123.7A CN112055801A (zh) 2018-12-07 2019-12-03 冰箱

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-229857 2018-12-07
JP2018229857A JP2020091085A (ja) 2018-12-07 2018-12-07 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2020114386A1 true WO2020114386A1 (zh) 2020-06-11

Family

ID=70975203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/122648 WO2020114386A1 (zh) 2018-12-07 2019-12-03 冰箱

Country Status (3)

Country Link
JP (1) JP2020091085A (zh)
CN (1) CN112055801A (zh)
WO (1) WO2020114386A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545029A (ja) * 1991-08-20 1993-02-23 Fuji Electric Co Ltd 自動販売機用冷却ユニツト
JP2000123238A (ja) * 1998-10-20 2000-04-28 Sanyo Electric Co Ltd 自動販売機の冷却装置
KR20030000170A (ko) * 2001-06-22 2003-01-06 엘지전자 주식회사 냉장고의 응축기 이물질 제거방법
KR20060068755A (ko) * 2004-12-17 2006-06-21 주식회사 대우일렉트로닉스 냉장고 냉각팬의 역회전제어방법
CN201106972Y (zh) * 2007-08-28 2008-08-27 海信科龙电器股份有限公司 一种具有自动除尘功能的冷柜
CN206890977U (zh) * 2017-05-16 2018-01-16 合肥美的电冰箱有限公司 一种压缩机机仓结构、冰箱

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1373810T3 (da) * 2001-03-06 2011-12-05 True Mfg Co Inc Rensningssystem til kølekondensator
CN2916469Y (zh) * 2004-12-27 2007-06-27 上海海立特种制冷设备有限公司 一种空调室外机自动除尘装置
JP2008070014A (ja) * 2006-09-13 2008-03-27 Toshiba Corp 冷蔵庫
US10197294B2 (en) * 2016-01-15 2019-02-05 Johnson Controls Technology Company Foam substructure for a heat exchanger
CN105928299A (zh) * 2016-04-29 2016-09-07 合肥华凌股份有限公司 冰箱
KR102177946B1 (ko) * 2016-12-02 2020-11-12 엘지전자 주식회사 냉장고 및 그의 제어방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0545029A (ja) * 1991-08-20 1993-02-23 Fuji Electric Co Ltd 自動販売機用冷却ユニツト
JP2000123238A (ja) * 1998-10-20 2000-04-28 Sanyo Electric Co Ltd 自動販売機の冷却装置
KR20030000170A (ko) * 2001-06-22 2003-01-06 엘지전자 주식회사 냉장고의 응축기 이물질 제거방법
KR20060068755A (ko) * 2004-12-17 2006-06-21 주식회사 대우일렉트로닉스 냉장고 냉각팬의 역회전제어방법
CN201106972Y (zh) * 2007-08-28 2008-08-27 海信科龙电器股份有限公司 一种具有自动除尘功能的冷柜
CN206890977U (zh) * 2017-05-16 2018-01-16 合肥美的电冰箱有限公司 一种压缩机机仓结构、冰箱

Also Published As

Publication number Publication date
CN112055801A (zh) 2020-12-08
JP2020091085A (ja) 2020-06-11

Similar Documents

Publication Publication Date Title
JP2010038528A (ja) 冷蔵庫
KR20090006419A (ko) 냉장고
WO2021047571A1 (zh) 冰箱
JP2009079807A (ja) 冷蔵庫
JP5847198B2 (ja) 冷蔵庫
JP2018071874A (ja) 冷蔵庫
JP2009079778A (ja) 冷蔵庫
JP2014048030A (ja) 冷却庫
WO2011114656A1 (ja) 冷蔵庫
JP2013019598A (ja) 冷蔵庫
WO2020114386A1 (zh) 冰箱
JP2003287342A (ja) 冷蔵庫
CN215951876U (zh) 冷藏冷冻装置
JP6490221B2 (ja) 冷蔵庫
TWI414738B (zh) 冷凍冷藏庫
JP2011038714A (ja) 冷蔵庫
JP2006189209A (ja) 冷却庫
JP2005345061A (ja) 冷蔵庫
JP6940424B2 (ja) 冷蔵庫
JP5985942B2 (ja) 冷却庫
US10739057B2 (en) Refrigerator
JP2017026210A (ja) 冷蔵庫
JP6543811B2 (ja) 冷蔵庫
CN112113381A (zh) 蒸发器异形的冰箱
US11852387B2 (en) Refrigerator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893182

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893182

Country of ref document: EP

Kind code of ref document: A1