WO2021047571A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2021047571A1
WO2021047571A1 PCT/CN2020/114374 CN2020114374W WO2021047571A1 WO 2021047571 A1 WO2021047571 A1 WO 2021047571A1 CN 2020114374 W CN2020114374 W CN 2020114374W WO 2021047571 A1 WO2021047571 A1 WO 2021047571A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
blower
machine room
opening area
refrigerator
Prior art date
Application number
PCT/CN2020/114374
Other languages
English (en)
French (fr)
Inventor
冢原紘也
鈴木悠太
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Aqua 株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司, Aqua 株式会社 filed Critical 青岛海尔电冰箱有限公司
Priority to CN202080063687.7A priority Critical patent/CN114467001B/zh
Priority to EP20863842.9A priority patent/EP4030127A4/en
Publication of WO2021047571A1 publication Critical patent/WO2021047571A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/003General constructional features for cooling refrigerating machinery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2321/00Details or arrangements for defrosting; Preventing frosting; Removing condensed or defrost water, not provided for in other groups of this subclass
    • F25D2321/14Collecting condense or defrost water; Removing condense or defrost water
    • F25D2321/141Removal by evaporation
    • F25D2321/1412Removal by evaporation using condenser heat or heat of desuperheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00261Details for cooling refrigerating machinery characterised by the incoming air flow through the back bottom side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00263Details for cooling refrigerating machinery characterised by the incoming air flow through the back corner side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0026Details for cooling refrigerating machinery characterised by the incoming air flow
    • F25D2323/00267Details for cooling refrigerating machinery characterised by the incoming air flow through the side
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00273Details for cooling refrigerating machinery characterised by the out-flowing air from the back corner
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2323/00General constructional features not provided for in other groups of this subclass
    • F25D2323/002Details for cooling refrigerating machinery
    • F25D2323/0027Details for cooling refrigerating machinery characterised by the out-flowing air
    • F25D2323/00277Details for cooling refrigerating machinery characterised by the out-flowing air from the side

Definitions

  • the present invention relates to a refrigerator, and more particularly to a refrigerator in which components constituting a refrigerating cycle system are gathered in a machine room.
  • a storage room such as a refrigerating room is formed inside a heat-insulating box, and the storage room is cooled by a refrigeration cycle system so as to have a suitable temperature range for cooling and storing the stored objects.
  • the refrigeration cycle system consists of a compressor, a condenser, an expansion device and an evaporator.
  • the condenser In order to realize the heat exchange between the refrigerant in the high-pressure and high-temperature state and the outside air, the condenser has a relatively large volume design, and a curved refrigerant pipe is formed near the rear surface or the bottom surface of the heat-insulating box.
  • Patent Document 1 describes a refrigerator in which a compressor and a condenser are arranged in a machine room of a heat-insulating box. Specifically, a machine room is formed at the lowermost part of the rear side of the heat insulation box, and a compressor and a condenser are arranged inside the machine room. In addition, a blower is arranged between the compressor and the condenser. When the refrigeration cycle system is working, the air blower can be used to blow air to the condenser to achieve better heat exchange at the condenser and ensure the effective operation of the refrigeration cycle system.
  • Patent Document 1 JP 2015-1344 No.
  • a large fin type condenser is usually provided, and therefore it is difficult to further miniaturize the refrigerator.
  • the components constituting the refrigeration cycle system are assembled in a machine room formed at the lower rear of the heat-insulating box.
  • the condenser and compressor constituting the refrigeration cycle system generate a large amount of heat energy during operation of the refrigeration cycle system. Therefore, when the condenser and compressor are housed in a machine room with a small space, it is difficult to use these components. The generated heat is discharged to the outside of the refrigerator.
  • the present invention has been made in view of the above circumstances, and the object of the present invention is to provide a refrigerator capable of compactly storing the components constituting the refrigeration cycle system in a machine room, and also capable of efficiently discharging the heat generated by these components during operation.
  • the refrigerator of the present invention is a refrigerator having the following parts: a heat-insulating box body forming a storage room; a refrigeration cycle system composed of a compressor, a micro-channel condenser, an expansion device, and an evaporator; The machine room at the lower rear; a blower that blows air to the inside of the machine room; an evaporator plate for storing defrost water generated when the evaporator is defrosted; an air inlet formed at one end of the machine room Side, for air to enter the machine room from the outside; and an exhaust port, formed on the other end side of the machine room, for discharging the air blown by the blower to the outside of the machine room; characterized in that, The compressor, the micro-channel condenser, the blower, and the evaporation tray are all housed in the machine room, and a first opening area, a closed area, and a closed area are formed on the upper surface side of the evaporation tray from the upstream side of the blower.
  • an air passage route and an air circulation route are formed in the machine room, and the air passage route is the air passing through the air inlet, the microchannel condenser,
  • the route of the blower, the compressor, and the exhaust port, and the air circulation route is that the air flows in the second opening area, the closed area, the first opening area, and the microchannel The route of circulation in the condenser and the blower.
  • the evaporation tray has a side wall portion provided on the downstream side of the blower.
  • the refrigerant pipe connecting the compressor and the micro-channel condenser passes through the second opening area, the vicinity of the bottom surface of the evaporator and the first Open area.
  • the refrigerator of the present invention is characterized in that the enclosed area is provided with a shielding plate that seals the evaporation tray from above, and the microchannel condenser and the blower are arranged on the shielding plate. At the surface.
  • the refrigerator of the present invention is characterized in that the opening area of the air inlet is larger than the area of the wind tunnel of the blower.
  • the opening area of the exhaust port is larger than the area of the wind tunnel of the blower.
  • the refrigerator of the present invention is a refrigerator having the following parts: a heat-insulating box body forming a storage room; a refrigeration cycle system composed of a compressor, a micro-channel condenser, an expansion device, and an evaporator; The machine room at the lower rear; a blower that blows air to the inside of the machine room; an evaporator plate for storing defrost water generated when the evaporator is defrosted; an air inlet formed at one end of the machine room Side, for air to enter the machine room from the outside; and an exhaust port, formed on the other end side of the machine room, for discharging the air blown by the blower to the outside of the machine room; characterized in that, The compressor, the micro-channel condenser, the blower, and the evaporation tray are all housed in the machine room, and a first opening area, a closed area, and a closed area are formed on the upper surface side of the evaporation tray from the upstream side of the blower.
  • an air passage route and an air circulation route are formed in the machine room, and the air passage route is the air passing through the air inlet, the microchannel condenser,
  • the route of the blower, the compressor, and the exhaust port, and the air circulation route is that the air flows in the second opening area, the closed area, the first opening area, and the microchannel The route of circulation in the condenser and the blower.
  • the compressor and the micro-channel condenser constituting the refrigeration cycle system can be compactly housed in the machine room. Therefore, it is possible to ensure that the storage compartment is large and the volume utilization rate is improved.
  • the blower blows air to the inside of the machine room, the heat generated from the compressor and the micro-channel condenser during the operation of the refrigerator can be effectively discharged to the outside.
  • the air passage and air circulation routes are formed in the interior of the machine room, the air heated by the heat exchange with the microchannel condenser circulates above the defrosting water stored in the evaporator, which can effectively evaporate and defrost. Frost water.
  • the air cooled by evaporating the defrost water circulates around the micro-channel condenser, so the refrigerant can be effectively condensed through the micro-channel condenser.
  • the evaporation tray has a side wall portion provided on the downstream side of the blower. In this way, according to the refrigerator of the present invention, a part of the air blown by the blower hits the side wall of the evaporation tray, thereby forming an air circulation route.
  • the refrigerant pipe connecting the compressor and the micro-channel condenser passes through the second opening area, the vicinity of the bottom surface of the evaporator and the first Open area.
  • the defrost water stored in the evaporating pan can be evaporated by the heat of the compressed refrigerant circulating in the refrigerant pipe, and the heat exchange of the compressed refrigerant can be promoted.
  • the refrigerator of the present invention it is characterized in that the enclosed area is provided with a shielding plate that seals the evaporation tray from above, and the microchannel condenser and the blower are arranged on the shielding plate. At the surface.
  • the micro-channel condenser and the blower are arranged above the evaporating tray, so that the components constituting the refrigeration cycle system can be compactly housed in the limited space of the machine room.
  • the refrigerator of the present invention is characterized in that the opening area of the air inlet is larger than the area of the wind tunnel of the blower.
  • the air blower due to the increase in the opening area of the air inlet, the air blower can ensure a large amount of air, so the heat exchange between the micro-channel condenser and the compressor is increased, and it can also effectively evaporate. Defrost water stored in the evaporation pan.
  • the opening area of the exhaust port is larger than the area of the wind tunnel of the blower.
  • the air supply of the blower is large, so the heat exchange between the micro-channel condenser and the compressor is increased, and it can also effectively evaporate. Defrost water stored in the evaporation pan.
  • Fig. 1 is a diagram showing a refrigerator according to an embodiment of the present invention, and is a perspective view of the refrigerator as viewed from the upper rear side.
  • Fig. 2 is a side sectional view showing the refrigerator according to the embodiment of the present invention.
  • Fig. 3 is a diagram showing the refrigerator according to the embodiment of the present invention, and is a perspective view of the machine room viewed from the upper rear side.
  • Fig. 4 is a diagram showing the refrigerator according to the embodiment of the present invention, and is a perspective view of various constituent members housed in the machine room as viewed from the upper rear side.
  • Fig. 5(A) is a diagram of various components housed in the machine room viewed from above;
  • Fig. 5(B) is a diagram of various components housed in the machine room viewed from the rear.
  • Fig. 6 is a diagram showing a refrigerator according to an embodiment of the present invention, and is a perspective view showing a related structure of an evaporating pan and a refrigerant pipe.
  • Fig. 7(A) is a perspective view of the machine room viewed from the rear left side
  • Fig. 7(B) is a perspective view of the machine room viewed from the rear right side
  • Fig. 7(C) is a perspective view of the blower viewed from the upper right side.
  • Fig. 8 is a diagram showing a refrigerator according to an embodiment of the present invention, and is a block diagram showing a connection structure of each component.
  • the refrigerator 10 according to the embodiment of the present invention will be described in detail based on the drawings.
  • the same reference numerals are used for the same components, and repeated descriptions are omitted.
  • the present embodiment is described using the directions of up, down, front, and rear, and left and right.
  • the left and right are the left and right when viewed from the rear of the refrigerator 10.
  • Fig. 1 is a perspective view of a refrigerator 10 according to an embodiment of the present invention as viewed from above and behind.
  • the refrigerator 10 has a heat insulation box 11 and a storage room formed inside the heat insulation box 11.
  • the front opening of the refrigerating compartment 12 is closed by the rotary heat-insulating door 18, the front opening of the vegetable compartment 114 is closed by the drawer-type heat-insulating door 19, and the front opening of the freezer compartment 13 is closed by the drawer-type heat-insulating door 20.
  • the housing 111 of the refrigerator 10 is composed of a top plate 151 facing upward, a side panel 152 facing left, a side panel 153 facing right, and a back panel 154 facing rear.
  • a machine room 14 as a cavity is formed in the lowermost part of the rear side of the refrigerator 10.
  • the machine room 14 is formed to be connected from the left end of the heat insulation box 11 to the right end thereof.
  • the rear opening of the machine room 14 is sealed by the machine room cover part 155.
  • an air inlet 26 for external air to enter the machine room 14.
  • the air inlet 26 is a plurality of openings provided at the side panel 153 and the machine room cover 155.
  • an exhaust port 27 through which air released from the machine room 14 to the outside passes.
  • the exhaust port 27 is a plurality of openings provided at the side panel 152 and the machine room cover 155.
  • the intake port 26 and the exhaust port 27 are described in detail with reference to FIG. 7.
  • the air inlet 26 and the air outlet 27 are arranged in a slit shape to prevent foreign matter from intruding into the machine room 14 from the outside.
  • FIG. 2 is a side cross-sectional view of the refrigerator 10.
  • the heat-insulating box 11 is composed of the following parts: an outer shell 111, which is made of a steel plate that is bent into a specified shape; an inner shell 112, which is made of a synthetic resin plate that is arranged inside the outer shell 111 and separated from the outer shell 111 Manufactured; and an insulating material 113, which is filled between the outer shell 111 and the inner liner 112.
  • a cooling chamber 115 is partitioned inside the freezing chamber 13, and an evaporator 116 is accommodated in the cooling chamber 115.
  • An air blowing duct 118 is formed above the cooling chamber 115. The air cooled by the evaporator 116 in the cooling chamber 115 is blown to the blower duct 118 by a fan (not shown here) for blowing cold air. The air cooled by the evaporator 116 is also blown into the freezing compartment 13.
  • the defrost heater 117 is arranged below the evaporator 116 inside the cooling chamber 115.
  • the defrost heater 117 is a heater that generates heat by being energized. It is energized and generates heat during the defrosting process, and melts the frost on the evaporator 116 by the heat generated.
  • the defrosted water generated by defrosting passes through the water pipe 31 shown in FIG. 4 to reach the evaporation pan 25, and is evaporated by heat exchange with the high-temperature compressed refrigerant.
  • FIG. 3 is a perspective view of the inside of the machine room 14 viewed from the upper rear side. This shows a state in which the above-mentioned machine room cover 155 is removed from the refrigerator 10.
  • a micro-channel condenser 23, a blower 21, an evaporation plate 25 and a compressor 22 are installed in the machine room 14.
  • the machine room 14 is also equipped with refrigerant pipes for connecting the components constituting the vapor compression refrigeration cycle system including the microchannel condenser 23 and the compressor 22 to each other.
  • each component constituting the refrigeration cycle system is housed in the machine compartment 14 together with the evaporation tray 25, and the volume of the components necessary for accommodating the operation of the refrigerator 10 can be reduced. Therefore, for the entire refrigerator 10, the effective volume occupied by the storage compartment can be increased. In this way, more items can be stored in the refrigerator 10, and the outer size of the refrigerator 10 can be reduced.
  • FIG. 4 is a perspective view showing the components housed in the machine room 14
  • FIG. 5(A) is a plan view of these components viewed from above
  • FIG. 5(B) is a rear view of these components viewed from the rear.
  • the compressor 22 inside the machine room 14, the compressor 22 is arranged on the left side, and the evaporation tray 25 is arranged on the right side.
  • the compressor 22 and the evaporation tray 25 are components with relatively large volumes among the components housed in the machine room 14.
  • the compressor 22 and the evaporation pan 25 which are large components are arranged side by side, so that the space of the machine room 14 can be effectively utilized.
  • the compressor 22, the microchannel condenser 23, an expansion device not shown, and the evaporator 116 together constitute a vapor compression type refrigeration cycle system.
  • frost is formed on the surface of the evaporator 116. Since a large amount of frost formed on the surface of the evaporator 116 hinders heat transfer and air blowing, the defrost heater 17 is used to heat the evaporator 116 to periodically perform defrosting.
  • the defrosting water generated by defrosting the evaporator 116 passes through the water pipe 31 and is stored in the evaporating pan 25, and the defrosting water is evaporated by the heat emitted from the refrigerant.
  • the blower 21 and the micro-channel condenser 23 are arranged above the evaporation tray 25. By doing so, the space above the evaporation pan 25, which is a flat member, can be effectively used.
  • the blower 21 is arranged at the upper surface of the shielding plate 28 described later.
  • the fan arranged inside the blower 21 rotates to blow air from the right to the left.
  • the microchannel condenser 23 is a small condenser and is arranged at the upper surface of the shielding plate 28.
  • the micro-channel condenser 23 is a micro-channel condenser, which is composed of a heat transfer tube (not shown here) and a heat release fin.
  • the micro-channel condenser 23 can achieve a larger heat exchange capacity with a smaller volume than a general condenser.
  • the micro-channel condenser 23 is arranged on the upper surface of the shielding plate 28 on the right side (upstream side) of the blower 21.
  • the evaporation pan 25 is a pan-shaped member for temporarily catching the above-mentioned defrosting water, and is made of an integrally molded synthetic resin.
  • the evaporation tray 25 has a bottom surface portion 251, a front side surface portion 252, a rear side wall portion 253, a left side wall portion 254 and a right side wall portion 255.
  • the lower end of the water guide pipe 31 is arranged in the vicinity of the bottom surface portion 251 of the evaporation tray 25.
  • the water guide pipe 31 is a pipe that guides the defrosted water generated by the defrosting of the evaporator 116 to the evaporation pan 25.
  • a first opening area 256 is an area on the right side that does not seal the upper surface of the evaporation tray 25 and opens upward.
  • the enclosed area 257 is an area where the upper surface of the evaporation tray 25 is enclosed by the shielding plate 28.
  • the second opening area 258 is an area on the left that does not seal the upper surface of the evaporation tray 25 and opens upward. In this way, the first opening area 256, the closed area 257, and the second opening area 258 are formed on the upper surface of the evaporation tray 25. As will be described later, it is possible to form a proper evaporation storage for the evaporation tray 25. Air circulation route of defrost water.
  • a shielding plate 28 is arranged on the upper surface of the evaporation tray 25.
  • the shielding plate 28 is made of a metal plate or a resin plate, and covers the central portion of the evaporation tray 25 from above in the left-right direction.
  • the rear end side of the shielding plate 28 is fixed to the upper end of the rear side wall portion 253, and the front end side of the shielding plate 28 is fixed to the upper end of the front side surface portion 252.
  • a microchannel condenser 23 and a blower 21 are arranged from the right side.
  • the shielding plate 28 partially seals the upper part of the evaporating tray 25 and serves as a mounting table for carrying the blower 21 and the microchannel condenser 23.
  • a support plate 29 made of a metal plate is fixed at the lower surface of the microchannel condenser 23.
  • the left end of the support plate 29 is fixed at the upper surface of the shielding plate 28.
  • the right end of the support plate 29 is fixed to the protruding support portion 30 protruding upward from the bottom surface portion 251 of the evaporation tray 25.
  • the compressor 22 and the microchannel condenser 23 are connected to each other by a refrigerant pipe 37, and the compressed refrigerant compressed by the compressor 22 and increased in temperature is sent to the microchannel condenser 23 through the refrigerant pipe 37.
  • the refrigerant pipe 37 starts from the second opening area 258 and circulates around the bottom surface portion 251 of the evaporating tray 25, exits upward from the first opening area 256, and then connects to the microchannel condenser 23. Since the refrigerant pipe 37 is entwined inside the evaporator pan 25, the defrost water stored in the evaporator pan 25 can cool the compressed refrigerant and promote the evaporation of the defrost water.
  • the refrigerant piping 37 will be described later with reference to FIG. 6.
  • FIG. 5(A) is a plan view of each component installed in the machine room 14 as viewed from above
  • FIG. 5(B) is a rear view of these components as viewed from the rear.
  • the air passage 35 is a route through which air blows from right to left inside the machine room 14. Specifically, the air passage route 35 is that the air entering from the air inlet 26 shown in FIG. 3 passes through the microchannel condenser 23, the blower 21, and the compressor 22 in the order and is discharged from the air outlet 27 shown in FIG. 3 Route to the outside. Since the air passage 35 is formed, the heat exchange between the micro-channel condenser 23 and the compressor 22 is promoted, the refrigerant is condensed well in the micro-channel condenser 23, and the compressor 22 is better cooled.
  • the air circulation route 36 is a route through which air circulates inside the machine room 14. Specifically, for the air circulation route 36, the air first passes through the micro-channel condenser 23 and the blower 21 in order. Next, a part of the air passing through the blower 21 is blocked by the left side wall portion 254 of the evaporation tray 25 and enters the inside of the evaporation tray 25 from the second opening area 258. The air entering the inside of the evaporation pan 25 moves to the right under the shielding plate 28 and along the vicinity of the liquid surface of the defrosting water. At this time, the evaporation of defrost water is promoted. In FIG. 5(B), the liquid level of the defrosting water is shown by a chain line. After that, the air that further moves to the right is blocked by the right side wall 255, moves upward through the first opening area 256, and then returns to the microchannel condenser 23 and the blower 21.
  • the air Since the air is circulated according to the air circulation route 36, the high temperature air that exchanges heat with the microchannel condenser 23 passes through the upper surface of the defrosted water stored in the evaporation pan 25 and exchanges heat therewith, so that it can be Promote the evaporation of defrost water.
  • the air cooled by evaporating the defrost water inside the evaporation pan 25 returns from the first opening area 256 and passes through the micro-channel condenser 23. Thereby, the heat exchange at the micro-channel condenser 23 is promoted, and the refrigerant can be effectively condensed.
  • the evaporated defrosting water does not fill the inside of the machine room 14.
  • the dry low-temperature air can always be introduced from the outside to the machine room 14 from the air inlet 26 by forming the air passage 35, the heat exchange of the microchannel condenser 23 and the evaporation of defrost water can be promoted. Since the air passage 35 is formed, the air can always be discharged to the outside through the exhaust port 27, so that the air heated by the heat exchange between the microchannel condenser 23 and the compressor 22 can be prevented from filling the machine room 14.
  • the air passage route 35 and the air circulation route 36 are not completely separate routes, but the air is mixed in the air passage route 35 and the air circulation route 36.
  • the air constituting the air through the route 35 is introduced into the air circulation route 36, so that the dry air supplied from the outside can be used to evaporate the defrosting water well.
  • the air constituting the air circulation route 36 is introduced into the air passage 35, so that the heat generated from the microchannel condenser 23 and the moisture generated by the evaporation of the defrosting water can be discharged from the machine room 14 to the outside.
  • the relative sizes of the first opening area 256, the closed area 257, and the second opening area 258 can be set to an appropriate range for forming the air circulation route 36.
  • the respective opening areas of the first opening area 256 and the second opening area 258 may be made larger than the closed area 257. By doing so, the flow rate of air passing through the first opening area 256 and the second opening area 258 is increased, and the heat exchange of the microchannel condenser 23 and the evaporation of defrost water can be promoted.
  • the upper end P2 of the left side wall portion 254 of the evaporation tray 25 is arranged below the lower end P1 of the blower 21.
  • the air passage 35 is formed so as to block a part of the air blown by the blower 21, and the defrost water stored in the evaporation pan 25 can be prevented from reaching the blower 21.
  • FIG. 6 is a perspective view of each component housed in the machine room 14 as viewed from above.
  • the evaporation tray 25 is adjacent to the right side of the compressor 22.
  • the refrigerant pipe 37 through which the compressed refrigerant circulates is led out from the compressor 22.
  • the refrigerant pipe 37 is formed so as to go over the upper side of the left side wall portion 254 of the evaporator tray 25 and curve along the bottom surface portion 251.
  • spacers 38 are arranged at a plurality of places in the refrigerant pipe 37 formed in a curved manner on the upper surface of the bottom surface portion 251. Since the spacer 38 is arranged, the refrigerant pipe 37 and the bottom surface portion 251 can be separated by a specified distance.
  • Fig. 7(A) is a perspective view of the lower end of the refrigerator 10 viewed from the left
  • Fig. 7(B) is a perspective view of the lower end of the refrigerator 10 viewed from the right
  • Fig. 7(C) is a perspective view showing the blower 21 in detail .
  • the exhaust port 27 is formed on the left end side of the machine room 14 and is an opening through which air is discharged from the machine room 14 to the outside.
  • the exhaust port 27 is composed of a first exhaust port 271, a second exhaust port 272 and a third exhaust port 273.
  • the first exhaust port 271 is provided in a portion opened near the lower rear end of the side panel 152.
  • the second exhaust port 272 is provided in a portion where the left end portion of the machine room cover 155 is open.
  • the third exhaust port 273 is provided at a position opened on the left side of the upper part of the machine room cover 155.
  • the first exhaust port 271, the second exhaust port 272, and the third exhaust port 273 are composed of a plurality of openings arranged in rows or columns.
  • the air inlet 26 is an opening formed on the right end side of the machine room 14, and the air introduced into the machine room 14 passes through the air inlet 26.
  • the air inlet 26 has a first air inlet 261 and a second air inlet 262.
  • the first air inlet 261 is formed by opening a part behind the lower end of the side panel 153.
  • the second air inlet 262 is formed by opening at the right end side of the machine room cover 155.
  • the first air inlet 261 and the second air inlet 262 are composed of a plurality of openings arranged in rows or columns.
  • the blower 21 is an axial flow fan, and a wind tunnel 212 is formed in the housing 211 thereof.
  • a fan not shown here rotates inside the wind tunnel 212, the blower 21 blows air from the right side to the left side.
  • the opening area A1 of the exhaust port 27 is set to be larger than the opening area A3 of the wind tunnel 212 of the blower 21.
  • the opening area A1 of the exhaust port 27 shown in FIG. 7(A) is determined by the opening area A11 of the first exhaust port 271, the opening area A12 of the second exhaust port 272, and the third exhaust port 273 Calculated by the sum of the opening area A13.
  • the opening area A1 of the exhaust port 27 is made larger than the opening area A3 of the wind tunnel 212 shown in FIG. 7(C).
  • the opening area A2 of the air inlet 26 is set to be larger than the opening area A3 of the wind tunnel 212 of the blower 21.
  • the opening area A2 of the air inlet 26 shown in FIG. 7(B) is calculated from the sum of the opening area A21 of the first air inlet 261 and the opening area A22 of the second air inlet 262.
  • the opening area A2 of the air inlet 26 is set to be larger than the opening area A3 of the wind tunnel 212 shown in FIG. 7(C).
  • the connection structure of the refrigerator 10 having the above-described configuration will be described with reference to the block diagram of FIG. 8.
  • the refrigerator 10 has an arithmetic control unit 24, a temperature sensor 32, a timer 33, a compressor 22, a blower 21, and a defrost heater 34.
  • the arithmetic control unit 24 is composed of, for example, a CPU, receives inputs from various sensors and performs designated arithmetic processing, and controls the operations of various components such as the compressor 22 based on the processing results.
  • the arithmetic control unit 24 may have a semiconductor storage device for storing various constants and programs for performing the cooling operation. Through the arithmetic control unit 24, each storage room realizes an appropriate temperature range for storing objects to be stored, and performs a defrosting process at an appropriate timing.
  • a temperature sensor 32 and a timer 33 are connected to the input terminal of the arithmetic control unit 24.
  • the temperature sensor 32 is installed in each of the above-mentioned storage rooms to measure the internal temperature of each of these storage rooms.
  • the timer 33 measures the cooling time for cooling each storage compartment, the operating time of the defrost heater 34, and the like.
  • a compressor 22, a blower 21, and a defrost heater 34 are connected to the output end of the arithmetic control unit 24.
  • the components such as the compressor 22 operate based on the output signal output from the arithmetic control unit 24.
  • the arithmetic control unit 24 operates the compressor 22 and the blower 21, and uses the temperature sensor 32 to measure that the temperature of each storage reaches a predetermined temperature range.
  • the air cooled by the vapor compression refrigeration cycle system including the compressor 22 is blown to each storage room, thereby cooling each storage room to a specified temperature range.
  • the micro-channel condenser 23 and the compressor 22 are cooled by the air blown by the blower 21.
  • the air passage 35 and the air circulation route 36 are formed inside the machine room 14, so that the heat exchange at the microchannel condenser 23 and the like can be promoted, and the evaporation can be performed well. Defrost water.
  • a defrosting process is performed to melt the frost grown at the evaporator 116.
  • frost formation at the evaporator 116 is detected.
  • the defrost water generated by the melting of the frost passes through the water pipe 31 shown in FIG. 4 and is stored in the evaporation pan 25.
  • the air circulation route 36 in which air circulates between the evaporator plate 25 and the microchannel condenser 23 is formed, the discharge from the microchannel condenser 23 can be utilized. Heat to effectively evaporate the defrost water.
  • the micro-channel condenser 23 and the air blower 21 are arranged in the order from the right side, but this order can also be reversed, and the air blower 21 and the micro-channel condenser 23 are arranged from the right side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Removal Of Water From Condensation And Defrosting (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

一种冰箱,能够将构成冷冻循环系统的各部件紧凑地收纳在机械室中,还能够将这些构成部件运转时发出的热量有效地排放到冰箱外部。在冰箱(10)中,压缩机(22)、微通道冷凝器(23)、送风机(21)和蒸发盘(25)收纳在机械室(14)中,蒸发盘(25)的上表面侧,从送风机(21)的上游侧开始形成有第一开口区域(256)、封闭区域(257)和第二开口区域(258),在送风机(21)送风空气时,机械室(14)内形成空气通过路线(35)和空气循环路线(36)。

Description

冰箱 技术领域
本发明涉及冰箱,特别是涉及将构成冷冻循环系统的部件集中到机械室内的冰箱。
背景技术
在一般的冰箱中,在隔热箱体内部形成冷藏室等贮藏室,通过冷冻循环系统来冷却该贮藏室,以使其具有冷却保存被贮藏物的适宜的温度范围。
冷冻循环系统由压缩机、冷凝器、膨胀装置和蒸发器组成。为了实现高压高温状态的制冷剂与外部空气的热交换,上述冷凝器体积设计较大,并且在隔热箱体的后表面附近或底表面附近形成有弯曲行进的制冷剂配管。
在下面的专利文献1中记载了将压缩机和冷凝器布置在隔热箱体的机械室中的冰箱。具体来说,在隔热箱体的后侧最下部形成机械室,在该机械室的内部布置压缩机和冷凝器。另外,在压缩机和冷凝器之间布置有送风机。在冷冻循环系统工作时,可以通过送风机向冷凝器送风以使得冷凝器处实现效果更好的热交换,保证冷冻循环系统的有效运行。
【专利文献1】特开2015-1344号公报。
发明内容
【发明要解决的问题】
在上述冰箱中,通常具有大型翅片式冷凝器,因此难以使冰箱进一步小型化。为达成冰箱整体小型化目的,考虑将构成冷冻循环系统的各部件汇集到形成在隔热箱体的后方下部的机械室中。然而,构成冷冻循环系统的冷凝器和压缩机在所述冷冻循环系统运转时会产生大量热能,因此在将冷凝器和压缩机收纳在空间矮小的机械室的情况下,难以使从这些构成部件产生的热量排放到冰箱外部。
此外,在机械室中,除了构成冷冻循环系统的冷凝器和压缩机,还需要收纳蒸发盘等,也难以将这些构成部件紧凑地收纳在机械室中。
鉴于上述情况做出了本发明,本发明的目的是提供能够将构成冷冻循环系统的部件紧凑地收纳在机械室中,并且还能够将这些部件运转时发出的热量进行有效排放的冰箱。
【解决问题的手段】
本发明的冰箱是具有如下各部分的冰箱:形成贮藏室的隔热箱体;由压缩机、微通道冷凝器、膨胀装置和蒸发器组成的冷冻循环系统;形成在所述隔热箱体的后方下部的机械室;向所述机械室内部送风的送风机;蒸发盘,用以存积所述蒸发器进行除霜时产生的除霜水;进气口,形成在所述机械室的一端侧,用于空气从外部进入机械室;以及排气口,形成在所述机械室的另一端侧,用于将通过所述送风机送风的所述空气排出到机械室外部;其特征在于,所述压缩机、微通道冷凝器、送风机和蒸发盘均收纳在所述机械室中,在所述蒸发盘的上表面侧、从所述送风机的上游侧开始形成第一开口区域、封闭区域和第二开口区域,在所述送风机进行送风时,所述机械室内形成空气通过路线和空气循环路线,所述空气通过路线是所述空气通过所述进气口、所述微通道冷凝器、所述送风机、所述压缩机和所述排气口的路线,所述空气循环路线是所述空气在所述第二开口区域、所述封闭区域、所述第一开口区域、所述微通道冷凝器和所述送风机中循环的路线。
另外,在本发明的冰箱中,其特征在于,所述蒸发盘具有设置在所述送风机的下游侧的侧壁部。
另外,在本发明的冰箱中,其特征在于,连接所述压缩机和所述微通道冷凝器的制冷剂配管经过所述第二开口区域、所述蒸发盘的底表面附近和所述第一开口区域。
另外,在本发明的冰箱中,其特征在于,所述封闭区域设置有从上方封住所述蒸发盘的遮挡板,并且所述微通道冷凝器和所述送风机布置在所述遮挡板的上表面处。
另外,在本发明的冰箱中,其特征在于,所述进气口的开口面积大于所述送风机的风洞的面积。
另外,在本发明的冰箱中,其特征在于,所述排气口的开口面积大于所述送风机的风洞的面积。
【发明效果】
本发明的冰箱是具有如下各部分的冰箱:形成贮藏室的隔热箱体;由压缩机、微通道冷凝器、膨胀装置和蒸发器组成的冷冻循环系统;形成在所述隔热箱体的后方下部的机械室;向所述机械室内部送风的送风机;蒸发盘,用以存积所述蒸发器进行除霜时产生的除霜水; 进气口,形成在所述机械室的一端侧,用于空气从外部进入机械室;以及排气口,形成在所述机械室的另一端侧,用于将通过所述送风机送风的所述空气排出到机械室外部;其特征在于,所述压缩机、微通道冷凝器、送风机和蒸发盘均收纳在所述机械室中,在所述蒸发盘的上表面侧、从所述送风机的上游侧开始形成第一开口区域、封闭区域和第二开口区域,在所述送风机进行送风时,所述机械室内形成空气通过路线和空气循环路线,所述空气通过路线是所述空气通过所述进气口、所述微通道冷凝器、所述送风机、所述压缩机和所述排气口的路线,所述空气循环路线是所述空气在所述第二开口区域、所述封闭区域、所述第一开口区域、所述微通道冷凝器和所述送风机中循环的路线。根据本发明的冰箱,能够将构成冷冻循环系统的压缩机和微通道冷凝器紧凑地收纳在机械室中。因此,可以确保贮藏室较大,提高容积利用率。另外,由于通过送风机向机械室内部送风,于是能够有效地向外部排出在冰箱运转时从压缩机和微通道冷凝器产生的热量。此外,由于在机械室的室内形成空气通过路线与空气循环路线,于是与微通道冷凝器进行热交换而升温的空气在存积在蒸发盘中的除霜水的上方流通,能够有效地蒸发除霜水。此外,由于蒸发除霜水而冷却的空气在微通道冷凝器周围循环,于是能够通过微通道冷凝器而有效地冷凝制冷剂。
另外,在本发明的冰箱中,其特征在于,所述蒸发盘具有设置在所述送风机的下游侧的侧壁部。这样,根据本发明的冰箱,用送风机送风的空气的一部分撞上蒸发盘的侧壁部,进而形成空气循环路线。
另外,在本发明的冰箱中,其特征在于,连接所述压缩机和所述微通道冷凝器的制冷剂配管经过所述第二开口区域、所述蒸发盘的底表面附近和所述第一开口区域。这样,根据本发明的冰箱,能够通过在制冷剂配管中流通的压缩制冷剂的热量来使存积在蒸发盘中的除霜水蒸发,还能够促进压缩制冷剂的热交换。
另外,在本发明的冰箱中,其特征在于,所述封闭区域设置有从上方封住所述蒸发盘的遮挡板,并且所述微通道冷凝器和所述送风机布置在所述遮挡板的上表面处。这样,根据本发明的冰箱,微通道冷凝器和送风机配设在蒸发盘的上方,于是能够将构成冷冻循环系统的各部件紧凑地收纳在机械室的有限空间中。
另外,在本发明的冰箱中,其特征在于,所述进气口的开口面积大于所述送风机的风洞 的面积。这样,根据本发明的冰箱,由于增大了进气口的开口面积而确保了送风机的送风量较大,于是增大了微通道冷凝器和压缩机的热交换,并且还能够有效地蒸发存积在蒸发盘中的除霜水。
另外,在本发明的冰箱中,其特征在于,所述排气口的开口面积大于所述送风机的风洞的面积。这样,根据本发明的冰箱,由于增大了排气口的开口面积而确保了送风机的送风量较大,于是增大了微通道冷凝器和压缩机的热交换,并且还能够有效地蒸发存积在蒸发盘中的除霜水。
附图说明
图1是示出本发明的实施例所涉及的冰箱的图,其为从后侧上方看冰箱的立体图。
图2是示出本发明的实施例所涉及的冰箱的侧视截面图。
图3是示出本发明的实施例所涉及的冰箱的图,其为从后侧上方看机械室的立体图。
图4是示出本发明的实施例所涉及的冰箱的图,其为从后侧上方看收纳在机械室中的各种构成部件的立体图。
图5(A)是从上方看收纳在机械室中的各种构成部件的图;图5(B)是从后方看收纳在机械室中的各种构成部件的图。
图6是示出本发明的实施例所涉及的冰箱的图,其为示出了蒸发盘和制冷剂配管的关联构造的立体图。
图7(A)是从后方左侧看机械室的立体图;图7(B)是从后方右侧看机械室的立体图;图7(C)是从右侧上方看送风机的立体图。
图8是示出本发明的实施例所涉及的冰箱的图,其为示出了各构成部件的连接构造的框图。
具体实施方式
在下文中,基于附图来详细说明本发明的实施例所涉及的冰箱10。此外,在说明本实施例时,原则上对同样的构件使用同样的标号,并且省略了重复的说明。本实施例用上下前后左右的各方向来进行说明,左右是从冰箱10的后方来看的情况下的左右。
图1是从后方上方看本发明的实施例所涉及的冰箱10的立体图。冰箱10具有隔热箱体11和形成在隔热箱体11内部的贮藏室。作为贮藏室,有冷藏室12、蔬菜室114和冷冻室13。用旋转式隔热门18封闭冷藏室12的前方开口,用抽屉式隔热门19封闭蔬菜室114的前方开口,并且用抽屉式隔热门20封闭冷冻室13的前面开口。冰箱10的外壳111由朝着上方的顶板151、朝着左方的侧面板152、朝着右方的侧面板153和朝着后方的背面板154构成。
在冰箱10的后侧最下部形成有作为空腔的机械室14。机械室14被形成为从隔热箱体11的左端连接到其右端。另外,用机械室盖部155封住机械室14的后方开口。
在机械室14的右侧形成有用于外部空气进入机械室14的进气口26。所述进气口26为设置在侧面板153和机械室盖部155处的多个开口。另外,在机械室14的左侧形成有用于从机械室14向外部放出的空气通过的排气口27。所述排气口27为设置在侧面板152和机械室盖部155处的多个开口。参照图7详细描述进气口26和排气口27。所述进气口26和排气口27设置为狭缝状,以防止异物从外部侵入到机械室14中。
图2是冰箱10的侧视截面图。参照该图,隔热箱体11由以下各部分构成:外壳111,其由被弯曲加工成指定形状的钢板制成;内胆112,其由设置外壳111内侧且与外壳111分离的合成树脂板制成;以及隔热材料113,其填充在外壳111与内胆112之间。
在冷冻室13的内侧划分形成冷却室115,在冷却室115中收纳有蒸发器116。在冷却室115的上方形成有送风风道118。经所述冷却室115中的蒸发器116冷却后的空气通过冷气送风用的风扇(此处未示出)被送风到送风风道118处。所述蒸发器116冷却的空气还送风到冷冻室13中。
除霜加热器117布置在处于冷却室115内部的蒸发器116的下方。除霜加热器117是通过通电而发热的加热器,其在除霜过程中通电并发热,并通过所产生的热量来融化蒸发器116上的结霜。因除霜而产生的除霜水经过图4所示的导水管31到达蒸发盘25,通过与高温压缩制冷剂进行热交换而被蒸发。
图3是从后侧上方看机械室14内部的立体图。其中示出了从冰箱10拆下上述机械室盖部155的状况。
从右边开始,在机械室14中装有微通道冷凝器23、送风机21、蒸发盘25和压缩机22。另外,在机械室14中还装有制冷剂配管,其用于将构成包括微通道冷凝器23和压缩机22的蒸汽压缩型冷冻循环系统的各部件彼此连接。
像这样,构成冷冻循环系统的各部件与蒸发盘25一起收纳在机械室14中,能够减小为了容纳冰箱10的运转所必需的部件的容积。因此,对于冰箱10整体来说,能够增大贮藏室所占据的有效容积。这样,能够在冰箱10中收纳更多的物品,并且能够减小冰箱10的外形尺寸。
参照图4和图5来说明收纳在上述机械室14中的各部件,同时说明在机械室14的内部的空气流动方向。图4是示出收纳在机械室14中的各部件的立体图,图5(A)是从上方看这些各部件的俯视图,并且图5(B)是从后方看这些各部件的后视图。
参照图4,在机械室14的内部,压缩机22布置在左侧,并且蒸发盘25布置在右侧。压缩机22和蒸发盘25是收纳在机械室14中内的各部件中的体积相对较大的部件。在本实施例中,作为大型部件的压缩机22和蒸发盘25是左右排列地配设的,于是能够有效地活用机械室14的空间。
压缩机22与微通道冷凝器23、未示出的膨胀装置、上述蒸发器116一起构成蒸汽压缩型冷冻循环系统。伴随着利用冷冻循环系统的冷却运转,在蒸发器116的表面处产生结霜。由于在蒸发器116的表面处产生大量结霜会阻碍传热和送风,因此利用除霜加热器17来加热蒸发器116以定期进行除霜。对蒸发器116进行除霜而产生的除霜水经过导水管31而存积在蒸发盘25中,并且利用从制冷剂发出的热量来使所述除霜水蒸发。
送风机21和微通道冷凝器23布置在蒸发盘25的上方。通过这样做,能够有效地利用作为扁平部件的蒸发盘25的上方的空间。
送风机21布置在后文描述的遮挡板28的上表面处。布置在送风机21内部的风扇旋转,从而将空气从右方吹向左方。
微通道冷凝器23是小型冷凝器,并且布置在遮挡板28的上表面处。所述微通道冷凝器23是微通道化的冷凝器,其由传热管(此处未示出)和放热翅片构成。微通道冷凝器23与一般的冷凝器相比能够以较小的体积实现较大的热交换量。微通道冷凝器23布置在遮挡板 28的上表面、比送风机21更右侧(上游侧)处。
蒸发盘25是用于暂时接住上述除霜水的盘形状的构件,其由一体成型的合成树脂制成。具体来说,蒸发盘25具有底面部251、前方侧面部252、后方侧壁部253、左方侧壁部254和右方侧壁部255。另外,导水管31的下端布置在蒸发盘25的底面部251的附近。导水管31是将上述蒸发器116除霜而产生的除霜水引导到蒸发盘25的导管。
在蒸发盘25的上表面侧,从右侧开始,形成有第一开口区域256、封闭区域257和第二开口区域258。第一开口区域256是在右侧的没有封住蒸发盘25的上表面并且向上开放的区域。封闭区域257是通过遮挡板28封住蒸发盘25的上表面的区域。第二开口区域258是在左侧的没有封住蒸发盘25的上表面并且向上开放的区域。像这样在蒸发盘25的上表面处形成第一开口区域256、封闭区域257和第二开口区域258,于是如后文描述的那样,能够形成用于恰当地蒸发存积于蒸发盘25中的除霜水的空气循环路线。
在蒸发盘25的上表面处布置有遮挡板28。遮挡板28由金属板或者树脂板制成,在左右方向上从上方覆盖蒸发盘25的中央部分。遮挡板28的后端侧固定在后方侧壁部253的上端,并且遮挡板28的前端侧固定在前方侧面部252的上端。
在遮挡板28的上表面处从右侧开始布置有微通道冷凝器23和送风机21。遮挡板28部分地封住蒸发盘25的上方,并且用作承载送风机21和微通道冷凝器23的载置台。由金属板制成的支撑板29固定在微通道冷凝器23的下表面处。支撑板29的左端固定在遮挡板28的上表面处。另外,支撑板29的右端固定在从蒸发盘25的底面部251向上方突出的突出支撑部30处。
由于冰箱10运转时送风机21旋转,从图3所示的进气口26导入外部空气,所导入的空气在机械室14处通过微通道冷凝器23、送风机21和压缩机22。此后,空气经过图3所示的排气口27放出到外部。
压缩机22和微通道冷凝器23用制冷剂配管37彼此连接,经压缩机22压缩而被高温化的压缩制冷剂经过制冷剂配管37送到微通道冷凝器23。制冷剂配管37从第二开口区域258开始在蒸发盘25的底面部251附近盘桓,从第一开口区域256向上离开,然后连接微通道冷凝器23。由于制冷剂配管37在蒸发盘25内部盘桓,因此能够通过存积在蒸发盘25中的 除霜水来冷却压缩制冷剂,并促进除霜水的蒸发。后文参照图6来描述关于制冷剂配管37。
参照图5来说明形成在机械室14内部的空气路线。图5(A)是从上方看装在机械室14内的各构成部件的俯视图,并且图5(B)是从后方看这些各部件的后视图。
参照图5(A)和图5(B),在通过送风机21进行送风时,在机械室14的内部形成了空气通过路线35和空气循环路线36。
空气通过路线35是空气在机械室14的内部从右向左吹过的路线。具体来说,空气通过路线35是从图3所示的进气口26进入的空气按微通道冷凝器23、送风机21和压缩机22的顺序通过并从图3所示的排气口27放出到外部的路线。由于形成了空气通过路线35,促进了微通道冷凝器23和压缩机22处的热交换,使制冷剂在微通道冷凝器23中良好地冷凝,并且较好地冷却了压缩机22。
空气循环路线36是空气在机械室14的内部循环的路线。具体来说,对于空气循环路线36,空气首先按微通道冷凝器23和送风机21的顺序通过。接下来,通过送风机21的空气的一部分被蒸发盘25的左方侧壁部254挡住,并从第二开口区域258进入到蒸发盘25的内部。进入到蒸发盘25的内部的空气在遮挡板28的下方、沿着除霜水的液面附近向右前进。此时促进了除霜水的蒸发。在图5(B)中,除霜水的液面用点划线示出。此后,进一步向右前进的空气被右方侧壁部255挡住,经过第一开口区域256向上前进,然后回到微通道冷凝器23和送风机21处。
由于空气按空气循环路线36来循环,因此与微通道冷凝器23进行热交换而变得高温的空气通过存积在蒸发盘25中的除霜水的上表面并与之进行热交换,于是能够促进除霜水的蒸发。此外,在蒸发盘25内部蒸发除霜水而得以冷却的空气从第一开口区域256返回并通过微通道冷凝器23。藉此,促进了微通道冷凝器23处的热交换,并且能够有效地冷凝制冷剂。另外,由于在空气循环路线36中循环的空气的一部分经过空气通过路线35放出到外部,因此蒸发的除霜水不会充满机械室14的内部。
另外,由于藉由形成了空气通过路线35而能够一直从进气口26将干燥的低温空气从外部导入到机械室14,因此能够促进微通道冷凝器23的热交换和除霜水的蒸发。由于藉由形成了空气通过路线35而能够一直将空气经过排气口27放出到外部,因此能够抑制通过微通 道冷凝器23和压缩机22的热交换而被加热的空气充满机械室14。
此处,空气通过路线35和空气循环路线36不是完全分离的路线,而是空气在空气通过路线35和空气循环路线36中混在一起。换言之,构成空气通过路线35的空气导入到空气循环路线36中,于是能够使用从外部供给的干燥空气来良好地蒸发除霜水。此外,构成空气循环路线36的空气导入到空气通过路线35中,于是能够从机械室14向外部良好地放出从微通道冷凝器23产生的热量和因除霜水的蒸发而产生的水分。
此处,将说明用于改善上述空气循环路线36中的空气流动的构造。
参照图5(A),第一开口区域256、封闭区域257和第二开口区域258的相对大小可以设置成用于形成空气循环路线36的恰当范围。例如,可以使第一开口区域256和第二开口区域258的各自的开口面积比封闭区域257更大。通过这样做,通过第一开口区域256和第二开口区域258的空气的流量增大,并且能够促进微通道冷凝器23的热交换和除霜水的蒸发。
参照图5(B),蒸发盘25的左方侧壁部254的上端P2布置在送风机21的下端P1的下方。通过这样做,可在以挡住用送风机21送风的一部分空气的方式形成空气通过路线35的同时,防止存积在蒸发盘25中的除霜水到达送风机21处。
参照图6来说明蒸发盘25和制冷剂配管37的关联构造。图6是从上方看收纳在上述机械室14中的各构成部件的立体图。
如上所述,蒸发盘25邻接在压缩机22的右侧。另外,压缩后的制冷剂在其中流通的制冷剂配管37从压缩机22导出。制冷剂配管37被形成为越过蒸发盘25的左方侧壁部254的上方、沿着底面部251弯曲行进。此外,在底面部251的上表面弯曲行进地形成的制冷剂配管37的多处布置有隔离物38。由于布置了隔离物38,因此制冷剂配管37和底面部251可以分离指定的距离。因此,能够确保存积在蒸发盘25中的除霜水与制冷剂配管37的接触面积较大,在制冷剂配管37的内部流通的高温制冷剂与除霜水有效地进行热交换,并且良好地蒸发除霜水。
参照图7,关于进气口26和排气口27的开口面积进行说明。图7(A)是从左侧看冰箱10的下端部的立体图,图7(B)是从右侧看冰箱10的下端部的立体图,并且图7(C) 是详细示出送风机21的立体图。
参照图7(A),排气口27形成在机械室14的左端侧,是从机械室14向外部排出空气所通过的开口。排气口27由第一排气口271、第二排气口272和第三排气口273构成。第一排气口271设置在侧面板152的后方下端附近开口的部位。第二排气口272设置在机械室盖部155的左端部分开口的部位。第三排气口273设置在机械室盖部155的上部左侧开口的部位。第一排气口271、第二排气口272和第三排气口273是由行状或列状布置的多个开口构成的。
参照图7(B),进气口26是形成在机械室14的右端侧的开口,导入到机械室14中的空气通过进气口26。进气口26具有第一进气口261和第二进气口262。第一进气口261是通过在侧面板153的下端后方的部分开口而形成的。第二进气口262是通过在机械室盖部155的右端侧开口而形成的。第一进气口261和第二进气口262是由行状或列状布置的多个开口构成的。
参照图7(C),送风机21是轴流风扇,其壳体211内部形成有风洞212。当此处未示出的风扇在风洞212的内部旋转时,送风机21将空气从右侧向左侧送风。
在本实施例中,排气口27的开口面积A1被设置为比送风机21的风洞212的开口面积A3更大。具体来说,图7(A)所示的排气口27的开口面积A1是由第一排气口271的开口面积A11、第二排气口272的开口面积A12和第三排气口273的开口面积A13之和算出的。此处,使排气口27的开口面积A1比图7(C)所示的风洞212的开口面积A3更大。通过这样做,能够良好地经过排气口27从机械室14向外部放出空气,并且能够良好地冷却收纳在机械室14中的微通道冷凝器23和压缩机22。
在本实施例中,进气口26的开口面积A2被设置为比送风机21的风洞212的开口面积A3更大。具体来说,图7(B)所示的进气口26的开口面积A2是由第一进气口261的开口面积A21和第二进气口262的开口面积A22之和算出的。将进气口26的开口面积A2设定成比图7(C)所示的风洞212的开口面积A3更大。通过这样做,能够良好地经过进气口26将空气导入到机械室14中,并且能够恰当地冷却收纳在机械室14中的微通道冷凝器23和压缩机22。
参照图8的框图来说明具有上述构造的冰箱10的连接结构。冰箱10具有运算控制部24、温度传感器32、计时器33、压缩机22、送风机21和除霜加热器34。
运算控制部24由例如CPU构成,接收来自各种传感器的输入并进行指定的运算处理,基于其处理结果来控制压缩机22等的各种构成部件的动作。另外,运算控制部24可以具有半导体存储装置,其用于存储用于进行冷却运转的各种常数和程序。通过运算控制部24,各贮藏室实现用于保存被贮藏物的适宜温度范围,并且在适当的时机进行除霜过程。
运算控制部24的输入端连接有温度传感器32和计时器33。温度传感器32通过安装在上述各贮藏室中来测量这些各贮藏室的内部温度。计时器33测量冷却各贮藏室的冷却时间和除霜加热器34的运转时间等。
运算控制部24的输出端连接有压缩机22、送风机21和除霜加热器34。压缩机22等各部件基于从运算控制部24输出的输出信号来进行动作。
在冰箱10的冷却运转时,运算控制部24使压缩机22和送风机21运转,并使用温度传感器32测量各贮藏库的温度达到指定的温度范围。经包括压缩机22的蒸汽压缩型冷冻循环系统冷却的空气被送风到各贮藏室,从而将各贮藏室冷却到指定的温度范围。另外,在压缩机22运转期间,通过送风机21的送风来冷却微通道冷凝器23和压缩机22。
在本实施例中,如上文参照图5描述的那样,在机械室14内部形成空气通过路线35和空气循环路线36,于是能够促进微通道冷凝器23等处的热交换,并且能够良好地蒸发除霜水。
另外,在蒸发器116处的结霜达到一定程度以上时,进行除霜过程以融化在蒸发器116处生长的霜。例如在用计时器33测量的冷却时间达到一定时间时检测蒸发器116处的结霜。另外,因霜的融化而产生的除霜水经过图4所示的导水管31而存积在蒸发盘25中。在本实施例中,如上文参照图5描述的那样,由于形成了空气在蒸发盘25和微通道冷凝器23之间进行循环的空气循环路线36,因此能够利用来自微通道冷凝器23的放热来有效地蒸发除霜水。
本发明不限于上述实施例,此外,在不脱离本发明的要旨的范围内,可以有各种各样的实施变型。
例如,在参照图4的本实施例中,从右侧开始按微通道冷凝器23和送风机21的顺序配设,但是也可以颠倒该顺序,从右侧开始按送风机21和微通道冷凝器23的顺序配设。
【符号说明】
10冰箱
11隔热箱体
111外壳
112内胆
113隔热材料
114蔬菜室
115冷却室
116蒸发器
117除霜加热器
118送风风道
12冷藏室
13冷冻室
14机械室
151顶板
152侧面板
153侧面板
154背面板
155机械室盖部
17除霜加热器
18隔热门
19隔热门
20隔热门
21送风机
211壳体
212风洞
22压缩机
23微通道冷凝器
24运算控制部
25蒸发盘
251底面部
252前方侧面部
253后方侧壁部
254左方侧壁部
255右方侧壁部
256第一开口区域
257封闭区域
258第二开口区域
26进气口
261第一进气口
262第二进气口
27排气口
271第一排气口
272第二排气口
273第三排气口
28遮挡板
29支撑板
30突出支撑部
31导水管
32温度传感器
33计时器
34除霜加热器
35空气通过路线
36空气循环路线
37制冷剂配管
38隔离物

Claims (6)

  1. 一种冰箱,具有:
    隔热箱体,形成有贮藏室;
    冷冻循环系统,包括压缩机、微通道冷凝器、膨胀装置和蒸发器;
    形成在所述隔热箱体的后方下部的机械室;
    向所述机械室内部送风的送风机;
    蒸发盘,用以存积所述蒸发器进行除霜时产生的除霜水;
    进气口,形成在所述机械室的一端侧,用于空气从外部进入机械室;以及
    排气口,形成在所述机械室的另一端侧,用于将通过所述送风机送风的空气排出到机械室外部;
    其特征在于,所述压缩机、微通道冷凝器、送风机和蒸发盘均收纳在所述机械室中,
    在所述蒸发盘的上表面侧,从所述送风机的上游侧开始形成有第一开口区域、封闭区域和第二开口区域,
    在所述送风机进行送风时,所述机械室内形成空气通过路线和空气循环路线,
    所述空气通过路线是所述空气通过所述进气口、所述微通道冷凝器、所述送风机、所述压缩机和所述排气口的路线,
    所述空气循环路线是所述空气在所述第二开口区域、所述封闭区域、所述第一开口区域、所述微通道冷凝器和所述送风机中循环的路线。
  2. 根据权利要求1所述的冰箱,其特征在于,所述蒸发盘具有设置在所述送风机的下游侧的侧壁部。
  3. 根据权利要求1或2所述的冰箱,其特征在于,连接所述压缩机和所述微通道冷凝器的制冷剂配管经过所述第二开口区域、所述蒸发盘的底表面附近和所述第一开口区域。
  4. 根据权利要求1所述的冰箱,其特征在于,所述封闭区域设置有从上方封住所述蒸发盘的遮挡板,并且所述微通道冷凝器和所述送风机布置在所述遮挡板的上表面处。
  5. 根据权利要求1所述的冰箱,其特征在于,所述进气口的开口面积大于所述送风机的风洞的面积。
  6. 根据权利要求1所述的冰箱,其特征在于,所述排气口的开口面积大于所述送风机的风洞的面积。
PCT/CN2020/114374 2019-09-11 2020-09-10 冰箱 WO2021047571A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080063687.7A CN114467001B (zh) 2019-09-11 2020-09-10 冰箱
EP20863842.9A EP4030127A4 (en) 2019-09-11 2020-09-10 FRIDGE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-165685 2019-09-11
JP2019165685A JP7369434B2 (ja) 2019-09-11 2019-09-11 冷蔵庫

Publications (1)

Publication Number Publication Date
WO2021047571A1 true WO2021047571A1 (zh) 2021-03-18

Family

ID=74863217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114374 WO2021047571A1 (zh) 2019-09-11 2020-09-10 冰箱

Country Status (4)

Country Link
EP (1) EP4030127A4 (zh)
JP (1) JP7369434B2 (zh)
CN (1) CN114467001B (zh)
WO (1) WO2021047571A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090842A1 (en) * 2020-09-24 2022-03-24 Illinois Tool Works Inc. Refrigerated device with enhanced condensate evaporation
CN115507605A (zh) * 2022-09-30 2022-12-23 海信冰箱有限公司 冰箱

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758123B (zh) * 2021-08-17 2023-02-07 长虹美菱股份有限公司 一种外置冷凝模块装配结构及冰箱

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318662A (ja) * 1997-05-20 1998-12-04 Sanyo Electric Co Ltd 低温ショーケース
JP2000258037A (ja) * 1999-03-08 2000-09-22 Hoshizaki Electric Co Ltd 冷凍機構の送風装置
CN102317716A (zh) * 2009-02-12 2012-01-11 松下电器产业株式会社 冰箱
JP2014048031A (ja) * 2012-09-04 2014-03-17 Sharp Corp 冷蔵庫
CN103649657A (zh) * 2011-04-14 2014-03-19 Bsh博世和西门子家用电器有限公司 具有蒸发盘的制冷设备
JP2015001344A (ja) 2013-06-17 2015-01-05 ハイアールアジアインターナショナル株式会社 冷蔵庫
CN205373165U (zh) * 2016-01-18 2016-07-06 Tcl家用电器(合肥)有限公司 制冷设备散热结构及制冷设备
CN105972903A (zh) * 2015-03-12 2016-09-28 松下知识产权经营株式会社 冷冻装置
CN109990534A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3240124A1 (de) * 1982-10-29 1984-05-03 Sielaff Gmbh & Co Automatenbau Herrieden, 8801 Herrieden Selbstverkaeufer mit einem kuehlaggregat
JP3325223B2 (ja) * 1998-03-26 2002-09-17 サンデン株式会社 ショーケース
JP2001133129A (ja) * 1999-11-09 2001-05-18 Hoshizaki Electric Co Ltd 除霜水の蒸発装置
EP1132697A3 (de) * 2000-03-09 2002-10-16 Linde Aktiengesellschaft Vorrichtung zum Verdunsten von Wasser
CN205138037U (zh) * 2015-10-22 2016-04-06 合肥美菱股份有限公司 一种冰箱的冷凝系统及其冰箱

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10318662A (ja) * 1997-05-20 1998-12-04 Sanyo Electric Co Ltd 低温ショーケース
JP2000258037A (ja) * 1999-03-08 2000-09-22 Hoshizaki Electric Co Ltd 冷凍機構の送風装置
CN102317716A (zh) * 2009-02-12 2012-01-11 松下电器产业株式会社 冰箱
CN103649657A (zh) * 2011-04-14 2014-03-19 Bsh博世和西门子家用电器有限公司 具有蒸发盘的制冷设备
JP2014048031A (ja) * 2012-09-04 2014-03-17 Sharp Corp 冷蔵庫
JP2015001344A (ja) 2013-06-17 2015-01-05 ハイアールアジアインターナショナル株式会社 冷蔵庫
CN105972903A (zh) * 2015-03-12 2016-09-28 松下知识产权经营株式会社 冷冻装置
CN205373165U (zh) * 2016-01-18 2016-07-06 Tcl家用电器(合肥)有限公司 制冷设备散热结构及制冷设备
CN109990534A (zh) * 2017-12-29 2019-07-09 青岛海尔股份有限公司 冰箱

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220090842A1 (en) * 2020-09-24 2022-03-24 Illinois Tool Works Inc. Refrigerated device with enhanced condensate evaporation
CN115507605A (zh) * 2022-09-30 2022-12-23 海信冰箱有限公司 冰箱

Also Published As

Publication number Publication date
JP2021042906A (ja) 2021-03-18
EP4030127A4 (en) 2022-10-19
JP7369434B2 (ja) 2023-10-26
CN114467001A (zh) 2022-05-10
EP4030127A1 (en) 2022-07-20
CN114467001B (zh) 2024-03-15

Similar Documents

Publication Publication Date Title
WO2021047571A1 (zh) 冰箱
US20110011106A1 (en) Refrigerator
US20170314841A1 (en) Ice-making device and refrigerator including the same
US20110011118A1 (en) Refrigerator
US6666045B1 (en) Kimchi refrigerator
JP6687384B2 (ja) 冷蔵庫
US20120067075A1 (en) Refrigerator
KR100584271B1 (ko) 냉장실 도어에서의 제빙 냉기 유로 구조
JP2014048030A (ja) 冷却庫
CN102345959B (zh) 冰箱
JP2000018800A (ja) 冷蔵庫の蒸発皿の構造
JP2008002733A (ja) 冷蔵庫
JP2014048031A (ja) 冷蔵庫
KR101462671B1 (ko) 건조실이 마련된 냉장고
JP6940424B2 (ja) 冷蔵庫
KR101858227B1 (ko) 냉장고
JP2017040398A (ja) 冷蔵庫
KR20150110969A (ko) 냉장고용 핫파이프
JP2020079670A (ja) 冷蔵庫
US11852387B2 (en) Refrigerator
US20220146155A1 (en) Refrigerator
JP6955348B2 (ja) 冷蔵庫
JP2001099558A (ja) 冷蔵庫
KR100469781B1 (ko) 도어 증발관이 설치된 김치저장고
KR100220754B1 (ko) 냉장고용 증발기의 제상장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020863842

Country of ref document: EP

Effective date: 20220411