WO2020113951A1 - 一种tmcp态船舶voc储罐用低温钢板及制造方法 - Google Patents

一种tmcp态船舶voc储罐用低温钢板及制造方法 Download PDF

Info

Publication number
WO2020113951A1
WO2020113951A1 PCT/CN2019/093667 CN2019093667W WO2020113951A1 WO 2020113951 A1 WO2020113951 A1 WO 2020113951A1 CN 2019093667 W CN2019093667 W CN 2019093667W WO 2020113951 A1 WO2020113951 A1 WO 2020113951A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
temperature
steel plate
low
tmcp
Prior art date
Application number
PCT/CN2019/093667
Other languages
English (en)
French (fr)
Inventor
张晓雪
赵晋斌
车马俊
邱保文
崔强
陈林恒
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Priority to KR1020217017767A priority Critical patent/KR20210092244A/ko
Publication of WO2020113951A1 publication Critical patent/WO2020113951A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Definitions

  • the invention relates to the technical field of metallurgy, in particular to a low-temperature steel plate for TMCP state ship VOC storage tanks and a manufacturing method.
  • VOC flue gas recovery system The ship's VOC system is called "Volatile Organic Compound Recovery System". It is a pioneering technology for the manufacture of liquefied natural gas and the recovery of volatile organic compound mixed fuel. The system recovers the gas evaporated from the oil tank, and LNG ( Liquefied natural gas) is used as a fuel for ships, thereby reducing the need for fueling ships. The system not only effectively reduces CO 2 emissions, but also greatly reduces fuel demand, with significant energy saving and environmental protection benefits. VOC flue gas recovery system adopts low temperature pressure design, which requires that the steel plate not only has high strength, excellent low temperature toughness, good strength and toughness to match the comprehensive mechanical properties, but also be easy to weld, form, and low stress.
  • the steel plate for storage tank has low welding crack sensitivity, excellent welding performance, high strength, good low temperature toughness and impact load resistance, but it is produced by quenching and tempering process.
  • Ni In order to improve low temperature toughness, Ni, The composition design of Cr and Mo increases the process cost and alloy cost of the steel plate.
  • the present invention provides a low temperature steel plate for TMCP ship VOC storage tanks, the chemical composition and mass percentage are as follows: C: 0.04% to 0.09%, Si: 0.15% to 0.50%, Mn: 1.20% to 1.60%, P ⁇ 0.010%, S ⁇ 0.002%, Alt: 0.025% ⁇ 0.070%, N ⁇ 0.0040%, Ni ⁇ 0.40%, Nb+V+Ti ⁇ 0.050%, the balance is Fe and inevitable impurities.
  • the present invention uses the TMCP process to produce low-temperature toughness and excellent welding performance of low-temperature steel plates for VOC storage tanks, without adding Ni, Mo, Cr and other alloying elements, the resulting product has good overall performance.
  • the low temperature steel plate for VOC storage tanks of TMCP ships mentioned above has the following chemical composition and mass percentage: C: 0.082%, Si: 0.30%, Mn: 1.52%, P: 0.008%, S: 0.0010%, Alt : 0.058%, N: 0.0033%, Ni ⁇ 0.40%, Nb: 0.012%, Ti: 0.014%, the balance is Fe and inevitable impurities.
  • the low temperature steel plate for VOC storage tanks of TMCP ship mentioned above has the following chemical composition and mass percentage: C: 0.065%, Si: 0.21%, Mn: 1.60%, P: 0.006%, S: 0.0019%, Alt : 0.055%, N: 0.0037%, Ni ⁇ 0.40%, Nb: 0.025%, Ti: 0.011%, the balance is Fe and inevitable impurities.
  • the aforementioned low temperature steel plate for TMCP ship VOC storage tank has the following chemical composition and mass percentage: C: 0.090%, Si: 0.24%, Mn: 1.35%, P: 0.005%, S: 0.0015%, Alt : 0.035%, N: 0.0038%, Ni ⁇ 0.40%, Nb: 0.015%, Ti: 0.018%, the balance is Fe and inevitable impurities.
  • the present invention provides a method for manufacturing low-temperature steel plates for TMCP ship VOC storage tanks, including hot metal desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, continuous casting, casting billet heating, controlled rolling, and controlled cooling after rolling.
  • the heating temperature of the billet is 1120 ⁇ 1150°C, and the heating time of the billet is 25 ⁇ 45min;
  • Controlled rolling adopts two-stage controlled rolling, including rolling in the recrystallization zone and rolling in the non-recrystallization zone.
  • the cumulative reduction rate of rough rolling is ⁇ 50%, and the single pass reduction rate of finishing rolling is ⁇ 10%.
  • the final rolling temperature is 760 ⁇ 820°C;
  • ACC is used to accelerate cooling, the water inlet temperature is 730 ⁇ 770°C, and the redness temperature is 540 ⁇ 580°C;
  • the steel plate After accelerated cooling, the steel plate is straightened by a pre-straightener for 1 to 5 passes, and then air-cooled to room temperature.
  • the present invention uses the TMCP process, the process cost is significantly lower than the steel plate produced by the traditional normalizing and tempering process;
  • the present invention adopts two-stage controlled rolling, and ACC controlled cooling after rolling.
  • the structure is refined ferrite + pearlite + a small amount of low-carbon bainite, in which bainite content ⁇ 10%, ferrite
  • the grain size is 10.0 ⁇ 13.5, the steel plate has excellent low temperature toughness, low yield ratio, and good overall performance;
  • the steel plate of the present invention has excellent low temperature toughness, and after stress relief heat treatment, it still maintains a good strength-toughness match;
  • the present invention is conducive to simplifying the process, reducing costs, and mass production.
  • FIG. 1 is a metallographic structure diagram of Example 1.
  • FIG. 1 is a metallographic structure diagram of Example 1.
  • This embodiment provides a low-temperature steel plate for a VCP storage tank of a TMCP ship and its manufacturing method. Its chemical composition and mass percentage are as follows: C: 0.082%, Si: 0.30%, Mn: 1.52%, P: 0.008%, S: 0.0010%, Alt: 0.058%, N: 0.0033%, Ni ⁇ 0.40%, Nb: 0.012%, Ti: 0.014%, the balance is Fe and inevitable impurities.
  • Its manufacturing methods include hot metal desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, continuous casting, billet heating, controlled rolling, and controlled cooling after rolling:
  • the heating temperature of the slab is 1130°C, and the heating time of the slab is 25 ⁇ 45min;
  • Controlled rolling adopts two-stage controlled rolling, including rolling in the recrystallization zone and rolling in the non-recrystallization zone, the cumulative reduction rate of rough rolling is ⁇ 50%, the rolling temperature of finishing rolling is 876°C, single pass rolling Lower rate ⁇ 10%, final rolling temperature is 806°C;
  • ACC is used to accelerate cooling, the water inlet temperature is 753°C, and the redness temperature is 550°C;
  • the steel plate After accelerated cooling, the steel plate is straightened by a pre-straightener for 1 to 5 passes, and then air-cooled to room temperature.
  • This embodiment provides a low-temperature steel plate for TMCP ship VOC storage tank and its manufacturing method. Its chemical composition and mass percentage are as follows: C: 0.065%, Si: 0.21%, Mn: 1.60%, P: 0.006%, S: 0.0019%, Alt: 0.055%, N: 0.0037%, Ni ⁇ 0.40%, Nb: 0.025%, Ti: 0.011%, the balance is Fe and inevitable impurities.
  • Its manufacturing methods include hot metal desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, continuous casting, billet heating, controlled rolling, and controlled cooling after rolling:
  • the heating temperature of the slab is 1150°C, and the heating time of the slab is 25 ⁇ 45min;
  • Controlled rolling adopts two-stage controlled rolling, including rolling in the recrystallization zone and rolling in the non-recrystallization zone, the cumulative reduction rate of rough rolling is ⁇ 50%, the rolling temperature of finishing rolling is 842°C, single pass rolling Lower rate ⁇ 10%, final rolling temperature is 815°C;
  • ACC is used to accelerate cooling, the water inlet temperature is 768°C, and the redness temperature is 580°C;
  • the steel plate After accelerated cooling, the steel plate is straightened by a pre-straightener for 1 to 5 passes, and then air-cooled to room temperature.
  • This embodiment provides a low-temperature steel plate for TMCP ship VOC storage tank and its manufacturing method, the chemical composition and mass percentage are as follows: C: 0.090%, Si: 0.24%, Mn: 1.35%, P: 0.005%, S: 0.0015%, Alt: 0.035%, N: 0.0038%, Ni ⁇ 0.40%, Nb: 0.015%, Ti: 0.018%, the balance is Fe and inevitable impurities.
  • Its manufacturing methods include hot metal desulfurization pretreatment, converter smelting, LF refining, RH vacuum treatment, continuous casting, billet heating, controlled rolling, and controlled cooling after rolling:
  • the heating temperature of the slab is 1120°C, and the heating time of the slab is 25 ⁇ 45min;
  • Controlled rolling adopts two-stage controlled rolling, including rolling in the recrystallization zone and rolling in the non-recrystallization zone, the cumulative reduction rate of rough rolling is ⁇ 50%, the rolling temperature of finishing rolling is 847°C, and the single pass Lower rate ⁇ 10%, final rolling temperature is 793°C;
  • ACC is used to accelerate cooling, the water inlet temperature is 759°C, and the redness temperature is 540°C;
  • the steel plate After accelerated cooling, the steel plate is straightened by a pre-straightener for 1 to 5 passes, and then air-cooled to room temperature.
  • Example 2 In order to eliminate the internal stress of the steel plate, tempering heat treatment is carried out in Example 1, and the performance of the steel plate after stress relief treatment is shown in Table 2:
  • the structure of the steel sheet obtained by the present invention is refined ferrite + pearlite + a small amount of low-carbon bainite, in which the bainite content is ⁇ 10%, and the ferrite grain size is 10.0 to 13.5
  • the steel plate has excellent low temperature toughness, low yield ratio, and good overall performance.
  • the present invention may have other embodiments. All technical solutions formed by equivalent replacement or equivalent transformation fall within the scope of protection required by the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种TMCP态船舶VOC储罐用低温钢板,涉及冶金技术领域,其化学成分及质量百分比如下:C:0.04%~0.09%,Si:0.15%~0.50%,Mn:1.20%~1.60%,P≤0.010%,S≤0.002%,Alt:0.025%~0.070%,N≤0.0040%,Ni≤0.40%,Nb+V+Ti≤0.050%,余量为Fe和不可避免的杂质。本发明成分设计和生产工艺简单,组织均匀,综合性能优异,满足船舶VOC储罐用钢的要求,有利于简化工艺,降低成本,有利于批量生产。

Description

一种TMCP态船舶VOC储罐用低温钢板及制造方法 技术领域
本发明涉及冶金技术领域,特别是涉及一种TMCP态船舶VOC储罐用低温钢板及制造方法。
背景技术
船舶VOC系统全称为“挥发性有机化合物回收系统”,是一项用于制造液化天然气和回收挥发性有机化合物混合燃料的开拓性技术,该系统将从油仓蒸发出来的气体回收,与LNG(液化天然气)混合作为船舶燃料使用,从而降低船舶的燃料加注需求。该系统不但有效减少CO 2排放,而且大幅降低燃料需求,具有显著的节能和环保效益。VOC烟气回收系统采用低温压力设计,要求钢板不但具有高强度、优异的低温韧性、良好的强韧性匹配综合力学性能,而且要易焊接、易成形、低应力等。
对于低温韧性要求较高的压力容器用钢,一般采用淬火加回火工艺生产,为提高低温韧性需要添加Ni、Cr、Mo的方法,这样一来会使合金成本大幅度提高,不利于大批量低成本制造。如:
现有专利CN104831181A号“一种LPG船用储罐用钢板及其制造方法”,该钢板化学成分及质量百分比为:C:0.05~0.095%,Si≤0.30%,Mn:0.70~1.35%,P≤0.015%,S≤0.008%,Alt:0.020~0.060%,Cu:0.15~0.30%,Ni:0.15~0.80%,Cr:0.05~0.35%,Mo:0.15~0.35%,Ti:0.008~0.020%,以及元素Nb、V、B三种中的一种或多种,Nb:0.015~0.065%或V:0.030~0.060%或B:0.0005~0.0020%,其余为Fe及不可避免的杂质。其储罐用钢板具备低焊接裂纹敏感性,焊接性能优异,且具有高强度、很好的低温韧性和抗冲击载荷能力,但是其采用淬火加回火工艺生产,为了提高低温韧性采用添加Ni、Cr、Mo的成份设计,增加了钢板的工序成本和合金成本。
现有专利CN104674110号“一种压力容器用低温钢板”,该钢板化学成分及 质量百分比为:C:0.03~0.07%,Si:0.15~0.3%,Ni:6.8~8.0%,Mn:0.6~0.9%,P≤0.005%,S≤0.005%,Al:0.02%~0.04%,Mo:0.01~0.2%,Nb:0.01%~0.09%,其余为Fe和不可避免的杂质,该钢板为提高强韧性添加了高含量的Ni元素,造成合金成本的升高。
发明内容
为了解决以上技术问题,本发明提供一种TMCP态船舶VOC储罐用低温钢板,其化学成分及质量百分比如下:C:0.04%~0.09%,Si:0.15%~0.50%,Mn:1.20%~1.60%,P≤0.010%,S≤0.002%,Alt:0.025%~0.070%,N≤0.0040%,Ni≤0.40%,Nb+V+Ti≤0.050%,余量为Fe和不可避免的杂质。
技术效果:本发明采用TMCP工艺生产低温韧性、焊接性能优异的VOC储罐用低温钢板,在不添加Ni、Mo、Cr等合金元素的情况下,得到的产品综合性能良好。
本发明进一步限定的技术方案是:
前所述的一种TMCP态船舶VOC储罐用低温钢板,其化学成分及质量百分比如下:C:0.082%,Si:0.30%,Mn:1.52%,P:0.008%,S:0.0010%,Alt:0.058%,N:0.0033%,Ni≤0.40%,Nb:0.012%,Ti:0.014%,余量为Fe和不可避免的杂质。
前所述的一种TMCP态船舶VOC储罐用低温钢板,其化学成分及质量百分比如下:C:0.065%,Si:0.21%,Mn:1.60%,P:0.006%,S:0.0019%,Alt:0.055%,N:0.0037%,Ni≤0.40%,Nb:0.025%,Ti:0.011%,余量为Fe和不可避免的杂质。
前所述的一种TMCP态船舶VOC储罐用低温钢板,其化学成分及质量百分比如下:C:0.090%,Si:0.24%,Mn:1.35%,P:0.005%,S:0.0015%,Alt:0.035%,N:0.0038%,Ni≤0.40%,Nb:0.015%,Ti:0.018%,余量为Fe和不可避免的杂 质。
本发明提供一种TMCP态船舶VOC储罐用低温钢板制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却,
铸坯加热温度为1120~1150℃,坯料加热时间为25~45min;
控制轧制采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制单道次压下率≥10%,终轧温度在760~820℃;
轧后采用ACC加速冷却,入水温度730~770℃,返红温度540~580℃;
钢板经加速冷却后,经预矫直机矫直1~5道,然后空冷至室温。
本发明的有益效果是:
(1)本发明采用TMCP工艺生产,工序成本明显低于传统正火和调质工艺生产的钢板;
(2)本发明采用二阶段控制轧制,轧后采用ACC控制冷却,组织为细化的铁素体+珠光体+少量低碳贝氏体,其中贝氏体含量≤10%,铁素体晶粒度为10.0~13.5级,钢板低温韧性优异,屈强比低,综合性能良好;
(3)本发明钢板低温韧性优异,经消应力热处理后,依然保持良好的强韧性匹配;
(4)本发明有利于简化工艺、降低成本,有利于批量生产。
附图说明
图1为实施例1的金相组织图。
具体实施方式
实施例1
本实施例提供的一种TMCP态船舶VOC储罐用低温钢板及制造方法,其化学成分及质量百分比如下:C:0.082%,Si:0.30%,Mn:1.52%,P:0.008%,S:0.0010%,Alt:0.058%,N:0.0033%,Ni≤0.40%,Nb:0.012%,Ti:0.014%,余量为Fe和不可避免的杂质。
其制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却:
铸坯加热温度为1130℃,坯料加热时间为25~45min;
控制轧制采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制开轧温度876℃,单道次压下率≥10%,终轧温度在806℃;
轧后采用ACC加速冷却,入水温度753℃,返红温度550℃;
钢板经加速冷却后,经预矫直机矫直1~5道,然后空冷至室温。
实施例2
本实施例提供的一种TMCP态船舶VOC储罐用低温钢板及制造方法,其化学成分及质量百分比如下:C:0.065%,Si:0.21%,Mn:1.60%,P:0.006%,S:0.0019%,Alt:0.055%,N:0.0037%,Ni≤0.40%,Nb:0.025%,Ti:0.011%,余量为Fe和不可避免的杂质。
其制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却:
铸坯加热温度为1150℃,坯料加热时间为25~45min;
控制轧制采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制开轧温度842℃,单道次压下率≥10%,终轧温度在815℃;
轧后采用ACC加速冷却,入水温度768℃,返红温度580℃;
钢板经加速冷却后,经预矫直机矫直1~5道,然后空冷至室温。
实施例3
本实施例提供的一种TMCP态船舶VOC储罐用低温钢板及制造方法,其化学成分及质量百分比如下:C:0.090%,Si:0.24%,Mn:1.35%,P:0.005%,S:0.0015%,Alt:0.035%,N:0.0038%,Ni≤0.40%,Nb:0.015%,Ti:0.018%,余量为Fe和不可避免的杂质。
其制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却:
铸坯加热温度为1120℃,坯料加热时间为25~45min;
控制轧制采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制开轧温度847℃,单道次压下率≥10%,终轧温度在793℃;
轧后采用ACC加速冷却,入水温度759℃,返红温度540℃;
钢板经加速冷却后,经预矫直机矫直1~5道,然后空冷至室温。
实施例1~3所得钢板的力学性能如表1所示:
表1 VOC储罐用低温钢板的力学性能
Figure PCTCN2019093667-appb-000001
为消除钢板内应力,实施例1进行回火热处理,消应力处理后钢板的性能如表2所示:
表2 VOC储罐用低温钢板消应力处理工艺
Figure PCTCN2019093667-appb-000002
如图1所示,本发明所得钢板的组织为细化的铁素体+珠光体+少量低碳贝氏体,其中贝氏体含量≤10%,铁素体晶粒度为10.0~13.5级,钢板低温韧性优异,屈强比低,综合性能良好。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (5)

  1. 一种TMCP态船舶VOC储罐用低温钢板,其特征在于,其化学成分及质量百分比如下:C:0.04%~0.09%,Si:0.15%~0.50%,Mn:1.20%~1.60%,P≤0.010%,S≤0.002%,Alt:0.025%~0.070%,N≤0.0040%,Ni≤0.40%,Nb+V+Ti≤0.050%,余量为Fe和不可避免的杂质。
  2. 根据权利要求1所述的一种TMCP态船舶VOC储罐用低温钢板,其特征在于,其化学成分及质量百分比如下:C:0.082%,Si:0.30%,Mn:1.52%,P:0.008%,S:0.0010%,Alt:0.058%,N:0.0033%,Ni≤0.40%,Nb:0.012%,Ti:0.014%,余量为Fe和不可避免的杂质。
  3. 根据权利要求1所述的一种TMCP态船舶VOC储罐用低温钢板,其特征在于,其化学成分及质量百分比如下:C:0.065%,Si:0.21%,Mn:1.60%,P:0.006%,S:0.0019%,Alt:0.055%,N:0.0037%,Ni≤0.40%,Nb:0.025%,Ti:0.011%,余量为Fe和不可避免的杂质。
  4. 根据权利要求1所述的一种TMCP态船舶VOC储罐用低温钢板,其特征在于,其化学成分及质量百分比如下:C:0.090%,Si:0.24%,Mn:1.35%,P:0.005%,S:0.0015%,Alt:0.035%,N:0.0038%,Ni≤0.40%,Nb:0.015%,Ti:0.018%,余量为Fe和不可避免的杂质。
  5. 一种TMCP态船舶VOC储罐用低温钢板制造方法,其特征在于:包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却,
    铸坯加热温度为1120~1150℃,坯料加热时间为25~45min;
    控制轧制采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制单道次压下率≥10%,终轧温度在760~820℃;
    轧后采用ACC加速冷却,入水温度730~770℃,返红温度540~580℃;
    钢板经加速冷却后,经预矫直机矫直1~5道,然后空冷至室温。
PCT/CN2019/093667 2018-12-05 2019-06-28 一种tmcp态船舶voc储罐用低温钢板及制造方法 WO2020113951A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020217017767A KR20210092244A (ko) 2018-12-05 2019-06-28 Tmcp상태의 선박 voc 저장탱크용 저온 강판 및 제조방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811483429.5A CN109440009A (zh) 2018-12-05 2018-12-05 一种tmcp态船舶voc储罐用低温钢板及制造方法
CN201811483429.5 2018-12-05

Publications (1)

Publication Number Publication Date
WO2020113951A1 true WO2020113951A1 (zh) 2020-06-11

Family

ID=65557759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/093667 WO2020113951A1 (zh) 2018-12-05 2019-06-28 一种tmcp态船舶voc储罐用低温钢板及制造方法

Country Status (3)

Country Link
KR (1) KR20210092244A (zh)
CN (1) CN109440009A (zh)
WO (1) WO2020113951A1 (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151746A (zh) * 2021-04-23 2021-07-23 唐山东华钢铁企业集团有限公司 一种Ti微合金化HRB400钢筋及生产工艺
CN114480962A (zh) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 一种620MPa级煤矿液压支架用钢及其制造方法
CN114480960A (zh) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 一种低屈强比的低温韧性800MPa级高强钢及其生产工艺
CN114672722A (zh) * 2022-01-27 2022-06-28 唐山中厚板材有限公司 一种船板用钢板及其生产方法
CN114836693A (zh) * 2022-05-20 2022-08-02 首钢京唐钢铁联合有限责任公司 一种桥梁U肋用460MPa级高性能钢及其生产方法
CN115386680A (zh) * 2022-08-15 2022-11-25 马鞍山钢铁股份有限公司 一种精确控制LF炉终点钢水[Al]含量的方法
CN115558848A (zh) * 2022-09-22 2023-01-03 舞阳钢铁有限责任公司 一种超低温容器钢板及其生产方法
CN115558850A (zh) * 2022-09-23 2023-01-03 鞍钢股份有限公司 一种420MPa级别工程结构用热轧钢板及其制造方法
CN115747616A (zh) * 2022-11-29 2023-03-07 南京钢铁股份有限公司 一种p690ql2船用储罐钢的冶炼方法
CN117004885A (zh) * 2023-07-24 2023-11-07 鞍钢股份有限公司 一种超低温高强度容器钢板及其制造方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109440009A (zh) * 2018-12-05 2019-03-08 南京钢铁股份有限公司 一种tmcp态船舶voc储罐用低温钢板及制造方法
CN112176247A (zh) * 2020-08-31 2021-01-05 首钢京唐钢铁联合有限责任公司 一种低温压力容器用钢板及其生产方法
CN112226677A (zh) * 2020-09-11 2021-01-15 南京钢铁股份有限公司 一种540MPa级LPG燃料罐用钢及其制造方法
CN112226678A (zh) * 2020-09-11 2021-01-15 南京钢铁股份有限公司 一种500MPa级LPG燃料罐用钢及其制造方法
CN113174536B (zh) * 2021-04-13 2023-03-03 鞍钢股份有限公司 一种经济型低温韧性e级高强船用钢板及其制造方法
CN113174537B (zh) * 2021-04-13 2022-07-22 鞍钢股份有限公司 一种大厚度fh40造船用钢板及其制造方法
CN114645191B (zh) * 2022-02-11 2022-11-29 柳州钢铁股份有限公司 低成本高韧性高焊接性高强船板及其制备方法
CN114571133A (zh) * 2022-02-16 2022-06-03 包头钢铁(集团)有限责任公司 一种耐候550MPa级焊丝钢
CN114737130B (zh) * 2022-04-29 2023-05-12 鞍钢股份有限公司 一种355MPa级低温钢及制造方法
CN115198200A (zh) * 2022-07-05 2022-10-18 南京钢铁股份有限公司 一种船用储罐用高强度钢板及其制造方法
CN114921713B (zh) * 2022-07-19 2022-11-18 江苏省沙钢钢铁研究院有限公司 低屈强比高低温韧性钢板及其生产方法
CN115341158A (zh) * 2022-07-27 2022-11-15 南京钢铁股份有限公司 一种含Ni高强度船用钢表面质量控制方法
CN115491607A (zh) * 2022-09-29 2022-12-20 南京钢铁股份有限公司 一种耐海洋大气腐蚀的结构用钢板及制备方法
CN116377327A (zh) * 2023-04-03 2023-07-04 江苏沙钢集团有限公司 一种经济型q390md钢板及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205644A (zh) * 2013-04-10 2013-07-17 宝山钢铁股份有限公司 可大热输入焊接超低温用钢及其制造方法
CN106086650A (zh) * 2016-07-25 2016-11-09 江阴兴澄特种钢铁有限公司 一种可大线能量焊接的极地船用钢板及其制备方法
CN108624819A (zh) * 2017-03-24 2018-10-09 宝山钢铁股份有限公司 低成本、大热输入焊接460MPa级止裂钢板及其制造方法
CN109440009A (zh) * 2018-12-05 2019-03-08 南京钢铁股份有限公司 一种tmcp态船舶voc储罐用低温钢板及制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10130721A (ja) * 1996-10-28 1998-05-19 Nippon Steel Corp 溶接性および低温靭性の優れた低降伏比高張力鋼の製造方法
JP4767590B2 (ja) * 2005-06-01 2011-09-07 新日本製鐵株式会社 低降伏比高張力鋼および低降伏比高張力鋼の製造方法
JP6763141B2 (ja) * 2015-02-10 2020-09-30 日本製鉄株式会社 Lpgタンク用鋼板の製造方法
CN104831181A (zh) * 2015-03-27 2015-08-12 武汉钢铁(集团)公司 一种lpg船用储罐用钢板及其制造方法
CN105112782A (zh) * 2015-09-16 2015-12-02 南京钢铁股份有限公司 一种热轧态船用低温铁素体lt-fh40钢板及其生产方法
CN106756527B (zh) * 2016-11-15 2018-06-19 南京钢铁股份有限公司 一种液化气体船用碳锰低温钢及制造方法
CN108220784A (zh) * 2018-02-01 2018-06-29 湖南华菱湘潭钢铁有限公司 一种低屈强比碳锰低温钢的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103205644A (zh) * 2013-04-10 2013-07-17 宝山钢铁股份有限公司 可大热输入焊接超低温用钢及其制造方法
CN106086650A (zh) * 2016-07-25 2016-11-09 江阴兴澄特种钢铁有限公司 一种可大线能量焊接的极地船用钢板及其制备方法
CN108624819A (zh) * 2017-03-24 2018-10-09 宝山钢铁股份有限公司 低成本、大热输入焊接460MPa级止裂钢板及其制造方法
CN109440009A (zh) * 2018-12-05 2019-03-08 南京钢铁股份有限公司 一种tmcp态船舶voc储罐用低温钢板及制造方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113151746A (zh) * 2021-04-23 2021-07-23 唐山东华钢铁企业集团有限公司 一种Ti微合金化HRB400钢筋及生产工艺
CN114480962B (zh) * 2021-12-24 2023-03-10 安阳钢铁集团有限责任公司 一种620MPa级煤矿液压支架用钢及其制造方法
CN114480962A (zh) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 一种620MPa级煤矿液压支架用钢及其制造方法
CN114480960A (zh) * 2021-12-24 2022-05-13 安阳钢铁集团有限责任公司 一种低屈强比的低温韧性800MPa级高强钢及其生产工艺
CN114672722A (zh) * 2022-01-27 2022-06-28 唐山中厚板材有限公司 一种船板用钢板及其生产方法
CN114836693A (zh) * 2022-05-20 2022-08-02 首钢京唐钢铁联合有限责任公司 一种桥梁U肋用460MPa级高性能钢及其生产方法
CN115386680A (zh) * 2022-08-15 2022-11-25 马鞍山钢铁股份有限公司 一种精确控制LF炉终点钢水[Al]含量的方法
CN115386680B (zh) * 2022-08-15 2023-09-12 马鞍山钢铁股份有限公司 一种精确控制LF炉终点钢水[Al]含量的方法
CN115558848A (zh) * 2022-09-22 2023-01-03 舞阳钢铁有限责任公司 一种超低温容器钢板及其生产方法
CN115558848B (zh) * 2022-09-22 2023-11-21 舞阳钢铁有限责任公司 一种超低温容器钢板及其生产方法
CN115558850A (zh) * 2022-09-23 2023-01-03 鞍钢股份有限公司 一种420MPa级别工程结构用热轧钢板及其制造方法
CN115747616A (zh) * 2022-11-29 2023-03-07 南京钢铁股份有限公司 一种p690ql2船用储罐钢的冶炼方法
CN117004885A (zh) * 2023-07-24 2023-11-07 鞍钢股份有限公司 一种超低温高强度容器钢板及其制造方法

Also Published As

Publication number Publication date
CN109440009A (zh) 2019-03-08
KR20210092244A (ko) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2020113951A1 (zh) 一种tmcp态船舶voc储罐用低温钢板及制造方法
WO2021036272A1 (zh) 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
WO2022033128A1 (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
WO2021017521A1 (zh) 一种低屈强比薄规格管线钢的制造方法
CN107937824B (zh) 一种用于超低温环境的节镍型7Ni钢及其热处理工艺
WO2016095616A1 (zh) 抗疲劳裂纹扩展优良钢板及其制造方法
CN101906575A (zh) 一种高强度经济型x70管线钢热轧平板及其生产方法
WO2021027188A1 (zh) 一种铸坯生产超低温高强度抗酸容器钢的方法
CN108411196B (zh) 抗拉强度为680MPa级大型移动式压力容器用钢及生产方法
CN109161789B (zh) 一种lpg船用低温钢板及其生产方法
KR20230037040A (ko) 우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법
CN112877597A (zh) 一种低温液态烃储罐用13MnNi6钢及其制造方法
CN101413090B (zh) 一种高强韧性螺旋埋弧焊管用x80热轧卷板及其生产方法
CN110616372A (zh) 一种大厚度14Cr1MoR钢板及其生产方法
CN103882312B (zh) 低成本高韧性-140℃低温用钢板的制造方法
WO2024120028A1 (zh) 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法
CN102747292A (zh) 正火态抗酸管线用钢x52ns热轧板卷及其制造方法
CN116200682B (zh) 一种高强度高韧性低温海工钢板及其制造方法
CN116162864A (zh) 具有-70℃低温冲击09MnNiDR钢板及其制造方法
CN114807762B (zh) 一种具有优良低温韧性的300MPa级低温钢及其制造方法
CN116590615A (zh) 一种抗氢脆奥氏体合金及其制备方法
CN115341140A (zh) 一种超低温压力容器用钢及生产方法
CN114737130A (zh) 一种355MPa级低温钢及制造方法
WO2023193317A1 (zh) 超低温钢及其热处理工艺和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217017767

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19891730

Country of ref document: EP

Kind code of ref document: A1