CN115341140A - 一种超低温压力容器用钢及生产方法 - Google Patents

一种超低温压力容器用钢及生产方法 Download PDF

Info

Publication number
CN115341140A
CN115341140A CN202210862591.8A CN202210862591A CN115341140A CN 115341140 A CN115341140 A CN 115341140A CN 202210862591 A CN202210862591 A CN 202210862591A CN 115341140 A CN115341140 A CN 115341140A
Authority
CN
China
Prior art keywords
equal
less
temperature
steel
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210862591.8A
Other languages
English (en)
Inventor
刘通
谯明亮
谢章龙
席连云
牟毓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202210862591.8A priority Critical patent/CN115341140A/zh
Publication of CN115341140A publication Critical patent/CN115341140A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种超低温压力容器用钢,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C≤0.10%,Mn:1.0%~1.5%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.2%~6.8%,Cr:0.2%~0.8%,Mo:0.15%~0.28%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。采用低碳当量成分的设计及控轧控冷+热处理的生产工艺,生产出符合超低温压力容器要求的5‑50mm厚5.5Ni钢板,替代9Ni用于超低温压力容器建造。

Description

一种超低温压力容器用钢及生产方法
技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种超低温压力容器用钢及生产方法。
背景技术
随着全世界范围内天然气使用量的日益扩大,建造液化天然气(LNG)储罐用9Ni钢的需求量也在迅速增加。9Ni钢由于其Ni含量达到9%而导致成本居高不下。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种超低温压力容器用钢,其化学成分及质量百分比如下:C≤0.10%,Mn:1.0%~1.5%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.2%~6.8%,Cr:0.2%~0.8%,Mo:0.15%~0.28%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
本发明进一步限定的技术方案是:
前所述的一种超低温压力容器用钢,其化学成分及质量百分比如下:C:0.03%~0.05%,Mn:1.2%~1.5%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.4%~6.0%,Cr:0.4%~0.8%,Mo:0.15%~0.20%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
前所述的一种超低温压力容器用钢,其化学成分及质量百分比如下:C:0.05%~0.08%,Mn:1.0%~1.3%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.2%~5.8%,Cr:0.2%~0.5%,Mo:0.18%~0.28%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
本发明的另一目的在于提供一种超低温压力容器用钢生产方法,包括:
冶炼工序:采用转炉+LF+RH精炼;
连铸工序:采用150mm厚度连铸生产坯料,连铸全程采用保护浇铸,浇铸温度为1516~1526℃,过热度为15~25℃,拉坯速率为0.90~1.25m/min;
加热工序:坯料最高加热温度1180~1250℃,均热温度1180~1220℃,总加热时间≥0.8min/mm×坯料厚度;
轧制工序:采用控轧工艺,第一阶段的轧制温度为940~1150℃,道次压下率为10%~25%,累计压下率≥50%;第二阶段的开轧温度≤890℃,目标终轧温度控制在860℃以下,累计压下率≥50%,轧制后得到轧态钢板;
冷却工序:半成品钢板水冷后堆垛缓冷,水冷时的返红温度≤400℃,堆垛温度≥300℃,钢板堆垛缓冷时间≥8小时;
热处理工序:冷却后钢板进行淬火+回火处理,淬火温度分别为750±20℃,淬火的总在炉时间为4.0 min/mm×钢板厚度/mm,水冷至室温;回火温度为650±20℃,总加热时间为4.5min/mm×钢板厚度/mm,空冷至室温。
前所述的一种超低温压力容器用钢生产方法,连铸坯料进入保温坑保温缓冷,缓冷时间≥48小时,缓冷后坯料表面处理并使用耐高温涂层喷涂。
前所述的一种超低温压力容器用钢生产方法,钢板厚度为5~50mm。
前所述的一种超低温压力容器用钢生产方法,钢板屈服强度≥590MPa,抗拉强度690~830MPa,延伸率≥20%,-196℃ V型冲击功≥100J,侧膨胀值≥0.38mm。
本发明的有益效果是:
(1)本发明利用5.5Ni替代9Ni用于超低温压力容器建造,通过在钢中添加适量其它合金元素来弥补由于Ni含量的降低对钢板强度和超低温韧性的影响,使其强度和超低温韧性均能达到9Ni钢的标准要求,降低轧制难度,且工艺简单、生产成本低、可实现批量生产;
(2)本发明产品具有纯净度高、成分均匀,力学性能优良、超低温冲击韧性好、焊接性能优良、生产成本较低、-196℃横向冲击功优良等特点。
具体实施方式
实施例1
采用150吨氧气顶底复吹转炉冶炼,吹炼过程中控制好枪位,控制出钢磷与碳,保证足够的出钢温度;
LF炉造还原渣脱硫,减少夹杂,确保精炼渣碱度,调整成分;RH炉的高真空时间为20min;进行定氢定氧,[H]=0.9ppm,[O]=6.2ppm;
连铸全程保护浇铸,过热度20-25℃,坯料规格150mm,测量[N]=28ppm;
坯料进保温坑保温52小时, 坯料表面处理并使用耐高温涂层喷涂;
坯料加热到1220℃,总加热时间230min,第一阶段开轧温度1100℃,第二阶段开轧温度850℃,终轧温度750℃,轧后浇水冷却冷,返红温度380℃,钢板厚度20mm;
采用淬火+回火热处理方式,将钢板装进加热炉,在760℃保温160min后水冷淬火,在665℃保温180min回火后空冷。
Figure 124340DEST_PATH_IMAGE002
实施例2
采用150吨氧气顶底复吹转炉冶炼,吹炼过程中控制好枪位,控制出钢磷与碳,保证足够的出钢温度;
LF炉造还原渣脱硫,减少夹杂,确保精炼渣碱度,调整成分;RH炉的高真空时间为20min;进行定氢定氧,[H]=0.9ppm,[O]=6.2ppm;
连铸全程保护浇铸,过热度20-25℃,坯料规格150mm,测量[N]=28ppm;
坯料进保温坑保温52小时, 坯料表面处理并使用耐高温涂层喷涂;
坯料加热到1215℃,总加热时间225min,第一阶段开轧温度1108℃,第二阶段开轧温度852℃,终轧温度747℃,轧后浇水冷却冷,返红温度383℃,钢板厚度30mm;
采用淬火+回火热处理方式,将钢板装进加热炉,在760℃保温155min后水冷淬火,在665℃保温177min回火后空冷。
Figure 588951DEST_PATH_IMAGE004
实施例3
采用150吨氧气顶底复吹转炉冶炼,吹炼过程中控制好枪位,控制出钢磷与碳,保证足够的出钢温度;
LF炉造还原渣脱硫,减少夹杂,确保精炼渣碱度,调整成分;RH炉的高真空时间为20min;进行定氢定氧,[H]=0.9ppm,[O]=6.2ppm;
连铸全程保护浇铸,过热度20-25℃,坯料规格150mm,测量[N]=28ppm;
坯料进保温坑保温52小时, 坯料表面处理并使用耐高温涂层喷涂;
坯料加热到1250℃,总加热时间222min,第一阶段开轧温度1102℃,第二阶段开轧温度860℃,终轧温度688℃,轧后浇水冷却冷,返红温度383℃,钢板厚度50mm;
采用淬火+回火热处理方式,将钢板装进加热炉,在780℃保温200min后水冷淬火,在670℃保温232min回火后空冷。
Figure 962163DEST_PATH_IMAGE006
本发明采用超低碳设计,一方面有利于提高钢的韧性,另一方面可显著地改善钢的焊接性能。硅主要以固溶强化形式提高钢的强度,但不可含量过高,以免降低钢的韧性。锰主要起固溶强化和降低相变温度提高钢板强度的作用,锰能显著提高钢的淬透性,随锰含量的增加,钢板的塑性和低温冲击韧性略有下降,强度显著提高,因此为保韧性Mn含量也不易过高。在一般情况下,磷和硫都是钢中有害元素,增加钢的脆性:磷使焊接性能变坏,降低塑性,使冷弯性能变坏;硫降低钢的延展性和韧性,在轧制时造成裂纹;因此应尽量减少磷和硫在钢中的含量。镍能提高钢的强度,又能使钢获得优异的低温韧性,镍属于无限扩大奥氏体区的元素之一,因此,高镍钢经过调质处理后,可以获得完全细化的回火索氏体组织,钢的强韧性匹配良好,但是,镍属于稀缺资源,价格昂贵,实验证实,镍含量控制在5.2%~6.8%,再辅以少量其它合金元素,钢的综合性能可以实现等同于9Ni钢。铝是钢中常用的脱氧剂,钢中加入少量的铝,可细化晶粒,提高冲击韧性;铝还具有抗氧化性和抗腐蚀性能,过高则影响钢的热加工性能﹑焊接性能和切削加工性能。铬能增加钢的淬透性,使钢经过调质处理后具有较好的综合力学性能,但是其同样会降低伸长率和断面收缩率,所以钢种铬含量需要控制在合适范围内。钼在钢中能提高淬透性和热强性,防止回火脆性,提高回火稳定性。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (7)

1.一种超低温压力容器用钢,其特征在于:其化学成分及质量百分比如下:C≤0.10%,Mn:1.0%~1.5%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.2%~6.8%,Cr:0.2%~0.8%,Mo:0.15%~0.28%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
2.根据权利要求1所述的一种超低温压力容器用钢,其特征在于:其化学成分及质量百分比如下:C:0.03%~0.05%,Mn:1.2%~1.5%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.4%~6.0%,Cr:0.4%~0.8%,Mo:0.15%~0.20%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
3.根据权利要求1所述的一种超低温压力容器用钢,其特征在于:其化学成分及质量百分比如下:C:0.05%~0.08%,Mn:1.0%~1.3%,P≤0.010%,S≤0.008%,Si:0.15%~0.25%,Ni:5.2%~5.8%,Cr:0.2%~0.5%,Mo:0.18%~0.28%,Al:0.02%~0.05%,[H]≤2ppm,[N]≤80ppm,[0]≤20ppm,余量为Fe及不可避免杂质。
4.一种超低温压力容器用钢生产方法,其特征在于:应用于权利要求1-3任意一项,包括:
冶炼工序:采用转炉+LF+RH精炼;
连铸工序:采用150mm厚度连铸生产坯料,连铸全程采用保护浇铸,浇铸温度为1516~1526℃,过热度为15~25℃,拉坯速率为0.90~1.25m/min;
加热工序:坯料最高加热温度1180~1250℃,均热温度1180~1220℃,总加热时间≥0.8min/mm×坯料厚度;
轧制工序:采用控轧工艺,第一阶段的轧制温度为940~1150℃,道次压下率为10%~25%,累计压下率≥50%;第二阶段的开轧温度≤890℃,目标终轧温度控制在860℃以下,累计压下率≥50%,轧制后得到轧态钢板;
冷却工序:半成品钢板水冷后堆垛缓冷,水冷时的返红温度≤400℃,堆垛温度≥300℃,钢板堆垛缓冷时间≥8小时;
热处理工序:冷却后钢板进行淬火+回火处理,淬火温度分别为750±20℃,淬火的总在炉时间为4.0 min/mm×钢板厚度/mm,水冷至室温;回火温度为650±20℃,总加热时间为4.5min/mm×钢板厚度/mm,空冷至室温。
5.根据权利要求1所述的一种超低温压力容器用钢生产方法,其特征在于:连铸坯料进入保温坑保温缓冷,缓冷时间≥48小时,缓冷后坯料表面处理并使用耐高温涂层喷涂。
6.根据权利要求1所述的一种超低温压力容器用钢生产方法,其特征在于:钢板厚度为5~50mm。
7. 根据权利要求1所述的一种超低温压力容器用钢生产方法,其特征在于:钢板屈服强度≥590MPa,抗拉强度690~830MPa,延伸率≥20%,-196℃ V型冲击功≥100J,侧膨胀值≥0.38mm。
CN202210862591.8A 2022-07-22 2022-07-22 一种超低温压力容器用钢及生产方法 Pending CN115341140A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210862591.8A CN115341140A (zh) 2022-07-22 2022-07-22 一种超低温压力容器用钢及生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210862591.8A CN115341140A (zh) 2022-07-22 2022-07-22 一种超低温压力容器用钢及生产方法

Publications (1)

Publication Number Publication Date
CN115341140A true CN115341140A (zh) 2022-11-15

Family

ID=83949986

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210862591.8A Pending CN115341140A (zh) 2022-07-22 2022-07-22 一种超低温压力容器用钢及生产方法

Country Status (1)

Country Link
CN (1) CN115341140A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770170A (zh) * 2023-05-18 2023-09-19 江阴兴澄特种钢铁有限公司 一种超低温环境用5.5Ni钢板及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183387A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 低温用厚鋼板及びその製造方法
CN110129685A (zh) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 一种超低温容器用7Ni钢厚板的制造方法
AU2020103572A4 (en) * 2018-05-25 2021-02-04 Nanjing Iron & Steel Co., Ltd. Ultra-fine grained high-strength steel plate with 1100 mpa-grade yield strength and production method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183387A (ja) * 2015-03-26 2016-10-20 新日鐵住金株式会社 低温用厚鋼板及びその製造方法
AU2020103572A4 (en) * 2018-05-25 2021-02-04 Nanjing Iron & Steel Co., Ltd. Ultra-fine grained high-strength steel plate with 1100 mpa-grade yield strength and production method thereof
CN110129685A (zh) * 2019-05-22 2019-08-16 南京钢铁股份有限公司 一种超低温容器用7Ni钢厚板的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116770170A (zh) * 2023-05-18 2023-09-19 江阴兴澄特种钢铁有限公司 一种超低温环境用5.5Ni钢板及其制造方法

Similar Documents

Publication Publication Date Title
CN109694987B (zh) 一种超低温压力容器用高镍钢及其制造方法
CN110295320B (zh) 一种lf-rh精炼工艺生产的大壁厚x52ms抗酸管线钢板及其制造方法
CN102676945B (zh) 一种水电工程用易焊接调质高强韧性钢板及其生产方法
CN102605242B (zh) 一种抗氢致开裂压力容器用钢及其制造方法
CN102400043B (zh) 一种大厚度海洋工程用钢板
CN103602888A (zh) 一种低压缩比热轧9Ni钢厚板及其制造方法
CN110863135B (zh) 一种低温容器用高镍钢及其制造方法
CN110129685B (zh) 一种超低温容器用7Ni钢厚板的制造方法
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN110747409B (zh) 一种低温储罐用低镍钢及其制造方法
CN109576449B (zh) 一种抵抗剩磁增加、节约生产能耗的9Ni钢板的生产方法
CN102653845A (zh) 一种lpg船储罐用钢板及其生产方法
CN102888560A (zh) 一种大厚度海洋工程用调质高强度钢板及其生产方法
CN101497961B (zh) 一种低温韧性1.5Ni钢及其制造方法
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN115341140A (zh) 一种超低温压力容器用钢及生产方法
CN110184530A (zh) 低温及酸性条件下使用的管件用正火态钢板及其制造方法
CN115341152A (zh) 一种节镍型-100℃低温钢及其制造方法
CN114807780A (zh) 一种热冲压用600MPa级汽车桥壳用钢及其生产方法
CN110724878A (zh) 一种0.5Ni低温钢及其制造方法
CN110331332A (zh) 一种用dq替代调质工艺生产超低温条件下使用的特厚管件用钢板及其制造方法
CN116219279B (zh) 一种高强度高韧性核反应堆安全壳用钢及其制造方法
CN114836683B (zh) 一种适用于湿硫化氢环境的高强度高韧性低屈强比管线钢钢板及其制造方法
CN114875309B (zh) 一种厚规格高强度核反应堆安全壳用钢及其制造方法
CN116695028B (zh) 一种高强韧高耐蚀性核电奥氏体不锈钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20221115