WO2024120028A1 - 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法 - Google Patents

一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法 Download PDF

Info

Publication number
WO2024120028A1
WO2024120028A1 PCT/CN2023/126162 CN2023126162W WO2024120028A1 WO 2024120028 A1 WO2024120028 A1 WO 2024120028A1 CN 2023126162 W CN2023126162 W CN 2023126162W WO 2024120028 A1 WO2024120028 A1 WO 2024120028A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel plate
stress corrosion
spherical tank
temperature
resistant spherical
Prior art date
Application number
PCT/CN2023/126162
Other languages
English (en)
French (fr)
Inventor
谯明亮
潘中德
吴俊平
洪君
夏政海
刘心阳
曹余良
顾小阳
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2024120028A1 publication Critical patent/WO2024120028A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the field of metallurgy and to a method for producing a steel plate, and in particular to an 800MPa high-strength steel plate for a stress corrosion resistant spherical tank and a method for manufacturing the same.
  • High-strength steel design can reduce and thin the thickness of steel plates and reduce the difficulty of on-site heat treatment.
  • high-strength metal materials and harder weld areas are prone to stress corrosion cracking.
  • High-strength steel must also meet the service requirements of stress corrosion resistance.
  • the highest grade of high-strength storage tank steel is 610MPa tensile strength steel, which meets the requirement of -50°C impact value ⁇ 80J; in the European standard EN10028-6 “Quenched and tempered weldable fine grain steel", the P690QL1 grade is 770MPa tensile strength steel, which meets the requirement of -40°C impact value ⁇ 27J.
  • the 800MPa high-strength spherical tank steel of the present invention not only meets the 780MPa tensile strength level, but also has the requirements of stress corrosion resistance, so as to meet the storage requirements of different media in large spherical tanks.
  • the existing national standard quenched and tempered high-strength steel plates for pressure vessels have the highest grade of 610MPa tensile strength and ⁇ 80J impact value at -50°C, which cannot meet the requirements for large-scale construction of storage tanks;
  • the European standard quenched and tempered weldable fine-grained steel P690QL2 is 770MPa tensile strength and meets the -60°C impact value ⁇ 27J requirement, but does not meet the requirements for stress corrosion resistance.
  • the invention adopts a low C and low Mn composition design, where C: 0.05 ⁇ 0.08%, Mn: 0.5 ⁇ 0.9%, and is produced by TMCP process.
  • the yield strength of the steel plate is not less than 621MPa, the finished steel plate is only 10mm, the production process is not suitable for thick plates, and the rolling and cooling requirements are very harsh.
  • the final rolled slab is cooled to a final cooling temperature of 500 ⁇ 550°C to obtain acicular ferrite + bainite structure, and the SR post-weld heat treatment for spherical tank manufacturing cannot be carried out. Therefore, the strength, specifications and processes of this invention cannot meet the strength requirements of 780MPa high-strength steel for large spherical tanks.
  • the Cr content of this invention is low, and the stress corrosion resistance cannot be guaranteed.
  • the content of precious metals Ni: 0.70% ⁇ 1.70%, Nb: 0.010% ⁇ 0.030% is high, and the alloy cost is high;
  • the heat treatment process includes the first quenching temperature of 900 ⁇ 930°C, the quenching holding time ⁇ 15min, the second quenching temperature of 870 ⁇ 900°C, the quenching holding time ⁇ 10min, the tempering temperature of 585°C ⁇ 625°C, and the tempering holding time ⁇ 30min.
  • This invention requires 2 quenchings, the heat treatment process is complicated, and the process cost is high.
  • the tempering temperature is low and not higher than 625°C, and the SR post-weld heat treatment performance cannot be guaranteed.
  • the purpose of the present invention is to provide a 800MPa grade high-strength steel plate for stress corrosion resistant spherical tanks and a manufacturing method thereof.
  • the present invention discloses a 800MPa grade high-strength steel plate for stress corrosion resistant spherical tanks, the chemical composition of the steel plate is as follows by weight percentage: C 0.08-0.12%, Mn 0.80-0.98%, Si 0.10-0.50%, P ⁇ 0.014%, S ⁇ 0.002%, Alt 0.020-0.060%, V 0.03-0.05%, Ti ⁇ 0.02%, Cr 0.96-1.20%, Mo 0.20-0.50%, Ni 0.10-0.50%, Cu 0.10-0.25%, B ⁇ 0.003%, and Cr+Ni+Cu ⁇ 1.30%, CEV ⁇ 0.57%, Pcm ⁇ 0.25%, and the rest is Fe and impurities.
  • step (1.1) the steelmaking process specifically includes: using converter deep P stripping and LF deep S stripping technology; and using dynamic soft reduction and electromagnetic stirring technology for continuous casting to provide billets for subsequent rolling.
  • step (1.2) the heating process is specifically as follows: the ingot is placed in a heating furnace and heated to a heating temperature of 1180-1220° C. and a heating coefficient of 10.0-14.0 min/cm.
  • step (1.3) the rolling process is specifically: a two-stage controlled rolling process is adopted, the final temperature of the first stage rough rolling is ⁇ 1000°C, and the sum of the reduction rates of the last three passes is ⁇ 45%; the second stage rolling is ⁇ 850°C, and the final rolling temperature is 810-840°C.
  • step (1.4) the cooling process specifically includes: cooling the rolled steel plate to room temperature in air.
  • step (1.5) the heat treatment process is specifically as follows: the steel plate quenching temperature is 890-940°C, and the furnace time is (1.5*H+10) to (1.5*H+40) minutes, wherein H is the thickness of the steel plate;
  • the tempering temperature is 630-680°C, and the time in the furnace is (2.5*H+20) to (2.5*H+60) minutes, where H is the thickness of the steel plate.
  • the maximum thickness of the steel plate is 80 mm
  • the yield strength of the steel plate is ⁇ 690 MPa
  • the tensile strength is 780-940 MPa
  • the elongation after fracture is ⁇ 15%
  • the low-temperature impact energy of -40°C is ⁇ 100 J
  • the low-temperature impact energy of -40°C after SR post-weld heat treatment is ⁇ 80 J.
  • the A method is used to load 80% The specimen under the load of nominal yield strength does not crack after 720 hours of hydrogen sulfide stress corrosion resistance.
  • high-strength steel design can reduce and thin the thickness of the steel plate, reducing the difficulty of on-site heat treatment.
  • high-strength steel must also meet the service requirements of stress corrosion resistance.
  • the high-strength steel plate for stress corrosion resistant spherical tanks of the present invention has good low-temperature impact and SR post-weld heat treatment properties, and also has stress corrosion resistance.
  • the invention adopts low carbon ( ⁇ 0.12%), low manganese, and high Cr component design, an appropriate amount of Mo element to improve the hardenability of steel, an appropriate amount of Ni element to improve the low-temperature toughness, and adopts controlled rolling, quenching and tempering technology to develop a high-strength steel for stress corrosion resistant spherical tanks, with a maximum thickness of 80mm, a steel plate yield strength ⁇ 690MPa, a tensile strength of 780-940MPa, an elongation after fracture ⁇ 15%, a -40°C low-temperature impact energy ⁇ 100J, and a -40°C low-temperature impact energy ⁇ 80J after SR post-weld heat treatment; according to NACE 0177-2005 standard, the A method is used to load the sample under a load of 80% of the nominal yield strength, and the hydrogen sulfide stress corrosion resistance does not crack after 720 hours, which meets the construction requirements of large stress corrosion resistant spher
  • Fig. 1 is a preparation flow chart of the present invention.
  • the present invention discloses an 800MPa grade high-strength steel plate for stress corrosion resistant spherical tank and a manufacturing method thereof; the present invention adopts a low carbon ( ⁇ 0.12%), low manganese, and high Cr component design, an appropriate amount of Mo element to improve the hardenability of the steel, an appropriate amount of Ni element to improve the low-temperature toughness, and adopts controlled rolling, quenching and tempering technology, etc. to develop a high-strength steel for stress corrosion resistant spherical tank, the maximum thickness of the steel plate is 80mm, the yield strength of the steel plate is ⁇ 690MPa, the tensile strength is 780-940MPa, and the elongation after fracture is 2.5-3.0mm.
  • the lengthening rate is ⁇ 15%
  • the low-temperature impact energy of -40°C is ⁇ 100J
  • the low-temperature impact energy of -40°C after SR post-weld heat treatment is ⁇ 80J,MPa
  • the A method is used to load the sample under a load of 80% of the nominal yield strength.
  • the hydrogen sulfide stress corrosion resistance does not crack after 720 hours, which meets the requirements for the construction of large spherical tanks with stress corrosion resistance, and can realize the economic and mass production of steel plates; the production process includes steelmaking process, billet heating process, rolling process, and heat treatment process.
  • the chemical composition of the obtained steel plate is as follows by weight percentage: C 0.08-0.12%, Mn 0.80-0.98%, Si 0.10-0.50%, P ⁇ 0.014%, S ⁇ 0.002%, Alt 0.020-0.060%, V 0.03-0.05%, Ti ⁇ 0.02%, Cr 0.96-1.20%, Mo 0.20-0.50%, Ni 0.10-0.50%, Cu 0.10-0.25%, B ⁇ 0.003%, and Cr+Ni+Cu ⁇ 1.30%, CEV ⁇ 0.57%, Pcm ⁇ 0.25%, and the rest is Fe and impurities.
  • Rolling process adopt a two-stage controlled rolling process, the final temperature of the first stage rough rolling is ⁇ 1000°C, and the sum of the reduction ratios of the last three passes is ⁇ 45%; the second stage rolling is ⁇ 850°C, and the final rolling temperature is 810-840°C;
  • Cooling process The rolled steel plate is cooled to room temperature in air;
  • the quenching temperature of the steel plate is 890-940°C, the time in the furnace is (1.5*H+10) to (1.5*H+40) minutes, and H (mm) is the thickness of the steel plate;
  • the tempering temperature is 630-680°C, the time in the furnace is (2.5*H+20) to (2.5*H+60) minutes, and H (mm) is the thickness of the steel plate.
  • the maximum thickness of the steel plate produced by the invention is 80 mm, and the quality meets the European standards P690QL1, S690QL, the classification society E690 and other grades, and has a reference role.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • the thickness of the high-strength steel plate for stress corrosion resistant spherical tank is 80 mm.
  • the following composition ratio and production method are adopted.
  • the component content (wt) is: C 0.11%, Si 0.23%, Mn 0.84%, P 0.009%, S 0.001%, Alt 0.031%, V 0.048%, Ti 0.012%, Cr 1.03%, Mo 0.35%, Ni 0.34%, Cu 0.15%, B 0.0014%, Cr+Ni+Cu 1.52%, CEV 0.57%, Pcm 0.25%, and the rest are Fe and impurities.
  • the production method of this steel plate is as follows:
  • Rolling process A two-stage controlled rolling process is adopted.
  • the final rolling temperature of the first stage rough rolling is 1014°C, and the total reduction rate of the last three passes is 51%;
  • the second stage start rolling temperature is 827°C, and the final rolling temperature is 815°C;
  • Cooling process The rolled steel plate is cooled to room temperature in air;
  • the mechanical properties of this 80mm stress corrosion resistant spherical tank high-strength steel plate are as follows: yield strength 785MPa, tensile strength 853MPa, elongation after fracture 17%, -40°C impact energy Akv: 168, 168, 165J, -40°C low-temperature impact energy Akv 99, 146, 156J after SR post-weld heat treatment; according to NACE 0177-2005 standard, the sample did not crack after 720 hours of hydrogen sulfide stress corrosion test.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • the thickness of the high-strength steel plate for stress corrosion resistant spherical tank is 60mm, and the following composition ratio and production method are adopted.
  • the composition content is (wt): C 0.10%, Si 0.26%, Mn 0.93%, P 0.008%, S 0.002%, Alt 0.031%, V 0.041%, Ti 0.015%, Cr 1.07%, Mo 0.31%, Ni 0.25%, Cu 0.19%, B 0.0013%, Cr+Ni+Cu 1.51%, CEV 0.57%, Pcm 0.24%, and the rest are Fe and impurities.
  • the production method of this steel plate is as follows:
  • the heating temperature of the steel billet is 1205°C, and the heating coefficient is 11.7 min/cm;
  • Rolling process A two-stage controlled rolling process is adopted.
  • the final rolling temperature of the first stage rough rolling is 1008°C, and the total reduction rate of the last three passes is 49%;
  • the second stage start rolling temperature is 833°C, and the final rolling temperature is 821°C;
  • Cooling process The rolled steel plate is cooled to room temperature in air;
  • the mechanical properties of this 60mm stress corrosion resistant spherical tank high-strength steel plate are as follows: yield strength 775MPa, tensile strength 834MPa, elongation after fracture 17.5%, -40°C impact energy Akv: 240, 196, 183J, -40°C low-temperature impact energy Akv 129, 150, 166J after SR post-weld heat treatment; according to NACE 0177-2005 standard, the sample did not crack after 720 hours of hydrogen sulfide stress corrosion test.
  • Embodiment 3 is a diagrammatic representation of Embodiment 3
  • the thickness of the high-strength steel plate for stress corrosion resistant spherical tank is 50mm, and the following composition ratio and production method are adopted.
  • the composition content is (wt): C 0.09%, Si 0.19%, Mn 1.09%, P 0.012%, S 0.002%, Alt 0.044%, V 0.038%, Ti 0.016%, Cr 0.98%, Mo 0.28%, Ni 0.14%, Cu 0.21%, B 0.0016%, Cr+Ni+Cu 1.23%, CEV 0.55%, Pcm 0.23%, and the rest is Fe and impurities.
  • the production method of this steel plate is as follows:
  • the heating temperature of the steel billet is 1211°C, and the heating coefficient is 12.4min/cm;
  • Rolling process A two-stage controlled rolling process is adopted.
  • the final rolling temperature of the first stage rough rolling is 1022°C, and the total reduction rate of the last three passes is 46%;
  • the second stage start rolling temperature is 846°C, and the final rolling temperature is 825°C;
  • Cooling process The rolled steel plate is cooled to room temperature in air;
  • the mechanical properties of this 50mm stress corrosion resistant spherical tank high-strength steel plate are as follows: yield strength 821MPa, tensile strength 867MPa, elongation after fracture 16.5%, -40°C impact energy Akv: 225, 231, 230J, -40°C low-temperature impact energy Akv 197, 184, 129J after SR post-weld heat treatment; according to NACE 0177-2005 standard, the sample did not crack after 720 hours of hydrogen sulfide stress corrosion test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种抗应力腐蚀球罐用800MPa级高强度钢板及其制造方法。属于冶金领域,包括炼钢工序、坯料加热工序、轧制工序、冷却工序及热处理工序;采用低碳(≤0.12%)、低锰、高Cr成分设计,适量Mo元素提高钢的淬透性,适量Ni元素提高低温韧性,采用控制轧制、淬火和回火技术等,开发出一种抗应力腐蚀球罐用高强钢,钢板最大厚度80mm,钢板屈服强度≥690MPa,抗拉强度780~940MPa,断后伸长率≥15%,-40℃低温冲击功≥100J,SR焊后热处理后-40℃低温冲击功≥80J;按照NACE 0177-2005标准,采用A法在加载80%名义屈服强度的载荷下试样,所述抗硫化氢应力腐蚀经过720小时不开裂,满足抗应力腐蚀大型球罐建造要求。

Description

一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法 技术领域
本发明涉及冶金领域,涉及了一种钢板的生产方法,具体的是,涉及了一种抗应力腐蚀球罐用800MPa级高强度钢板及其制造方法。
背景技术
随着乙烯、丙烯和液化石油气等品种的球罐以及天然气球罐的大型化发展,球罐建设单体容积越来越大、能源介质的多样化,大型球罐现场无法热处理,采用高强钢设计可以降低、减薄钢板厚度,降低现场热处理难度。同时因存储能源介质的不同,高强金属材料和较硬的焊缝区域易于发生应力腐蚀开裂,高强钢还需具备抗应力腐蚀的服役要求。
国家标准GB 19189《压力容器用调质高强度钢板》中,高强储罐用钢最高级别为抗拉强度610MPa级别钢材,满足-50℃冲击值≥80J要求;欧洲EN10028-6标准《淬火加回火的可焊接细晶粒钢》中,P690QL1牌号为抗拉强度770MPa级别钢材、满足-40℃冲击值≥27J要求。本发明800MPa级高强球罐用钢,除了满足抗拉强度780MPa级别外,具备抗应力腐蚀性能要求,以便满足大型球罐不同介质的存储要求。
现有的国标压力容器用调质高强度钢板,最高级别为抗拉强度610MPa级别钢材、-50℃冲击值≥80J要求,不能满足储罐大型化建造要求;欧洲标准淬火加回火的可焊接细晶粒钢P690QL2牌号为抗拉强度770MPa级别钢材、满足-60℃冲击值≥27J要求,但不具备抗应力腐蚀性能要求。
申请号201810145615.1,“抗硫化氢应力腐蚀高强度钢及其制备方法”,该发明采用低C、低Mn成分设计,其中C:0.05~0.08%、Mn:0.5~0.9%,并采用TMCP工艺生产,钢板屈服强度不低于621MPa,成品钢板仅为10mm、生产工艺不适合厚板,对轧制和冷却要求非常苛刻,如将终轧板坯冷却至500~550℃的终冷温度,获得针状铁素体+贝氏体组织,不能进行球罐制造的SR焊后热处理,因此该发明强度、规格、工艺均不能满足大型球罐用780MPa级高强钢强度要求。
申请号:202010579577.8,“芯部低温冲击韧性及焊接性优良的超厚800MPa级调质钢板及其制造方法”,该发明Cr含量偏低,抗应力腐蚀性能不能保证,另外贵重金属Ni:0.70%~1.70%、Nb:0.010%~0.030%含量高,合金成本高;另外热处理工艺包括第一次淬火温度为900~930℃,淬火保持时间≥15min,第二次淬火温度为870~900℃,淬火保持时间≥10min,回火温度为585℃~625℃,回火保持时间≥30min,该发明需要2次淬火,热处理工艺复杂、工序成本高, 且回火温度偏低不高于625℃,SR焊后热处理性能无法保证。
发明内容
发明目的:本发明的目的是提供了一种抗应力腐蚀球罐用800MPa级高强度钢板及其制造方法。
技术方案:本发明所述的一种抗应力腐蚀球罐用800MPa级高强度钢板,所述钢板的化学成分按重量百分比计为:C 0.08~0.12%,Mn 0.80~0.98%,Si 0.10~0.50%,P≤0.014%,S≤0.002%,Alt 0.020~0.060%,V 0.03~0.05%,Ti≤0.02%,Cr 0.96~1.20%,Mo 0.20~0.50%,Ni 0.10~0.50%,Cu 0.10~0.25%,B≤0.003%,且保证Cr+Ni+Cu≥1.30%,CEV≤0.57%,Pcm≤0.25%,,其余部分为Fe和杂质。
进一步的,一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,具体操作步骤如下:
(1.1)、炼钢工序;
(1.2)、加热工序:
(1.3)、轧制工序:
(1.4)、冷却工序;
(1.5)、热处理工序。
进一步的,在步骤(1.1)中,所述炼钢工序具体是:采用转炉深脱P及LF深脱S技术;连铸采用动态轻压下、电磁搅拌技术,为后续轧制提供坯料。
进一步的,在步骤(1.2)中,所述加热工序具体是:铸坯入加热炉加热加热温度1180-1220℃,加热系数10.0-14.0min/cm。
进一步的,在步骤(1.3)中,所述轧制工序具体是:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度≥1000℃,最后3道次压下率之和≥45%;第二阶段轧制≤850℃,终轧温度810-840℃。
进一步的,在步骤(1.4)中,所述冷却工序具体是:轧制后的钢板在空气中冷却至室温。
进一步的,在步骤(1.5)中,所述热处理工序具体是:钢板淬火温度890-940℃,在炉时间(1.5*H+10)~(1.5*H+40)分钟,其中,H为钢板厚度;
回火温度630-680℃,在炉时间(2.5*H+20)~(2.5*H+60)分钟,其中,H为钢板厚度。
进一步的,所述制得的钢板最大厚度80mm,钢板屈服强度≥690MPa,抗拉强度780~940MPa,断后伸长率≥15%,-40℃低温冲击功≥100J,SR焊后热处理后-40℃低温冲击功≥80J,按照NACE 0177-2005标准,采用A法在加载80% 名义屈服强度的载荷下试样,所述抗硫化氢应力腐蚀经过720小时不开裂。
随着乙烯、丙烯和液化石油气等品种的球罐以及天然气球罐的大型化发展,大型球罐现场无法热处理,采用高强钢设计可以降低、减薄钢板厚度,降低现场热处理难度。同时因存储能源介质的多样化,高强钢还需具备抗应力腐蚀的服役要求。本发明抗应力腐蚀球罐用高强度钢板,钢板低温冲击、SR焊后热处理性能等较好,同时具备抗应力腐蚀性能。
有益效果:本发明的特点:本发明采用低碳(≤0.12%)、低锰、高Cr成分设计,适量Mo元素提高钢的淬透性,适量Ni元素提高低温韧性,采用控制轧制、淬火和回火技术等,开发出一种抗应力腐蚀球罐用高强钢,钢板最大厚度80mm,钢板屈服强度≥690MPa,抗拉强度780~940MPa,断后伸长率≥15%,-40℃低温冲击功≥100J,SR焊后热处理后-40℃低温冲击功≥80J;按照NACE 0177-2005标准,采用A法在加载80%名义屈服强度的载荷下试样,所述抗硫化氢应力腐蚀经过720小时不开裂,满足抗应力腐蚀大型球罐建造要求。
附图说明
图1是本发明的制备流程图。
具体实施方式
下面结合附图及实施例对本发明作进一步的说明。
如图所述,本发明所述的一种抗应力腐蚀球罐用800MPa级高强度钢板及其制造方法;本发明采用低碳(≤0.12%)、低锰、高Cr成分设计,适量Mo元素提高钢的淬透性,适量Ni元素提高低温韧性,采用控制轧制、淬火和回火技术等,开发出一种抗应力腐蚀球罐用高强钢,钢板最大厚度80mm,钢板屈服强度≥690MPa,抗拉强度780~940MPa,断后伸长率≥15%,-40℃低温冲击功≥100J,SR焊后热处理后-40℃低温冲击功≥80J,MPa;按照NACE 0177-2005标准,采用A法在加载80%名义屈服强度的载荷下试样,所述抗硫化氢应力腐蚀经过720小时不开裂,满足抗应力腐蚀大型球罐建造要求,可实现钢板的经济、批量生产;生产工序包括炼钢工序、坯料加热工序、轧制工序、热处理工序,
得到钢板的化学成分按重量百分比计为:C 0.08~0.12%,Mn 0.80~0.98%,Si 0.10~0.50%,P≤0.014%,S≤0.002%,Alt 0.020~0.060%,V 0.03~0.05%,Ti≤0.02%,Cr 0.96~1.20%,Mo 0.20~0.50%,Ni 0.10~0.50%,Cu 0.10~0.25%,B≤0.003%,且保证Cr+Ni+Cu≥1.30%,CEV≤0.57%,Pcm≤0.25%,,其余部分为Fe和杂质。
具体要求如下:
(1)、炼钢工序:采用转炉深脱P技术,LF深脱S技术;连铸采用动态轻压下、 电磁搅拌技术,为后续轧制提供高质量坯料;
(2)、加热工序:铸坯入加热炉加热加热温度1180-1220℃,加热系数10.0-14.0min/cm;
(3)、轧制工序:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度≥1000℃,最后3道次压下率之和≥45%;第二阶段轧制≤850℃,终轧温度810-840℃;
(4)、冷却工序:轧制后的钢板在空气中冷却至室温;
(5)、热处理工序:钢板淬火温度890-940℃,在炉时间(1.5*H+10)~(1.5*H+40)分钟,H(mm)为钢板厚度;回火温度630-680℃,在炉时间(2.5*H+20)~(2.5*H+60)分钟,H(mm)为钢板厚度。
本发明生产钢板最大厚度为80mm,质量满足欧标P690QL1、S690QL,船级社E690等牌号,有借鉴作用。
实施例1:
抗应力腐蚀球罐用高强度钢板厚度为80mm,采用下述成分配比以及生产方法,成分含量(wt)为:C 0.11%、Si 0.23%、Mn 0.84%、P 0.009%、S 0.001%、Alt 0.031%、V 0.048%、Ti 0.012%、Cr 1.03%、Mo 0.35%、Ni 0.34%、Cu 0.15%、B 0.0014%,Cr+Ni+Cu 1.52%,CEV 0.57%、Pcm 0.25%,其余为Fe和杂质。
本钢板的生产方法如下:
(1)、炼钢工序:转炉冶炼、钢水P 0.009%,LF+RH精炼、钢水S 0.001%;连铸动态轻压下、电磁搅拌技术,得到320mm连铸坯;
(2)、加热工序:钢坯的加热温度1199℃,加热系数10.8min/cm;
(3)、轧制工序:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度1014℃,最后3道次压下率之和51%;第二阶段开轧温度为827℃,终轧温度为815℃;
(4)、冷却工艺:轧制后的钢板在空气中冷却至室温;
(5)、热处理工序:钢板淬火温度922℃,在炉时间145分钟;回火温度636℃,在炉时间243分钟。
本80mm规格抗应力腐蚀球罐用高强度钢板,力学性能为:屈服强度785MPa,抗拉强度853MPa,断后伸长率17%,-40℃冲击功Akv:168、168、165J,SR焊后热处理后-40℃低温冲击功Akv 99、146、156J;按照NACE 0177-2005标准,试样经过720小时抗硫化氢应力腐蚀试验后未开裂。
实施例2:
抗应力腐蚀球罐用高强度钢板厚度为60mm,采用下述成分配比以及生产方法。成分含量为(wt):C 0.10%、Si 0.26%、Mn 0.93%、P 0.008%、S 0.002%、Alt 0.031%、V 0.041%、Ti 0.015%、Cr 1.07%、Mo 0.31%、Ni 0.25%、Cu 0.19%、B 0.0013%, Cr+Ni+Cu 1.51%,CEV 0.57%、Pcm 0.24%,其余为Fe和杂质。
本钢板的生产方法如下:
(1)、炼钢工序:转炉冶炼、钢水P 0.008%,LF+RH精炼、钢水S 0.002%;连铸动态轻压下、电磁搅拌技术,得到320mm连铸坯;
(2)、加热工序:钢坯的加热温度1205℃,加热系数11.7min/cm;
(3)、轧制工序:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度1008℃,最后3道次压下率之和49%;第二阶段开轧温度为833℃,终轧温度为821℃;
(4)、冷却工艺:轧制后的钢板在空气中冷却至室温;
(5)、热处理工序:钢板淬火温度917℃,在炉时间122分钟;回火温度641℃,在炉时间203分钟。
本60mm规格抗应力腐蚀球罐用高强度钢板,力学性能为:屈服强度775MPa,抗拉强度834MPa,断后伸长率17.5%,-40℃冲击功Akv:240、196、183J,SR焊后热处理后-40℃低温冲击功Akv 129、150、166J;按照NACE 0177-2005标准,试样经过720小时抗硫化氢应力腐蚀试验后未开裂。
实施例3:
抗应力腐蚀球罐用高强度钢板厚度为50mm,采用下述成分配比以及生产方法。成分含量为(wt):C 0.09%、Si 0.19%、Mn 1.09%、P 0.012%、S 0.002%、Alt 0.044%、V 0.038%、Ti 0.016%、Cr 0.98%、Mo 0.28%、Ni 0.14%、Cu 0.21%、B 0.0016%,Cr+Ni+Cu 1.23%,CEV 0.55%、Pcm 0.23%,其余为Fe和杂质。
本钢板的生产方法如下:
(1)、炼钢工序:转炉冶炼、钢水P 0.010%,LF+RH精炼、钢水S 0.002%;连铸动态轻压下、电磁搅拌技术,得到260mm连铸坯;
(2)、加热工序:钢坯的加热温度1211℃,加热系数12.4min/cm;
(3)、轧制工序:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度1022℃,最后3道次压下率之和46%;第二阶段开轧温度为846℃,终轧温度为825℃;
(4)、冷却工艺:轧制后的钢板在空气中冷却至室温;
(5)、热处理工序:钢板淬火温度903℃,在炉时间98分钟;回火温度653℃,在炉时间163分钟。
本50mm规格抗应力腐蚀球罐用高强度钢板,力学性能为:屈服强度821MPa,抗拉强度867MPa,断后伸长率16.5%,-40℃冲击功Akv:225、231、230J,SR焊后热处理后-40℃低温冲击功Akv 197、184、129J;按照NACE 0177-2005标准,试样经过720小时抗硫化氢应力腐蚀试验后未开裂。
以上仅是本发明的优选实施方式,本发明的保护范围并不仅局限于上述实施 例,凡属于本发明思路下的技术方案均属于本发明的保护范围。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理前提下的若干改进和润饰,应视为本发明的保护范围。

Claims (8)

  1. 一种抗应力腐蚀球罐用800MPa级高强度钢板,其特征在于,所述钢板的化学成分按重量百分比计为:C 0.08~0.12%,Mn 0.80~0.98%,Si 0.10~0.50%,P≤0.014%,S≤0.002%,Alt 0.020~0.060%,V 0.03~0.05%,Ti≤0.02%,Cr 0.96~1.20%,Mo 0.20~0.50%,Ni 0.10~0.50%,Cu 0.10~0.25%,B≤0.003%,且保证Cr+Ni+Cu≥1.30%,CEV≤0.57%,Pcm≤0.25%,,其余部分为Fe和杂质。
  2. 如权利要求1所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,其具体操作步骤如下:
    (1.1)、炼钢工序;
    (1.2)、加热工序:
    (1.3)、轧制工序:
    (1.4)、冷却工序;
    (1.5)、热处理工序。
  3. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,
    在步骤(1.1)中,所述炼钢工序具体是:采用转炉深脱P及LF深脱S技术;连铸采用动态轻压下、电磁搅拌技术,为后续轧制提供坯料。
  4. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,
    在步骤(1.2)中,所述加热工序具体是:铸坯入加热炉加热加热温度1180-1220℃,加热系数10.0-14.0min/cm。
  5. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,
    在步骤(1.3)中,所述轧制工序具体是:采用2阶段控轧工艺,第一阶段粗轧轧制终了温度≥1000℃,最后3道次压下率之和≥45%;第二阶段轧制≤850℃,终轧温度810-840℃。
  6. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,
    在步骤(1.4)中,所述冷却工序具体是:轧制后的钢板在空气中冷却至室温。
  7. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于,
    在步骤(1.5)中,所述热处理工序具体是:钢板淬火温度890-940℃,在炉时间(1.5*H+10)~(1.5*H+40)分钟,其中,H为钢板厚度;
    回火温度630-680℃,在炉时间(2.5*H+20)~(2.5*H+60)分钟,其中,H为钢板厚度。
  8. 根据权利要求2所述的一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法,其特征在于;所述制得的钢板最大厚度80mm,钢板屈服强度≥690MPa,抗拉强度780~940MPa,断后伸长率≥15%,-40℃低温冲击功≥100J,SR焊后热处理后-40℃低温冲击功≥80J,按照NACE 0177-2005标准,采用A法在加载80%名义屈服强度的载荷下试样,所述抗硫化氢应力腐蚀经过720小时不开裂。
PCT/CN2023/126162 2022-12-05 2023-10-24 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法 WO2024120028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211547065.9A CN115948699B (zh) 2022-12-05 2022-12-05 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法
CN202211547065.9 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024120028A1 true WO2024120028A1 (zh) 2024-06-13

Family

ID=87286720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/126162 WO2024120028A1 (zh) 2022-12-05 2023-10-24 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法

Country Status (2)

Country Link
CN (1) CN115948699B (zh)
WO (1) WO2024120028A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115948699B (zh) * 2022-12-05 2024-09-20 南京钢铁股份有限公司 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104131235A (zh) * 2014-07-22 2014-11-05 武汉钢铁(集团)公司 Lpg船储罐用钢板及其生产方法
CN104831181A (zh) * 2015-03-27 2015-08-12 武汉钢铁(集团)公司 一种lpg船用储罐用钢板及其制造方法
CN105586529A (zh) * 2016-02-25 2016-05-18 宝山钢铁股份有限公司 一种890MPa级高强度钢、钢管及其制造方法
US20160186298A1 (en) * 2013-07-30 2016-06-30 Salzgitter Flachstahl Gmbh Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
CN110241357A (zh) * 2019-06-10 2019-09-17 江阴兴澄特种钢铁有限公司 一种800MPa级强韧耐候厚钢板及其制备方法
CN115948699A (zh) * 2022-12-05 2023-04-11 南京钢铁股份有限公司 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100513618C (zh) * 2007-10-12 2009-07-15 莱芜钢铁集团有限公司 一种耐候热轧宽钢带及其制造方法
CN101135030B (zh) * 2007-10-12 2010-09-08 莱芜钢铁集团有限公司 一种耐候热轧窄钢带及其制造方法
CN106756538A (zh) * 2016-11-30 2017-05-31 武汉钢铁股份有限公司 抗腐蚀和开裂的高强度移动压力容器钢及其制造方法
CN107164698B (zh) * 2017-04-28 2019-05-24 包头市神润高新材料股份有限公司 耐腐蚀预埋槽的新型生产方法
CN109136766A (zh) * 2018-09-30 2019-01-04 镇江宝海船舶五金有限公司 一种耐腐蚀系泊链钢及其制备方法
CN114134406B (zh) * 2021-06-01 2022-11-29 江阴兴澄特种钢铁有限公司 一种20-50mm厚落锤和心部低温韧性优良的球罐钢板及其制造方法
CN114657455A (zh) * 2022-01-10 2022-06-24 南京钢铁股份有限公司 一种热机械轧制s500m中厚钢板及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160186298A1 (en) * 2013-07-30 2016-06-30 Salzgitter Flachstahl Gmbh Micro-alloyed high-strength multi-phase steel containing silicon and having a minimum tensile strength of 750 mpa and improved properties and method for producing a strip from said steel
CN104131235A (zh) * 2014-07-22 2014-11-05 武汉钢铁(集团)公司 Lpg船储罐用钢板及其生产方法
CN104831181A (zh) * 2015-03-27 2015-08-12 武汉钢铁(集团)公司 一种lpg船用储罐用钢板及其制造方法
CN105586529A (zh) * 2016-02-25 2016-05-18 宝山钢铁股份有限公司 一种890MPa级高强度钢、钢管及其制造方法
CN110241357A (zh) * 2019-06-10 2019-09-17 江阴兴澄特种钢铁有限公司 一种800MPa级强韧耐候厚钢板及其制备方法
CN115948699A (zh) * 2022-12-05 2023-04-11 南京钢铁股份有限公司 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法

Also Published As

Publication number Publication date
CN115948699B (zh) 2024-09-20
CN115948699A (zh) 2023-04-11

Similar Documents

Publication Publication Date Title
CN109321815B (zh) 一种耐大线能量焊接高强度厚钢板的制造方法
CN107974612B (zh) 一种抗sscc球罐用高强韧钢板及其制造方法
CN111926253B (zh) 一种耐硫化氢腐蚀高强韧性正火钢及其制造方法
CN108456827A (zh) 一种改进型加钒铬钼钢板及其生产方法
CN107937807B (zh) 770MPa级低焊接裂纹敏感性压力容器钢及其制造方法
WO2023173803A1 (zh) 一种客货混运铁路用耐滚动接触疲劳钢轨及其生产方法
CN110029268B (zh) 一种保心部低温韧性的低温压力容器用09MnNiDR钢板及制造方法
CN102605241A (zh) 一种正火型16MnDR低温压力容器钢板及其制造方法
WO2024120028A1 (zh) 一种抗应力腐蚀球罐用800MPa级高强度钢板的制造方法
CN107937805B (zh) 低温压力容器用钢板及其制造方法
CN103695807B (zh) 止裂性优良的超高强x100管线钢板及其制备方法
CN110983187A (zh) 一种新型高强耐候管线钢x80钢板及其生产方法
WO2023000479A1 (zh) 一种屈服强度420MPa级热轧耐低温H型钢及其制备方法
CN109609845A (zh) 一种500MPa级耐候钢及其生产方法
CN108914005B (zh) 一种屈服强度>460MPa的低温韧性优异的特厚耐腐蚀钢板及其生产方法
CN113186455A (zh) 核能安全容器用高强钢板的生产方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN108342649B (zh) 一种耐酸腐蚀的调质高强度压力容器用钢及生产方法
CN114000056A (zh) 一种屈服强度960MPa级低屈强比海工用钢板及其制备方法
CN114807751A (zh) 一种具有优良模焊和低温性能的A516 Gr.70(HIC)抗酸管件钢及其制造方法
CN110331328A (zh) 一种超薄抗氨腐蚀移动压力容器用钢板及其生产方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
WO2024120001A1 (zh) 一种以V代Mo的低成本Q550D钢板及其生产方法
CN116607076A (zh) 一种薄规格低屈强比690MPa级海洋工程用钢及制造方法
CN116162850A (zh) 一种双面搪瓷内胆用高强度冷轧钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23899609

Country of ref document: EP

Kind code of ref document: A1