WO2023193317A1 - 超低温钢及其热处理工艺和应用 - Google Patents

超低温钢及其热处理工艺和应用 Download PDF

Info

Publication number
WO2023193317A1
WO2023193317A1 PCT/CN2022/089480 CN2022089480W WO2023193317A1 WO 2023193317 A1 WO2023193317 A1 WO 2023193317A1 CN 2022089480 W CN2022089480 W CN 2022089480W WO 2023193317 A1 WO2023193317 A1 WO 2023193317A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultra
low temperature
temperature steel
low
heat treatment
Prior art date
Application number
PCT/CN2022/089480
Other languages
English (en)
French (fr)
Inventor
黄一新
谯明亮
孙超
周玉伟
闫旭强
张媛钰
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2023193317A1 publication Critical patent/WO2023193317A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2203/00Vessel construction, in particular walls or details thereof
    • F17C2203/06Materials for walls or layers thereof; Properties or structures of walls or their materials
    • F17C2203/0634Materials for walls or layers thereof
    • F17C2203/0636Metals
    • F17C2203/0639Steels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG

Definitions

  • the invention relates to an ultra-low temperature steel and its heat treatment process and application, in particular to an ultra-low temperature steel with excellent -269°C ultra-low temperature resistance, corrosion resistance and hydrogen damage resistance, and its heat treatment process and application.
  • Storage and transportation containers for ultra-low temperature media such as liquefied ethylene, liquefied natural gas, liquid hydrogen, liquid helium, etc. are generally made of steel with high nickel content, such as: Invar steel (36% Ni), 316 stainless steel (12% Ni), 9% Ni Steel, etc., due to the poor economic efficiency of these steel types, their practical application is relatively limited.
  • austenitic stainless steel can also be used as a steel type for storage and transportation containers of some low-temperature media.
  • its low strength and large expansion coefficient cannot meet the use requirements of extreme low-temperature environments, such as -269°C, and its application is also relatively limited.
  • high manganese steel has also been used as a low-temperature material in recent years, the performance of conventionally designed high manganese steel can only be used in low-temperature environments as low as -196°C. In addition, its corrosion resistance and hydrogen embrittlement susceptibility are not up to standard. Require.
  • the present invention aims to provide an ultra-low-temperature steel with excellent low-temperature performance, corrosion resistance, and hydrogen damage resistance and its heat treatment process and application .
  • the ultra-low temperature steel of the present invention contains, in terms of mass percentage, C: 0.41% to 0.45%, Mn: 23.5% to 24.5%, Cr: 3.5% to 3.7%, Cu: 0.35% ⁇ 0.45%, Ni: 0.55% ⁇ 0.65%, V: 0.20% ⁇ 0.24%, Mo: 0.20% ⁇ 0.24%, Si: 0.15% ⁇ 0.25%, Al: 0.02% ⁇ 0.04%, the balance is Fe and inevitable impurity elements.
  • the above-mentioned ultra-low temperature steel has a fully austenitic structure, and the stacking fault energy at -269°C is 18 ⁇ 21mJ ⁇ m -2 .
  • the above-mentioned ultra-low temperature steel contains C: 0.43%, Mn: 24.0%, Cr: 3.6%, Cu: 0.40%, Ni: 0.60%, V: 0.22%, Mo: 0.22%, Si : 0.20%, Al: 0.03%, and the balance is Fe and inevitable impurity elements.
  • composition design mechanism of the above-mentioned ultra-low temperature steel is as follows:
  • Austenitic structure has excellent strength, plasticity, toughness matching and lower service temperature. Although adding a high content of Ni can obtain an austenitic structure, such as 316 austenitic stainless steel containing 12% Ni, the alloy cost is high. Mn can inhibit the transformation of austenite into martensite, so it can be used as a substitute element for Ni to obtain an austenite structure. Since the effect of Mn on austenite stability is about half that of Ni, the Mn content in the ultra-low temperature steel of the present invention is most preferably 24.0%.
  • the C content of the ultra-low temperature steel of the present invention is most preferably 0.43%.
  • the Cr content in the ultra-low temperature steel of the present invention is most preferably 3.6%.
  • the present invention obtains a highly stable austenite structure by adding 0.43% C, 24.0% Mn and 3.6% Cr. After pre-sustaining 0.35 true strain and then performing cryogenic treatment at -269°C, martensite structure will still not appear. .
  • the stacking fault energy of austenite at -269°C is controlled to 18 ⁇ 21mJ ⁇ m -2 , and the composite mechanism of dislocation + twins is used to match strength and toughness, so that the ultra-low temperature steel of the present invention can be used at -269 Charpy impact test side expansion at °C ⁇ 1.35mm.
  • the present invention preferably adds 0.60% Ni to ensure that the content ratio of Ni/Cu is ⁇ 1, and preferably the content ratio of Ni/Cu is about 1.5, which can effectively suppress the precipitation of low melting point Cu at the grain boundaries. , improve the surface quality of steel plates.
  • Cr and Ni also have the effect of improving corrosion resistance.
  • the present invention preferably adds 0.22% V and 0.22% Mo while obtaining the austenite matrix structure.
  • a dispersed precipitation phase of carbides of V and Mo is formed, which acts as a hydrogen trap to hinder the diffusion of hydrogen atoms.
  • Quantitatively characterized through a 10 -6 strain rate tensile test the sensitivity of the ultra-low temperature steel of the present invention to a hydrogen environment is ⁇ 0.15.
  • the present invention optimizes the types and contents of other elements added.
  • Si can produce a certain degree of solid solution strengthening, but Si agglomeration at grain boundaries will weaken grain boundaries and increase intergranular brittleness.
  • Si will also reduce plasticity. Therefore, the present invention preferably controls the Si content to 0.20%.
  • Al can also improve the performance of welded joints. However, excessive addition can easily form coarse precipitates and damage toughness. Therefore, the present invention preferably controls the Al content to 0.03%.
  • the above-mentioned ultra-low temperature steel also has the following components:
  • mass percentage it includes C: 0.43%, Mn: 23.9%, Cr: 3.6%, Cu: 0.40%, Ni: 0.61%, V: 0.22%, Mo: 0.20%, Si: 0.18%, Al: 0.03% , the balance is Fe and inevitable impurity elements;
  • the heat treatment process of the above-mentioned ultra-low temperature steel includes the following steps:
  • the above heat treatment process may further include a straightening operation.
  • the heat treatment process mechanism of the above-mentioned ultra-low temperature steel is as follows:
  • a steel plate with a nominal thickness of 20mm as an example, it is first heated to 1040°C to 1060°C and kept for 25 to 35 minutes to homogenize the austenite alloy elements. Subsequently, during the slow cooling of the steel plate to 840°C to 850°C in the furnace, V and Mo disperse and precipitate in the form of carbides, improving the hydrogen resistance. If the slow cooling temperature in the furnace is too high, it is difficult for V and Mo to precipitate; if the slow cooling temperature in the furnace is too low, although V and Mo can precipitate, it will also lead to the precipitation of Cr and Mn carbides on the grain boundaries, thereby reducing the grain boundary bonding. force. After the steel plate is released from the furnace, it is water-cooled. On the one hand, a stable austenite matrix structure is obtained, and on the other hand, the precipitation of Cr and Mn carbides on the austenite grain boundaries is suppressed, ensuring the grain boundary bonding force and improving the strength and toughness.
  • the steel plate in step (1) is prepared through steelmaking, continuous casting, and rolling processes, and then undergoes the above-mentioned heat treatment.
  • the heat preservation time can be adjusted according to the specific specifications of the steel plate. Taking a rolled steel plate with a nominal thickness of 20mm as an example, it needs to be kept warm for 25 to 35 minutes.
  • the above-mentioned ultra-low temperature steel is used for the storage and transportation of liquefied ethylene, liquefied natural gas, liquid hydrogen or liquid helium, and is specifically made into storage and transportation containers or transportation pipelines for use in land, ocean or aviation environments.
  • the present invention has the following significant advantages:
  • This ultra-low temperature steel has excellent ultra-low temperature resistance, corrosion resistance and hydrogen damage resistance.
  • the side expansion in the Charpy impact test at -269°C is ⁇ 1.35mm, and the corrosion rate in the natural exposure test is ⁇ 0.04mm/a. Sensitivity to hydrogen environment ⁇ 0.15;
  • the heat treatment process combined with ultra-low temperature steel components further improves the performance of the steel plate, reduces the operating restrictions of the previous processing steps, reduces the impact of the entire process on the performance of the steel plate, uniformizes the performance of the steel plate, and eliminates the need for post-processing. process;
  • This ultra-low temperature steel has wide application prospects and can be used for the storage and transportation of various ultra-low temperature media such as liquefied ethylene, liquefied natural gas, liquid hydrogen, liquid helium, etc., and is suitable for various complex environments such as land, ocean, and aviation.
  • Figure 1 is a microstructure diagram of the ultra-low temperature steel of the present invention.
  • Figure 2 is a microstructure diagram of the ultra-low temperature steel of the present invention after it has been subjected to a true strain of 0.35 and then subjected to cryogenic treatment at -269°C.
  • the preparation process of the ultra-low temperature steel of the present invention is as follows:
  • the converter blowing end temperature is 1630°C, and the LF refining furnace is used to control the melting composition.
  • the preparation process of the ultra-low temperature steel of the present invention is as follows:
  • the converter blowing end temperature is 1650°C, and the LF refining furnace is used to control the melting composition.
  • the preparation process of the ultra-low temperature steel of the present invention is as follows:
  • the converter blowing end point temperature is 1645°C, and the LF refining furnace is used to control the melting composition.
  • the converter blowing end point temperature is 1660°C, and the LF refining furnace is used to control the melting composition.
  • the converter blowing end point temperature is 1643°C, and the LF refining furnace is used to control the melting composition.
  • the converter blowing end point temperature is 1660°C, and the LF refining furnace is used to control the melting composition.
  • Example 1 The difference from Example 1 is that in the heat treatment process, the steel plate is slowly cooled to 980°C with the furnace.
  • Example 1 The difference from Example 1 is that in the heat treatment process, the steel plate is slowly cooled to 713°C with the furnace.
  • Example 1 The difference from Example 1 is that in the heat treatment process, the steel plate is slowly cooled to 847°C in the furnace, and is air-cooled after being discharged from the furnace.
  • the Charpy impact test tests the lateral expansion.
  • the test method refers to the national standard: GB/T 229 "Charpy Pendulum Impact Test Method for Metallic Materials”.
  • the coupon test is carried out in the atmospheric environment.
  • the test method refers to the national standard: GB/T 14165 "General requirements for field testing of atmospheric corrosion tests on metals and alloys".
  • Comparative Example 1 has a similar heat treatment process, but the contents of C, Mn and Cr in the chemical composition are reduced, so the austenite stability is reduced and the toughness is reduced.
  • Example 5 has the same chemical composition, but the furnace slow cooling in the heat treatment process has reached a temperature that is too low, and excessive precipitation has occurred during the furnace slow cooling process. More carbides reduce toughness.
  • Comparative Example 6 has the same chemical composition as Example 1, but the cooling method of the heat treatment process was changed to air cooling. During the air cooling process, excessive carbides were precipitated and the toughness was reduced.
  • the ultra-low temperature steel of the present invention is subjected to cryogenic treatment at -269°C after pre-sustaining 0.35 true strain.
  • the microstructure does not show martensite structure and is still austenite structure, resulting in deformation displacement.
  • the strain mechanism of faults and twins (Fig. 2).
  • Comparative Example 2 has a similar heat treatment process to Examples 1 to 3, but the Cu and Ni content in the chemical composition is reduced, so the corrosion resistance elements are reduced and the corrosion resistance is reduced.
  • Comparative Example 3 has a similar heat treatment process, but the content of V and Mo in the chemical composition is reduced, so the dispersion and precipitation of V and Mo are reduced, and the hydrogen environment sensitivity increases. From the heat treatment process point of view, compared with Example 1, Comparative Example 4 has the same chemical composition, but the heat treatment process is slowly cooled to an excessively high temperature in the furnace, so the dispersion and precipitation of V and Mo are reduced, and the hydrogen environment is Increased sensitivity.
  • the excellent properties of the ultra-low temperature steel of the present invention are obtained through the design of alloy element components and the corresponding heat treatment process.

Abstract

一种超低温钢及其热处理工艺和应用,该超低温钢成分包含C:0.41%~0.45%、Mn:23.5%~24.5%、Cr:3.5%~3.7%、Cu:0.35%~0.45%、Ni:0.55%~0.65%、V:0.20%~0.24%、Mo:0.20%~0.24%,Si:0.15%~0.25%、Al:0.02%~0.04%,余量为Fe和不可避免的杂质元素;其为全奥氏体组织,在-269℃下的层错能为18~21mJ·m -2。上述超低温钢通过特定的热处理工艺配合成分组成,具有优异的耐超低温、耐腐蚀和抵抗氢损伤的多重性能,可应用于液化天然气、液氢等超低温介质的储运,适于陆地、海洋、航空等复杂环境。

Description

超低温钢及其热处理工艺和应用 技术领域
本发明涉及一种超低温钢及其热处理工艺和应用,尤其涉及一种耐-269℃超低温、耐腐蚀和抗氢损伤性能优异的超低温钢及其热处理工艺和应用。
背景技术
液化乙烯、液化天然气、液氢、液氦等超低温介质的储运容器常规采用高镍含量的钢种制造,例如:殷瓦钢(36%Ni)、316不锈钢(12%Ni)、9%Ni钢等,由于这些钢种经济性较差,实际应用中比较受限。此外奥氏体不锈钢也可以作为一些低温介质的储运容器用钢种,但是其强度低且膨胀系数大,不能满足极限低温环境的使用要求,例如:-269℃,其应用也比较受限。近年来虽然高锰钢也被作为低温材料,但是常规设计的高锰钢性能仅能在最低至-196℃的低温环境使用,此外在耐蚀性和氢脆敏感性的方面也达不到使用要求。
发明内容
发明目的:针对现有低温钢存在的性能单一、经济性不佳、应用局限等不足,本发明旨在提供一种低温性能、耐腐蚀和抗氢损伤性能优异的超低温钢及其热处理工艺和应用。
技术方案:作为本发明涉及的第一方面,本发明的超低温钢以质量百分比计,成分包含C:0.41%~0.45%、Mn:23.5%~24.5%、Cr:3.5%~3.7%、Cu:0.35%~0.45%、Ni:0.55%~0.65%、V:0.20%~0.24%、Mo:0.20%~0.24%,Si:0.15%~0.25%、Al:0.02%~0.04%,余量为Fe和不可避免的杂质元素。
上述超低温钢为全奥氏体组织结构,在-269℃下的层错能为18~21mJ·m -2
作为最优选,上述超低温钢以质量百分比计,成分包含C:0.43%、Mn:24.0%、Cr:3.6%、Cu:0.40%、Ni:0.60%、V:0.22%、Mo:0.22%,Si:0.20%、Al:0.03%,余量为Fe和不可避免的杂质元素。
上述超低温钢的成分设计机理如下:
奥氏体组织具有优良的强度、塑性、韧性匹配和更低的使用温度。添加高含量的Ni虽然能够获得奥氏体组织,如含Ni量12%的316奥氏体不锈钢,但合金成本高。Mn能够抑制奥氏体转变为马氏体,因而可以作为Ni的替代元素,用于获得奥氏体组织。由于Mn对奥氏体稳定性的作用约为Ni的一半,因此本发明的超低温钢中Mn的含量最优选为24.0%。
C具有强烈的奥氏体稳定化效果,也是提高奥氏体稳定性的元素,而且C 能够阻碍位错运动,提高屈服强度。但是过高的C含量导致碳化物增多,降低韧性,因此本发明的超低温钢种C的含量最优选为0.43%。
Cr虽然是铁素体形成元素,但能够降低马氏体转变温度,从而有利于提高奥氏体稳定性。过高的Cr含量导致碳化物析出加剧,降低韧性。因此本发明的超低温钢中Cr的含量最优选为3.6%。
本发明通过添加0.43%的C、24.0%的Mn和3.6%的Cr,获得高稳定的奥氏体组织,预经受0.35真应变之后再进行-269℃深冷处理,仍然不会出现马氏体组织。同时,将奥氏体在-269℃下的层错能控制在18~21mJ·m -2,以位错+孪晶的复合机制实现强度与韧性的匹配,使得本发明的超低温钢在-269℃下的夏比冲击试验侧膨胀量≥1.35mm。
为了提高本发明超低温钢的耐蚀性,在成分中优选添加了0.40%的Cu。但Cu增加了钢板表面裂纹倾向,不利于材料制造。为了避免Cu的不利效果,本发明优选添加了0.60%的Ni,保证Ni/Cu的含量比值≥1,并优选Ni/Cu的含量比为1.5左右,能够有效抑制低熔点Cu在晶界的析出,提高钢板表面质量。除了Cu之外,Cr和Ni也具有提高耐蚀性的效果。通过耐蚀元素复合添加的设计,本发明超低温钢的自然暴露试验腐蚀速率≤0.04mm/a。
为了使本发明的超低温钢在用于建造液氢储罐时具有更高的抵抗氢损伤的性能,本发明在获得奥氏体基体组织的同时,优选添加了0.22%的V以及0.22%的Mo。配合相应的热处理工艺,形成V和Mo的碳化物弥散析出相,作为氢陷阱阻碍氢原子扩散。通过10 -6应变速率拉伸试验进行定量表征,本发明的超低温钢对氢气环境的敏感性≤0.15。
除上述化学成分外,本发明对所添加其它元素的种类和含量进行了优选。其中,Si能够产生一定程度的固溶强化,但Si在晶界偏聚会弱化晶界并提高沿晶脆性,此外Si还会降低塑性,因此本发明优选将Si的含量控制在0.20%。Al作为制造过程中的脱氧元素,还能改善焊接接头性能,但过量添加容易形成粗大析出相并损害韧性,因此本发明优选将Al的含量控制在0.03%。
更具体地,上述超低温钢还具有如下成分:
以质量百分比计,包含C:0.43%、Mn:23.9%、Cr:3.6%、Cu:0.40%、Ni:0.61%、V:0.22%、Mo:0.20%,Si:0.18%、Al:0.03%,余量为Fe和不可避免的杂质元素;
或者包含C:0.41%、Mn:23.5%、Cr:3.7%、Cu:0.45%、Ni:0.55%、V:0.20%、Mo:0.23%,Si:0.25%、Al:0.02%,余量为Fe和不可避免的杂质元素;
或者包含C:0.45%、Mn:24.5%、Cr:3.5%、Cu:0.35%、Ni:0.65%、V:0.24%、Mo:0.24%,Si:0.15%、Al:0.04%,余量为Fe和不可避免的杂质元素。
作为本发明涉及的第二方面,上述超低温钢的热处理工艺包含以下步骤:
(1)将轧制到预定规格的钢板加热至1040℃~1060℃并保温;
(2)钢板保温结束后冷却至840℃~850℃,优选设定温度为845℃;
(3)水冷处理。
上述热处理工艺还可进一步包含矫直操作。
上述超低温钢的热处理工艺机理如下:
以公称厚度为20mm的钢板为例,先加热至1040℃~1060℃并保温25~35min,进行奥氏体合金元素的均匀化。随后在钢板随炉缓冷至840℃~850℃的过程中,V和Mo以碳化物的形式弥散析出,提高了抗氢性。如果随炉缓冷温度过高,V和Mo难以析出;如果随炉缓冷温度过低,V和Mo虽然可以析出,但也导致晶界上Cr和Mn碳化物的析出,从而降低晶界结合力。钢板出炉后进行水冷,一方面获得了稳定的奥氏体基体组织,另一方面抑制了Cr和Mn碳化物在奥氏体晶界上的析出,保证了晶界结合力,提高了强韧性。
具体地,步骤(1)的钢板是通过炼钢、连铸、轧制工序制备得到的,然后进行上述热处理,保温时间可根据钢板具体规格调整。以公称厚度为20mm的轧制钢板为例,需要保温25~35min。
通过设置热处理工艺,减少了前道加工工序的操作限制,并保持钢板性能,使钢板性能均匀化,也省去了酸洗、打磨等后续处理工序。
需要指出的是,材料制造过程中合金元素的实际含量是在设计范围附近的一定小范围内波动,这是在正常工业化生产过程中不可避免的波动。本发明虽然明确规定了每种元素的含量范围,同样对热处理工艺参数也规定了操作范围,但是在合理偏差范围内不会对本发明的效果产生显著影响。
作为本发明涉及的第三方面,上述超低温钢应用于液化乙烯、液化天然气、液氢或液氦的储运,具体制成储运容器或输送管线应用于陆地、海洋或航空环境。
有益效果:与现有技术相比,本发明具有如下显著优点:
1、该超低温钢具有优异的耐超低温、耐腐蚀和抵抗氢损伤的多种性能,在-269℃下的夏比冲击试验侧膨胀量≥1.35mm,自然暴露试验腐蚀速率≤0.04mm/a,对氢气环境的敏感性≤0.15;
2、热处理工艺与超低温钢成分配合,进一步提升了钢板性能,并且减少了前道加工工序的操作限制,降低了整个工艺流程对钢板性能的影响,使钢板性能 均匀化,同时可以免去后处理工序;
3、该超低温钢应用前景广泛,可应用于液化乙烯、液化天然气、液氢、液氦等多种超低温介质的储运,并且适于陆地、海洋、航空等多种复杂环境。
附图说明
图1为本发明的超低温钢的显微组织图;
图2为本发明的超低温钢预经受0.35真应变再进行-269℃深冷处理之后的显微组织图。
具体实施方式
下面结合实施例对本发明的技术方案作进一步说明。
实施例1
表1超低温钢的合金元素成分及热处理工艺参数
Figure PCTCN2022089480-appb-000001
参照表1的合金元素成分,本发明的超低温钢的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1630℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度620℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1203℃后进行轧制,开轧温度1040℃,终轧温度920℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:将公称厚度20mm钢板加热至1045℃并保温30min,随炉缓冷至844℃,钢板出炉后进行水冷,制得本发明的超低温钢。
实施例2
参照表1的合金元素成分,本发明的超低温钢的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1650℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度580℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1210℃后进行轧制,开轧温度1030℃,终轧温度907℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:将公称厚度20mm钢板加热至1060℃并保温32min,随炉缓冷至840℃,钢板出炉后进行水冷,制得本发明的超低温钢。
实施例3
参照表1的合金元素成分,本发明的超低温钢的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1645℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度593℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1215℃后进行轧制,开轧温度1042℃,终轧温度940℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:公称厚度20mm钢板加热至1050℃并保温30min,随炉缓冷至840℃,钢板出炉后进行水冷,制得本发明的超低温钢。
对比例1
参照表1的合金元素成分,本对比例钢板的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1660℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度570℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1190℃后进行轧制,开轧温度1045℃,终轧温度922℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:将公称厚度20mm钢板加热至1055℃并保温35min,随炉缓冷至843℃,钢板出炉后进行水冷,制得本对比例的超低温钢。
对比例2
参照表1的合金元素成分,本对比例钢板的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1643℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度624℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1212℃后进行轧制,开轧温度1041℃,终轧温 度944℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:将公称厚度20mm钢板加热至1040℃并保温30min,随炉缓冷至846℃,钢板出炉后进行水冷,制得本对比例的超低温钢。
对比例3
参照表1的合金元素成分,本对比例钢板的制备工艺如下:
(1)炼钢:转炉吹炼终点温度1660℃,采用LF精炼炉进行熔炼成分控制。
(2)连铸:采用直弧型板坯连铸机进行连铸生产,坯料厚度260mm。坯料下线温度640℃,进保温坑进行缓冷。
(3)轧制:将坯料重加热至1205℃后进行轧制,开轧温度1038℃,终轧温度922℃,轧制结束后水冷至室温。轧制钢板公称厚度20mm。
(4)热处理:将公称厚度20mm钢板加热至1045℃并保温37min,随炉缓冷至845℃,钢板出炉后进行水冷,制得本对比例的超低温钢。
对比例4
与实施例1的区别在于:在热处理工艺中,钢板随炉缓冷至980℃。
对比例5
与实施例1的区别在于:在热处理工艺中,钢板随炉缓冷至713℃。
对比例6
与实施例1的区别在于:在热处理工艺中,钢板随炉缓冷至847℃,出炉后进行空冷。
实施例4:钢板性能评价
1、低温性能
试验方法:
夏比冲击试验测试侧膨胀量,试验方法参考国标:GB/T 229《金属材料夏比摆锤冲击试验方法》。
2、耐腐蚀性能
试验方法:
在大气环境下进行挂片试验,试验方法参考国标:GB/T 14165《金属和合金大气腐蚀试验现场试验的一般要求》。
3、抵抗氢损伤性能
试验方法
在室温下进行氢气环境慢拉伸试验,试验方法参考国标:GB/T 15970.7《金属和合金的腐蚀应力腐蚀试验第7部分:慢应变速率试验》。
4、试验结果
表2超低温钢的性能评价结果
Figure PCTCN2022089480-appb-000002
由表2可见,实施例1~3的化学成分和热处理工艺满足本发明设计,获得了良好性能效果:-269℃夏比冲击试验侧膨胀量≥1.35mm,自然暴露试验腐蚀速率≤0.4mm/a,氢气环境的敏感性≤0.15。
在低温性能方面,从成分来看,对比例1与实施例1~3相比,虽然热处理工艺接近,但化学成分中C、Mn和Cr含量减少,因此奥氏体稳定性降低,韧性降低。从热处理工艺来看,一方面对比例5与实施例1相比,虽然化学成分相同,但在热处理工艺上的随炉缓冷至了过低的温度,在随炉缓冷过程中析出了过多的碳化物,韧性降低。另一方面对比例6与实施例1相比,虽然化学成分相同,但在热处理工艺上的出炉冷却方式改为了空冷,在空冷过程中析出了过多的碳化物,韧性降低。此外,从微观组织结构来看,本发明的超低温钢在预经受0.35真应变之后再进行-269℃深冷处理,显微组织未出现马氏体组织,仍然为奥氏体组织,产生了形变位错和孪晶的应变机制(图2)。
在耐腐蚀性能方面,从成分来看,对比例2与实施例1~3相比,虽然热处理工艺接近,但化学成分中Cu和Ni含量减少,因此耐蚀性元素减少,耐蚀性降低。
在抵抗氢损伤性能方面,从成分来看,对比例3与实施例1~3相比,虽然热处理工艺接近,但化学成分中V和Mo含量减少,因此V和Mo的弥散析出减少,氢气环境的敏感性增加。从热处理工艺来看,对比例4与实施例1相比,虽 然化学成分相同,但在热处理工艺上的随炉缓冷至了过高的温度,因此V和Mo的弥散析出减少,氢气环境的敏感性增加。
综上所述,本发明的超低温钢所具有的优异性能是通过合金元素成分设计并配合相应的热处理工艺才获得的。

Claims (10)

  1. 一种超低温钢,其特征在于,以质量百分比计,成分包含C:0.41%~0.45%、Mn:23.5%~24.5%、Cr:3.5%~3.7%、Cu:0.35%~0.45%、Ni:0.55%~0.65%、V:0.20%~0.24%、Mo:0.20%~0.24%,Si:0.15%~0.25%、Al:0.02%~0.04%,余量为Fe和不可避免的杂质元素。
  2. 根据权利要求1所述的超低温钢,其特征在于,为全奥氏体组织结构。
  3. 根据权利要求1所述的超低温钢,其特征在于,在-269℃下的层错能为18~21mJ·m -2
  4. 根据权利要求1~3任一所述的超低温钢,其特征在于,以质量百分比计,成分包含C:0.43%、Mn:24.0%、Cr:3.6%、Cu:0.40%、Ni:0.60%、V:0.22%、Mo:0.22%,Si:0.20%、Al:0.03%,余量为Fe和不可避免的杂质元素。
  5. 根据权利要求1~3任一所述的超低温钢,其特征在于,以质量百分比计,成分包含C:0.43%、Mn:23.9%、Cr:3.6%、Cu:0.40%、Ni:0.61%、V:0.22%、Mo:0.20%,Si:0.18%、Al:0.03%,余量为Fe和不可避免的杂质元素。
  6. 根据权利要求1~3任一所述的超低温钢,其特征在于,以质量百分比计,成分包含C:0.41%、Mn:23.5%、Cr:3.7%、Cu:0.45%、Ni:0.55%、V:0.20%、Mo:0.23%,Si:0.25%、Al:0.02%,余量为Fe和不可避免的杂质元素。
  7. 根据权利要求1~3任一所述的超低温钢,其特征在于,以质量百分比计,成分包含C:0.45%、Mn:24.5%、Cr:3.5%、Cu:0.35%、Ni:0.65%、V:0.24%、Mo:0.24%,Si:0.15%、Al:0.04%,余量为Fe和不可避免的杂质元素。
  8. 一种权利要求1~7任一所述的超低温钢的热处理工艺,其特征在于,包含以下步骤:
    (1)将轧制到预定规格的钢板加热至1040℃~1060℃并保温;
    (2)钢板保温结束后冷却至840℃~850℃;
    (3)水冷处理。
  9. 一种权利要求1~7任一所述的超低温钢在液化乙烯、液化天然气、液氢或液氦储运中的应用。
  10. 根据权利要求9所述的应用,其特征在于,所述超低温钢制成在陆地、海洋或航空环境使用的储运容器或输送管线。
PCT/CN2022/089480 2022-04-07 2022-04-27 超低温钢及其热处理工艺和应用 WO2023193317A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210359950.8A CN116926443A (zh) 2022-04-07 2022-04-07 超低温钢及其热处理工艺和应用
CN202210359950.8 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023193317A1 true WO2023193317A1 (zh) 2023-10-12

Family

ID=88243965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/089480 WO2023193317A1 (zh) 2022-04-07 2022-04-27 超低温钢及其热处理工艺和应用

Country Status (2)

Country Link
CN (1) CN116926443A (zh)
WO (1) WO2023193317A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320711A (zh) * 2013-06-26 2013-09-25 衡阳华菱钢管有限公司 无缝钢管及其制造方法
CN103882312A (zh) * 2014-03-04 2014-06-25 南京钢铁股份有限公司 低成本高韧性-140℃低温用钢板及其制造方法
CN106222554A (zh) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 一种经济型超低温用钢及其制备方法
CN107523748A (zh) * 2017-09-22 2017-12-29 河钢股份有限公司 超低温环境用高锰钢板及其生产方法
CN107739991A (zh) * 2017-09-22 2018-02-27 河钢股份有限公司 一种不含铜的高强韧超低温环境用高锰钢板及其生产方法
CN107747062A (zh) * 2017-10-13 2018-03-02 舞阳钢铁有限责任公司 一种不含镍的超低温船用储罐用钢板及其生产方法
CN108504936A (zh) * 2018-05-14 2018-09-07 东北大学 一种超低温韧性优异的高锰中厚板及其制备方法
CN110050082A (zh) * 2016-12-08 2019-07-23 杰富意钢铁株式会社 高Mn钢板及其制造方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法
CN112888805A (zh) * 2018-10-25 2021-06-01 株式会社Posco 表面品质和抗应力腐蚀开裂性优良的超低温用奥氏体高锰钢材及其制造方法
WO2021182110A1 (ja) * 2020-03-11 2021-09-16 Jfeスチール株式会社 鋼材およびその製造方法、ならびにタンク

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103320711A (zh) * 2013-06-26 2013-09-25 衡阳华菱钢管有限公司 无缝钢管及其制造方法
CN103882312A (zh) * 2014-03-04 2014-06-25 南京钢铁股份有限公司 低成本高韧性-140℃低温用钢板及其制造方法
CN106222554A (zh) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 一种经济型超低温用钢及其制备方法
CN110050082A (zh) * 2016-12-08 2019-07-23 杰富意钢铁株式会社 高Mn钢板及其制造方法
CN107523748A (zh) * 2017-09-22 2017-12-29 河钢股份有限公司 超低温环境用高锰钢板及其生产方法
CN107739991A (zh) * 2017-09-22 2018-02-27 河钢股份有限公司 一种不含铜的高强韧超低温环境用高锰钢板及其生产方法
CN107747062A (zh) * 2017-10-13 2018-03-02 舞阳钢铁有限责任公司 一种不含镍的超低温船用储罐用钢板及其生产方法
CN108504936A (zh) * 2018-05-14 2018-09-07 东北大学 一种超低温韧性优异的高锰中厚板及其制备方法
CN110724872A (zh) * 2018-07-17 2020-01-24 宝钢特钢有限公司 具有超低温冲击韧性的高锰奥氏体钢及其热轧板制造方法
CN112888805A (zh) * 2018-10-25 2021-06-01 株式会社Posco 表面品质和抗应力腐蚀开裂性优良的超低温用奥氏体高锰钢材及其制造方法
WO2021182110A1 (ja) * 2020-03-11 2021-09-16 Jfeスチール株式会社 鋼材およびその製造方法、ならびにタンク

Also Published As

Publication number Publication date
CN116926443A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
WO2020113951A1 (zh) 一种tmcp态船舶voc储罐用低温钢板及制造方法
WO2021036272A1 (zh) 高强度低屈强比船舶LNG储罐用9Ni钢板及其制造方法
WO2022033128A1 (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
WO2022205939A1 (zh) 一种厚度>200~250mm抗氢致开裂压力容器钢板及其制造方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
WO2020087653A1 (zh) 一种奥氏体低温钢及其制备方法
CN108504936B (zh) 一种超低温韧性优异的高锰中厚板及其制备方法
CN108570541B (zh) 一种lng储罐用高锰中厚板的高温热处理方法
WO2022067962A1 (zh) 低成本高性能Q370qE-HPS桥梁钢及生产方法
CN110205565B (zh) 一种弥散纳米强化690钢及其制造方法
WO2021027188A1 (zh) 一种铸坯生产超低温高强度抗酸容器钢的方法
CN114774797B (zh) 一种液氢容器用奥氏体不锈钢中厚板及其制备方法
KR20230037040A (ko) 우량한 코어부 인성을 구비한 고강도 용기용 후판(厚板) 및 제조방법
CN110066969B (zh) 一种高耐蚀高铝含量低密度钢及其制备方法
CN101413090B (zh) 一种高强韧性螺旋埋弧焊管用x80热轧卷板及其生产方法
CN109594015A (zh) 一种低成本抗酸性腐蚀x70ms管线钢及其制备方法
WO2023193317A1 (zh) 超低温钢及其热处理工艺和应用
CN116162864A (zh) 具有-70℃低温冲击09MnNiDR钢板及其制造方法
CN109022708A (zh) 一种超低温条件下使用的低碳易焊接正火抗酸管线钢板
CN115074615B (zh) 一种环境友好型超低温高锰钢、钢板及其制造方法
CN115216589A (zh) 一种改善大厚度高强海洋工程用钢心部韧性的热处理方法
CN114107816A (zh) 一种低成本、高强韧性x65ms级抗酸管线钢热轧卷板及制备方法
CN110317996A (zh) 一种超低温及酸性服役条件下使用的A516Gr.65(HIC)管件用正火态的钢板及制造方法
WO2022236975A1 (zh) 一种焊接用高锰钢盘条及其轧钢工艺
CN110331332A (zh) 一种用dq替代调质工艺生产超低温条件下使用的特厚管件用钢板及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936253

Country of ref document: EP

Kind code of ref document: A1