CN108570541B - 一种lng储罐用高锰中厚板的高温热处理方法 - Google Patents

一种lng储罐用高锰中厚板的高温热处理方法 Download PDF

Info

Publication number
CN108570541B
CN108570541B CN201810455449.5A CN201810455449A CN108570541B CN 108570541 B CN108570541 B CN 108570541B CN 201810455449 A CN201810455449 A CN 201810455449A CN 108570541 B CN108570541 B CN 108570541B
Authority
CN
China
Prior art keywords
medium plate
temperature
storage tank
heat treatment
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810455449.5A
Other languages
English (en)
Other versions
CN108570541A (zh
Inventor
陈俊
刘振宇
任家宽
陈其源
王国栋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeastern University China
Original Assignee
Northeastern University China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeastern University China filed Critical Northeastern University China
Priority to CN201810455449.5A priority Critical patent/CN108570541B/zh
Publication of CN108570541A publication Critical patent/CN108570541A/zh
Application granted granted Critical
Publication of CN108570541B publication Critical patent/CN108570541B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

一种LNG储罐用高锰中厚板的高温热处理方法,属于钢铁材料技术领域,步骤:1)冶炼铸造成钢坯;2)加热并保温;3)将加热后的钢坯经多道次热轧;4)热轧钢材水冷至室温,得到高锰中厚板;5)将高锰中厚板进行热处理;6)将经过热处理的中厚板水淬火至室温,得到热处理后的LNG储罐用高锰中厚板;本发明制得的热处理后的高锰中厚板在‑196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比‑196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。

Description

一种LNG储罐用高锰中厚板的高温热处理方法
技术领域
本发明属于钢铁材料技术领域,具体涉及一种LNG储罐用高锰中厚板的高温热处理方法。
背景技术
随着我国能源消耗量的激增,过度依赖煤炭造成了严重的空气污染,大规模使用清洁能源(例如:天然气)已成为必然发展趋势。2001-2015年,我国天然气年增长15.9%;至2020年,表观消费量将达4100亿m3,其中需进口1400亿m3,海上进口液化天然气(LNG)占进口量的50%,将达700亿m3,基于此,我国计划建设超过200个特大型LNG储罐、约60艘海上运输船,LNG储运设施的总投资近万亿人民币,其中储运设施关键材料超低温钢的用量将高达60万吨。
长期以来,LNG储罐材料多采用铝合金、奥氏体不锈钢、9Ni钢、殷瓦钢等,但这些材料存在成本高、焊接困难、设计强度低等问题,急需开发节约型高性能LNG储罐材料。
发明内容
针对现有技术的不足,本发明提供了一种LNG储罐用高锰中厚板的高温热处理方法。该方法增大奥氏体晶粒尺寸降低临界孪生应力,同时降低晶界平衡偏聚量,通过促进高锰奥氏体钢的塑性变形能力和提高晶界结合强度的方法改善超低温韧性。
一种LNG储罐用高锰中厚板的化学成分按重量百分比为:C:0.45~0.67%,Si:0.02~0.48%,Mn:23.9~27.3%,P:≤0.038%,S:≤0.017%,Cr:0.10~3.9%,Cu:0.06~0.52%,Al:0.05~4.64%,余量为Fe和不可避免的杂质。
一种LNG储罐用高锰中厚板的高温热处理方法,具体步骤如下:
步骤1,冶炼:
按照LNG储罐用高锰中厚板成分设计熔炼出钢水并铸造成钢坯;
步骤2,加热:
将钢坯在950~1200℃,保温2~3h;
步骤3,热轧:
将加热后的钢坯经多道次热轧,开轧温度为1100~1160℃,终轧温度为950~1070℃,总压下率为80~84%,制得热轧钢材;
步骤4,冷却:
热轧钢材水冷至室温,得到LNG储罐用高锰中厚板;
步骤5,热处理:
将LNG储罐用高锰中厚板热至950~1200℃,保温1~3h;
步骤6,淬火冷却处理:
使用水将经过热处理的中厚板进行淬火至室温,得到热处理后的LNG储罐用高锰中厚板。
上述LNG储罐用高锰中厚板的高温热处理方法,其中:
所述步骤2和5中,加热和热处理在箱式电阻炉中进行。
所述步骤3中,进行5~7道次热轧,单道次压下率为19~29%。
所述步骤5中,热处理的目的是使钢坯充分的奥氏体化。
本发明制得的热处理后的LNG储罐用高锰中厚板的组织为晶粒尺寸>50μm的等轴奥氏体组织,其超低温韧性得到大幅改善,在-196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比-196℃下的超低温冲击吸收功提高9.6%~44.7%。
上述LNG储罐用高锰中厚板的高温热处理方法,技术方案的主要思路为:
在新型超低温材料的开发中,高Mn奥氏体钢由于其价格、低热膨胀系数和低周疲劳性能的显著优势而备受关注;高Mn奥氏体钢采用Mn和C稳定奥氏体相,在室温条件下获得单相奥氏体组织,而奥氏体钢一般不存在韧脆转变现象,因此高Mn奥氏体钢具备超低温(-196℃)应用的先天优势。
对于体心立方晶体结构的钢铁材料来说,晶粒细化可显著改善其低温韧性,但对于存在二次塑性变形机制的高Mn奥氏体钢来说,一方面,形变孪生的临界切应力与晶粒尺寸密切相关,增大奥氏体晶粒尺寸可降低临界孪生应力;另一方面,采用高温热处理促进奥氏体晶粒的长大,可降低晶界平衡偏聚量,对改善韧性有利。
上述LNG储罐用高锰中厚板的高温热处理方法,与现有技术相比,本发明的优点及有益效果是:
与热轧态高锰中厚板相比,热处理后高锰中厚板的超低温冲击韧性得到改善,在-196℃下的超低温冲击吸收功为128.6~189.9J,与未经过热处理的热轧态中厚板相比-196℃下的超低温冲击吸收功提高9.6%~44.7%,实现高韧性的前提下提高生产效率,降低生产成本,节能环保。
附图说明
图1本发明实施例1制备的热轧态钢板的显微组织。
图2本发明实施例2制备的高锰中厚板典型热处理态光学显微组织。
图3本发明实施例3制备的高锰中厚板典型热处理态光学显微组织。
具体实施方式
实施例1~4制备的LNG储罐用高锰中厚板的高温热处理方法,具体步骤如下:
步骤1,冶炼:
按照表1的LNG储罐用高锰中厚板成分设计熔炼出钢水并铸造成钢坯;
步骤2,加热:
将钢坯在1200℃,保温2h;
步骤3,热轧:
将加热后的钢坯,在450mm二辊可逆热轧实验轧机上热轧,轧制道次,开轧温度、终轧温度、总压下率、单道次压下率如表2所示,制得的热轧钢材;
步骤4,冷却:
热轧钢材水冷至室温,得到LNG储罐用高锰中厚板;
步骤5,热处理:
将LNG储罐用高锰中厚板进行热处理,热处理温度如表3所示,保温时间如表4所示;
步骤6,淬火冷却处理:
使用水将经过热处理的中厚板进行淬火至室温,得到热处理后的LNG储罐用高锰中厚板。
表1钢坯的化学成分(%)
Figure BDA0001659540430000031
表2一阶段控制轧制工艺参数
实施例 开轧温度/℃ 终轧温度/℃ 轧制道次 单道次压下率/% 总压下率/%
1 1130 1070 7 19~29 84
2 1150 1000 7 19~29 83
3 1150 1017 5 19~29 80
4 1160 1020 5 19~29 81
实施例1~4制备的LNG储罐用高锰中厚板不进行热处理和在950℃、1000℃、1200℃下热处理3h,不同热处理温度下试样的-196℃夏比V型缺口冲击吸收功如表3所示。
表3不同热处理温度下试样的夏比V型缺口冲击吸收功
Figure BDA0001659540430000041
另外,对实施例1和实施例2制备的中厚板进一步在1000℃下热处理0.5、1、2、3h,不同热热处理时间下试样的-196℃夏比V型缺口冲击吸收功如表4所示。
表4不同热处理时间下试样的夏比V型缺口冲击吸收功
Figure BDA0001659540430000042
实施例结果表明,本发明高锰中厚板采用高温热处理,可改善高锰中厚板-196℃下的超低温冲击韧性。本发明实施例1制备的热轧态钢板的光学显微组织如图1所示,实施例2制备的高锰中厚板在1000℃热处理3h的热处理态光学显微组织如图2所示,实施例3制备的高锰中厚板在950℃热处理3h的热处理态光学显微组织如图3所示。

Claims (2)

1.一种 LNG 储罐用高锰中厚板的高温热处理方法,其特征在于,具体步骤如下:
步骤 1,冶炼:
按照 LNG 储罐用高锰中厚板成分设计熔炼出钢水并铸造成钢坯,LNG 储罐用高锰中厚板的化学成分按重量百分比为:C:0.45%,Si:0.02%,Mn:27.3%,P:≤0.005%,S:≤0.044%,Cr:3.9%,Cu:0.52%,Al:0.05%,余量为 Fe 和不可避免的杂质;
步骤 2,加热:
将钢坯在 950~1200℃,保温 2~3h;
步骤 3,热轧:
将加热后的钢坯经多道次热轧,开轧温度为1130℃,终轧温度为1070℃,总压下率为84%,制得热轧钢材;
步骤 4,冷却:
热轧钢材水冷至室温,得到 LNG 储罐用高锰中厚板;
步骤 5,热处理:
将 LNG 储罐用高锰中厚板热至 1000℃,保温 1~2h;
步骤 6,淬火冷却处理:
使用水将经过热处理的中厚板进行淬火至室温,得到热处理后的 LNG 储罐用高锰中厚板,该中厚板组织为晶粒尺寸>50µm 的等轴奥氏体组织,在-196℃下的超低温冲击吸收功为 186.4~189.9J,与未经过热处理的热轧态中厚板相比-196℃下的超低温冲击吸收功提高37.3%~44.7%。
2.根据权利要求 1 所述的一种 LNG 储罐用高锰中厚板的高温热处理方法,其特征在于,所述步骤 3中,进行 5~7 道次热轧,单道次压下率为 19~29%。
CN201810455449.5A 2018-05-14 2018-05-14 一种lng储罐用高锰中厚板的高温热处理方法 Active CN108570541B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810455449.5A CN108570541B (zh) 2018-05-14 2018-05-14 一种lng储罐用高锰中厚板的高温热处理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810455449.5A CN108570541B (zh) 2018-05-14 2018-05-14 一种lng储罐用高锰中厚板的高温热处理方法

Publications (2)

Publication Number Publication Date
CN108570541A CN108570541A (zh) 2018-09-25
CN108570541B true CN108570541B (zh) 2020-07-10

Family

ID=63572475

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810455449.5A Active CN108570541B (zh) 2018-05-14 2018-05-14 一种lng储罐用高锰中厚板的高温热处理方法

Country Status (1)

Country Link
CN (1) CN108570541B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102255827B1 (ko) * 2018-10-25 2021-05-26 주식회사 포스코 표면품질이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
US20210388475A1 (en) * 2018-10-25 2021-12-16 Posco Cryogenic austenitic high-manganese steel having excellent corrosion resistance, and manufacturing method therefor
KR102255825B1 (ko) * 2018-10-25 2021-05-26 주식회사 포스코 형상이 우수한 극저온용 오스테나이트계 고망간 강재 및 그 제조방법
KR20200046831A (ko) * 2018-10-25 2020-05-07 주식회사 포스코 표면품질 및 응력부식균열 저항성이 우수한 극저온용 오스테나이트계 고 망간 강재 및 그 제조방법
CN113564467B (zh) * 2021-07-13 2022-09-16 鞍钢股份有限公司 一种薄规格lng储罐用高锰钢中厚板的生产方法
CN113957353B (zh) * 2021-10-26 2022-07-29 东北大学 一种4.2k温度下适用的高锰型高韧钢的制备方法
CN113969374B (zh) * 2021-10-26 2022-08-02 东北大学 托卡马克装置超导磁体保护套用极低温钢的制备方法
CN114645223A (zh) * 2022-03-26 2022-06-21 新疆八一钢铁股份有限公司 一种提高超低温韧性的高锰中厚板

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2807566B2 (ja) * 1991-12-30 1998-10-08 ポハン アイアン アンド スチール カンパニー リミテッド 優れた成形性、強度および溶接性を有するオーステナイト高マンガン鋼、並びにその製造方法
CN106222554A (zh) * 2016-08-23 2016-12-14 南京钢铁股份有限公司 一种经济型超低温用钢及其制备方法
CN107177786B (zh) * 2017-05-19 2018-12-21 东北大学 一种lng储罐用高锰中厚板的设计及其制造方法

Also Published As

Publication number Publication date
CN108570541A (zh) 2018-09-25

Similar Documents

Publication Publication Date Title
CN108570541B (zh) 一种lng储罐用高锰中厚板的高温热处理方法
EP4015668A1 (en) High-strength and low-yield-ratio 9ni steel plate for ship lng storage tanks and manufacturing method therefor
CN107177786B (zh) 一种lng储罐用高锰中厚板的设计及其制造方法
CN108504936B (zh) 一种超低温韧性优异的高锰中厚板及其制备方法
CN101864537B (zh) 应用于深冷环境的超高强度9Ni钢及其制备工艺
JP7340627B2 (ja) LNG貯蔵タンク用7Ni鋼板の製造方法
WO2020087653A1 (zh) 一种奥氏体低温钢及其制备方法
CN112281066A (zh) 一种高屈服强度lng储罐用高锰中厚板及其制备方法
CN105441798B (zh) 一种低温容器用Ni钢中厚板的制造方法
CN102260834A (zh) 一种抗h2s腐蚀油井管用热轧钢板及其制造方法
CN110066969B (zh) 一种高耐蚀高铝含量低密度钢及其制备方法
CN108315655A (zh) 一种高屈服强度lng储罐用高锰中厚板及其制备方法
CN104674110A (zh) 一种压力容器用低温钢板及其生产方法
CN103741028A (zh) 低屈强比低温无缝钢管及其生产方法
CN114774797A (zh) 一种液氢容器用奥氏体不锈钢中厚板及其制备方法
CN108672515B (zh) 一种lng储罐用高锰中厚板的轧制方法
CN102586696A (zh) 应用于深冷环境的7Ni钢及其制备工艺
CN112746224A (zh) 一种690MPa级海洋工程用钢板及其制造方法
CN112899577A (zh) 一种Fe-Mn系高强度高阻尼合金的制备方法
CN115029528B (zh) 储氢用低铁素体热轧不锈钢中板及其制备方法和用途
CN109022708A (zh) 一种超低温条件下使用的低碳易焊接正火抗酸管线钢板
CN111979389B (zh) 一种铁素体低温钢锻件及其低温深冷制备方法
CN112522622B (zh) 一种高钢级油井管及其制备方法
CN108486337A (zh) 一种G18CrMo2-6钢的热处理工艺
CN112281074A (zh) 一种低密度lng储罐用高锰中厚板及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant