CN112226678A - 一种500MPa级LPG燃料罐用钢及其制造方法 - Google Patents

一种500MPa级LPG燃料罐用钢及其制造方法 Download PDF

Info

Publication number
CN112226678A
CN112226678A CN202010951264.0A CN202010951264A CN112226678A CN 112226678 A CN112226678 A CN 112226678A CN 202010951264 A CN202010951264 A CN 202010951264A CN 112226678 A CN112226678 A CN 112226678A
Authority
CN
China
Prior art keywords
equal
steel
less
rolling
fuel tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010951264.0A
Other languages
English (en)
Inventor
张晓雪
陈林恒
赵晋斌
车马俊
邱保文
李恒坤
伯飞虎
黄建华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Iron and Steel Co Ltd
Original Assignee
Nanjing Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Iron and Steel Co Ltd filed Critical Nanjing Iron and Steel Co Ltd
Priority to CN202010951264.0A priority Critical patent/CN112226678A/zh
Publication of CN112226678A publication Critical patent/CN112226678A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

本发明公开了一种500MPa级LPG燃料罐用钢及其制造方法,涉及钢铁生产技术领域,其化学成分及质量百分比如下:C:0.06%~0.09%,Si:0.20%~0.40%,Mn:1.20%~1.60%,P≤0.012%,S≤0.002%,Als:0.040%~0.060%,N≤0.0040%,Nb:0.005%~0.030%,Ti:0.005%~0.020%,Cr≤0.15%,Ni≤0.20%,Cu≤0.15%,Cu+Cr+Ni≤0.30%,余量为Fe和不可避免的杂质。相较于正火和调质态交货,具有合金成本低、生产成本低、交货期短的优势。

Description

一种500MPa级LPG燃料罐用钢及其制造方法
技术领域
本发明涉及钢铁生产技术领域,特别是涉及一种500MPa级LPG燃料罐用钢及其制造方法。
背景技术
随着国内外对清洁能源的重视和依赖,LPG已经成为发达国家不可或缺的气体清洁燃料,国家战略储备物质。船舶行业随着海事行业致力于减少大气排放以及满足国际海事组织(IMO)的温室气体减排战略,替代燃料应运而生。LPG燃料可以减少船舶的大气排放,包括温室气体和其他污染物。
TMCP生产钢板经过消应力处理后强度和韧性会有所下降,不适合作为燃料罐用钢,通常采用正火态或是调质态交货。正火态和调质态钢板,需要添加大量合金元素保证低温冲击性能,因此焊接性能降低,同时受到合金成本高和生产周期长的制约。
CN104831181A号专利“一种LPG船用储罐用钢板及其制造方法”,其储罐用钢板具备低焊接裂纹敏感性,焊接性能优异,采用淬火加回火工艺生产,增加了钢板要经过两道热处理,造成交货期延长,增加了制造成本。
CN104674110号专利“一种压力容器用低温钢板”,为提高强韧性添加了高含量的Ni元素,造成合金成本的升高,不利于批量制造。
发明内容
本发明针对上述技术问题,克服现有技术的缺点,提供一种500MPa级LPG燃料罐用钢,相较于正火和调质态交货,具有合金成本低、生产成本低、交货期短的优势。
为了解决以上技术问题,本发明提供一种500MPa级LPG燃料罐用钢,其化学成分及质量百分比如下:C:0.06%~0.09%,Si:0.20%~0.40%,Mn:1.20%~1.60%,P≤0.012%,S≤0.002%,Als:0.040%~0.060%,N≤0.0040%,Nb:0.005%~0.030%,Ti:0.005%~0.020%,Cr≤0.15%,Ni≤0.20%,Cu≤0.15%,Cu+Cr+Ni≤0.30%,余量为Fe和不可避免的杂质。
本发明进一步限定的技术方案是:
前所述的一种500MPa级LPG燃料罐用钢,其化学成分及质量百分比如下:C:0.06%,Si:0.40%,Mn:1.60%,P:0.008%,S:0.002%,Alt:0.058%,N:0.0038%,Nb:0.030%,Ti:0.014%,Cr:0.10%,Ni:0.20%,Cu:0.05%,余量为Fe和不可避免的杂质。
前所述的一种500MPa级LPG燃料罐用钢,其化学成分及质量百分比如下:C:0.09%,Si:0.40%,Mn:1.55%,P:0.008%,S:0.002%,Alt:0.040%,N:0.0040%,Nb:0.005%,Ti:0.010%,Cr:0.05%,Ni:0.15%,Cu:0.10%,余量为Fe和不可避免的杂质。
前所述的一种500MPa级LPG燃料罐用钢,其化学成分及质量百分比如下:C:0.08%,Si:0.20%,Mn:1.20%,P:0.012%,S:0.001%,Alt:0.060%,N:0.0025%,Nb:0.025%,Ti:0.005%,Cr:0.15%,Ni:0.08%,Cu:0.08%,余量为Fe和不可避免的杂质。
前所述的一种500MPa级LPG燃料罐用钢,钢板厚度为8~50mm。
前所述的一种500MPa级LPG燃料罐用钢,钢板显微组织为铁素体+贝氏体+少量珠光体,铁素体晶粒度9~11.5级,贝氏体10%~30%,珠光体含量≤20%。
本发明的另一目的在于提供一种500MPa级LPG燃料罐用钢的制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却,具体包括:
铸坯加热温度为1120~1150℃,采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制单道次压下率≥10%,终轧温度在Ar3+10℃;轧后水冷冷速为5~10℃/s,返红温度560±20℃;钢板经加速冷却后空冷至室温。
本发明的有益效果是:
(1)本发明优化了成分和组织的配比,采用TMCP工艺生产LPG燃料罐用钢板,强度高、低温韧性优异,消应力处理后强度和韧性不降低,可替代正火和调质处理钢板,适合低成本批量制造;
(2)本发明中各化学元素的限定作用如下:
C是钢中最常见的合金元素,也是最经济最有效的固溶强化和析出强化元素,但是C含量的过高会损害韧性和塑性,而且引起焊接接头性能降低,尤其是在正火钢和调质钢中,合金元素的含量较高时,为了改善钢的焊接性能,需要严格控制C含量;
Si主要用来脱氧,与Al共同添加,更好消除钢中的氧,同时Si为非碳化物形成元素,可推迟过冷奥氏体中碳化物的析出,对过冷奥氏体起到稳定作用;
Mn是钢中最重要的固溶强化元素,可有效提高钢板的强度,可以扩大γ相区,降低相变温度,有助于细化相变组织,提高强韧性,降低韧脆转变温度等;
Al是钢中的脱氧元素,也是最重要的晶粒细化元素,强氮化物形成元素,有效提高基体和焊接接头的低温韧性;
Nb是钢中最重要的晶粒细化元素,有效提高奥氏体再结晶温度,配合控制轧制和控制冷却工艺,细化原始奥氏体晶粒,也是重要的固溶强化元素,可以有效提高钢的强度;
Ti是钢中最重要的晶粒细化元素,钛的固氮能力很强,能够抑制晶粒长大,提高母材和焊缝金属低温韧性;
Cr是钢中常见的合金元素,强碳化物形成元素,有利于提高强度、耐磨性、耐蚀性和高温性能等,由于Cr有效提高淬透性,不利于焊接性;
Cu是钢中常见的合金元素,有利于提高强度和耐蚀性,有效提高淬透性,容易在连铸过程中引起开裂;
Ni是钢中常见的合金元素,有效改善钢板和焊接接头的低温冲击韧性,但是Ni的价格较高,不利于低成本制造,可考虑采用Cr、Cu、Ni复合添加,降低合金成本。
附图说明
图1为本发明实施例1的金相显微组织图。
具体实施方式
实施例1
本实施例提供的一种500MPa级LPG燃料罐用钢,其化学成分及质量百分比如下:C:0.06%,Si:0.40%,Mn:1.60%,P:0.008%,S:0.002%,Alt:0.058%,N:0.0038%,Nb:0.030%,Ti:0.014%,Cr:0.10%,Ni:0.20%,Cu:0.05%,余量为Fe和不可避免的杂质。
制造方法包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却,具体:将260mm铸坯加热到1150℃,保温300min,进行两阶段控制轧制,再结晶区轧制温度为1050℃;待温坯厚度80mm,道次变形量32mm,未再结晶区轧制的开轧温度为790℃,终轧温度为770℃,轧后钢板为30mm,轧后采用弱冷,冷速为8℃/s,返红温度为575℃,然后空冷至室温。
实施例2
本实施例提供的一种500MPa级LPG燃料罐用钢,与实施例1的区别在于:
其化学成分及质量百分比如下:C:0.09%,Si:0.40%,Mn:1.55%,P:0.008%,S:0.002%,Alt:0.040%,N:0.0040%,Nb:0.005%,Ti:0.010%,Cr:0.05%,Ni:0.15%,Cu:0.10%,余量为Fe和不可避免的杂质。
将320mm铸坯加热到1130℃,保温300min,进行两阶段控制轧制,再结晶区轧制温度为1050℃;待温坯厚度150mm,道次变形量32~40mm,未再结晶区轧制的开轧温度为765℃,终轧温度为760℃,轧后钢板为50mm,轧后采用水冷,冷速为10℃/s,返红温度为540℃,然后空冷至室温。
由图1可见,钢板显微组织为铁素体+贝氏体+少量珠光体,铁素体晶粒度9~11.5级,贝氏体10%~30%,珠光体含量≤20%。
实施例制备的钢板力学性能如表1所示,
表1 LPG燃料罐用低温钢的力学性能
Figure BDA0002677028750000041
由表1可见,采用TMCP工艺生产的LPG燃料罐用钢板,强度高、低温韧性优异,消应力处理后强度和韧性不降低。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (7)

1.一种500MPa级LPG燃料罐用钢,其特征在于:其化学成分及质量百分比如下:C:0.06%~0.09%,Si:0.20%~0.40%,Mn:1.20%~1.60%,P≤0.012%,S≤0.002%,Als:0.040%~0.060%,N≤0.0040%,Nb:0.005%~0.030%,Ti:0.005%~0.020%,Cr≤0.15%,Ni≤0.20%,Cu≤0.15%,Cu+Cr+Ni≤0.30%,余量为Fe和不可避免的杂质。
2.根据权利要求1所述的一种500MPa级LPG燃料罐用钢,其特征在于:其化学成分及质量百分比如下:C:0.06%,Si:0.40%,Mn:1.60%,P:0.008%,S:0.002%,Alt:0.058%,N:0.0038%,Nb:0.030%,Ti:0.014%,Cr:0.10%,Ni:0.20%,Cu:0.05%,余量为Fe和不可避免的杂质。
3.根据权利要求1所述的一种500MPa级LPG燃料罐用钢,其特征在于:其化学成分及质量百分比如下:C:0.09%,Si:0.40%,Mn:1.55%,P:0.008%,S:0.002%,Alt:0.040%,N:0.0040%,Nb:0.005%,Ti:0.010%,Cr:0.05%,Ni:0.15%,Cu:0.10%,余量为Fe和不可避免的杂质。
4.根据权利要求1所述的一种500MPa级LPG燃料罐用钢,其特征在于:其化学成分及质量百分比如下:C:0.08%,Si:0.20%,Mn:1.20%,P:0.012%,S:0.001%,Alt:0.060%,N:0.0025%,Nb:0.025%,Ti:0.005%,Cr:0.15%,Ni:0.08%,Cu:0.08%,余量为Fe和不可避免的杂质。
5.根据权利要求1所述的一种500MPa级LPG燃料罐用钢,其特征在于:钢板厚度为8~50mm。
6.根据权利要求1所述的一种500MPa级LPG燃料罐用钢,其特征在于:钢板显微组织为铁素体+贝氏体+少量珠光体,铁素体晶粒度9~11.5级,贝氏体10%~30%,珠光体含量≤20%。
7.一种500MPa级LPG燃料罐用钢的制造方法,包括铁水脱硫预处理、转炉冶炼、LF精炼、RH真空处理、连铸、铸坯加热、控制轧制以及轧后控制冷却,其特征在于:应用于权利要求1-6任意一项,具体包括:
铸坯加热温度为1120~1150℃,采用二阶段控制轧制,包括再结晶区轧制和未再结晶区轧制,粗轧轧制累积压下率≥50%,精轧轧制单道次压下率≥10%,终轧温度在Ar3+10℃;轧后水冷冷速为5~10℃/s,返红温度560±20℃;钢板经加速冷却后空冷至室温。
CN202010951264.0A 2020-09-11 2020-09-11 一种500MPa级LPG燃料罐用钢及其制造方法 Pending CN112226678A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010951264.0A CN112226678A (zh) 2020-09-11 2020-09-11 一种500MPa级LPG燃料罐用钢及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010951264.0A CN112226678A (zh) 2020-09-11 2020-09-11 一种500MPa级LPG燃料罐用钢及其制造方法

Publications (1)

Publication Number Publication Date
CN112226678A true CN112226678A (zh) 2021-01-15

Family

ID=74115586

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010951264.0A Pending CN112226678A (zh) 2020-09-11 2020-09-11 一种500MPa级LPG燃料罐用钢及其制造方法

Country Status (1)

Country Link
CN (1) CN112226678A (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025014A (ja) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Lpg・アンモニア運搬船用タンクに用いられる鋼材
CN102653845A (zh) * 2012-04-24 2012-09-05 舞阳钢铁有限责任公司 一种lpg船储罐用钢板及其生产方法
JP2016040401A (ja) * 2014-08-12 2016-03-24 新日鐵住金株式会社 タンク用鋼材
CN108220784A (zh) * 2018-02-01 2018-06-29 湖南华菱湘潭钢铁有限公司 一种低屈强比碳锰低温钢的制造方法
JP2018127677A (ja) * 2017-02-08 2018-08-16 新日鐵住金株式会社 タンク用鋼材及びその製造方法
CN109440009A (zh) * 2018-12-05 2019-03-08 南京钢铁股份有限公司 一种tmcp态船舶voc储罐用低温钢板及制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008025014A (ja) * 2006-07-25 2008-02-07 Sumitomo Metal Ind Ltd Lpg・アンモニア運搬船用タンクに用いられる鋼材
CN102653845A (zh) * 2012-04-24 2012-09-05 舞阳钢铁有限责任公司 一种lpg船储罐用钢板及其生产方法
JP2016040401A (ja) * 2014-08-12 2016-03-24 新日鐵住金株式会社 タンク用鋼材
JP2018127677A (ja) * 2017-02-08 2018-08-16 新日鐵住金株式会社 タンク用鋼材及びその製造方法
CN108220784A (zh) * 2018-02-01 2018-06-29 湖南华菱湘潭钢铁有限公司 一种低屈强比碳锰低温钢的制造方法
CN109440009A (zh) * 2018-12-05 2019-03-08 南京钢铁股份有限公司 一种tmcp态船舶voc储罐用低温钢板及制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孙一康: "《冷热轧板带轧机的模型与控制》", 31 January 2010, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
WO2020113951A1 (zh) 一种tmcp态船舶voc储罐用低温钢板及制造方法
CN112048664B (zh) 一种正火态交货的100-120mm厚海上风电管桩用FH36钢板及其制备方法
EP3789508B1 (en) Hot-rolled high-toughness and low-temperature-resistant h-shaped steel with yield strength of 460 mpa and preparation method therefor
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN109868414B (zh) 低温冲击性优良的屈服强度≥430MPa压力容器钢及生产方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN103160746A (zh) 一种高强度厚壁输水管用钢及其制造方法
CN103882312B (zh) 低成本高韧性-140℃低温用钢板的制造方法
CN109161789B (zh) 一种lpg船用低温钢板及其生产方法
CN107974621B (zh) 一种经济型直缝埋弧焊管用x80管线钢板及生产方法
CN115418573A (zh) 一种80mm厚调质高强韧压力容器用钢板及其制备方法
CN115094322A (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
WO2020237976A1 (zh) 一种超细针状组织结构钢及其生产方法
CN104018081A (zh) 一种耐低温专用钢筋及生产方法
CN112410666B (zh) 一种低成本460MPa级优异低温韧性热轧H型钢及其生产方法
CN102586696A (zh) 应用于深冷环境的7Ni钢及其制备工艺
CN116397162B (zh) 一种低温延展性优异的船用高强钢板及其制造方法
CN116162864A (zh) 具有-70℃低温冲击09MnNiDR钢板及其制造方法
CN114836692A (zh) 大压缩比、低屈强比船用高镍钢板及其制造方法
CN115341140A (zh) 一种超低温压力容器用钢及生产方法
CN112226678A (zh) 一种500MPa级LPG燃料罐用钢及其制造方法
CN112226677A (zh) 一种540MPa级LPG燃料罐用钢及其制造方法
CN113512682A (zh) 一种高强韧性超厚调质水电钢板及制备方法
CN110331332A (zh) 一种用dq替代调质工艺生产超低温条件下使用的特厚管件用钢板及其制造方法
CN116162855B (zh) 一种600MPa级厚规格含磷热轧耐候钢板及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20210115