CN115094322A - 一种80mm厚690MPa级超高强韧海工钢板及其制备方法 - Google Patents

一种80mm厚690MPa级超高强韧海工钢板及其制备方法 Download PDF

Info

Publication number
CN115094322A
CN115094322A CN202210747803.8A CN202210747803A CN115094322A CN 115094322 A CN115094322 A CN 115094322A CN 202210747803 A CN202210747803 A CN 202210747803A CN 115094322 A CN115094322 A CN 115094322A
Authority
CN
China
Prior art keywords
equal
less
percent
rolling
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210747803.8A
Other languages
English (en)
Inventor
麻衡
张庆普
王中学
王腾飞
张佩
何康
王月香
陈爱娇
刘军刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shandong Iron and Steel Co Ltd
Laiwu Steel Group Yinshan Section Steel Co Ltd
Original Assignee
Shandong Iron and Steel Co Ltd
Laiwu Steel Group Yinshan Section Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shandong Iron and Steel Co Ltd, Laiwu Steel Group Yinshan Section Steel Co Ltd filed Critical Shandong Iron and Steel Co Ltd
Priority to CN202210747803.8A priority Critical patent/CN115094322A/zh
Publication of CN115094322A publication Critical patent/CN115094322A/zh
Priority to PCT/CN2022/139834 priority patent/WO2024001078A1/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium

Abstract

本发明涉及一种80mm厚690MPa级超高强韧海工钢板及其制备方法,其质量百分比化学成分为:C:0.08%~0.10%,Si:0.20%~0.30%,Mn:1.10%~1.25%,P≤0.007%,S≤0.002,Nb:0.020%~0.030%,Ti:0.010%~0.020%,V:0.030%~0.045%,Cr:0.40%~0.60%,Ni:1.40%~1.50%,Cu:0.15%~0.25%,Mo:0.25%~0.35%,Als:0.015%~0.045%,并控制Pcm≤0.33%,Ceq≤0.64%,其余为Fe和不可避免的杂质元素。本发明的80mm690MPa级超高强韧海工钢板,性能指标全部符合中国船级社EH690钢的认证要求,‑300mV(相对Ag/AgCl参比电极)饱和腐蚀电流密度≤1.90mA/cm2,腐蚀活性夹杂物密度≤9个/mm2。产品具有高强韧、耐低温、耐腐蚀等特性。

Description

一种80mm厚690MPa级超高强韧海工钢板及其制备方法
技术领域
本发明属于超高强海工钢生产技术领域,具体涉及一种80mm特厚规格690MPa级超高强韧海工钢板及其制备方法。
背景技术
随着人们对海洋领域的探索不断深入,与之相配套的特厚规格船舶与海洋工程用钢及其研发与生产已成为重中之重,复杂多变的海洋服役环境要求该特厚规格海工钢需具备高强度、高韧性、易焊接、耐海水腐蚀等优异综合性能。
目前的特厚规格690MPa级钢板的制备技术中存在诸多不足。在成分设计方面,有的添加了大量合金元素增加了生产成本,有的则会给钢板的生产过程或后续的加工使用造成困难;在生产过程方面,大多存在热处理工艺流程长的问题。
中国专利CN 111304551B提出了一种超高强调质EH690特厚钢板及其制造方法,该专利中,C:0.10%~0.17%,Si:0.25%~0.45%,Mn:0.90%~1.30%,S≤0.003%,P≤0.010%,V:0.041%~0.076%;Als:0.03%~0.05%,N:0.004%~0.013%,Ni:1.40%~1.80%,Cr:0.60%~1.00%,Mo:0.30%~0.50%,Nb:0.021%~0.04%,Cu:0.43%~0.50%,Ti≤0.02%,其中添加了较多的V、Cr、Mo、Cu等元素。该专利中,在轧制后需采用淬火+亚温淬火+回火的热处理工艺。
公开号为CN110846577A的专利申请中提出了一种具有低屈强比的690MPa级中锰钢及其制造方法,成分中含4.1%~4.7%的Mn元素,而Mn元素的大量加入会给炼钢和连铸过程带来巨大困难,连铸生产极易造成事故,且中锰钢虽然低温韧性较高,但轧制出的钢板极易出现探伤不合格和边角裂纹等问题。
公开号为CN 112251670A的申请和专利CN 102965592B均提出了特厚规格690MPa级海工钢的制备方法,其化学成分中分别添加了0.001%~0.0015%和0.001%~0.003%的B来提高钢板强度,B元素的添加会使钢板的焊接裂纹倾向显著增加,不利于后续的加工。这些制备技术中,为获得所需性能,需在淬火+高温回火热处理前做一次890~920℃的正火热处理或在淬火+高温回火热处理后做一次300℃以下的低温回火热处理,不利于生产效率的提升和降成本的行业需求。
发明内容
针对现有技术存在的不足及缺陷,本发明旨在提供一种80mm690MPa级超高强韧海工钢板及其制备方法。本发明的80mm690MPa级超高强韧海工钢板,性能指标符合中国船级社EH690钢的认证要求;同时,-300mV(相对Ag/AgCl参比电极)饱和腐蚀电流密度≤1.90mA/cm2,腐蚀活性夹杂物密度≤9个/mm2。产品具有高强韧、耐低温、耐腐蚀等优异综合特性。
为了实现上述目的,本发明第一方面提供了一种80mm690MPa级超高强韧海工钢板的成分设计,采用如下技术方案:
一种80mm690MPa级超高强韧海工钢板,所述钢板中化学成分质量百分数为:C:0.08%~0.10%,Si:0.20%~0.30%,Mn:1.10%~1.25%,P≤0.007%,S≤0.002,Nb:0.020%~0.030%,Ti:0.010%~0.020%,V:0.030%~0.045%,Cr:0.40%~0.60%,Ni:1.40%~1.50%,Cu:0.15%~0.25%,Mo:0.25%~0.35%,Als:0.015%~0.045%,其余为Fe和不可避免的杂质元素,控制Pcm≤0.33%,Ceq≤0.64%。
其中:Ceq=C+Mn/6+(Cr+Mo+V)/5+(Ni+Cu)/15;
Pcm=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B。
在上述80mm690MPa级超高强韧海工钢板中,作为一种优选实施方式,所述不可避免的杂质元素中以质量百分比计,H≤0.0002%,O≤0.003%,N≤0.004%,B≤0.0005%,As≤0.006%,Sb≤0.010%,Sn≤0.020%,Pb≤0.010%,Bi≤0.010%。
所述80mm690MPa级超高强韧海工钢板中主要合金的作用表现如下:
Cr对于特厚规格钢板来说,可有效提高淬透性以弥补厚度带来的强度损失,还可提高钢板的耐腐蚀性。可一旦含量过高,就会导致低熔点的Cr-Mn复合氧化物的形成,易使钢板在热加工过程中形成表面裂纹,还会恶化焊接性能。因此本发明中Cr含量控制在0.40%~0.60%。
Ni是最为明显改善特厚规格钢板低温韧性的元素,加入适当的Ni能够降低晶体的层错能,有利于位错的滑移运动,改善冲击韧性;同时,Ni可促进钢板表面形成致密的保护性锈层,提高钢板的耐腐蚀性。但是Ni含量太高不利于保证焊接性能。因此,本发明中Ni含量控制在1.40%~1.50%。
Cu可以提高钢的耐蚀性、强度,改善焊接性与机加工性等。但是Cu含量过高会增加钢板的热脆性倾向。因此,本发明的Cu含量控制在0.15%~0.25%。
Mo是提高淬透性的元素,能扩大γ相区,推迟先析铁素体形成,有效提高强度,还可显著改善特厚规格钢板厚度方向上强韧性能的稳定性。但是,Mo含量过高会恶化钢板可焊接性,因此本发明将Mo含量控制在0.25%~0.35%。
Nb能够有效起到细化晶粒的效果,也能起到析出强化的作用;但是受C的限制及加热温度的影响,含量太高的Nb无法充分固溶。因此,本发明中Nb含量控制在0.020%~0.030%。
Ti同样可以起到细化晶粒、析出强化的效果,显著改善钢板低温冲击韧性。但含量过高时易形成大颗粒TiN而失去细晶效果。因此本发明将Ti含量控制在0.010%~0.020%。
V是钢中的细化晶粒元素,也有析出强化的效果。添加量小于0.02%时效果不明显,大于0.05%时,钢的韧性与可焊接性降低。因此,本发明中V含量控制在0.030%~0.045%。
Al能够固定钢中的自由N,改善钢板、焊接HAZ的低温韧性,而且AlN的弥散析出会抑制加热过程中奥氏体晶粒长大、均匀细化奥氏体晶粒尺寸,提高冲击韧性。但过多的Al含量会导致钢的夹杂物数量增多,夹杂物尺寸变大,钢板内部质量的下降,影响钢的热加工性能、焊接性能和切削加工性能,因此,本发明将Al含量控制在0.020%~0.050%。
Ceq:控制碳当量指标有利于保证钢板的强度和可焊性,本发明控制Ceq≤0.64%。
Pcm:控制冷裂纹敏感系数有利于保证产品的焊接性能,本发明控制Pcm≤0.33%。
钢中的杂质元素,如S、P等,会增加连铸坯偏析程度,恶化钢板厚度方向组织性能均匀性。因此,S、P含量分别控制在0.005%和0.010%以下;B易在晶界富集,降低钢板的低温冲击性能和疲劳性能,还会显著增加焊接裂纹倾向,因此,控制B≤0.0005%;同时,控制其它不可避免的杂质元素As≤0.006%,Sb≤0.010%,Sn≤0.020%,Pb≤0.010%,Bi≤0.010%,H≤0.0002%,O≤0.003%,N≤0.004%。
本发明第二方面提供一种上述80mm690MPa级超高强韧海工钢板的制备方法,包括转炉冶炼、LF+RH双精炼、连铸、铸坯加热、轧制、热处理,具体为:
(1)转炉冶炼
采用KR处理后的铁水,铁水S≤0.008%;镍板、铜板、钼铁随废钢加入;采用双渣深脱磷工艺冶炼,终渣碱度控制在R=3.0~4.0,做到初期早化渣,过程渣化好,终渣化透;采用金属锰、铌铁、钒铁、低碳铬铁、硅铁进行合金化,合金在放钢1/4时加入,在钢水出至3/4时加完;按照3-3.5kg/t钢加入铝锰铁进行脱氧。
(2)LF+RH精炼
全程底吹氩搅拌,采用铝粒、碳化钙、碳化硅调渣,用钛线调整Ti成分,用铝线调整Al成分,终渣碱度尽量控制在2.5以上,LF精炼时间≥50min,其中软吹时间≥10min。
RH精炼采用本处理模式。确保真空度在30Pa以内,纯脱气时间≥5min。RH处理结束后,喂钙铝线1-1.5m/t,软吹时间≥14min,RH冶炼时间≥50min。
(3)连铸
采用全程保护浇铸,使用包晶钢保护渣,液相线温度为1510~1520℃,过热度控制在20℃以内,所用300mm厚连铸坯拉速为0.70-0.90m/min,在扇形段铸坯凝固末端采用轻压下技术,铸坯入坑、堆垛缓冷≥72h。
(4)铸坯加热
铸坯冷装装炉;采用多阶段加热升温方式,均热段温度1190-1240℃,均热时间≥60min,出钢温度1200-1230℃,加热升温的总时间为290-310min,一方面保证铸坯烧匀烧透,同时又防止奥氏体晶粒过分长大;在对所述热铸坯进行轧制处理之前,进行高压水除磷处理。
(5)轧制
轧制过程为粗轧、精轧两阶段轧制。粗轧为再结晶轧制,粗轧道次≤5道,并保证至少2道次的压下率(单道次厚度压下量/入口厚度,下同)≥19%,以通过大压下率使奥氏体晶粒充分细化,为提高厚规格钢板强韧性能提供组织保证。粗轧后中间坯厚度120-130mm。精轧为未再结晶轧制,精轧开轧温度为835-865℃,精轧轧制道次≤7道,优选地,所述精轧轧制道次为5道,以充分利用道次间的形变累积效应和形变奥氏体晶内缺陷诱发的强制相变机制,促使奥氏体晶粒内部出现大量变形带、孪晶和位错,为铁素体相变形核创造条件,使钢板强韧性提高。控制粗轧后所得到的中间坯厚度,以合理分配粗轧和精轧的压下量,提高钢板性能,尤其是心部冲击韧性及厚度方向性能的均匀性。
轧制结束后通过控制冷却工艺,以增加铁素体形核率,并形成细小弥散的析出相,进一步提高钢板的强韧性。开冷温度800~820℃,终冷温度550~590℃,冷却速度控制在6~10℃/s。之后,将钢板移入缓冷坑或进行堆垛缓冷,以保证相变过程的充分进行并提高厚规格钢板的组织均匀性,缓冷时间≥48h。
(6)热处理
采用淬火+高温回火的热处理方式。
根据成分设计,本发明钢板的Ac3温度约为850℃,为确保获得细而均匀的奥氏体晶粒,以便在淬火后获得细小的马氏体组织,并降低淬火组织中低硬度铁素体相的含量,淬火加热温度应在Ac3以上30~50℃。又考虑到成分中含有Nb、V、Ti等强碳化物形成元素,可使奥氏体晶粒粗化温度升高,故将淬火温度设为920±5℃,以加速合金碳化物的溶解,增加过冷奥氏体的稳定性,提高钢的淬透性。加热时间1.3~1.6min/mm×板厚,保温时间30±3min。钢板加热保温结束后进入淬火机进行淬火处理。本发明使用的是东北大学设计的超宽整体狭缝式淬火机,其冷却水系统的高压喷水系统包括2组狭缝喷嘴和4组高密Ⅰ型喷嘴,长度3640mm,低压喷水系统包括18组高密Ⅱ型喷嘴,长度12600mm。高压段水压0.7~0.9bar,低压段水压0.3~0.4bar。按照“低辊速+大水量淬火”原则,淬火机辊道速度1.6-1.8m/min,高压段水量5376-6067m3/h,低压段水量3499-3888m3/h;优选的工艺方案为,淬火机辊道速度1.6m/min,高压段水量5376m3/h,低压段水量3888m3/h;淬火机辊道速度1.8m/min,高压段水量6067m3/h,低压段水量3499m3/h。上喷嘴水量与下喷嘴水量之比约为1∶1.4,以保证钢板在淬火过程的对称、均匀。这样,通过高压段的冷却,使钢板充分淬透完成所有相转变,低压段则进一步带走从钢板内部传导到表面的热量以防止余热回火,使钢板温度最终降低到室温。
高温回火,可消除快冷淬火后钢板复杂的内应力,并使钢板具备优异的综合力学性能。本发明中回火加热温度600±5℃,加热时间2~2.5min/mm*板厚,保温时间30±3min。钢板出炉后在冷床吹冷风空冷至室温,要避免出炉后短时间内便堆垛存放,以防止钢板出现高温回火脆性。
这样,就获得了80mm690MPa级超高强韧海工钢板,主要性能指标:屈服强度≥690MPa,抗拉强度770~940MPa,断后伸长率≥16%,-40℃心部横向冲击功≥100J,-40℃CTOD≥0.15mm,-300mV(相对Ag/AgCl参比电极)饱和腐蚀电流密度≤1.90mA/cm2,腐蚀活性夹杂物密度≤9个/mm2
与现有技术相比,本发明的优势在于:
(1)良好的性能均匀性。本发明通过对炼钢过程中成分、纯净度以及气体含量的控制,提供了高质量铸坯原料;科学设计加热、轧制、轧后控冷工艺,通过粗轧阶段大压下、合理两阶段压下量分配等措施,使变形渗透到钢板心部;优化热处理工艺,在整个厚度截面获得高强韧性组织,力学性能、横纵向冲击、时效冲击及冷弯等性能优异,且厚度方向性能均匀,完全满足船级社EH690钢的认证要求。
(2)低成本、高生产效率。优化成分设计,利用合理的控轧控冷工艺,将塑性变形和轧后冷却与固态相变相结合,充分发挥固溶强化、沉淀强化和细晶强化的作用,保证了合金元素的效果充分发挥;通过最优化淬火机辊道速度、高压低压段水量和上下水比设计,提高了厚规格钢板的热处理效果,经过淬火和高温回火处理后,无需再经过其他热处理过程即可获得性能优异的钢板,缩短了生产流程,降低了生产成本。
(3)耐腐蚀性能优异。本发明利用高洁净钢水冶炼技术、高渗透轧制技术以及最优化热处理工艺,获得低夹杂、高均质的耐蚀性良好的组织,使钢板基体自身腐蚀电位大大提高;同时,Cr+Cu+Ni合金元素的添加,可有效促使钢板表面形成致密、附着性好的保护性锈层,阻碍H2O、O2、Cl-等腐蚀介质向钢材基体渗透,保证了产品在海洋强腐蚀环境下的服役安全性。
附图说明
图1为本发明实施例1制得钢板近表面500x金相组织;
图2为本发明实施例1制得钢板厚度1/4位置500x金相组织;
图3为本发明实施例1制得钢板厚度1/2位置500x金相组织;
图4为本发明实施例1制得钢板的-300mV(vs.Ag/AgCl)恒电位极化曲线;
图5为本发明实施例1制得钢板50x视场下的腐蚀活性夹杂物情况。
具体实施方式
下面以附图和具体实施方式对本发明作进一步详细的说明。
实施例1:
按表1所示的化学成分,按照上述冶炼工艺,通过转炉冶炼、LF+RH双精炼获得高洁净钢水,浇铸得到300mm厚连铸坯。对铸坯进行加热,出钢温度1210℃,在炉时间300min,粗轧5道次(第5道空过),第3、4道次压下率分别为19.3%、23.7%,粗轧结束后中间坯厚度130mm;待温至845℃开始精轧阶段,精轧7道次(第7道空过);以约8℃/s的速度进行控冷,开冷温度815℃,终冷温度590℃。轧后在缓冷坑缓冷48h以上。淬火温度加热至920℃,保温30min,淬火机辊道速度1.8m/min,高压段水量6067m3/h,低压段水量3499m3/h,上喷嘴水量与下喷嘴水量之比为1∶1.4。回火加热温度600℃,保温30min。由图1-图3可以看到,近表面组织以回火索氏体为主,随着往心部发展,弥散分布的粒状贝氏体以及铁素体、珠光体含量逐渐增多。按照中国船级社《材料与焊接规范》(2021)中的试验方法和要求进行检验,主要拉伸性能和冲击性能指标见表2,耐腐蚀性能指标见表3。
实施例2:
按表1所示的化学成分,按照上述冶炼工艺,通过转炉冶炼、LF+RH双精炼获得高洁净钢水,浇铸得到300mm厚连铸坯。对铸坯进行加热,连铸坯加热出钢温度1230℃,在炉时间290min,粗轧5道次,第4、5道次压下率分别为19.1%、22.3%,粗轧结束后中间坯厚度120mm;待温至860℃开始精轧阶段,精轧5道次;以约10℃/s的速度进行控冷,开冷温度803℃,终冷温度559℃。轧后在缓冷坑缓冷48h以上。淬火温度加热至920℃,保温30min,淬火机辊道速度1.6m/min,高压段水量5376m3/h,低压段水量3888m3/h,上喷嘴水量与下喷嘴水量之比为1∶1.4。回火加热温度600℃,保温30min。
对比例:
为了说明淬火机参数对钢板性能的影响,本发明将淬火机调整过程中的一种实施方式作为对比例进行说明。对比例冶炼、浇铸实施方式同实施例2。对铸坯进行加热,连铸坯加热出钢温度1230℃,在炉时间290min,粗轧5道次,第4、5道次压下率分别为20.0%、21.6%,粗轧结束后中间坯厚度120mm;待温至850℃开始精轧阶段,精轧5道次;以约10℃/s的速度进行控冷,开冷温度805℃,终冷温度562℃。轧后在缓冷坑缓冷48h以上。淬火温度加热至920℃,保温30min,淬火机辊道速度2.0m/min,高压段水量6255m3/h,低压段水量3287m3/h,上喷嘴水量与下喷嘴水量之比为1∶1.4。回火加热温度600℃,保温30min。
表2为实施例和对比例所得钢板的拉伸性能和冲击性能。按照本发明的方法制备的钢板屈服强度≥690MPa,抗拉强度770~940MPa,断后伸长率≥16%;-40℃横向冲击功≥100J,且厚度方向性能均匀性良好。而对比例的强度和韧性明显低于实施例,尤其是厚度1/4和心部冲击性能无法达到E690钢的性能要求。
表3为实施例和对比例所得钢板的耐腐蚀性能指标。饱和腐蚀电流密度使用Autolab电化学工作站测量,使用三电极体系,Ag/AgCl电极为参比电极,Pt电极为辅助电极,对钢板取样制作暴露面积1cm2的试样作为工作电极,在人工海水溶液(成分见表4)中以-300mV恒电位下试样进行阳极极化,记录极化电流变化及其稳定后的腐蚀电流密度,图4为实施例1制得钢板的-300mV(vs.Ag/AgCl)恒电位极化曲线。测定腐蚀活性夹杂物密度时,对钢板取样制成10mm*10mm*5mm的试样,抛光后浸泡于人工海水中20min。取出后酒精冲洗,冷风干燥,置于50x光镜下连续拍摄若干张照片并计算腐蚀活性夹杂物密度,图5为实施例1制得钢板50x视场下的腐蚀活性夹杂物情况。
表1本发明实施例和对比例钢板的化学成分(wt%)
Figure BDA0003719965910000081
表2本发明实施例和对比例钢板的性能
Figure BDA0003719965910000082
表3本发明实施例钢板的耐腐蚀性能指标
Figure BDA0003719965910000091
表4人工海水成分
Figure BDA0003719965910000092
本发明的工艺参数(如温度、时间等)区间上下限取值以及区间值都能实现本法,在此不一一列举实施例。
本发明未详细说明的内容均可采用本领域的常规技术知识。
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应该理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。

Claims (10)

1.一种80mm厚690MPa级超高强韧海工钢板,其特征在于,该钢板的化学成分按质量百分比计为:C:0.08%~0.10%,Si:0.20%~0.30%,Mn:1.10%~1.25%,P≤0.007%,S≤0.002,Nb:0.020%~0.030%,Ti:0.010%~0.020%,V:0.030%~0.045%,Cr:0.40%~0.60%,Ni:1.40%~1.50%,Cu:0.15%~0.25%,Mo:0.25%~0.35%,Als:0.015%~0.045%,并控制Pcm≤0.33%,Ceq≤0.64%,其余为Fe和不可避免的杂质元素。
2.根据权利要求1所述的80mm厚690MPa级超高强韧海工钢板,其特征在于,所述不可避免的杂质元素中各组分的质量百分比含量为:H≤0.0002%,O≤0.003%,N≤0.004%,B≤0.0005%,As≤0.006%,Sb≤0.010%,Sn≤0.020%,Pb≤0.010%,Bi≤0.010%。
3.根据权利要求1或2所述的80mm厚690MPa级超高强韧海工钢板,其特征在于,所述超高强韧海工钢板的主要性能指标:屈服强度≥690MPa,抗拉强度770~940MPa,断后伸长率≥16%,-40℃心部横向冲击功≥100J,-40℃CTOD≥0.15mm,相对Ag/AgCl参比电极-300mV饱和腐蚀电流密度≤1.90mA/cm2,腐蚀活性夹杂物密度≤9个/mm2
4.一种权利要求1-3中任一项所述的80mm厚690MPa级超高强韧海工钢板的制备方法,所述制备方法包括如下步骤:转炉冶炼、LF+RH双精炼、连铸、铸坯加热、轧制、热处理。
5.根据权利要求4所述的制备方法,其特征在于,所述转炉冶炼中,采用KR处理后的铁水,铁水S≤0.008%,镍板、铜板、钼铁随废钢加入,采用双渣深脱磷工艺冶炼,使用金属锰、铌铁、钒铁、低碳铬铁、硅铁进行合金化,按照3-3.5kg/t钢加入铝锰铁进行脱氧。
6.根据权利要求4所述的制备方法,其特征在于,所述LF+RH双精炼中,LF精炼全程底吹氩,精炼时间≥50min,其中软吹时间10-15min;RH精炼确保真空度在30Pa以内,纯脱气时间≥5min,RH处理结束后,喂钙铝线1-1.5m/t,软吹时间15-20min,RH冶炼时间≥50min。
7.根据权利要求4所述的制备方法,其特征在于,所述连铸中,采用全程保护浇铸,过热度控制在20℃以内,所用300mm厚连铸坯拉速为0.70-0.90m/min,所得铸坯缓冷72小时以上。
8.根据权利要求4所述的制备方法,其特征在于,所述铸坯加热中,采用多阶段加热升温方式,均热段温度1190-1240℃,均热时间≥60min,出钢温度1200-1230℃,加热升温的总时间为290-310min。
9.根据权利要求4所述的制备方法,其特征在于,所述轧制中,包括粗轧、精轧两阶段轧制;粗轧为再结晶轧制,粗轧道次≤5道,并保证至少2道次的压下率≥19%,粗轧后中间坯厚度120-130mm;精轧为未再结晶轧制,精轧开轧温度为835-865℃,精轧轧制道次≤7道,轧后的快冷过程开冷温度800~820℃,终冷温度550~590℃,冷却速度6~10℃/s。
10.根据权利要求4所述的制备方法,其特征在于,所述热处理中,采用淬火+高温回火工艺;淬火温度920±5℃,加热时间1.3~1.6min/mm×板厚,保温时间30±3min;淬火机高压段水压0.7~0.9bar,低压段水压0.3~0.4bar,辊道速度1.6-1.8m/min,高压段水量5376-6067m3/h,低压段水量3499-3888m3/h;上喷嘴水量与下喷嘴水量之比约为1∶1.4,回火加热温度600±5℃,加热时间2~2.5min/mm*板厚,保温时间30±3min,出炉后空冷。
CN202210747803.8A 2022-06-29 2022-06-29 一种80mm厚690MPa级超高强韧海工钢板及其制备方法 Pending CN115094322A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202210747803.8A CN115094322A (zh) 2022-06-29 2022-06-29 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
PCT/CN2022/139834 WO2024001078A1 (zh) 2022-06-29 2022-12-19 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210747803.8A CN115094322A (zh) 2022-06-29 2022-06-29 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Publications (1)

Publication Number Publication Date
CN115094322A true CN115094322A (zh) 2022-09-23

Family

ID=83295358

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210747803.8A Pending CN115094322A (zh) 2022-06-29 2022-06-29 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Country Status (2)

Country Link
CN (1) CN115094322A (zh)
WO (1) WO2024001078A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001078A1 (zh) * 2022-06-29 2024-01-04 山东钢铁股份有限公司 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073071A (ja) * 1999-09-02 2001-03-21 Nippon Steel Corp 引張強さ570〜720N/mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼板およびその製造方法
CN102851622A (zh) * 2012-09-19 2013-01-02 南京钢铁股份有限公司 一种超高强高韧性海洋工程用钢板及其生产方法
JP2014208891A (ja) * 2013-03-29 2014-11-06 株式会社神戸製鋼所 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管
CN108193137A (zh) * 2018-02-11 2018-06-22 东北大学 一种不大于80mm厚1000MPa级水电用钢板的DQ-Q&T方法
CN109504897A (zh) * 2018-11-05 2019-03-22 江阴兴澄特种钢铁有限公司 一种80kg级低碳当量低裂纹敏感性大厚度水电钢及其制造方法
CN111621708A (zh) * 2020-06-30 2020-09-04 南阳汉冶特钢有限公司 一种冲击韧性高于lpg船储罐用p690ql2钢板的新型钢板及其生产方法
CN114277314A (zh) * 2021-12-02 2022-04-05 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6326339A (ja) * 1986-07-18 1988-02-03 Nippon Kokan Kk <Nkk> 腐食疲労強度の優れた高張力鋼及び製造方法
CN103014541A (zh) * 2012-12-21 2013-04-03 首钢总公司 一种690MPa级厚规格海洋工程用钢及其制造方法
CN109161791B (zh) * 2018-08-29 2020-08-25 宝山钢铁股份有限公司 具有优良低温韧性的690MPa级别船舶及海洋工程用钢及其制造方法
CN110791713A (zh) * 2019-11-20 2020-02-14 南京钢铁股份有限公司 一种低压缩比690MPa级特厚钢板及其制造方法
CN115094322A (zh) * 2022-06-29 2022-09-23 山东钢铁股份有限公司 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073071A (ja) * 1999-09-02 2001-03-21 Nippon Steel Corp 引張強さ570〜720N/mm2の溶接熱影響部と母材の硬さ差が小さい厚鋼板およびその製造方法
CN102851622A (zh) * 2012-09-19 2013-01-02 南京钢铁股份有限公司 一种超高强高韧性海洋工程用钢板及其生产方法
JP2014208891A (ja) * 2013-03-29 2014-11-06 株式会社神戸製鋼所 耐水素誘起割れ性と溶接熱影響部の靭性に優れた鋼板およびラインパイプ用鋼管
CN108193137A (zh) * 2018-02-11 2018-06-22 东北大学 一种不大于80mm厚1000MPa级水电用钢板的DQ-Q&T方法
CN109504897A (zh) * 2018-11-05 2019-03-22 江阴兴澄特种钢铁有限公司 一种80kg级低碳当量低裂纹敏感性大厚度水电钢及其制造方法
CN111621708A (zh) * 2020-06-30 2020-09-04 南阳汉冶特钢有限公司 一种冲击韧性高于lpg船储罐用p690ql2钢板的新型钢板及其生产方法
CN114277314A (zh) * 2021-12-02 2022-04-05 莱芜钢铁集团银山型钢有限公司 一种耐腐蚀大线能量焊接海洋工程用高强度钢板及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024001078A1 (zh) * 2022-06-29 2024-01-04 山东钢铁股份有限公司 一种80mm厚690MPa级超高强韧海工钢板及其制备方法

Also Published As

Publication number Publication date
WO2024001078A1 (zh) 2024-01-04

Similar Documents

Publication Publication Date Title
CN108504958B (zh) 一种690MPa级热轧厚规格低屈强比汽车轮辐用钢及其制备方法
CN109136738B (zh) 一种高强度耐低温船体结构钢板及其制备方法
CN110306111A (zh) 一种厚规格钢板及其制造方法
CN112981239B (zh) 一种调质低碳合金钢及其制造方法
CN111172466B (zh) 一种塑性增强的抗拉强度590MPa级冷轧双相钢及其生产方法
CN111455269A (zh) 屈服强度960MPa级甚高强度海工钢板及其制造方法
CN111286676A (zh) 一种高止裂性船用钢板的生产方法
CN112251672B (zh) 焊接性能优良的低屈强比eh690钢板及其制造方法
CN112680655B (zh) 700MPa级汽车用低合金高强冷轧钢板及制备方法
CN109023055B (zh) 一种高强度高成形性汽车钢板及其生产工艺
CN112251670A (zh) 一种延伸性能良好的690MPa级钢板及其制造方法
CN108085592B (zh) 一种小于等于100mm厚的屈服强度390MPa级船板钢及制备方法
CN114411059A (zh) 一种桥梁钢及其制造方法
CN111996462B (zh) 一种纵向变厚度超高强船板及生产方法
CN114134388A (zh) 一种抗拉强度1300MPa级薄规格超高强钢板及其制造方法
WO2024001078A1 (zh) 一种80mm厚690MPa级超高强韧海工钢板及其制备方法
CN115572901B (zh) 一种630MPa级高调质稳定性低碳低合金钢板及其制造方法
CN113151740B (zh) 低温韧性良好的vl4-4l船舶用钢板及其制造方法
CN110952040B (zh) EH460级150-200mm特厚钢板的生产方法
CN110747390B (zh) 一种高强度耐腐蚀船舶用钢及其制备方法
CN110331339B (zh) 一种低温韧性优异的高强度钢板及其制造方法
JPH02263918A (ja) 耐hic性および耐ssc性に優れた高張力鋼板の製造法
CN113151739B (zh) 540MPa级VL4-4MOD船舶用钢板及制造方法
JPH05195156A (ja) 溶接熱影響部靱性の優れた高マンガン超高張力鋼およびその製造方法
CN114875308B (zh) 一种薄规格高强度核反应堆安全壳用钢及其制造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination