WO2020113760A1 - 显示面板及其制作方法、显示模组 - Google Patents

显示面板及其制作方法、显示模组 Download PDF

Info

Publication number
WO2020113760A1
WO2020113760A1 PCT/CN2019/070678 CN2019070678W WO2020113760A1 WO 2020113760 A1 WO2020113760 A1 WO 2020113760A1 CN 2019070678 W CN2019070678 W CN 2019070678W WO 2020113760 A1 WO2020113760 A1 WO 2020113760A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protrusion
display panel
flat
emitting device
Prior art date
Application number
PCT/CN2019/070678
Other languages
English (en)
French (fr)
Inventor
夏冲冲
余威
杨杰
王�义
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US16/319,496 priority Critical patent/US20200185477A1/en
Publication of WO2020113760A1 publication Critical patent/WO2020113760A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/88Dummy elements, i.e. elements having non-functional features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1218Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or structure of the substrate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment

Definitions

  • the present application relates to the field of display, in particular to a display panel, a manufacturing method thereof, and a display module.
  • Organic light-emitting diode Organic Light-Emitting Diode, OLED
  • OLED Organic Light-Emitting Diode
  • the present application provides a display panel, a manufacturing method thereof, and a display module, to solve the technical problem of pixel discoloration of the existing display panel.
  • This application provides a display panel, which includes:
  • the flat layer includes a first protrusion, and an orthographic projection of the light emitting device layer on the first protrusion is located in the first protrusion.
  • the display panel further includes a pixel definition layer
  • the sum of the thickness of the first protrusion and the anode layer in the light emitting device layer is smaller than the thickness of the pixel definition layer.
  • the display panel further includes a first via, and the anode layer in the light emitting device layer is electrically connected to the source-drain layer in the thin film transistor through the first via.
  • the first via penetrates the first protrusion and the flat layer between the first protrusion and the source and drain.
  • the first via penetrates the flat layer.
  • the flat layer is formed by a multi-stage mask
  • the multi-stage mask includes a first area, a second area, and a third area in which light transmittance increases in sequence
  • the first area corresponds to the first protrusion of the flat layer
  • the third area corresponds to the first via on the flat layer
  • the second area corresponds to the flat layer except the first A protrusion and an area outside the first via.
  • the light transmittance of the first area, the second area, and the third area sequentially increase.
  • This application also proposes a method for manufacturing a display panel, which includes the following steps:
  • the orthographic projection of the light emitting device layer on the first protrusion is located in the first protrusion.
  • the method before the step S30, the method further includes:
  • the sum of the thickness of the first protrusion and the anode layer in the light emitting device layer is smaller than the thickness of the pixel definition layer.
  • the step S20 includes:
  • the anode layer in the light-emitting device layer is electrically connected to the source-drain layer in the thin film transistor through the first via hole.
  • the first via penetrates the first protrusion and the flat layer between the first protrusion and the source and drain.
  • the multi-stage mask includes a first area, a second area, and a third area in which light transmittance increases in sequence;
  • the first area corresponds to the first protrusion of the flat layer
  • the third area corresponds to the first via hole on the flat layer
  • the second area corresponds to division on the flat layer The first protrusion and the area other than the first via.
  • the light transmittance of the first area, the second area, and the third area increase in sequence.
  • the present application also proposes a display module, which includes a display panel and a polarizing layer and a cover layer on the display panel.
  • the display panel includes:
  • the flat layer includes a first protrusion, and an orthographic projection of the light emitting device layer on the first protrusion is located in the first protrusion.
  • the display panel further includes a pixel definition layer
  • the sum of the thickness of the first protrusion and the anode layer in the light emitting device layer is smaller than the thickness of the pixel definition layer.
  • the display panel further includes a first via, and the anode layer in the light emitting device layer is electrically connected to the source-drain layer in the thin film transistor through the first via.
  • the first via penetrates the first protrusion and the flat layer between the first protrusion and the source and drain.
  • the first via penetrates the flat layer.
  • the flat layer is formed by a multi-stage mask
  • the multi-stage mask includes a first region, a second region, and a third region in which light transmittance increases in sequence
  • the first area corresponds to the first protrusion of the flat layer
  • the third area corresponds to the first via on the flat layer
  • the second area corresponds to the flat layer except the first A protrusion and an area outside the first via.
  • the light transmittance of the first area, the second area, and the third area sequentially increase.
  • This application increases the first protrusion on the flat layer, reduces the vertical distance between the pixel definition layer and the anode layer, reduces the inner shadow area generated when the metal mask is used to form the light-emitting layer, reduces the risk of pixel loss of the display panel, and improves The yield of the display panel.
  • FIG. 1 is a film structure diagram of a display panel of the present application
  • FIG. 2 is a step diagram of a method for manufacturing a display panel of the application
  • 3A ⁇ 3H are process drawings of the manufacturing method of the display panel of the present application.
  • FIG. 1 is a film structure diagram of a display panel of the present application.
  • the display panel 100 includes:
  • the substrate 101, and the material of the substrate 101 may be one of a glass substrate, a quartz substrate, and a resin substrate.
  • the substrate 101 may also be a flexible substrate.
  • the material of the flexible substrate may be PI (polyimide).
  • the thin film transistor layer 200 on the substrate is the thin film transistor layer 200 on the substrate.
  • the thin film transistor layer 200 includes an etch barrier layer type, a back channel etch type, or a top gate thin film transistor type structure, which is not specifically limited.
  • the thin film transistor layer 200 of the top gate thin film transistor type includes: a barrier layer 102, a buffer layer 103, an active layer 104, a first gate insulating layer 105, a gate 106, a second gate insulating layer 107, and a second metal layer 108. Inter-insulation layer 109, source and drain 110.
  • the substrate 101 is a flexible substrate.
  • the material of the flexible substrate may include polyimide.
  • the barrier layer 102 is formed on the substrate 101.
  • the material of the barrier layer 102 includes silicon oxide.
  • the buffer layer 103 is formed on the barrier layer 102 and is mainly used to buffer the pressure between the layer structures of the film, and may also have a certain function of blocking water and oxygen.
  • the material of the buffer layer 103 includes one or more than one of silicon nitride or silicon oxide.
  • the active layer 104 is formed on the buffer layer 103.
  • the active layer 104 includes an ion-doped doped region 114.
  • the first gate insulating layer 105 is formed on the active layer 104.
  • the first gate insulating layer 105 covers the active layer 104, and the first gate insulating layer 105 is mainly used to isolate the active layer 104 from the metal layer on the active layer 104.
  • the gate 106 is formed on the first insulating layer 304.
  • the metal material of the gate electrode 106 may generally be one of metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, or copper, or a combination of the foregoing metal materials.
  • the metal material of the gate 106 may be molybdenum.
  • the second gate insulating layer 107 is formed on the gate 106.
  • the second gate insulating layer 107 is mainly used to isolate the gate 106 from the second metal layer 108.
  • the materials of the first gate insulating layer 105 and the second gate insulating layer 107 may be silicon nitride, silicon oxide, silicon oxynitride, or the like.
  • the second metal layer 108 is formed on the second gate insulating layer 107.
  • the metal material of the second metal layer 108 is the same as the gate 106.
  • the inter-insulation layer 109 is formed on the second metal layer 108.
  • the inter-insulation layer 109 covers the second metal layer 108 and is mainly used to isolate the second metal layer 108 from the source and drain 110 .
  • the material of the inter-insulating layer 109 may be the same as the first gate insulating layer 105 and the second gate insulating layer 107.
  • the source and drain 110 are formed on the inter-insulating layer 109.
  • the metal material of the source and drain 110 may be one of metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, copper, or titanium-aluminum alloy, or a combination of the foregoing metal materials.
  • the source-drain 110 is electrically connected to the doped region 114 through a via.
  • the metal material of the source and drain 110 is titanium aluminum alloy.
  • a flat layer 111 on the thin film transistor layer is formed.
  • the flat layer 111 may be formed of an organic film layer to increase the flexibility of the display panel 100.
  • the flat layer 111 includes a first protrusion 112 and a first via 113.
  • the flat layer 111 is formed by a multi-stage mask 300, and the multi-stage mask 300 includes a first region 301 and a The second area 302 and the third area 303.
  • the first region 301 corresponds to the first protrusion 112 of the flat layer 111
  • the third region 303 corresponds to the first via 113 on the flat layer 111
  • the second region 302 corresponds to the The area on the flat layer 111 excluding the first protrusion 112 and the first via 113.
  • the light transmittance of the first zone 301 is 0%.
  • the light transmittance of the third zone 303 is 100%.
  • the light transmittance of the second area 302 is located between the first area 301 and the third area 303, and specific values can be set according to actual conditions.
  • the first via hole 113 penetrates the first protrusion 112 and the flat layer 111 between the first protrusion 112 and the source and drain.
  • the first via hole 113 is located on the side of the first protrusion 112. In this embodiment, the first via 113 may only penetrate the flat layer 111.
  • the light emitting device layer 400 includes an anode layer 401, a light emitting layer 402, and a cathode layer 403 formed on the flat layer 111.
  • the light emitting device is a top emission type OLED device.
  • the anode layer 401 is a non-transparent metal electrode.
  • the orthographic projection of the anode layer 401 on the first protrusion 112 is located in the first protrusion 112.
  • the anode layer 401 is electrically connected to the source and drain 210 in the thin film transistor 200 through the first via hole 113.
  • the display panel 100 further includes a pixel definition layer 404 and a support layer 405 on the anode layer 401.
  • the pixel definition layer 404 includes a first opening 406 that is located on the anode layer 401.
  • the sum of the thickness of the first protrusion 112 and the anode layer 401 in the light emitting device layer 400 is smaller than the thickness of the pixel definition layer 404.
  • the material of the pixel definition layer 404 and the support layer 405 may be a photosensitive photoresist material.
  • the light-emitting layer 402 is divided into a plurality of light-emitting units by the pixel definition layer 404, and each of the light-emitting units corresponds to an anode unit in the anode layer 401.
  • the cathode layer 403 covers the light-emitting layer 402 and the pixel definition layer 404 on the flat layer 111.
  • the cathode layer 403 is a transparent material.
  • the material of the cathode layer 403 may be indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO) ) Or zinc aluminum oxide (AZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • In2O3 indium oxide
  • IGO indium gallium oxide
  • AZO zinc aluminum oxide
  • the encapsulation layer 500 on the light emitting device layer 400 is not limited.
  • the encapsulation layer 500 may be a hard glass cover plate.
  • This application increases the first protrusion on the flat layer, reduces the vertical distance between the pixel definition layer and the anode layer, reduces the inner shadow area generated when the metal mask is used to form the light-emitting layer, reduces the risk of pixel loss of the display panel, and improves The yield of the display panel.
  • FIG. 2 is a step diagram of the manufacturing method of the display panel of the present application.
  • Figs. 3A ⁇ 3H are process drawings of the manufacturing method of the display panel of this application.
  • This application also proposes a method for manufacturing a display panel, which includes the following steps:
  • the raw material of the substrate 101 may be one of a glass substrate, a quartz substrate, and a resin substrate.
  • the substrate 101 may also be a flexible substrate.
  • the material of the flexible substrate may be PI (polyimide).
  • the thin film transistor layer 200 includes an etch barrier layer type, a back channel etch type, or a top gate thin film transistor type structure, which is not specifically limited.
  • the thin-film transistor layer 200 of the top-gate thin-film transistor type includes: a barrier layer 102, a buffer layer 103, an active layer 104, a first gate insulating layer 105, a gate 106, a second gate insulating layer 107, and a second metal layer 108. Inter-insulation layer 109, source and drain 110.
  • the substrate 101 is a flexible substrate.
  • the material of the flexible substrate may include polyimide.
  • the barrier layer 102 is formed on the substrate 101.
  • the material of the barrier layer 102 includes silicon oxide.
  • the buffer layer 103 is formed on the barrier layer 102 and is mainly used to buffer the pressure between the layer structures of the film, and may also have a certain function of blocking water and oxygen.
  • the material of the buffer layer 103 includes one or more than one of silicon nitride or silicon oxide.
  • the active layer 104 is formed on the buffer layer 103.
  • the active layer 104 includes an ion-doped doped region 114.
  • the first gate insulating layer 105 is formed on the active layer 104.
  • the first gate insulating layer 105 covers the active layer 104, and the first gate insulating layer 105 is mainly used to isolate the active layer 104 from the metal layer on the active layer 104.
  • the gate 106 is formed on the first insulating layer 304.
  • the metal material of the gate electrode 106 may generally be one of metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, or copper, or a combination of the foregoing metal materials.
  • the metal material of the gate 106 may be molybdenum.
  • the second gate insulating layer 107 is formed on the gate 106.
  • the second gate insulating layer 107 is mainly used to isolate the gate 106 from the second metal layer 108.
  • the materials of the first gate insulating layer 105 and the second gate insulating layer 107 may be silicon nitride, silicon oxide, silicon oxynitride, or the like.
  • the second metal layer 108 is formed on the second gate insulating layer 107.
  • the metal material of the second metal layer 108 is the same as the gate 106.
  • the inter-insulation layer 109 is formed on the second metal layer 108.
  • the inter-insulation layer 109 covers the second metal layer 108 and is mainly used to isolate the second metal layer 108 from the source and drain 110 .
  • the material of the inter-insulating layer 109 may be the same as the first gate insulating layer 105 and the second gate insulating layer 107.
  • the source and drain 110 are formed on the inter-insulating layer 109.
  • the metal material of the source and drain electrode 110 may be one of metals such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, copper, or titanium aluminum alloy, or a combination of the foregoing metal materials.
  • the source and drain 110 are electrically connected to the doped region 114 through a via.
  • the metal material of the source and drain 110 is titanium aluminum alloy.
  • the step S20 specifically includes:
  • the first film layer 115 may be an organic film layer to increase the flexibility of the display panel.
  • a multi-layer mask 300 is used to form the first film layer 115 into a flat layer 111 including the first protrusion 112 and the first via 113.
  • the first via hole 113 penetrates the first protrusion 112 and the flat layer 111 between the first protrusion 112 and the source/drain 110.
  • the first via hole 113 is located on the side of the first protrusion 112. In this embodiment, the first via 113 may only penetrate the flat layer 111.
  • the multi-stage reticle 300 includes a first region 301, a second region 302, and a third region 303 whose light transmittance increases in sequence.
  • the first region 301 corresponds to the first protrusion 112 of the flat layer 111
  • the third region 303 corresponds to the first via 113 on the flat layer 111
  • the second region 302 corresponds to A region on the flat layer 111 excluding the first protrusion 112 and the first via 113.
  • the light transmittance of the first zone 301 is 0%.
  • the light transmittance of the third zone 303 is 100%.
  • the light transmittance of the second area 302 is located between the first area 301 and the third area 303, and specific values can be set according to actual conditions.
  • the light emitting device layer 400 includes an anode layer 401, a light emitting layer 402, and a cathode layer 403 formed on the flat layer 111.
  • the step S30 specifically includes:
  • the anode layer 401 is mainly used to provide holes for absorbing electrons.
  • the light emitting device is a top emission type OLED device.
  • the anode layer 401 is a non-transparent metal electrode.
  • the orthographic projection of the anode layer 401 on the first protrusion 112 is located in the first protrusion 112.
  • the anode layer 401 is electrically connected to the source and drain electrodes 110 in the thin film transistor 200 through the first via hole 113.
  • the pixel definition layer 404 includes a first opening 406, and the first opening 406 is located on the anode layer 401.
  • the sum of the thickness of the first protrusion 112 and the anode layer 401 in the light emitting device layer 400 is smaller than the thickness of the pixel definition layer 404.
  • the material of the pixel definition layer 404 and the support layer 405 may be a photosensitive photoresist material.
  • the light-emitting layer 402 is divided into a plurality of light-emitting units by a pixel definition layer 404, and each of the light-emitting units corresponds to an anode unit in the anode layer 401.
  • the cathode layer 403 covers the light-emitting layer 402 and the pixel definition layer 404 on the flat layer 111.
  • the cathode layer 403 is a transparent material.
  • the material of the cathode layer 403 may be indium tin oxide (ITO), indium zinc oxide (IZO), zinc oxide (ZnO), indium oxide (In2O3), indium gallium oxide (IGO) ) Or zinc aluminum oxide (AZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • ZnO zinc oxide
  • In2O3 indium oxide
  • IGO indium gallium oxide
  • AZO zinc aluminum oxide
  • the encapsulation layer 500 may be a hard glass cover.
  • This application increases the first protrusion on the flat layer, reduces the vertical distance between the pixel definition layer and the anode layer, reduces the inner shadow area generated when the metal mask is used to form the light-emitting layer, reduces the risk of pixel loss of the display panel, and improves The yield of the display panel.
  • the present application also proposes a display module.
  • the display module includes a display panel and a touch layer, a polarizing layer, and a cover layer on the display panel.
  • the encapsulation layer is bonded to the touch layer through a first optical adhesive layer
  • the polarizing layer is bonded to the cover plate layer through a second optical adhesive layer.
  • the working principle of the display module is similar to the working principle of the display panel.
  • the working principle of the display module reference may be made to the working principle of the display panel, which will not be repeated here.
  • the present application proposes a display panel, a method for manufacturing the same, and a display module, including: a substrate; a thin film transistor layer on the substrate; a flat layer on the thin film transistor layer; and light emission on the flat layer A device layer; an encapsulation layer on the light-emitting device layer; wherein the flat layer includes a first protrusion, and the light-emitting device layer is located in the first protrusion in an orthographic projection of the first protrusion.
  • This application increases the first protrusion on the flat layer, reduces the vertical distance between the pixel definition layer and the anode layer, reduces the inner shadow area generated when the metal mask is used to form the light-emitting layer, reduces the risk of pixel loss of the display panel, and improves The yield of the display panel.

Abstract

一种显示面板(100)及其制作方法、显示模组,包括:基板(101);位于基板(101)上的薄膜晶体管层(200);位于薄膜晶体管层(200)上的平坦层(111);位于平坦层(111)上的发光器件层(400);位于发光器件层(400)上的封装层(500);其中,平坦层(111)包括第一凸起(112),发光器件层(400)在第一凸起(112)的正投影位于第一凸起(112)内。

Description

显示面板及其制作方法、显示模组 技术领域
本申请涉及显示领域,特别涉及一种显示面板及其制作方法、显示模组。
背景技术
有机发光二极管(Organic Light-Emitting Diode,OLED)显示器具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高和功耗低等众多优点,逐渐成为继液晶显示器后的第三代显示技术。
在现有OLED显示面板发光层的蒸镀工艺中,由于金属掩模板开口的不规则特性、及基板与金属掩模板之间的间隙等原因,在镀膜时会形成内阴影,导致发光单元蒸镀不完全,使得显示面板中像素缺色,降低显示面板的良率。
技术问题
本申请提供一种显示面板及其制作方法、显示模组,以解决现有显示面板像素却色的技术问题。
技术解决方案
本申请提供一种显示面板,其包括:
基板;
位于所述基板上的薄膜晶体管层;
位于所述薄膜晶体管层上的平坦层;
位于所述平坦层上的发光器件层;
位于所述发光器件层上的封装层;
其中,所述平坦层包括第一凸起,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
在本申请的显示面板中,所述显示面板还包括像素定义层;
所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
在本申请的显示面板中,所述显示面板还包括第一过孔,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
在本申请的显示面板中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
在本申请的显示面板中,所述第一过孔贯穿所述平坦层。
在本申请的显示面板中,所述平坦层通过一多段式掩摸版形成,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
在本申请的显示面板中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
本申请还提出了一种显示面板的制作方法,其包括步骤:
S10、提供一基板,在所述基板上形成薄膜晶体管层;
S20、在所述薄膜晶体管层上形成第一膜层,使用第一光罩,使所述第一膜层形成包括第一凸起的平坦层;
S30、在所述平坦层上形成发光器件层;
S40、在所述发光器件层上形成封装层;
其中,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
在本申请的制作方法中,在所述步骤S30之前,还包括:
在所述平坦层上形成像素定义层;
其中,所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
在本申请的制作方法中,所述步骤S20包括:
S201、在所述薄膜晶体管层上形成第一膜层;
S202、利用一多段式掩摸版,对所述第一膜层图案化处理,使所述第一膜层形成包括第一凸起及第一过孔的平坦层;
其中,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
在本申请的制作方法中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
在本申请的制作方法中,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的所述第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
在本申请的制作方法中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
本申请还提出了一种显示模组,其中,包括显示面板及位于所述显示面板上的偏光层、盖板层,所述显示面板包括:
基板;
位于所述基板上的薄膜晶体管层;
位于所述薄膜晶体管层上的平坦层;
位于所述平坦层上的发光器件层;
位于所述发光器件层上的封装层;
其中,所述平坦层包括第一凸起,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
在本申请的显示模组中,所述显示面板还包括像素定义层;
所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
在本申请的显示模组中,所述显示面板还包括第一过孔,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
在本申请的显示模组中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
在本申请的显示模组中,所述第一过孔贯穿所述平坦层。
在本申请的显示模组中,所述平坦层通过一多段式掩摸版形成,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
在本申请的显示模组中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
有益效果
本申请通过在平坦层上增加第一凸起,降低像素定义层与阳极层的垂直间距,减少利用金属掩膜版形成发光层时产生的内阴影面积,降低显示面板像素缺色的风险,提高显示面板的良率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请显示面板的膜层结构图;
图2为本申请显示面板制作方法的步骤图;
图3A~3H为本申请显示面板制作方法的工艺图。
本发明的实施方式
以下各实施例的说明是参考附加的图示,用以例示本申请可用以实施的特定实施例。本申请所提到的方向用语,例如[上]、[下]、[前]、[后]、[左]、[右]、[内]、[外]、[侧面]等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本申请,而非用以限制本申请。在图中,结构相似的单元是用以相同标号表示。
请参阅图1,图1为本申请显示面板的膜层结构图。
所述显示面板100包括:
基板101,所述基板101的原材料可以为玻璃基板、石英基板、树脂基板等中的一种。在一种实施例中,所述基板101还可以为柔性基板。所述柔性基板的材料可以为PI(聚酰亚胺)。
位于所述基板上的薄膜晶体管层200。
所述薄膜晶体管层200包括蚀刻阻挡层型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如顶栅薄膜晶体管型的所述薄膜晶体管层200包括:阻挡层102、缓冲层103、有源层104、第一栅绝缘层105、栅极106、第二栅绝缘层107、第二金属层108、间绝缘层109、源漏极110。
在一种实施例中,所述基板101柔性基板。所述柔性基板的材料可以包括聚酰亚胺。
所述阻挡层102形成于所述基板101上。在一种实施例中,所述阻挡层102的材料包括氧化硅。
所述缓冲层103形成于所述阻挡层102上,主要用于缓冲膜层质结构之间的压力,并且还可以具有一定阻水氧的功能。
在一种实施例中,所述缓冲层103的材料包括氮化硅或氧化硅中的一种或一种以上的组合物。
所述有源层104形成于所述缓冲层103上,所述有源层104包括经离子掺杂的掺杂区114。
所述第一栅绝缘层105形成于所述有源层104上。所述第一栅绝缘层105将所述有源层104覆盖,所述第一栅绝缘层105主要用于将所述有源层104与位于所述有源层104上的金属层隔离。
所述栅极106形成于所述第一绝缘层304上。所述栅极106的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属中的一种,也可以使用上述几种金属材料的组合物。
在一种实施例中,所述栅极106的金属材料可以为钼。
第二栅绝缘层107形成于所述栅极106上。所述第二栅绝缘层107主要用于将所述栅极106与第二金属层108隔离。
在一种实施例中,所述第一栅绝缘层105和所述第二栅绝缘层107的材料可以为氮化硅、氧化硅或氮氧化硅等。
所述第二金属层108形成于所述第二栅绝缘层107上。在一种实施例中,所述第二金属层108的金属材料与所述栅极106相同。
所述间绝缘层109形成于所述第二金属层108上,所述间绝缘层109将所述第二金属层108覆盖,主要用于将所述第二金属层108和源漏极110隔离。
在一种实施例中,所述间绝缘层109的材料可以与所述第一栅绝缘层105和所述第二栅绝缘层107相同。
所述源漏极110形成于所述间绝缘层109上。所述源漏极110的金属材料可以采用钼、铝、铝镍合金、钼钨合金、铬、铜或钛铝合金等金属中的一种,也可以使用上述几种金属材料的组合物。
所述源漏极110通过过孔与所述掺杂区114电连接。在一种实施例中,所述源漏极110的金属材料为钛铝合金。
位于所述薄膜晶体管层上的平坦层111。
在一种实施例中,所述平坦层111可以由一有机膜层形成,以增加所述显示面板100的柔性。
所述平坦层111包括第一凸起112和第一过孔113。
在一种实施例中,请参阅图3C,所述平坦层111通过一多段式掩摸版300形成,所述多段式掩摸版300包括光穿透率依次增加的第一区301、第二区302及第三区303。所述第一区301对应所述平坦层111的所述第一凸起112,所述第三区303对应所述平坦层111上的第一过孔113,所述第二区302对应所述平坦层111上除所述第一凸起112及所述第一过孔113以外的区域。
在一种实施例中,所述第一区301的光透过率为0%。所述第三区303的光透过率为100%。所述第二区302的光透过率位于所述第一区301及所述第三区303之间,具体数值可以根据实际情况进行设置。
在一种实施例中,所述第一过孔113贯穿所述第一凸起112、及位于所述第一凸起112与所述源漏极之间的所述平坦层111。
在一种实施例中,请参阅图3D,所述第一过孔113位于所述第一凸起112一侧。本实施例中,所述第一过孔113可以仅贯穿所述平坦层111。
发光器件层400,包括形成于所述平坦层111上的阳极层401、发光层402及阴极层403。
在一种实施例中,发光器件(OLED)为顶发射型OLED器件。所述阳极层401为非透明的金属电极。
在一种实施例中,所述阳极层401在所述第一凸起112上的正投影位于所述第一凸起112内。所述阳极层401通过所述第一过孔113与所述薄膜晶体管200中的源漏极210电连接。
请参阅图1,所述显示面板100还包括位于所述阳极层401上的像素定义层404及支撑层405。
所述像素定义层404包括第一开口406,所述第一开口406位于所述阳极层401上。所述第一凸起112与所述发光器件层400中阳极层401的厚度之和小于所述像素定义层404的厚度。
在一种实施例中,所述像素定义层404和所述支撑层405的材料可以为感光型光阻材料。
所述发光层402被像素定义层404分隔成多个发光单元,每一所述发光单元对应一所述阳极层401中的阳极单元。
所述阴极层403覆盖所述发光层402及位于所述平坦层111上的像素定义层404。
在一种实施例中,所述阴极层403为透明材料。
在一种实施例中,所述阴极层403的材料可选为铟锡氧化物(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟(In2O3)、铟镓氧化物(IGO)或氧化锌铝(AZO)中的至少一种。
位于所述发光器件层400上的封装层500。
在一种实施例中,所述封装层500可以为一硬质玻璃盖板。
本申请通过在平坦层上增加第一凸起,降低像素定义层与阳极层的垂直间距,减少利用金属掩膜版形成发光层时产生的内阴影面积,降低显示面板像素缺色的风险,提高显示面板的良率。
请参阅图2,图2为本申请显示面板制作方法的步骤图。
请参阅图3A~3H,图3A~3H为本申请显示面板制作方法的工艺图。
本申请还提出了一种显示面板的制作方法,其包括步骤:
S10、提供一基板101,在所述基板101上形成薄膜晶体管层200;
请参阅图3A,所述基板101的原材料可以为玻璃基板、石英基板、树脂基板等中的一种。在一种实施例中,所述基板101还可以为柔性基板。所述柔性基板的材料可以为PI(聚酰亚胺)。
所述薄膜晶体管层200包括蚀刻阻挡层型、背沟道蚀刻型或顶栅薄膜晶体管型等结构,具体没有限制。例如顶栅薄膜晶体管型的所述薄膜晶体管层200包括:阻挡层102、缓冲层103、有源层104、第一栅绝缘层105、栅极106、第二栅绝缘层107、第二金属层108、间绝缘层109、源漏极110。
在一种实施例中,所述基板101柔性基板。所述柔性基板的材料可以包括聚酰亚胺。
所述阻挡层102形成于所述基板101上。在一种实施例中,所述阻挡层102的材料包括氧化硅。
所述缓冲层103形成于所述阻挡层102上,主要用于缓冲膜层质结构之间的压力,并且还可以具有一定阻水氧的功能。
在一种实施例中,所述缓冲层103的材料包括氮化硅或氧化硅中的一种或一种以上的组合物。
所述有源层104形成于所述缓冲层103上,所述有源层104包括经离子掺杂的掺杂区114。
所述第一栅绝缘层105形成于所述有源层104上。所述第一栅绝缘层105将所述有源层104覆盖,所述第一栅绝缘层105主要用于将所述有源层104与位于所述有源层104上的金属层隔离。
所述栅极106形成于所述第一绝缘层304上。所述栅极106的金属材料通常可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属中的一种,也可以使用上述几种金属材料的组合物。
在一种实施例中,所述栅极106的金属材料可以为钼。
第二栅绝缘层107形成于所述栅极106上。所述第二栅绝缘层107主要用于将所述栅极106与第二金属层108隔离。
在一种实施例中,所述第一栅绝缘层105和所述第二栅绝缘层107的材料可以为氮化硅、氧化硅或氮氧化硅等。
所述第二金属层108形成于所述第二栅绝缘层107上。在一种实施例中,所述第二金属层108的金属材料与所述栅极106相同。
所述间绝缘层109形成于所述第二金属层108上,所述间绝缘层109将所述第二金属层108覆盖,主要用于将所述第二金属层108和源漏极110隔离。
在一种实施例中,所述间绝缘层109的材料可以与所述第一栅绝缘层105和所述第二栅绝缘层107相同。
所述源漏极110形成于所述间绝缘层109上。所述源漏极110的金属材料可以采用钼、铝、铝镍合金、钼钨合金、铬、铜或钛铝合金等金属中的一种,也可以使用上述几种金属材料的组合物。
所述源漏极110通过过孔与所述掺杂区114电连接。在一种实施例中,所述源漏极110的金属材料为钛铝合金。
S20、在所述薄膜晶体管层200上形成第一膜层115,使用第一光罩,使所述第一膜层115形成包括第一凸起112的平坦层111;
所述步骤S20具体包括:
S201、在所述薄膜晶体管层200上形成第一膜层115;
请参阅图3B,所述第一膜层115可以为有机膜层,以增加所述显示面板的柔性。
S202、利用一多段式掩摸版300,对所述第一膜层115图案化处理,使所述第一膜层115形成包括第一凸起112及第一过孔113的平坦层111;
请参阅图3C,在本步骤中,利用一多段式掩摸版300使所述第一膜层115形成包括第一凸起112及第一过孔113的平坦层111。
在一种实施例中,所述第一过孔113贯穿所述第一凸起112、及位于所述第一凸起112与所述源漏极110之间的所述平坦层111。
在一种实施例中,请参阅图3D,请参阅图3D,所述第一过孔113位于所述第一凸起112一侧。本实施例中,所述第一过孔113可以仅贯穿所述平坦层111。
所述多段式掩摸版300包括光穿透率依次增加的第一区301、第二区302及第三区303。所述第一区301对应所述平坦层111的所述第一凸起112,所述第三区303对应所述平坦层111上的所述第一过孔113,所述第二区302对应所述平坦层111上除所述第一凸起112及所述第一过孔113以外的区域。
在一种实施例中,所述第一区301的光透过率为0%。所述第三区303的光透过率为100%。所述第二区302的光透过率位于所述第一区301及所述第三区303之间,具体数值可以根据实际情况进行设置。
S30、在所述平坦层111上形成发光器件层400;
所述发光器件层400包括形成于所述平坦层111上的阳极层401、发光层402及阴极层403。
所述步骤S30具体包括:
S301、在所述平坦层111上形成阳极层401;
请参阅图3E,所述阳极层401主要用于提供吸收电子的空穴。
在一种实施例中,发光器件(OLED)为顶发射型OLED器件。所述阳极层401为非透明的金属电极。
在一种实施例中,所述阳极层401在所述第一凸起112上的正投影位于所述第一凸起112内。所述阳极层401通过所述第一过孔113与所述薄膜晶体管200中的源漏极110电连接。
S302、在所述阳极层401上形成像素定义层404及支撑层405;
请参阅图3F,所述像素定义层404包括第一开口406,所述第一开口406位于所述阳极层401上。所述第一凸起112与所述发光器件层400中阳极层401的厚度之和小于所述像素定义层404的厚度。
在一种实施例中,所述像素定义层404和所述支撑层405的材料可以为感光型光阻材料。
S303、在所述第一开口406内形成发光层403;
请参阅图3F,所述发光层402被像素定义层404分隔成多个发光单元,每一所述发光单元对应一所述阳极层401中的阳极单元。
S304、在所述发光层402上形成阴极层403;
请参阅图3G,所述阴极层403覆盖所述发光层402及位于所述平坦层111上的像素定义层404。
在一种实施例中,所述阴极层403为透明材料。
在一种实施例中,所述阴极层403的材料可选为铟锡氧化物(ITO)、氧化铟锌(IZO)、氧化锌(ZnO)、氧化铟(In2O3)、铟镓氧化物(IGO)或氧化锌铝(AZO)中的至少一种。
S40、在所述发光器件层400上形成封装层500;
请参阅图3H,所述封装层500可以为一硬质玻璃盖板。
本申请通过在平坦层上增加第一凸起,降低像素定义层与阳极层的垂直间距,减少利用金属掩膜版形成发光层时产生的内阴影面积,降低显示面板像素缺色的风险,提高显示面板的良率。
本申请还提出了一种显示模组,所述显示模组包括显示面板及位于所述显示面板上的触控层、偏光层和盖板层。所述封装层通过第一光学胶层与所述触控层粘接,所述偏光层通过第二光学胶层与所述盖板层粘接。
所述显示模组的工作原理与所述显示面板的工作原理相似,所述显示模组的工作原理具体可以参考所述显示面板的工作原理,这里不做赘述。
本申请提出了一种显示面板及其制作方法、显示模组,包括:基板;位于所述基板上的薄膜晶体管层;位于所述薄膜晶体管层上的平坦层;位于所述平坦层上的发光器件层;位于所述发光器件层上的封装层;其中,所述平坦层包括第一凸起,所述发光器件层在所述第一凸起的正投影位于所述第一凸起内。本申请通过在平坦层上增加第一凸起,降低像素定义层与阳极层的垂直间距,减少利用金属掩膜版形成发光层时产生的内阴影面积,降低显示面板像素缺色的风险,提高显示面板的良率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其中,包括:
    基板;
    位于所述基板上的薄膜晶体管层;
    位于所述薄膜晶体管层上的平坦层;
    位于所述平坦层上的发光器件层;
    位于所述发光器件层上的封装层;
    其中,所述平坦层包括第一凸起,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
  2. 根据权利要求1所述的显示面板,其中,所述显示面板还包括像素定义层;
    所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
  3. 根据权利要求1所述的显示面板,其中,所述显示面板还包括第一过孔,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
  4. 根据权利要求3所述的显示面板,其中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
  5. 根据权利要求3所述的显示面板,其中,所述第一过孔贯穿所述平坦层。
  6. 根据权利要求1所述的显示面板,其中,所述平坦层通过一多段式掩摸版形成,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
    所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
  7. 根据权利要求6所述的显示面板,其中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
  8. 一种显示面板的制作方法,其中,包括步骤:
    S10、提供一基板,在所述基板上形成薄膜晶体管层;
    S20、在所述薄膜晶体管层上形成第一膜层,使用第一光罩,使所述第一膜层形成包括第一凸起的平坦层;
    S30、在所述平坦层上形成发光器件层;
    S40、在所述发光器件层上形成封装层;
    其中,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
  9. 根据权利要求8所述的制作方法,其中,在所述步骤S30之前,还包括:
    在所述平坦层上形成像素定义层;
    其中,所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
  10. 根据权利要求8所述的制作方法,其中,所述步骤S20包括:
    S201、在所述薄膜晶体管层上形成第一膜层;
    S202、利用一多段式掩摸版,对所述第一膜层图案化处理,使所述第一膜层形成包括第一凸起及第一过孔的平坦层;
    其中,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
  11. 根据权利要求10所述的制作方法,其中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
  12. 根据权利要求10所述的制作方法,其中,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
    所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的所述第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
  13. 根据权利要求12所述的制作方法,其中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
  14. 一种显示模组,其中,包括显示面板及位于所述显示面板上的偏光层、盖板层,所述显示面板包括:
    基板;
    位于所述基板上的薄膜晶体管层;
    位于所述薄膜晶体管层上的平坦层;
    位于所述平坦层上的发光器件层;
    位于所述发光器件层上的封装层;
    其中,所述平坦层包括第一凸起,所述发光器件层在所述第一凸起上的正投影位于所述第一凸起内。
  15. 根据权利要求14所述的显示模组,其中,所述显示面板还包括像素定义层;
    所述第一凸起与所述发光器件层中阳极层的厚度之和小于所述像素定义层的厚度。
  16. 根据权利要求14所述的显示模组,其中,所述显示面板还包括第一过孔,所述发光器件层中阳极层通过所述第一过孔与所述薄膜晶体管中的源漏极层电连接。
  17. 根据权利要求16所述的显示模组,其中,所述第一过孔贯穿所述第一凸起、及位于所述第一凸起与所述源漏极之间的所述平坦层。
  18. 根据权利要求16所述的显示模组,其中,所述第一过孔贯穿所述平坦层。
  19. 根据权利要求14所述的显示模组,其中,所述平坦层通过一多段式掩摸版形成,所述多段式掩摸版包括光穿透率依次增加的第一区、第二区及第三区;
    所述第一区对应所述平坦层的所述第一凸起,所述第三区对应所述平坦层上的第一过孔,所述第二区对应所述平坦层上除所述第一凸起及所述第一过孔以外的区域。
  20. 根据权利要求19所述的显示模组,其中,所述第一区、所述第二区及所述第三区的光穿透率依次增加。
PCT/CN2019/070678 2018-12-06 2019-01-07 显示面板及其制作方法、显示模组 WO2020113760A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/319,496 US20200185477A1 (en) 2018-12-06 2019-01-07 Display panel, method manufacturing same and display module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811485629.4A CN109638020A (zh) 2018-12-06 2018-12-06 显示面板及其制作方法、显示模组
CN201811485629.4 2018-12-06

Publications (1)

Publication Number Publication Date
WO2020113760A1 true WO2020113760A1 (zh) 2020-06-11

Family

ID=66071497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070678 WO2020113760A1 (zh) 2018-12-06 2019-01-07 显示面板及其制作方法、显示模组

Country Status (2)

Country Link
CN (1) CN109638020A (zh)
WO (1) WO2020113760A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969005B (zh) * 2019-05-20 2021-09-17 京东方科技集团股份有限公司 显示面板和制造显示面板的方法
CN111048592B (zh) * 2019-11-19 2022-10-25 福建华佳彩有限公司 一种薄膜场效应晶体管结构及制作方法
US11522031B2 (en) 2020-06-01 2022-12-06 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel, display device, and manufacturing method of display panel
CN111725266A (zh) * 2020-06-01 2020-09-29 武汉华星光电半导体显示技术有限公司 一种显示面板、显示装置以及显示面板的制作方法
CN111769151B (zh) * 2020-07-10 2022-10-28 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN113299543A (zh) * 2021-05-21 2021-08-24 安徽熙泰智能科技有限公司 一种硅基Micro OLED微显示器件有机像素定义层及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773720A (zh) * 2004-09-08 2006-05-17 三星Sdi株式会社 有机发光显示器及其制造方法
JP2011181883A (ja) * 2010-03-03 2011-09-15 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
CN103681744A (zh) * 2012-09-21 2014-03-26 三星显示有限公司 有机发光显示面板及其制造方法
CN107342304A (zh) * 2016-04-29 2017-11-10 乐金显示有限公司 有机发光显示装置及其制造方法
US20180033848A1 (en) * 2016-08-01 2018-02-01 Samsung Display Co., Ltd. Organic light emitting diode display
CN108155298A (zh) * 2016-11-30 2018-06-12 乐金显示有限公司 有机发光显示面板和包括该面板的有机发光显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103928626A (zh) * 2014-04-17 2014-07-16 上海和辉光电有限公司 Oled发光装置及其制造方法
CN108198838B (zh) * 2017-12-28 2020-09-11 深圳市华星光电技术有限公司 显示面板及其制作方法
CN108598114B (zh) * 2018-04-24 2020-06-02 京东方科技集团股份有限公司 有机发光显示面板及其制备方法、显示装置
CN108550612B (zh) * 2018-05-29 2020-11-13 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1773720A (zh) * 2004-09-08 2006-05-17 三星Sdi株式会社 有机发光显示器及其制造方法
JP2011181883A (ja) * 2010-03-03 2011-09-15 Samsung Mobile Display Co Ltd 有機発光表示装置及びその製造方法
CN103681744A (zh) * 2012-09-21 2014-03-26 三星显示有限公司 有机发光显示面板及其制造方法
CN107342304A (zh) * 2016-04-29 2017-11-10 乐金显示有限公司 有机发光显示装置及其制造方法
US20180033848A1 (en) * 2016-08-01 2018-02-01 Samsung Display Co., Ltd. Organic light emitting diode display
CN108155298A (zh) * 2016-11-30 2018-06-12 乐金显示有限公司 有机发光显示面板和包括该面板的有机发光显示装置

Also Published As

Publication number Publication date
CN109638020A (zh) 2019-04-16

Similar Documents

Publication Publication Date Title
WO2020206721A1 (zh) 显示面板及制作方法、显示模组
US11152443B2 (en) Display panel having a storage capacitor and method of fabricating same
WO2020133714A1 (zh) 显示面板及显示模组、电子装置
WO2020113760A1 (zh) 显示面板及其制作方法、显示模组
WO2020206810A1 (zh) 双面显示面板及其制备方法
WO2020124804A1 (zh) 触控显示面板及其制作方法、触控显示装置
CN108054192A (zh) 柔性amoled基板及其制作方法
WO2020056803A1 (zh) 显示面板及其制作方法、显示模组
US20200185477A1 (en) Display panel, method manufacturing same and display module
US9099404B2 (en) Array substrate and manufacturing method thereof, OLED display device
WO2015043269A1 (zh) Oled像素结构和oled显示装置
WO2020206824A1 (zh) 一种有机发光二极管显示器及其制作方法
WO2019080252A1 (zh) Oled背板的制作方法
US10784287B2 (en) TFT substrate and manufacturing method thereof
WO2021035964A1 (zh) 一种oled显示面板及其制备方法
WO2020228195A1 (zh) 显示面板及制作方法
WO2018205587A1 (zh) 显示基板及其制作方法、显示装置
WO2020232913A1 (zh) 显示面板及制作方法
KR101254747B1 (ko) 박막 트랜지스터, 박막 트랜지스터의 제조방법 및 이를 이용한 표시장치
WO2018086210A1 (zh) Tft基板及其制作方法
WO2015062271A1 (zh) 一种底发射基板、显示装置及该基板的制造方法
JP2005019373A (ja) アクティブマトリックス有機発光ディスプレイ
WO2021051494A1 (zh) 一种彩膜基板、显示面板及其制备方法
US20170352711A1 (en) Manufacturing method of tft backplane and tft backplane
US10964755B2 (en) Organic light emitting diode panel including light emitting units and color filter layer, method for manufacturing the same, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893417

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893417

Country of ref document: EP

Kind code of ref document: A1