WO2020111883A1 - 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법 - Google Patents

수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020111883A1
WO2020111883A1 PCT/KR2019/016766 KR2019016766W WO2020111883A1 WO 2020111883 A1 WO2020111883 A1 WO 2020111883A1 KR 2019016766 W KR2019016766 W KR 2019016766W WO 2020111883 A1 WO2020111883 A1 WO 2020111883A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
aluminum
iron
plated steel
hot press
Prior art date
Application number
PCT/KR2019/016766
Other languages
English (en)
French (fr)
Inventor
오진근
김성우
김상헌
조열래
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/297,753 priority Critical patent/US11491764B2/en
Priority to CN201980078926.3A priority patent/CN113166911B/zh
Priority to JP2021529449A priority patent/JP7251011B2/ja
Priority to EP19891572.0A priority patent/EP3889315A4/en
Priority to MX2021006199A priority patent/MX2021006199A/es
Priority claimed from KR1020190156854A external-priority patent/KR102280092B1/ko
Publication of WO2020111883A1 publication Critical patent/WO2020111883A1/ko
Priority to US17/954,605 priority patent/US20230041587A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/082Coating starting from inorganic powder by application of heat or pressure and heat without intermediate formation of a liquid in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Definitions

  • the present invention relates to an iron-aluminum-based plated steel sheet for hot press having excellent hydrogen delay fracture characteristics and spot weldability, and a method for manufacturing the same.
  • the hot press forming method is a method of forming a low-temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature, which is good for processing, and then rapidly cooling the steel sheet to increase the strength of the final product. In this case, when manufacturing a member having high strength, there is an advantage of minimizing the problem of processability.
  • Patent Document 1 has been proposed as a method for solving this problem.
  • a steel plate subjected to aluminum plating is used in a process of heating and quenching (shortly'post heat treatment') after hot press forming or room temperature forming. Since the aluminum plating layer is present on the surface of the steel sheet, the steel sheet is not oxidized upon heating, but when the thickness of the plating layer is thick, there is a problem that the spot weldability of the hot press-formed member is deteriorated.
  • the steel sheet when subjected to hot press forming, the steel sheet may have a strength of 1000 MPa or more, and in some cases, 1400 MPa or more, and in recent years, the required level of strength may be further increased to have a strength of 1800 MPa or more.
  • the strength of the steel sheet becomes high, it becomes sensitive to hydrogen-delayed fracture, and even when it contains a small amount of hydrogen, the steel sheet sometimes breaks.
  • diffusion of Fe occurs from the iron on the surface of the steel sheet to the plated layer on the surface and alloying occurs in the plating layer. There is a problem that the hydrogen resistance of the member is inferior.
  • Patent Document 1 U.S. Patent Publication No. 6,296,805
  • an iron-aluminum-plated steel sheet for hot press forming having excellent hydrogen delay fracture characteristics and spot weldability and a method for manufacturing the same.
  • An iron-aluminum-based plated steel sheet includes: a steel sheet; And a plating layer formed on the surface of the holding steel plate, wherein the plating layer comprises a diffusion layer comprising a Cu-based Fe-Al intermetallic compound; And an alloying layer formed on the diffusion layer and having a crystal structure different from that of the cubic structure.
  • the thickness of the diffusion layer is 3 to 20 ⁇ m, and the thickness of the diffusion layer may be greater than 50% of the total thickness of the plating layer.
  • the thickness of the plating layer may be 5 to 20 ⁇ m.
  • the plating layer may include Si: 0.0001 to 7% and Mg: 1.1 to 15% when the remaining alloy composition is 100% except for the Fe content diffused from the steel sheet.
  • the steel sheet is by weight, C: 0.04 ⁇ 0.5%, Si: 0.01 ⁇ 2%, Mn: 0.01 ⁇ 10%, Al: 0.001 ⁇ 1.0%, P: 0.05% or less, S: 0.02% or less, N: 0.02% or less, and may include residual Fe and other inevitable impurities.
  • the steel sheet is a weight percent, sum of one or more selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, sum of one or more from the group consisting of Ti, Nb, Zr and V: 0.001 to 0.4%, Cu +Ni: 0.005 to 2.0%, Sb+Sn: 0.001 to 1.0%, and B: 0.0001 to 0.01%.
  • the hot press forming member according to another aspect of the present invention is obtained by hot press forming the iron-aluminum-based plated steel sheet, and the thickness of the diffusion layer may be 90% or more of the total thickness of the plating layer.
  • a method of manufacturing an iron-aluminum-based plated steel sheet according to another aspect of the present invention includes: preparing a steel sheet; The steel sheet is immersed in an aluminum plating bath containing, by weight, Si: 0.0001 to 7%, Mg: 1.1 to 15%, residual Al and other unavoidable impurities, and plated with a plating amount of 10 to 40 g/m2 on one side. Obtaining an aluminum plated steel sheet; Obtaining an iron-aluminum-plated steel sheet through on-line alloying, wherein after the plating, the aluminum-plated steel sheet is continuously heated for 1-20 seconds in a heating temperature range of 670-900°C without cooling; It includes.
  • the present invention forms a stable diffusion layer mainly composed of an Fe-Al-based intermetallic compound having a cubic structure on the surface of a plated steel sheet before hot press forming by exceeding 50% of the total thickness of the plated layer, thereby forming a hot press forming member. It has the effect that it can significantly improve the hydrogen delay fracture characteristics and spot weldability.
  • the present invention is a stable diffusion layer mainly composed of Fe-Al-based intermetallic compound having a cubic structure, by appropriately controlling the process conditions of Si, Mg components and alloying heat treatment in the plating bath, and then immediately cooling the molten aluminum without cooling it. It is possible to provide a method of manufacturing an iron-aluminum-based plated steel sheet with reduced production cost and improved productivity while being able to form.
  • FIG. 1 schematically shows a manufacturing apparatus in which a manufacturing method according to an aspect of the present invention is implemented.
  • FIG. 2 is a photograph of a cross-section of an iron-aluminum-plated steel sheet prepared by Inventive Example 1 observed with a scanning electron microscope (SEM).
  • FIG. 4 is a photograph obtained by scanning electron microscopy (SEM) on the plated cross section after hot press-molding the iron-aluminum-based plated steel sheet produced by Inventive Example 1.
  • FIG. 5 is a photograph of an iron-aluminum-plated steel sheet prepared in Comparative Example 8 and hot-pressed to observe a plated cross section with an optical microscope.
  • the present inventors have studied in depth the alloy phases of several layers of Fe-Al intermetallic compounds formed on aluminum plated steel sheets during conventional hot press forming.
  • an alloy phase for example, FeAl(Si), Fe 3 Al, etc.
  • other alloy phases for example, FeAl 3 , Fe 2 Al 5, etc.
  • the present inventors remove hydrogen from the member after hot press forming, and the aspect in which hydrogen is removed varies greatly depending on what kind of plating phase is formed on the surface of the steel sheet before hot forming.
  • an orthorhombic crystal phase such as Fe 2 Al 5
  • the present inventors formed a diffusion layer mainly composed of a Fe-Al intermetallic compound having a cubic structure so as to be more than 50% of the total thickness of the plating layer, and the diffusion layer was formed by 90% or more in the member after hot press forming.
  • the present invention has been completed in view of the fact that hydrogen resistance can be secured.
  • Iron-aluminum-based plated steel sheet is a steel sheet; And a plating layer formed on the surface of the substrate steel plate, wherein the plating layer includes a diffusion layer including a Fe-Al intermetallic compound having a cubic structure; And an alloying layer formed on the diffusion layer and having a crystal structure different from that of the cubic structure.
  • the thickness of the diffusion layer is 3 to 20 ⁇ m, and the thickness of the diffusion layer is greater than 50% of the total thickness of the plating layer. do.
  • the thickness of the diffusion layer made of a Fe-Al intermetallic compound having a cubic structure is shown. It is formed to satisfy the conditions of 3 to 20 ⁇ m and more than 50% of the thickness of the entire plating layer.
  • the diffusion layer may include a Fe-Al-based intermetallic compound having a cubic structure.
  • the diffusion layer may mainly include a Fe-Al intermetallic compound having a cubic structure.
  • the diffusion layer may include 50% or more of the Fe-Al intermetallic compound having a cubic structure, preferably 80% or more, more preferably 90 % Or more, and most preferably 95% or more.
  • the diffusion layer mainly includes a Fe-Al-based intermetallic compound having a cubic structure, but may also contain small amounts of impurities and other elements that may be included in a plating bath. have.
  • Mg when Mg is added, Mg may be partially included in the alloy phase of the Fe-Al-based intermetallic compound in the diffusion layer, and the diffusion layer may also include other alloy phases including the Fe-Al-Mg-based alloy phase. have.
  • Fe-Al intermetallic compound having a cubic structure It may be made of an Fe-Al intermetallic compound having a cubic structure.
  • the cubic structure is formed in a region having a relatively high Fe content, and is formed by diffusion of Fe of the steel sheet into the aluminum plating layer during the alloying heat treatment.
  • FeAl(Si), Fe 3 Al, etc. may be mentioned as an alloy phase of the Fe-Al intermetallic compound having a cubic structure.
  • the thickness of the diffusion layer is less than 3 ⁇ m, corrosion resistance is inferior, whereas when the thickness of the diffusion layer exceeds 20 ⁇ m, weldability is deteriorated. Therefore, it is preferable to limit the thickness of the diffusion layer to a thickness of 3 to 20 ⁇ m. More preferably, it may be 3.7 to 17.9 ⁇ m thick.
  • the thickness of the diffusion layer may be greater than 50% of the total thickness of the plating layer including the alloying layer, or may be 54% or more. It may be preferably 70% or more, and more preferably 90% or more. If the thickness of the diffusion layer exceeds 50% of the total thickness of the plating layer, then the plating layer structure in which the thickness of the Cu-based Fe-Al intermetallic compound having a cubic structure occupies 90% or more in the plating layer of the hot press forming member can be easily obtained. From the viewpoint of hydrogen resistance, the higher the proportion of the Fe-Al-based intermetallic compound having a cubic structure, the more preferable, so the upper limit may not be limited.
  • the thickness of the plating layer may be 4.5 ⁇ 20 ⁇ m. If the thickness of the plating layer is less than 4.5 ⁇ m, corrosion resistance is inferior, whereas when the thickness of the plating layer exceeds 20 ⁇ m, it is difficult to secure a diffusion layer in excess of 50% in the plating layer before hot press forming, even if the diffusion layer is secured in excess of 50%. Even if the thickness of the plating layer is too thick after hot press forming, there is a problem that it is difficult to secure spot weldability. Therefore, in the present invention, the thickness of the plating layer may be 4.5 to 20 ⁇ m, and more preferably 4.5 to 18.9 ⁇ m.
  • the plating layer is in weight%, when the remaining alloy composition excluding the Fe content diffused from the steel sheet to 100%, Si: 0.0001 ⁇ 7%, Mg: 1.1 ⁇ 15%, the balance Al And other unavoidable impurities.
  • Si may be included as 0.0001 to 7%.
  • the Si serves to uniformize alloying with Fe in the plating layer, and should be included at least 0.0001% or more to obtain such an effect.
  • Si also serves to suppress the diffusion of Fe, so if it is contained in excess of 7%, the diffusion of Fe is excessively suppressed, so that the desired plating structure in the present invention may not be obtained.
  • the Si content may be 0.03 to 7%, preferably 1 to 7%, and more preferably 4 to 7%.
  • Mg serves to improve the corrosion resistance of the plated steel sheet, and also has an effect of increasing the alloying speed.
  • it should be included at least 1.1% or more, whereas when it is included in excess of 15%, there may be a problem in that weldability and paintability are inferior.
  • it may be 1.2 to 12.5%, more preferably 1.1 to 10%, and most preferably 1.1 to 5%.
  • the Mg content measured by a GDS (glow discharge spectrometer) at a depth of 0.5 ⁇ m from the surface of the plating layer may be 1 to 20% by weight.
  • oxygen measured by a GDS at a depth of 0.1 ⁇ m from the surface of the plated layer may be 10% by weight or less, and the GDS uses GDS 850A (device name) from LECO of the United States. Can be measured.
  • GDS 850A device name
  • the oxygen on the surface of the plating layer exceeds 10% by weight, the surface of the plated steel sheet may be stained and the surface quality may deteriorate.
  • the less oxygen on the surface of the plating layer the more advantageous, so the lower limit may not be limited.
  • the steel sheet may not be particularly limited if it is used for hot press forming as a steel sheet for hot press forming.
  • the steel sheet is in weight percent, C: 0.04 to 0.5%, Si: 0.01 to 2%, Mn: 0.01 to 10%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.02% or less and N: 0.02% or less.
  • the C may be added in an appropriate amount as an essential element to increase the strength of the heat treatment member. That is, the C may be added 0.04% or more in order to ensure sufficient strength of the heat treatment member.
  • the lower limit of the C content may be 0.1% or more.
  • the content is too high, in the case of producing a cold rolled material, when the hot rolled material is cold rolled, the strength of the hot rolled material is too high, which greatly deteriorates the cold rolling property, and significantly reduces the spot weldability. It can be added to 0.5% or less to ensure weldability.
  • the C content may be 0.45% or less, and more preferably, the content may be limited to 0.4% or less.
  • the Si not only has to be added as a deoxidizing agent in steelmaking, but also plays a role of suppressing the production of carbides that most affect the strength of the hot press-formed member.
  • carbon may be added to the martensite lath grain boundary to be added in an amount of 0.01% or more to secure residual austenite.
  • the upper limit of the Si content can be set to 2% in order to secure sufficient plating properties when aluminum is plated on the steel sheet after rolling.
  • the Si content may be limited to 1.5% or less.
  • the Mn can be added in an amount of 0.01% or more in order to lower the critical cooling rate for securing martensite in a hot press-formed member as well as securing a solid solution strengthening effect.
  • the Mn content may be limited to 10% or less in that the strength of the steel sheet is properly maintained to secure workability in a hot press forming process, reduce manufacturing cost, and improve spot weldability.
  • the Mn content may be 9% or less, and in some cases, 8% or less.
  • the Al can deoxidize the steel together with Si to increase the cleanliness of the steel, and may be added in an amount of 0.001% or more to obtain the effect.
  • the content of Al may be limited to 1.0% or less in order to prevent the Ac3 temperature from becoming too high so that heating required during hot press forming can be performed within an appropriate temperature range.
  • the P is present as an impurity in the steel, and the smaller the content, the more advantageous. Therefore, in the present invention, the P content may be limited to 0.05% or less, and preferably may be limited to 0.03% or less.
  • the smaller the P the more advantageous the impurity element, so there is no need to specifically set an upper limit for its content.
  • the lower limit may be set to 0.001%.
  • the maximum content is limited to 0.02%, and preferably to 0.01% or less.
  • the lower limit of the content may be set to 0.0001%.
  • the N is an element included as an impurity in the steel.
  • the lower the content the more advantageous. Therefore, it can be included in 0.02% or less.
  • the N content may be set to 0.001% or more.
  • the Cr, Mo and W can improve the hardenability and secure the strength and grain refinement through the precipitation strengthening effect, so that one or more of these can be added at least 0.01% based on the total content.
  • the content may be limited to 4.0% or less in order to secure the weldability of the member.
  • the effect is saturated when the content of these elements exceeds 4.0%, the content can be limited to 4.0% or less.
  • the Ti, Nb, and V are effective in improving the steel sheet of the heat treatment member by forming fine precipitates and stabilizing residual austenite and improving impact toughness by grain refinement, so that at least one of them can be added in an amount of 0.001% or more as a sum of contents. have. However, if the addition amount exceeds 0.4%, the effect is not only saturated, but the addition of excessive ferroalloy may cause a cost increase.
  • Cu and Ni are elements that improve the strength by forming a fine precipitate.
  • the sum of one or more of these components may be 0.005% or more.
  • the upper limit can be set to 2.0%.
  • the Sb and Sn are concentrated on the surface to suppress the formation of Si or Mn oxide on the surface, thereby improving plating properties. More than 0.001% may be added to achieve this effect. However, if the addition amount exceeds 1.0%, not only does it require excessive ferroalloy cost, but it is also employed at the slab grain boundary and may cause coil edge cracking during hot rolling, so the upper limit is set to 1.0%.
  • the B is an element capable of suppressing the brittleness of the hot press-formed member due to the grain boundary segregation of P and/or S by separating into the old austenite grain boundaries, as well as improving the hardenability by adding a small amount. Therefore, B can be added more than 0.0001%. However, if it exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit can be set to 0.01%, and in one embodiment, the B content can be set to 0.005% or less.
  • Residues other than the above-mentioned components include iron (Fe) and unavoidable impurities, and additional addition is not particularly limited as long as they are components that can be included in the hot press forming steel sheet.
  • the plating layer of the hot press forming member More than 90% is composed of a Cu-structured Fe-Al intermetallic compound, and hydrogen that has penetrated into the steel during hot press molding can easily escape and the diffusible hydrogen content in the steel can be 0.1 ppm or less. Hydrogen-resistant properties can be improved.
  • the spot welding current range satisfies 1 kA or more to improve the spot welding performance.
  • an iron-aluminum plated steel sheet for hot press forming according to another aspect of the present invention will be described in detail.
  • the manufacturing method of the iron-aluminum-plated steel sheet for hot press forming is only an example, and the iron-aluminum-plated steel sheet for hot press forming of the present invention does not necessarily have to be manufactured by the manufacturing method. It should be noted that even if the manufacturing method satisfies the claims of the present invention, there is no problem in using it to implement each embodiment of the present invention.
  • the method of manufacturing an iron-aluminum-plated steel sheet according to another aspect of the present invention is hot-rolled or cold-rolled to a surface of a rolled steel sheet, and is subjected to hot-rolled aluminum plating with a plating amount of 10 to 40 g/m2 on a single-sided basis, and is continued in the plating process It can be obtained by performing an on-line alloying treatment to heat treatment immediately.
  • a steel sheet is prepared, and the steel sheet is immersed in an aluminum plating bath containing Si: 0.0001 to 7%, Mg: 1.1 to 15%, balance Al and other unavoidable impurities by weight%.
  • An aluminum-plated steel sheet can be obtained by plating aluminum on the surface of the steel sheet with a plating amount of 10 to 40 g/m2 on one side. Meanwhile, more preferably, the plating amount may be 11 to 38 g/m 2 on one side.
  • annealing treatment may be optionally performed on the steel sheet before plating.
  • aluminum powder may be sprayed on the surface of the aluminum plated steel sheet as necessary.
  • the aluminum powder not only cools the surface locally, but can also refine the surface spangles.
  • the average particle diameter of the aluminum powder may be 5 ⁇ 40 ⁇ m, more preferably 10 ⁇ 30 ⁇ m. If the average particle diameter of the aluminum powder is less than 5 ⁇ m, the surface cooling and sequin refinement effect are insufficient, whereas when the average particle diameter exceeds 40 ⁇ m, it does not sufficiently dissolve in the plating layer and remains on the surface, which may cause surface quality problems.
  • the injection amount of the aluminum powder may be determined within a limit that satisfies the condition that the surface temperature does not drop below 640°C after powder injection. If the surface temperature of the steel sheet after powder spraying falls below 640°C, equipment load may occur because more power must be applied for alloying in the subsequent online alloying heat treatment.
  • the injection amount of aluminum powder is related to the surface temperature of the steel sheet, but the surface temperature of the steel sheet may vary greatly depending on the process conditions, facilities, and environmental conditions at the time of implementation, and thus cannot be uniformly determined. Therefore, the aluminum powder injection amount is sufficient if the above conditions are satisfied, so the range of the specific injection amount may not be particularly limited. However, as one non-limiting embodiment, the aluminum powder may be sprayed within a range of 0.01 to 10 g per 1 m 2 of an aluminum plated steel sheet.
  • an on-line alloying treatment may be performed, which is followed by continuous heat treatment.
  • an on-line alloying treatment may be performed immediately after powder spraying.
  • the heating temperature range during the alloying heat treatment may be 670 to 900°C, and the holding time may be 1 to 20 seconds.
  • On-line alloying treatment in the present invention refers to a process of heating by heating after a minimum air cooling after molten aluminum plating, or molten aluminum plating and aluminum powder spraying.
  • the heat treatment starts before the plating layer cools and hardens, so a separate heating process is not necessary, and heat treatment is possible in a short time.
  • it was difficult to apply an on-line alloying method to heat-treat immediately after plating since conventionally, an aluminum plated steel sheet having a thick plating layer could not be completed in a short time due to its thickness.
  • the alloying of the aluminum plating layer can be effectively completed despite a short heat treatment time of 1 to 20 seconds by controlling the plating bath component as described above and controlling the plating amount of the aluminum plating layer to 10 to 40 g/m 2 on one side.
  • the heating temperature is based on the surface temperature of the steel sheet to be heat treated.
  • the heating temperature is less than 670°C, alloying may be insufficient, whereas when the heating temperature exceeds 900°C, it is difficult to cool after alloying, and when the cooling rate is increased, the strength of the steel sheet is too high. Can be. Therefore, the heating temperature during alloying heat treatment is preferably limited to 670 to 900°C, more preferably 680 to 880°C, and most preferably 700 to 800°C.
  • the holding time during the alloying heat treatment may be limited to 1 to 20 seconds.
  • the holding time means the time at which the heating temperature (including deviation ⁇ 10°C) is maintained in the steel sheet. If the holding time is less than 1 second, the heating time is too short to achieve sufficient alloying. On the other hand, if the holding time exceeds 20 seconds, a problem that productivity is too low may occur. Therefore, the holding time at the time of alloying heat treatment is preferably limited to 1 to 20 seconds, more preferably 1 to 12 seconds, and most preferably 1 to 10 seconds.
  • the formation of the diffusion layer through the alloying heat treatment depends on the heat treatment temperature and the holding time, but at the same time, it is also influenced by the contents of Si and Mg contained in the aluminum plating layer.
  • the present inventors can effectively obtain a diffusion layer having a sufficient thickness despite a short heat treatment time of 1 to 20 seconds by controlling the Si and Mg content and heat treatment conditions.
  • a hot press-molded member obtained by hot-pressing the iron-aluminum-plated steel sheet of the present invention described above may be provided.
  • hot press molding may use a method commonly used in the art, for example, after heating the iron-aluminum-plated steel sheet according to the present invention at a temperature range of 880 to 950°C for 3 to 10 minutes, and then press.
  • the hot-formed steel sheet may be hot formed into a desired shape, but is not limited thereto.
  • the thickness of the diffusion layer made of a Cu-based intermetallic compound having a cubic structure on the surface of the steel sheet may be 90% or more of the total thickness of the plating layer.
  • the composition of the holding steel sheet of the hot press forming member may be the same as the composition of the holding steel sheet of the iron-aluminum alloy slightly steel sheet described above.
  • a cold rolled steel sheet for hot press molding having the composition of Table 1 below is prepared as a holding steel sheet, and aluminum plating and alloying are performed on the surface of the steel sheet under the plating bath composition shown in Table 2, plating bath temperature of 660°C and alloying heat treatment conditions. Heat treatment was performed.
  • the structure of the alloyed plating layer of the iron-aluminum-plated steel sheet obtained by the above method was observed with an optical microscope and a scanning electron microscope (SEM) to confirm the thickness of the plating layer and the diffusion layer.
  • the alloying layer portion formed on the diffusion layer was subjected to EDS analysis, whereby Al: 48%, Fe: 50%, and Si: 2% were detected by weight, and this phase was not a cubic structure. It was confirmed that Fe 2 Al 5 having an orthorhombic structure.
  • the steel sheet was heated at 930° C. for 6 minutes in an atmospheric atmosphere, followed by hot press forming to obtain a hot press forming member. Then, the structure of the plated layer of the member was observed, and the diffusive hydrogen content and spot weldability were measured and shown in Table 3 below.
  • the diffusive hydrogen content was measured by heating the specimen to 300°C using a gas chromatography technique to measure the released hydrogen content, and the spot weldability was evaluated according to ISO 18278 standards to analyze the current range.
  • Inventive Examples 1 to 12 satisfy both the plating bath component and the alloying heat treatment conditions presented in the present invention, and the alloy of the Fe-Al intermetallic compound having a cubic structure in the plated steel sheet
  • the thickness ratio of the diffusion layer containing the phase was 50% or more.
  • the diffusive hydrogen content in the steel was 0.1 ppm or less, and the spot welding current range satisfies 1 kA or more, thereby exhibiting excellent hydrogen delay fracture characteristics and spot weldability.
  • the diffusion layer thickness ratio was 50% or less because the diffusion layer was not sufficiently formed, and in Comparative Example 4, the diffusion layer was formed to a thickness less than 3 ⁇ m. Accordingly, the diffusion layer thickness ratio is less than 90% in the hot press-molded member made of the plated steel sheets of Comparative Examples 1 and 4, and hydrogen is not easily escaped, so that the diffusible hydrogen content is 0.1 ppm or more, and the hydrogen resistance characteristics are inferior. Was done.
  • Comparative Examples 3 and 5 are cases in which the holding time at the time of alloying heat treatment is out of the scope of the present invention.
  • the heat treatment time is very short, so that the diffusion layer is not sufficiently formed, so that the ratio of the diffusion layer thickness of the hot press-formed member is 75%. As it was small, the hydrogen resistance characteristics were lowered.
  • the heat treatment time was long to 25 seconds, so that the thickness of the plating layer exceeded 20 ⁇ m, and accordingly, the spot weldability was inferior.
  • Comparative Examples 7, 9 and 10 are examples in which the Si or Mg content in the aluminum plating bath component does not satisfy the conditions of the present invention.
  • Comparative Example 7 is a case where Mg is not added and Comparative Example 9 is a case where Si is added in excess of 7%, the alloying rate is slow, so that a diffusion layer is not sufficiently formed, and accordingly, the diffusion resistance in steel in a hot press-formed member. Hydrogen resistance decreased as the hydrogen content increased.
  • Mg was added in excess of 15%, so that the plating layer was formed in excess of 20 ⁇ m in thickness, thereby deteriorating the spot weldability.
  • Comparative Example 8 is a case where the aluminum plating amount is outside the scope of the present invention, the thickness of the plating layer is thickened to 26.7 ⁇ m, the ratio of the diffusion layer thickness is reduced, thereby deteriorating the hydrogen resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Articles (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

본 발명은 소지강판; 및 상기 소지강판의 표면에 형성된 도금층을 포함하고, 상기 합금 도금층은 입방 구조(Cubic structure)의 Fe-Al계 금속간화합물을 포함하는 확산층; 및 상기 확산층 위에 형성되고 입방 구조와는 다른 합금상으로 이루어지는 합금화층;을 포함하며, 상기 확산층의 두께는 3~20㎛ 이고, 상기 확산층의 두께는 상기 도금층 전체 두께의 50% 초과인 철-알루미늄계 도금 강판 및 그 제조방법을 제공한다.

Description

수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
본 발명은 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법에 관한 것이다.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다. 재료적인 측면에서 자동차의 연비를 향상시키기 위한 하나의 방법으로서 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱이 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온으로 가공한 후 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다는 장점이 있다.
그런데, 상기 열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하여야 하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다. 이러한 문제점을 해결하기 위한 방법으로 특허문헌 1 이 제안된 바 있다. 상기 발명에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있다. 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열시에 강판이 산화되지는 않지만 도금층의 두께가 두꺼워질 경우 열간 프레스 성형 부재의 점용접성이 나빠지는 문제가 있었다.
한편, 열간 프레스 성형을 거칠 경우 강판은 1000MPa 이상, 경우에 따라서는 1400MPa 이상의 강도를 가질 수 있으며, 최근에는 강도에 대한 요구수준이 더욱 높아져서 1800MPa 이상의 강도를 가지게 되는 경우도 있다. 그런데, 강판의 강도가 높아질 경우 수소지연파괴에 대하여 민감해져서 적은 양의 수소를 함유하는 경우에도 강판이 파단에 이르는 경우도 있다. 또한 알루미늄 도금 강판을 열간 프레스 성형하는 경우 강판의 소지철로부터 표면의 도금층까지 Fe의 확산이 일어나서 도금층에 합금화가 일어나며, 이러한 합금화 층에 의해 열간 프레스 성형 시 침투한 수소가 쉽게 빠져나가지 못해 열간 프레스 성형 부재의 내수소 특성이 열위해지는 문제가 있다.
(특허문헌 1) 미국 특허공보 제6,296,805호
본 발명의 일 측면에 따르면 수소지연파괴특성 및 점용접성이 우수한 열간 프레스 성형용 철-알루미늄계 도금 강판 및 그 제조방법을 제공할 수 있다.
본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 철-알루미늄계 도금 강판은, 소지강판; 및 상기 소지강판의 표면에 형성된 도금층을 포함하고, 상기 도금층은 입방 구조(Cubic structure)의 Fe-Al계 금속간화합물을 포함하는 확산층; 및 상기 확산층 위에 형성되고 입방 구조와는 다른 결정구조로 이루어지는 합금화층;을 포함하며, 상기 확산층의 두께는 3~20㎛ 이고, 상기 확산층의 두께는 상기 도금층 전체 두께의 50% 초과일 수 있다.
상기 도금층의 두께는 5~20㎛ 일 수 있다.
상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 나머지 합금조성을 100%로 할 때, Si: 0.0001~7%, Mg: 1.1~15% 를 포함할 수 있다.
상기 소지강판은 중량%로, C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중에서 하나 이상을 더 포함할 수 있다.
본 발명의 다른 일 측면에 따른 열간 프레스 성형 부재는, 상기 철-알루미늄계 도금 강판을 열간 프레스 성형하여 얻어지며, 확산층의 두께가 도금층 전체 두께의 90% 이상일 수 있다.
본 발명의 다른 일 측면에 따른 철-알루미늄계 도금 강판의 제조방법은, 소지강판을 준비하는 단계; 상기 소지강판을, 중량%로, Si: 0.0001~7%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 편면기준 10~40g/㎡의 도금량으로 도금하여 알루미늄 도금 강판을 얻는 단계; 도금 후 상기 알루미늄 도금 강판을 냉각하지 않고 연속하여 670~900℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 철-알루미늄계 도금 강판을 얻는 단계; 를 포함한다.
상술한 바와 같이, 본 발명은 열간 프레스 성형 전의 도금 강판의 표면에 입방 구조를 가지는 Fe-Al계 금속간화합물로 주로 이루어진 안정적인 확산층을 도금층 전체 두께의 50%를 초과하여 형성함으로써, 열간 프레스 성형 부재의 수소지연파괴특성 및 점용접성을 현저하게 향상시킬 수 있다는 효과가 있다.
또한, 본 발명은 도금욕 중 Si, Mg 성분 및 합금화 열처리의 공정조건을 적절히 제어하고, 용융알루미늄 도금 후 냉각하지 않고 곧바로 열처리함으로써, 입방 구조를 가지는 Fe-Al계 금속간화합물로 주로 이루어진 안정적인 확산층을 형성할 수 있으면서도 동시에 제조비용이 절감되고 생산성이 향상된 철-알루미늄계 도금 강판의 제조방법을 제공할 수 있는 효과가 있다.
도 1 은 본 발명의 일 측면에 따른 제조방법이 구현된 제조장치를 개략적으로 나타낸 것이다.
도 2 는 발명예 1 에 의해 제조된 철-알루미늄계 도금 강판의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 3 은 비교예 8 에 의해 제조된 철-알루미늄계 도금 강판의 단면을 광학현미경으로 관찰한 사진이다.
도 4 는 발명예 1 에 의해 제조된 철-알루미늄계 도금 강판을 열간 프레스 성형한 후의 도금 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 5 는 비교예 8 에 의해 제조된 철-알루미늄계 도금 강판을 열간 프레스 성형한 후의 도금 단면을 광학현미경으로 관찰한 사진이다.
이하, 본 발명을 상세히 설명한다.
본 발명에서 각 원소를 함량을 나타낼 때 '%' 는 특별히 달리 정하지 아니하는 한, '중량%'를 의미한다는 것에 유의할 필요가 있다. 또한, 결정이나 조직의 비율은 특별히 달리 표현하지 아니하는 한 면적을 기준으로 한다.
본 발명자들은 종래의 열간 프레스 성형시 알루미늄 도금 강판에 형성되는 Fe-Al계 금속간화합물로 이루어지는 여러 층의 합금상에 대해 깊이 연구하였다. 그 결과 상기 Fe-Al계 금속간화합물 중 입방 구조(Cubic Structure)를 가지는 합금상(예를 들어 FeAl(Si), Fe 3Al 등)은 안정적이나, 그 외 다른 합금상(예를 들어 FeAl 3, Fe 2Al 5 등)들은 취성(brittle)을 가지는 것을 발견하였다.
이에 대해 좀 더 깊이 연구해본 결과, 본 발명자들은 열간 프레스 성형 후 수소가 부재로부터 제거되는데, 수소가 제거되는 양상은 열간성형 전 강판 표면에 어떠한 종류의 도금상이 형성되는 가에 따라 크게 달라진다는 점과, 특히 형성된 합금상에서 Fe 2Al 5 와 같은 사방정계(Orthorhombic) 결정상이 도금층에 형성되면 수소의 이동이 차단되어 강판 중의 수소가 외부로 배출될 수 없게 된다는 점을 발견하였다. 이러한 결과에 기초하여 본 발명자들은 입방 구조를 가지는 Fe-Al계 금속간화합물로 주로 이루어지는 확산층을 도금층 전체 두께의 50% 초과가 되도록 형성하면, 열간 프레스 형성 후의 부재에서 확산층이 90% 이상 형성되어 우수한 내수소 저항성을 확보할 수 있다는 점에 착안하여 본 발명을 완성하기에 이르렀다.
이하 본 발명의 일 측면에 따른 철-알루미늄계 도금 강판에 대하여 자세히 설명한다.
[철-알루미늄계 도금 강판]
본 발명의 일 구현례에 따른 철-알루미늄계 도금 강판은 소지강판; 및 상기 소지강판의 표면에 형성된 도금층;을 포함하고, 상기 도금층은 입방 구조(Cubic structure)의 Fe-Al계 금속간화합물을 포함하는 확산층; 및 상기 확산층 위에 형성되고 입방 구조와는 다른 결정구조로 이루어지는 합금화층;을 포함하며,상기 확산층의 두께는 3~20㎛ 이고, 상기 확산층의 두께는 상기 도금층 전체 두께의 50% 초과인 것을 특징으로 한다.
통상적으로 알루미늄 도금 강판에 대해 열간 프레스 성형을 실시할 경우, 소지강판의 Fe 가 Al 함량이 높은 알루미늄 도금층으로 확산되어 여러 층의 다양한 경질의 합금상인 Fe-Al계 금속간화합물이 나타나게 된다. 이 경우 소지강판에 가까운 쪽에서는 내수소 취성이 우수한 입방구조(Cubic structure)의 Fe-Al계 금속간화합물로 주로 이루어진 층이 형성되어 안정하지만, 표면 쪽으로 갈수록 사방정계 등의 결정 구조를 가지는 합금상이 형성되는데, 이러한 결정상이 도금층에 형성되면 수소의 이동이 차단되어 강판 중의 수소가 외부로 배출될 수 없게 되어 내수소 특성이 열위해진다.
이러한 종래 문제를 해결하기 위해, 본 발명의 일 측면에 따른 철-알루미늄계 도금 강판에서는 도 2 에 도시한 바와 같이, 입방구조(Cubic structure)의 Fe-Al계 금속간화합물로 이루어지는 확산층의 두께를 3~20㎛ 및 전체 도금층 두께의 50% 초과인 조건을 만족하도록 형성한다.
먼저 본 발명의 일 구현례에 따르면, 상기 확산층은 입방 구조를 가지는 Fe-Al계 금속간화합물을 포함할 수 있다. 또한, 상기 확산층은 입방 구조의 Fe-Al계 금속간화합물을 주로 포함할 수 있다.
구체적으로, 본 발명의 일 구현례에 따르면, 상기 확산층은 입방 구조의 Fe-Al계 금속간화합물을 50% 이상 포함할 수 있고, 바람직하게는 80% 이상 포함할 수 있고, 보다 바람직하게는 90% 이상 포함할 수 있고, 가장 바람직하게는 95% 이상 포함할 수 있다.
또한, 본 발명의 일 구현례에 따르면, 상기 확산층은 입방 구조의 Fe-Al계 금속간 화합물을 주로 포함하되, 불가피하게 포함되는 불순물 및 도금욕에 포함될 여지가 있는 다른 원소들도 소량 포함할 수 있다.
예를 들어, Mg을 첨가하면, 확산층 중의 Fe-Al계 금속간 화합물의 합금상에 Mg이 일부 포함될 수도 있고, 확산층은 Fe-Al-Mg계 합금상을 포함하는 다른 합금상들도 포함할 수 있다.
입방 구조를 가지는 Fe-Al계 금속간화합물로 이루어질 수 있다. 이와 같은 Fe-Al계 금속간화합물에서 입방 구조는 비교적 Fe 함량이 높은 영역에서 형성되며, 합금화 열처리 시 소지강판의 Fe 가 알루미늄 도금층으로 확산됨으로써 형성된다. 또한 이것으로 제한하는 것은 아니나, 입방 구조를 가지는 Fe-Al계 금속간화합물의 합금상으로서는 FeAl(Si), Fe 3Al 등을 들 수 있다.
상기 확산층의 두께가 3㎛ 미만이면 내식성이 열위해지고, 반면 확산층의 두께가 20㎛ 를 초과하면 용접성이 저하되는 문제가 발생한다. 따라서 상기 확산층의 두께는 3~20㎛ 두께로 제한하는 것이 바람직하다. 보다 바람직하게는 3.7~17.9㎛ 두께일 수 있다.
또한 상기 확산층의 두께는 합금화층을 포함한 도금층 전체 두께의 50% 초과일 수 있고, 혹은 54% 이상일 수 있다. 바람직하게는 70% 이상일 수 있으며, 보다 바람직하게는 90% 이상일 수 있다. 상기 확산층의 두께가 도금층 전체 두께의 50% 를 초과하면, 이후 열간 프레스 성형 부재의 도금층에서 입방 구조의 Fe-Al계 금속간화합물의 두께가 90% 이상을 차지하는 도금층 구조를 용이하게 얻을 수 있다. 내수소 저항성의 관점에서 입방 구조를 가지는 Fe-Al계 금속간화합물의 비율이 높을수록 바람직하므로, 그 상한은 한정하지 않을 수 있다.
또한 상기 도금층의 두께는 4.5~20㎛ 일 수 있다. 상기 도금층의 두께가 4.5㎛ 미만이면 내식성이 열위해지고, 반면 상기 도금층의 두께가 20㎛를 초과하면 열간 프레스 성형 전의 도금층에서 확산층을 50% 초과로 확보하기 곤란해지고, 설령 확산층을 50% 초과로 확보하더라도 열간 프레스 성형 후 도금층의 두께가 너무 두꺼워져 점용접성을 확보하기 어려운 문제가 발생한다. 따라서 본 발명에서 상기 도금층의 두께는 4.5~20㎛일 수 있고, 보다 바람직하게는 4.5~18.9㎛일 수 있다.
본 발명의 일 구현례에 따르면, 상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 나머지 합금조성을 100%로 할 때, Si: 0.0001~7%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함할 수 있다.
보다 상세하게는 본 발명의 일 구현례에서 Si 는 0.0001~7%로 포함될 수 있다. 상기 Si 는 도금층 내에서 Fe 와의 합금화를 균일하게 하는 역할을 하며, 이와 같은 효과를 얻기 위해서는 적어도 0.0001% 이상 포함되어야 한다. 반면 Si 는 Fe 의 확산을 억제하는 역할도 하므로 7% 를 초과하여 함유될 경우 Fe 확산이 과도하게 억제되어 본 발명에서 원하는 도금 구조를 얻지 못하게 될 수 있다. 상기 Si 함량은 0.03~7%일 수 있고, 바람직하게는 1~7% 일 수 있으며, 보다 바람직하게는 4~7% 일 수 있다.
한편, Mg 는 도금 강판의 내식성을 향상시키는 역할을 하며, 합금화 속도를 증가시키는 효과도 있다. 상기 효과를 얻기 위해서는 적어도 1.1% 이상 포함되어야 하며, 반면에 15% 를 초과하여 포함되는 경우 용접성 및 도장성이 열위해지는 문제가 발생할 수 있다. 바람직하게는 1.2~12.5%일 수 있고, 보다 바람직하게는 1.1~10% 일 수 있으며, 가장 바람직하게는 1.1~5% 일 수 있다. 또한 도금층 내의 Mg 는 표면 쪽으로 확산하는 경향이 있으므로, 상기 도금층의 표면으로부터 0.5㎛ 깊이에서 GDS(glow discharge spectrometer)로 측정한 Mg 함량은 1~20 중량%일 수 있다.
본 발명의 일 구현례에 따르면, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS(glow discharge spectrometer)로 측정한 산소가 10중량% 이하일 수 있고, 상기 GDS는 미국 LECO사의 GDS 850A(기기명)를 사용하여 측정할 수 있다. 도금층 표면의 산소가 10중량% 를 초과하면 도금 강판의 표면에 얼룩이 생겨 표면 품질이 열위해질 수 있다. 반면 도금층 표면에서의 산소는 적을수록 유리하므로, 그 하한은 제한하지 않을 수 있다.
본 발명의 일 구현례에 따르면, 소지강판(소지철)은 열간 프레스 성형용 강판으로서 열간 프레스 성형에 사용된다면 특별히 제한하지 않을 수 있다. 다만 한가지 비제한적인 예를 든다면 소지강판은 중량%로, C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하 및 N: 0.02% 이하를 포함하는 조성을 가질 수 있다.
C: 0.04~0.5%
상기 C는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.04% 이상 첨가될 수 있다. 바람직하게는 상기 C 함량의 하한은 0.1%이상일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하일 수 있으며, 보다 바람직하게는 0.4% 이하로 그 함량을 제한할 수도 있다.
Si: 0.01~2%
상기 Si는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제하는 역할을 한다. 본 발명에서는 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 라스(lath) 입계로 탄소를 농화시켜 잔류 오스테나이트를 확보하기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 압연 후 강판에 알루미늄 도금을 행할 때 충분한 도금성을 확보하기 위해서 상기 Si 함량의 상한을 2%로 정할 수 있다. 바람직하게는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다.
Mn: 0.01~10%
상기 Mn은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 10% 이하로 제한 할 수 있다. 바람직하게는 상기 Mn 함량은 9% 이하일 수 있으며, 경우에 따라서는 8% 이하일 수 있다.
Al: 0.001~1.0%
상기 Al은 Si과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으며, 상기 효과를 얻기 위해 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1.0% 이하로 제한할 수 있다.
P: 0.05% 이하
상기 P는 강 내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명에서 P 함량을 0.05% 이하로 제한할 수 있으며, 바람직하게는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수 있다.
S: 0.02% 이하
상기 S는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 제한하며, 바람직하게는 0.01% 이하로 제한할 수 있다. 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 그 함량의 하한을 0.0001%로 할 수 있다.
N: 0.02% 이하
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조 시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요는 없으나, 제조비용의 상승 등을 고려하면 N 함량을 0.001% 이상으로 정할 수도 있다.
본 발명에서는 필요에 따라 선택적으로, 상술한 강 조성에 더하여 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중에서 하나 이상을 추가로 첨가할 수 있다.
Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합 : 0.01~4.0%
상기 Cr, Mo 및 W은 경화능 향상과, 석출강화 효과를 통한 강도 및 결정립 미세화를 확보할 수 있으므로, 이들 1종 이상을 함량 합계 기준으로 0.01% 이상 첨가할 수 있다. 또한, 부재의 용접성을 확보하기 위해서 그 함량을 4.0% 이하로 제한할 수도 있다. 또한, 이들 원소의 함량이 4.0%를 초과하면 효과가 포화되기 때문에 함량을 4.0% 이하로 제한할 수 있다.
Ti, Nb, Zr 및 V로 이루어진 그룹 중 선택된 1종 이상의 합 : 0.001~0.4%
상기 Ti, Nb 및 V은 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 이들 중 1종 이상을 함량의 합계로 0.001% 이상 첨가할 수 있다. 다만, 그 첨가량이 0.4%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다.
Cu + Ni: 0.005~2.0%
상기 Cu와 Ni는 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 상술한 효과를 얻기 위해서 이들 중 하나 이상의 성분의 합을 0.005% 이상으로 할 수 있다. 다만, 그 값이 2.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 2.0% 로 할 수 있다.
Sb + Sn: 0.001~1.0%,
상기 Sb와 Sn은 Al-Si도금을 위한 소둔 열처리 시, 표면에 농화되어 Si 또는 Mn 산화물이 표면에 형성되는 것을 억제하여 도금성을 향상시킬 수 있다. 이와 같은 효과를 얻기 위해서 0.001% 이상 첨가될 수 있다. 다만, 그 첨가량이 1.0%를 초과하면 과다한 합금철 비용이 소요될 뿐만 아니라 슬라브 입계에 고용되어 열간압연 시 코일 에지(edge) 크랙을 유발시킬 수 있기 때문에 그 상한을 1.0%로 한다.
B: 0.0001~0.01%
상기 B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.0001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 한가지 구현례에서는 상기 B 함량을 0.005% 이하로 할 수 있다.
상술한 성분 이외의 잔부로서는 철(Fe) 및 불가피한 불순물을 들 수 있으며, 또한 열간 프레스 성형용 강판에 포함될 수 있는 성분이라면 특별히 추가적인 첨가를 제한하지 않는다.
상술한 층 구조를 가지는 도금층으로 이루어진 철-알루미늄계 도금 강판을 880~950℃ 의 온도범위, 3~10분의 열처리 후 열간 프레스 성형하여 열간 프레스 성형 부재를 제조하면, 열간 프레스 성형 부재의 도금층의 90% 이상이 입방 구조(Cubic structure)의 Fe-Al계 금속간화합물로 이루어져, 열간 프레스 성형 시에 강재 내로 침투한 수소가 용이하게 빠져나가 강재 내 확산성 수소 함량을 0.1 ppm 이하로 할 수 있어 내수소 특성이 향상될 수 있다. 또한 점용접 전류범위가 1 kA 이상을 만족하여 점용접성이 향상될 수 있다.
이하에서는 본 발명의 다른 일 측면에 따른 열간 프레스 성형용 철-알루미늄계 도금 강판의 제조방법을 상세히 설명한다. 다만, 하기의 열간 프레스 성형용 철-알루미늄계 도금 강판의 제조방법은 일 예시일 뿐이며, 본 발명의 열간 프레스 성형용 철-알루미늄계 도금 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 사용함에 아무런 문제가 없다는 것에 유의할 필요가 있다.
[철-알루미늄계 도금 강판의 제조방법]
본 발명의 다른 일 측면에 따른 철-알루미늄계 도금 강판의 제조방법은 열간 압연 또는 냉간 압연된 소지강판의 표면에 편면기준 10~40g/㎡의 도금량으로 용융 알루미늄 도금을 실시하고, 도금 공정에 연속하여 곧바로 열처리하는 온라인(on-line) 합금화 처리를 실시함으로써 얻을 수 있다.
알루미늄 도금 강판을 얻는 단계
본 발명의 일 구현례에서는 소지강판을 준비하고, 상기 소지강판을 중량%로, Si: 0.0001~7%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 소지강판의 표면에 편면기준 10~40g/㎡의 도금량으로 알루미늄을 도금함으로써 알루미늄 도금 강판을 얻을 수 있다. 한편, 보다 바람직하게는 상기 도금량은 편면기준 11~38g/㎡일 수 있다. 또한 선택적으로 도금 전 강판에 대해 소둔 처리를 실시할 수도 있다.
알루미늄 파우더를 분사하는 단계
상기 알루미늄 도금 후 필요에 따라 상기 알루미늄 도금 강판의 표면에 알루미늄 파우더를 분사할 수 있다. 알루미늄 파우더는 표면을 국부적으로 냉각시킬 뿐만 아니라, 표면 스팽글(spangle)을 미세화시킬 수 있다. 이때 알루미늄 파우더에 의해 국부적으로 표면만 냉각되면, 이후 온라인 합금화 과정에서 도금층에 있는 Mg가 표면으로 확산되는 것을 보다 억제하여 열간 프레스 성형 후 Mg 가 표면에 확산되어 생성되는 Mg 산화물을 줄여줄 수 있어 점용접성을 향상시킬 수 있다. 또한 표면 스팽글을 미세화시킴으로써 열간 프레스 성형 후 표면을 균일하게 생성시킬 수 있는 장점이 있다.
상기 알루미늄 파우더의 평균 입경은 5~40㎛일 수 있고, 보다 바람직하게는 10~30㎛일 수 있다. 상기 알루미늄 파우더의 평균 입경이 5㎛ 미만이면 표면 냉각 및 스팽글 미세화 효과가 부족하고, 반면에 평균 입경이 40㎛ 를 초과하면 도금층에 충분히 용해되지 않고 표면에 잔존하여 표면 품질 문제를 야기할 수 있다.
본 발명에서 알루미늄 파우더의 분사량은 파우더 분사 후 표면온도가 640℃ 미만으로 떨어지지 않는 조건을 만족하는 한도 내에서 결정될 수 있다. 파우더 분사 후 강판 표면온도가 640℃ 미만으로 떨어지면, 뒤따르는 온라인 합금화 열처리에서 합금화를 위하여 보다 많은 출력을 가해야 하기 때문에 설비 부하가 발생할 수 있다. 알루미늄 파우더의 분사량은 강판 표면온도와 관련되나, 상기 강판 표면온도는 실시 시의 공정조건, 설비, 환경조건 등에 따라 크게 달라질 수 있어 일률적으로 정할 수 없다. 따라서 알루미늄 파우더 분사량은 상기 조건을 만족하면 족하므로 그 구체적인 분사량의 범위는 특별히 한정하지 않을 수 있다. 다만 비제한적인 일 구현례로서 상기 알루미늄 파우더는 알루니늄 도금 강판의 1㎡ 당 0.01~10g 의 범위 내에서 분사될 수 있다.
합금화 열처리하여 철-알루미늄계 도금 강판을 얻는 단계
상기 알루미늄 도금 후 최소한의 공냉을 거친 후, 바로 연속하여 열처리하는 온라인(on-line)합금화 처리를 실시할 수 있다. 또한 알루미늄 도금 후 선택적으로 알루미늄 파우더를 분사하는 경우, 파우더 분사 후 바로 연속하여 온라인 합금화 처리를 실시할 수 있다. 이때 합금화 열처리 시의 가열 온도 범위는 670~900℃ 일 수 있으며, 유지시간은 1~20초 일 수 있다.
본 발명에서 온라인 합금화 처리는 도 1 에 도시된 바와 같이, 용융 알루미늄 도금, 또는 용융 알루미늄 도금 및 알루미늄 파우더 분사 후 최소한의 공냉 후 승온하여 열처리하는 공정을 의미한다. 본 발명에 따른 온라인 합금화 방식에서는 용융 알루미늄 도금 후 도금층이 냉각되어 굳어지기 전에 열처리가 시작되기 때문에 별도의 승온과정이 필요 없어 짧은 시간에 열처리가 가능하다. 다만 종래 통상의 도금층이 두꺼운 알루미늄 도금 강판은 그 두께로 인해 짧은 시간 안에 합금화를 완료시킬 수 없었기 때문에 도금 후 바로 열처리하는 온라인(on-line) 합금화 방법을 적용하기 어려웠다. 그러나 본 발명에서는 상술한 도금욕 성분의 조절과 더불어 알루미늄 도금층의 도금량을 편면기준 10~40g/㎡으로 제어함으로써 1~20초의 짧은 열처리 시간에도 불구하고 알루미늄 도금층의 합금화를 효과적으로 완료할 수 있다.
상기 가열 온도는 열처리되는 강판의 표면온도를 기준으로 한다. 가열 온도가 670℃ 미만이면 합금화가 불충분하게 되는 문제가 발생할 수 있고, 반면 가열 온도가 900℃를 초과하면 합금화 후 냉각시키기가 어렵고, 냉각속도를 빠르게 할 경우 소지강판의 강도가 너무 높아지는 문제가 발생할 수 있다. 따라서 합금화 열처리 시의 가열 온도는 670~900℃로 제한하는 것이 바람직하며, 보다 바람직하게는 680~880℃일 수 있으며, 가장 바람직하게는700~800℃ 일 수 있다.
한편, 합금화 열처리 시 유지시간은 1~20초로 제한할 수 있다. 본 발명에서 유지시간은 강판에서 상기 가열 온도(편차 ±10℃ 포함)가 유지되는 시간을 의미한다. 상기 유지시간이 1초 미만이면 가열 시간이 너무 짧아 충분한 합금화가 이루어지지 않는다. 반면 상기 유지시간이 20초를 초과하면 생산성이 너무 저하되는 문제가 발생할 수 있다. 따라서 합금화 열처리 시의 유지시간은 1~20초로 제한하는 것이 바람직하며, 보다 바람직하게는 1~12초일 수 있고, 가장 바람직하게는1~10초일 수 있다.
합금화 열처리를 통한 확산층의 형성은 열처리 온도와 유지시간에 의존하지만, 동시에 알루미늄 도금층에 포함된 Si 및 Mg 의 함량에도 영향을 받는다. 알루미늄 도금층 내에 포함된 Si 가 적을수록, 그리고 Mg 가 많을수록 합금화 속도가 증가하게 되기 때문에 확산층의 두께도 두꺼워질 수 있다. 본 발명에서와 같이 온라인 열처리를 실시하는 경우 상소둔 방식에 비해 열처리 시간이 상대적으로 매우 짧기 때문에 그 공정조건을 세밀하게 제어하지 않으면 충분한 두께의 확산층을 얻을 수 없다. 따라서 본 발명자들은 Si 및 Mg 함량 및 열처리 조건을 제어함으로써 1~20초의 짧은 열처리 시간에도 불구하고 충분한 두께의 확산층을 효과적으로 얻을 수 있다.
한편, 본 발명의 다른 일 구현례에 따르면 상술한 본 발명의 철-알루미늄계 도금 강판을 열간 프레스 성형하여 얻어진 열간 프레스 성형 부재가 제공될 수 있다. 이때, 열간 프레스 성형은 당해 기술분야에 일반적으로 이용되는 방법을 이용할 수 있으며, 예컨대 본 발명에 따른 철-알루미늄계 도금 강판을 880~950℃ 온도범위에서 3~10분 가열한 후 프레스(press)를 이용하여 상기 가열된 강판을 원하는 형상으로 열간 성형할 수 있으나, 이에 한정되는 것은 아니다. 또한 본 발명의 열간 프레스 성형 부재는 소지강판의 표면에 입방 구조의 Fe-Al계 금속간화합물로 이루어지는 확산층의 두께가 도금층 전체 두께의 90% 이상일 수 있다. 또한 열간 프레스 성형 부재의 소지강판의 조성은 상술한 철-알루미늄계 합금 조금 강판의 소지강판의 조성과 동일할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
먼저 소지강판으로 하기 표 1의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하고, 상기 소지강판의 표면에 하기 표 2 에 나타낸 도금욕 조성, 도금욕 온도 660℃ 및 합금화 열처리 조건으로 알루미늄 도금 및 합금화 열처리를 실시하였다.
그리고 합금화 열처리 후 냉각한 후, 상기 방법에 의해 얻어진 철-알루미늄계 도금 강판의 합금화 도금층의 구조를 광학현미경 및 주사전자현미경(SEM)으로 관찰하여 도금층 및 확산층의 두께를 확인하였다.
또한, 합금화층 부분을 주사전사현미경(SEM)으로 관찰한 도 2 중, 확산층 부분에 대한 EDS 분석을 실시하여, 이 상은 입방구조를 갖는 Fe 3Al과 FeAl을 확인하였다.
또한, 도 2 중, 확산층 상에 형성되는 합금화층 부분을 EDS 분석을 실시하여, 중량%로, Al: 48%, Fe: 50%, Si: 2%가 검출되었고, 이 상은 입방 구조가 아닌 사방정계(orthorhombic) 구조를 갖는 Fe 2Al 5임을 확인하였다.
원소 C Si Mn Al P S N Cr Ti B
함량(%) 0.22 0.20 1.2 0.03 0.01 0.002 0.0054 0.2 0.03 0.0025
구분 알루미늄 도금 조건 Al 파우더 평균입경(㎛) 합금화 열처리 조건 강판 도금층
도금량(g/m 2) Si 함량(Wt.%) Mg함량(Wt.%) 온도(℃) 시간(초) 도금층두께(㎛) 확산층 두께(㎛) 확산층 두께 비율(%)
발명예1 38 6.8 12.5 25 680 10 15.1 8.2 54
발명예2 38 6.8 12.5 25 800 10 16.8 10.2 61
발명예3 38 6.8 12.5 25 880 10 17.8 12.5 70
비교예1 38 6.8 12.5 25 600 10 13.3 6.1 46
비교예2 38 6.8 12.5 25 950 10 23.3 21.2 91
발명예4 37 1.2 10.7 30 680 1 16.2 10.8 67
발명예5 37 1.2 10.7 30 800 1 17.8 13.5 76
발명예6 37 1.2 10.7 30 880 1 18.9 17.9 95
비교예3 37 1.2 10.7 30 680 0.1 15.4 7.2 47
비교예4 37 1.2 10.7 30 600 5 15.1 2.9 19
비교예5 37 1.2 10.7 30 880 25 22.7 19.4 85
비교예6 37 1.2 10.7 30 950 5 27.4 26.8 98
발명예7 15 4.2 5.3 10 680 3 5.5 3.8 69
발명예8 15 4.2 5.3 10 800 3 5.7 4.7 82
발명예9 15 4.2 5.3 10 880 3 5.8 5.6 97
발명예10 11 0.03 1.2 16 680 12 4.5 3.7 82
발명예11 11 0.03 1.2 16 800 12 5.2 4.5 87
발명예12 11 0.03 1.2 16 880 12 5.7 5.4 95
비교예7 35 5.5 0 3 800 10 5.7 2.8 49
비교예8 50 6.5 7.8 18 800 10 26.7 5.5 21
비교예9 35 13.4 1.5 55 800 10 17.8 2.4 13
비교예10 35 0 17.8 22 800 10 34.7 18.9 54
이후 각각의 철-알루미늄계 도금 강판에 대해 대기분위기에서 930℃에서 6분간 강판을 가열한 후 열간 프레스 성형을 실시하여 열간 프레스 성형 부재를 얻었다. 그 후 상기 부재의 도금층 구조를 관찰하고, 확산성 수소 함량 및 점용접성을 측정하여 하기 표 3 에 나타내었다. 확산성 수소 함량은 가스 크로마토그래피 기법을 이용하여 시편을 300℃까지 가열하여 방출되는 수소함량을 측정하였고, 점용접성은 ISO 18278기준으로 평가하여 전류범위를 분석하였다.
구분 철-알루미늄계 도금 강판 열간 프레스 성형 부재
확산층 두께비율 (%) 확산성수소함량(ppm) 확산층 두께비율 (%) 확산성수소함량(ppm) 점용접전류범위(kA)
발명예1 54 0.01 99 0.05 1.6
발명예2 61 0.02 100 0.04 1.6
발명예3 70 0.01 100 0.02 1.4
비교예1 46 0.02 82 0.24 1.8
비교예2 91 0.02 100 0.03 0.6
발명예4 67 0.01 96 0.08 1.6
발명예5 76 0.007 96 0.07 1.6
발명예6 95 0.01 97 0.06 1.4
비교예3 47 0.01 75 0.28 1.8
비교예4 19 0.01 52 0.52 1.8
비교예5 85 0.02 100 0.05 0.4
비교예6 98 0.01 100 0.05 0.2
발명예7 69 0.02 97 0.06 2.2
발명예8 82 0.01 100 0.02 2.0
발명예9 97 0.02 100 0.03 2.0
발명예10 82 0.01 100 0.03 1.6
발명예11 87 0.008 100 0.02 1.6
발명예12 95 0.01 100 0.02 1.6
비교예7 49 0.01 48 0.58 2.0
비교예8 21 0.004 64 0.34 1.6
비교예9 13 0.02 35 0.6 0.4
비교예10 54 0.01 94 0.08 0.8
상기 표 1 내지 3 에서 볼 수 있는 바와 같이, 발명예 1 내지 12 는 본 발명에서 제시하는 도금욕 성분과 합금화 열처리 조건을 모두 만족하여, 도금 강판에서 입방 구조인 Fe-Al계 금속간화합물의 합금상을 포함하는 확산층의 두께 비율이 50% 이상이었다.
또한, 열간 프레스 성형 부재를 제조했을 때 강재 내 확산성 수소 함량이 0.1 ppm 이하이며, 점용접 전류범위가 1 kA 이상을 만족하여 수소지연파괴특성 및 점용접성이 우수한 것을 확인할 수 있다.
그러나 비교예 1 및 4 는 합금화 열처리 온도가 670℃ 미만인 경우로서, 비교예 1 은 확산층이 충분히 형성되지 않아 확산층 두께 비율이 50% 이하였으며, 비교예 4 는 확산층이 두께 3㎛ 미만으로 형성되었다. 이에 따라 비교예 1 및 4 의 도금 강판으로 제조한 열간 프레스 성형 부재에서 확산층 두께 비율이 90% 미만이 되고, 수소가 쉽게 빠져나가지 못해 확산성 수소 함량이 0.1ppm 이상이 되어, 내수소 특성이 열위하게 되었다.
비교예 2 및 6 은 합금화 열처리 온도가 900℃ 를 초과한 경우로서, 도금층 및 확산층 두께가 20㎛ 를 초과하여 과도하게 형성되었다. 이에 따라 열간 프레스 성형 부재에서 점용점 전류범위가 1 kA 미만이 되어 점용접 특성이 열위해졌다.
한편 비교예 3 및 5 는 합금화 열처리 시의 유지시간이 본 발명의 범위를 벗어난 경우로서, 비교예 3 의 경우 열처리 시간이 매우 짧아 확산층이 충분히 형성되지 못하여 열간 프레스 성형 부재의 확산층 두께 비율이 75%로 작아 내수소 특성이 저하되었다. 또한 비교예 6 의 경우 열처리 시간이 25초로 길어 도금층 두께가 20㎛ 를 초과하였으며, 이에 따라 점용접성이 열위하게 되었다.
비교예 7, 9 및 10 은 알루미늄 도금욕 성분 중 Si 또는 Mg 함량이 본 발명의 조건을 만족하지 않는 실시예이다. 비교예 7 은 Mg 이 첨가되지 않은 경우이고 비교예 9 는 Si 이 7%를 초과하여 첨가된 경우로서, 합금화 속도가 느려져 확산층이 충분히 형성되지 못하였고, 이에 따라 열간 프레스 성형 부재에서 강재 내 확산성 수소 함량이 높아짐에 따라 내수소 저항성이 저하되었다. 또한 비교예 10 은 Mg 가 15%를 초과하여 첨가되어 도금층이 두께 20㎛ 를 초과하여 형성되었고, 이에 따라 점용접성이 열위해졌다.
비교예 8 은 알루미늄 도금량이 본 발명의 범위를 벗어난 경우로서, 도금층의 두께가 26.7㎛ 로 두꺼워져 확산층 두께 비율이 줄어들어 내수소 저항성이 열위해졌다.
이상 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 통상의기술자는 하기의 청구범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.
[부호의 설명]
1 : 열처리로
2 : 알루미늄 도금욕
3 : 알루미늄 파우더 분사장치
4 : 합금화 열처리 장치

Claims (12)

  1. 열간 프레스 성형에 이용되는 철-알루미늄계 도금 강판으로서,
    소지강판; 및 상기 소지강판의 표면에 형성된 도금층;
    을 포함하고,
    상기 도금층은
    입방 구조(Cubic structure)의 Fe-Al계 금속간화합물을 포함하는 확산층; 및
    상기 확산층 위에 형성되고 상기 입방 구조와는 다른 결정구조로 이루어지는 합금화층;
    을 포함하고,
    상기 확산층의 두께는 3~20㎛ 이고,
    상기 확산층의 두께는 상기 도금층 전체 두께의 50% 초과인 철-알루미늄계 도금 강판.
  2. 제 1 항에 있어서,
    상기 도금층의 두께는 5~20㎛ 인 것을 특징으로 하는 철-알루미늄계 도금 강판.
  3. 제 1 항에 있어서,
    상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 합금조성을 100%로 할 때, Si: 0.0001~7%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 철-알루미늄계 도금 강판.
  4. 제 1 항에 있어서,
    상기 소지강판은 중량%로, C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 철-알루미늄계 도금 강판.
  5. 제 4 항에 있어서,
    상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 철-알루미늄계 도금 강판.
  6. 제 1 항 내지 제 5 항 중 어느 한 항의 철-알루미늄계 도금 강판을 열간 프레스 성형하여 얻어진 열간 프레스 성형 부재로서,
    상기 확산층의 두께가 상기 도금층 전체 두께의 90% 이상인 열간 프레스 성형 부재.
  7. 제 6 항에 있어서,
    상기 열간 프레스 성형 부재 내 확산성 수소 함량이 0.1ppm 이하이고, 상기 열간 프레스 성형 부재의 점용접 전류범위가 1kA 이상인 것을 특징으로 하는 열간 프레스 성형 부재.
  8. 열간 프레스 성형에 이용되는 철-알루미늄계 도금 강판의 제조방법으로서,
    소지강판을 준비하는 단계;
    상기 소지강판을, 중량%로, Si: 0.0001~7%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 편면기준 10~40g/㎡의 도금량으로 도금하여 알루미늄 도금 강판을 얻는 단계; 및
    도금 후 상기 알루미늄 도금강판을 670~900℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 철-알루미늄계 도금 강판을 얻는 단계;
    를 포함하는 철-알루미늄계 도금 강판의 제조방법.
  9. 제 8 항에 있어서,
    상기 알루미늄 도금 강판을 얻는 단계 후, 상기 알루미늄 도금 강판의 표면에 알루미늄 파우더를 분사하는 단계를 더 포함하는 것을 특징으로 하는 철-알루미늄계 도금 강판의 제조방법.
  10. 제 9 항에 있어서,
    상기 알루미늄 파우더의 평균 입경은 5~40㎛ 인 것을 특징으로 하는 철-알루미늄계 도금 강판의 제조방법.
  11. 제 8 항에 있어서,
    상기 소지강판은 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 철-알루미늄계 도금 강판의 제조방법.
  12. 제 11 항에 있어서,
    상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 철-알루미늄계 도금 강판의 제조방법.
PCT/KR2019/016766 2018-11-30 2019-11-29 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법 WO2020111883A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/297,753 US11491764B2 (en) 2018-11-30 2019-11-29 Iron-aluminum-based plated steel sheet for hot press forming, having excellent hydrogen delayed fracture properties and spot welding properties, and manufacturing method therefor
CN201980078926.3A CN113166911B (zh) 2018-11-30 2019-11-29 氢致延迟断裂特性和点焊性优异的用于热压的铁铝系镀覆钢板及其制造方法
JP2021529449A JP7251011B2 (ja) 2018-11-30 2019-11-29 水素遅延破壊特性及びスポット溶接性に優れた熱間プレス用鉄-アルミニウム系めっき鋼板及びその製造方法
EP19891572.0A EP3889315A4 (en) 2018-11-30 2019-11-29 ALUMINUM-BASED STEEL PLATE FOR HOT PRESSING FORMS WITH EXCELLENT PROPERTIES AGAINST DELAYED HYDROGEN-INDUCED BREAKAGE AND SPOT WELDING PROPERTIES AND THE PROCESS FOR ITS MANUFACTURING
MX2021006199A MX2021006199A (es) 2018-11-30 2019-11-29 Lamina de acero chapada en base de hierro-aluminio para formacion en prensa caliente, que tiene excelentes propiedades de fractura retardada de hidrogeno y propiedades de soldabilidad por puntos y metodo de manufactura de la misma.
US17/954,605 US20230041587A1 (en) 2018-11-30 2022-09-28 Iron-aluminum-based plated steel sheet for hot press forming, having excellent hydrogen delayed fracture properties and spot welding properties, and manufacturing method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180152573 2018-11-30
KR10-2018-0152573 2018-11-30
KR1020190156854A KR102280092B1 (ko) 2018-11-30 2019-11-29 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
KR10-2019-0156854 2019-11-29

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/297,753 A-371-Of-International US11491764B2 (en) 2018-11-30 2019-11-29 Iron-aluminum-based plated steel sheet for hot press forming, having excellent hydrogen delayed fracture properties and spot welding properties, and manufacturing method therefor
US17/954,605 Division US20230041587A1 (en) 2018-11-30 2022-09-28 Iron-aluminum-based plated steel sheet for hot press forming, having excellent hydrogen delayed fracture properties and spot welding properties, and manufacturing method therefor

Publications (1)

Publication Number Publication Date
WO2020111883A1 true WO2020111883A1 (ko) 2020-06-04

Family

ID=70852330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016766 WO2020111883A1 (ko) 2018-11-30 2019-11-29 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법

Country Status (4)

Country Link
US (2) US11491764B2 (ko)
JP (1) JP7251011B2 (ko)
MX (1) MX2021006199A (ko)
WO (1) WO2020111883A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265366A4 (en) * 2020-12-18 2024-06-05 Posco Co Ltd METHOD FOR MANUFACTURING A CUSTOM WELDED BLANK USING A HOT PRESSED STEEL SHEET HAVING AN AL-FE BASED INTERMETALLIC ALLOY LAYER

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023233779A1 (ja) * 2022-06-03 2023-12-07 Jfeスチール株式会社 熱間プレス部材、熱間プレス用鋼板、および熱間プレス部材の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073108A (ja) * 1999-06-29 2001-03-21 Nippon Steel Corp 耐食性、外観に優れた溶融アルミめっき鋼板及びその製造法
KR20100082537A (ko) * 2009-01-09 2010-07-19 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
KR100988491B1 (ko) * 2008-06-26 2010-10-20 포스코강판 주식회사 용융 알루미늄 도금 스테인레스 강판의 제조방법
KR20150075435A (ko) * 2013-12-25 2015-07-06 주식회사 포스코 내식성 및 마이크로 균열 저항성이 우수한 알루미늄 합금도금강판, 이를 이용한 열간 프레스 성형품 및 그 제조방법
KR101696121B1 (ko) * 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104091A (ja) 1984-10-25 1986-05-22 Nippon Steel Corp 表面処理鋼板の製造法
EP0743374B1 (en) 1995-05-19 1999-04-28 Matsushita Electric Works, Ltd. Ferrous alloy with Fe-Al diffusion layer and method of making the same
FR2780984B1 (fr) 1998-07-09 2001-06-22 Lorraine Laminage Tole d'acier laminee a chaud et a froid revetue et comportant une tres haute resistance apres traitement thermique
JP4551034B2 (ja) 2001-08-09 2010-09-22 新日本製鐵株式会社 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材
JP4023710B2 (ja) 2001-06-25 2007-12-19 新日本製鐵株式会社 耐食性,耐熱性に優れたホットプレス用アルミ系めっき鋼板およびそれを使用した自動車用部材
JP5906733B2 (ja) 2011-05-13 2016-04-20 新日鐵住金株式会社 塗装後耐食性に優れた表面処理鋼板、その製造法
KR101318060B1 (ko) 2013-05-09 2013-10-15 현대제철 주식회사 인성이 향상된 핫스탬핑 부품 및 그 제조 방법
KR101789725B1 (ko) 2015-12-24 2017-10-25 주식회사 포스코 합금 코팅 강판 및 이의 제조 방법
KR101858863B1 (ko) 2016-12-23 2018-05-17 주식회사 포스코 내식성 및 가공성이 우수한 용융 알루미늄계 도금강재
CN110352259A (zh) 2017-02-28 2019-10-18 塔塔钢铁艾默伊登有限责任公司 用于制备具有铝合金涂覆层的钢带材的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001073108A (ja) * 1999-06-29 2001-03-21 Nippon Steel Corp 耐食性、外観に優れた溶融アルミめっき鋼板及びその製造法
KR100988491B1 (ko) * 2008-06-26 2010-10-20 포스코강판 주식회사 용융 알루미늄 도금 스테인레스 강판의 제조방법
KR20100082537A (ko) * 2009-01-09 2010-07-19 주식회사 포스코 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
KR20150075435A (ko) * 2013-12-25 2015-07-06 주식회사 포스코 내식성 및 마이크로 균열 저항성이 우수한 알루미늄 합금도금강판, 이를 이용한 열간 프레스 성형품 및 그 제조방법
KR101696121B1 (ko) * 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4265366A4 (en) * 2020-12-18 2024-06-05 Posco Co Ltd METHOD FOR MANUFACTURING A CUSTOM WELDED BLANK USING A HOT PRESSED STEEL SHEET HAVING AN AL-FE BASED INTERMETALLIC ALLOY LAYER

Also Published As

Publication number Publication date
US11491764B2 (en) 2022-11-08
US20230041587A1 (en) 2023-02-09
MX2021006199A (es) 2021-07-16
JP2022513133A (ja) 2022-02-07
JP7251011B2 (ja) 2023-04-04
US20220040957A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2010079995A2 (ko) 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2015099455A1 (ko) 액체금속취화에 의한 크랙 저항성이 우수한 용융아연도금강판
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2016190538A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2012081871A2 (ko) 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
WO2014098503A1 (ko) 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
WO2015099399A1 (ko) 내식성 및 용접성이 우수한 열간 프레스 성형용 강판, 성형부재 및 그 제조방법
WO2020116876A2 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
KR20200066238A (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
KR102010084B1 (ko) 수소지연파괴특성이 우수한 철-알루미늄 합금 도금강판, 그 제조방법 및 그로부터 제조된 열간 프레스 성형 부재
WO2020111881A1 (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2019004662A1 (ko) 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
WO2021125696A2 (ko) 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
WO2016104883A1 (ko) 연성이 우수한 페라이트계 스테인리스 강재 및 그 제조방법
KR20200066239A (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2015099223A1 (ko) 강도와 연성이 우수한 경량강판 및 그 제조방법
WO2022004969A1 (ko) 열간 프레스용 강판 및 이의 제조 방법
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529449

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019891572

Country of ref document: EP

Effective date: 20210630