WO2012081871A2 - 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법 - Google Patents

항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법 Download PDF

Info

Publication number
WO2012081871A2
WO2012081871A2 PCT/KR2011/009537 KR2011009537W WO2012081871A2 WO 2012081871 A2 WO2012081871 A2 WO 2012081871A2 KR 2011009537 W KR2011009537 W KR 2011009537W WO 2012081871 A2 WO2012081871 A2 WO 2012081871A2
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
steel
ductility
yield ratio
austenitic
Prior art date
Application number
PCT/KR2011/009537
Other languages
English (en)
French (fr)
Other versions
WO2012081871A3 (ko
Inventor
진광근
한상호
곽재현
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2013544386A priority Critical patent/JP5699226B2/ja
Priority to CN201180067455.XA priority patent/CN103370434B/zh
Priority to US13/993,452 priority patent/US9738958B2/en
Priority to EP11848590.3A priority patent/EP2653581B1/en
Publication of WO2012081871A2 publication Critical patent/WO2012081871A2/ko
Publication of WO2012081871A3 publication Critical patent/WO2012081871A3/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D17/00Forming single grooves in sheet metal or tubular or hollow articles
    • B21D17/04Forming single grooves in sheet metal or tubular or hollow articles by rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • C21D8/0284Application of a separating or insulating coating
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/38Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • Y10T428/1275Next to Group VIII or IB metal-base component
    • Y10T428/12757Fe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12785Group IIB metal-base component
    • Y10T428/12792Zn-base component
    • Y10T428/12799Next to Fe-base component [e.g., galvanized]

Definitions

  • the present invention relates to an austenitic lightweight high strength steel sheet having excellent yield ratio and ductility, and more particularly, to a high strength steel sheet which can be used to make an automobile inner or outer panel or structural part, and a manufacturing method thereof.
  • high-strength high strength steel sheets for automobiles are advanced high-strength steels such as dual phase steel (DP steel) and transformation induced plasticity steel (TRIP steel). Steel, AHSS).
  • DP steel dual phase steel
  • TRIP steel transformation induced plasticity steel
  • AHSS high-strength steels
  • these steel sheets include martensite or retained austenite in the ferrite structure to secure strength and ductility, which are basically deformed by deformation mechanisms by dislocation sliding, and have high strength because interfaces between different structures exist. There is a limit to obtaining good ductility at.
  • Korean Patent Publication No. 194-0002370 discloses a high strength TWIP (Twinning Induced Plasticity) steel containing 15% or more of manganese, the TWIP steel being austenite It has a single-phase structure and has very good strength and ductility, but its yield strength is low to 40 ⁇ 60%, so it is difficult to secure the stiffness necessary for automotive structural parts.Manufacturing cost and steelmaking There exists a problem that productivity in a process falls.
  • TWIP winning Induced Plasticity
  • Japanese Laid-Open Patent Publication No. 2006-176843 discloses a steel containing 0.8 to 1.2% of carbon and 10 to 30% of Mn and 8 to 12% of Al, which is compared with the Al content. Due to the low Mn content, a large amount of precipitates such as (Fe, Mn) 3 AlC are formed, thereby reducing the ductility and promoting delayed destruction by hydrogen storage after processing.
  • One aspect of the present invention by appropriately controlling the alloying components, such as Mn, Si and Al, at the same time has a tensile strength of 800MPa or more and excellent elongation of 30% or more difficult to secure in conventional high carbon high manganese steel or high manganese lightweight steel sheet, yield It is to provide an austenitic lightweight high strength steel sheet having a ratio of 60% or more and a method of manufacturing the same.
  • C 0.6-1.0%, Si: 0.1-2.5%, Mn: 10-15%, P: 0.02% or less, S: 0.015% or less, Al: 5-8%, Ti: 0.01 ⁇ 0.20%, N: 0.02% or less, remainder Fe and other unavoidable impurities, specific gravity of 7.4g / cm 3 or less, Mn / Al ratio of 2 ⁇ 3 yield ratio and ductility excellent austenitic lightweight high strength steel sheet To provide.
  • the steel sheet is preferably any one of a hot rolled steel sheet, a cold rolled steel sheet or a plated steel sheet.
  • the steel sheet may further include at least one selected from the group consisting of Cr: 0.1 to 3.0%, Ni: 0.05 to 2.0%, Cu: 0.1 to 2.0%, and Mo: 0.05 to 0.5%, and V: 0.005 to 0.5%, Nb: 0.005 to 0.2%, Zr: 0.005 to 0.2% and B: 0.0005 to 0.0030% may further include one or more selected from the group consisting of, Sb: 0.005 to 0.2% and Ca: 0.001 to It may further comprise one or two of 0.02%.
  • the microstructure of the steel sheet is preferably an austenite single phase structure, the tensile strength is 800 ⁇ 1200MPa, the yield ratio is preferably 60% or more, the elongation is preferably 30% or more.
  • C 0.6-1.0%, Si: 0.1-2.5%, Mn: 10-15%, P: 0.02% or less, S: 0.015% or less, Al: 5-8%, Ti: 0.01 ⁇ 0.20%, N: 0.02% or less, remainder Fe and other unavoidable impurities, specific gravity of 7.4 g / cm 3 or less, Mn / Al ratio of 2 to 3 slab initiating hot rolling at 1000 ⁇ 1200 °C After, hot rolling step of finishing hot rolling at 850 °C or more; And it provides a method for producing austenitic lightweight high strength steel sheet having excellent yield ratio and ductility comprising the step of winding the hot rolled steel at less than 600 °C.
  • the hot rolling step after cooling the slab, it may further include a reheating step of reheating to 1000 ⁇ 1200 °C.
  • the cold rolling step after the winding step, the cold rolling step of cold rolling the wound steel at a reduction ratio of 20 to 70%;
  • it may further comprise a cooling step of cooling the annealed steel at a rate of 1 ⁇ 100 °C / s.
  • the steel sheet may be selected from the group consisting of Zn, Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg, Al-Si, and Al-Mg-Si in a range of 20 to 120 g / m 2 . It may further include a plating step of plating in the range.
  • the specific gravity is lower than high-strength steel such as conventional AHSS, high yield ratio, excellent ductility, effective to maintain the rigidity of the structural member, and excellent press workability, the weight reduction of automobile parts
  • high-strength steel such as conventional AHSS
  • high yield ratio high yield ratio
  • excellent ductility effective to maintain the rigidity of the structural member
  • press workability the weight reduction of automobile parts
  • the yield ratio which is the yield strength to tensile strength ratio of the conventional high carbon, high manganese steel
  • the initial deformation resistance due to the difference between the Fe atoms and Al atoms is added by adding a large amount of Al.
  • the yield strength is controlled by suppressing the increase in tensile strength by inhibiting aging (Dynamic Strain Aging, DSA).
  • austenitic thermal stabilization by C and Mn is simultaneously restricted, and the content of Al is restricted to suppress the formation of epsilon martensite and suppress (Fe, Mn) 3 AlC precipitation due to excessive Al addition. It was.
  • the stacking fault energy affected by C, Mn, Al, Si, etc. it is possible to secure the ductility by the TWIP effect by operating the potential slide and twin deformation mechanism simultaneously.
  • the C content is preferably in the range of 0.6% to 1.0%.
  • Si like Al
  • Si is an element that reduces the specific gravity of steel, improves the strength, increases the stacking defect energy, and reduces the dynamic strain aging.
  • the Mn / Si ratio not exceed 30, particularly in high manganese steel.
  • the Si content is in the range of 0.1 to 2.5%, and it is desirable to reduce it as much as possible.
  • Mn is the most essential element for thermal stabilization of austenite and also increases stacking defect energy.
  • Mn serves to lower the specific gravity of the steel material by increasing the lattice constant of the steel to lower the density.
  • the lamination defect energy is excessively increased. Therefore, the Mn content may be lowered in the lamination defect energy while securing thermal activation of austenite in connection with the C content. It is preferable to set it as 10 to 15%. This Mn content also has the effect of lowering the ferroalloy cost in manufacturing high manganese steel.
  • P segregates in columnar or equiaxed grain boundaries during the solidification process, causing high temperature embrittlement and room temperature embrittlement, resulting in slab cracks.
  • P is preferably limited to an upper limit of 0.02% or less because it increases the ductile-brittle transition temperature after processing and is sensitive to hydrogen embrittlement.
  • the upper limit is preferably limited to 0.015% or less.
  • Al is the most important element together with C and Mn in the present invention steel. Since Al is largely different from the Fe atomic radius, Al causes an increase in yield strength due to interatomic friction during the initial deformation process, and increases the stacking defect energy. It is an important element that controls the work hardening behavior of the inventive steel. Element. In addition, it is preferable to add a large amount in order to reduce the specific gravity of the steel, but when added excessively, an intermetallic compound such as (Fe, Mn) 3 AlC increases, which significantly lowers the ductility of the steel. It is preferable to set it as.
  • Ti is crystallized to TiN at high temperature to suppress AlN formation in the steel, and TiC is formed at medium temperature to increase yield strength.
  • N is an effective element that stabilizes austenite in a relatively large amount of solid solution in austenite steel, but when a large amount of Al is contained in the austenitic steel, N causes crystallization of AlN in molten steel, which causes clogging of playing nozzles and inclusion defects, or a large amount in the slab. If you do so, it will cause a crack. In addition, excessive addition increases the cost of manufacturing molten steel at high pressure and causes ductility deterioration due to AlN precipitation. Therefore, it is preferable to limit the upper limit of the above N to 0.02%.
  • an appropriate combination of C, Mn, and Al is important for securing high yield ratio and high ductility.
  • the higher Al and the higher Mn / Al ratio can be expected to further improve the ductility due to MBIP (Microband Induced Plasticity).
  • Mn / Al ratio is in the range of 0.7 to 2.9, but since the Al content is over 8% compared to the present invention, the strength increases with the increase of the second phase fraction due to the formation of (Fe, Mn) 3 AlC. Cold rolling load is not only increased significantly, but there is a problem that cold brittleness occurs during rolling.
  • the above is the basic component system of the present invention and, for the required strength and ductility level, and the characteristics of the steel, Cr: 0.1-3.0%, Ni: 0.05-2.0%, Cu: 0.1-2.0%, Mo: 0.05-0.5%, V: 0.005 to 0.5%, Nb: 0.005 to 0.2%, Zr: 0.005 to 0.2%, B: 0.0005 to 0.0030%, Sb: 0.005 to 0.2% and Ca: 0.001 to 0.02% Can be added.
  • steel which is a high Al-containing steel because Cr lowers the lamination defect energy
  • Cr may be added to control the lamination defect energy, and also serves to suppress hydrogen occlusion during corrosion because it improves corrosion resistance.
  • chromium carbide may be formed to lower the ductility, so the range is preferably 0.1 to 3.0%.
  • Ni is an element suitable for the present invention as an element that stabilizes austenite and increases stacking defect energy.
  • Ni is an expensive element, Ni replaced C with M and Mn in the present invention.
  • it is concentrated in the surface layer and excellent in corrosion resistance and oxidation resistance, it is effective in reducing scale defects in the hot rolling process, improving plating adhesion, and suppressing hydrogen storage during corrosion. Therefore, it is preferable to make the content range of said Ni into 0.05 to 2.0%.
  • Cu like Ni
  • the element is an element that stabilizes austenite and increases stacking defect energy. Therefore, although the element is suitable for the present invention, when it is added in a large amount, it exists in the liquid state at the grain boundary at high temperature, causing grain boundary brittleness due to the molten metal and causing the sawing of the rolled plate, so that the Cu content range is 0.1 to 2.0%. It is preferable to set it as.
  • Mo like Cr, is a ferrite-forming element, but it is an element that affects austenite thermal stabilization and has the effect of increasing the strength by forming fine carbides.
  • Mo is an expensive element and contains a large amount, the ductility of the steel is lowered, so the content range is preferably 0.05 to 0.5%.
  • V is an effective element for increasing the strength by forming carbonitrides in steel.
  • Nb is a strong carbonitride forming element such as V and can be added for strength increase because of its recrystallization retardation effect. For this effect, it is preferable to make the range of Nb into 0.005 to 0.2%.
  • Zr has the effect of suppressing AlN formation by removing nitrogen in steel in advance like Ti, but it is preferable to set the range of 0.005 to 0.2% because the price of ferroalloy is high.
  • B is segregated at grain boundaries than P in steel and has the effect of improving the problems caused by segregation of P.
  • B is excessively added, it is concentrated on the surface of oxide to reduce the wettability of zinc plating or to form boron carbide (Boron-Carbide). Since the ductility of steel is reduced, it is preferable to make the range into 0.0005 to 0.003%.
  • Sb may be another characteristic element in the present invention. Since the Sb segregates at grain boundaries and lowers grain boundary energy, it suppresses formation of (Fe, Mn) 3 AlC, and also suppresses grain boundary diffusion of carbon or aluminum, and thus, it is effective in stabilizing surface structure by preventing component reduction of the surface layer by oxidation. There is. However, when excessively added, the ductility is lowered, so the range is preferably 0.005 to 0.2%.
  • Ca is an element added mainly as a means of removing S from steel, and forms coarse emulsions such as CaS to improve hot workability of steel.
  • the addition amount of ferroalloy increases rapidly, and if it is added excessively, the toughness of steel is lowered, so the range is preferably 0.001 to 0.02%.
  • the hot rolling After starting the hot rolling of the slab that satisfies the composition and the range at 1000 ⁇ 1200 °C, the hot rolling is finished at 850 °C or more.
  • the hot rolling may be performed immediately after the slab is manufactured, or after the slab is cooled, it may be reheated to 1000 to 1200 ° C. and then hot rolled.
  • the hot rolling start temperature is out of this range, edge cracks are likely to occur during hot rolling.
  • the reheating temperature exceeds 1200 ° C, a low melting point compound may be formed at grain boundaries, which may cause cracking of the rolled plate, and at the same time, may cause scrap defects.
  • Hot finish rolling is advantageously performed to secure fine grains at the lowest possible temperature, but when rolling is finished at a temperature below 850 ° C, hot deformation resistance increases, making it impossible to manufacture thin steel sheets (Fe, Mn). 3 AlC precipitation may cause ductility degradation of the steel sheet.
  • the hot rolled steel is wound up at 600 ° C. or lower.
  • the coiling temperature exceeds 600 ° C.
  • the ductility of the hot rolled steel sheet is greatly reduced due to the formation of excessive (Fe, Mn) 3 AlC, thereby cold rolling.
  • the hot rolled steel sheet thus manufactured has a specific gravity of 7.4 g / cm 3 or less, a tensile strength of 800 to 1200 MPa, a yield ratio of 60% or more, and an elongation of 30% or more.
  • the hot rolled steel sheet is subjected to cold rolling after pickling, but it is preferable to cold roll the wound steel at a reduction ratio of 20 to 70%. If the cold reduction rate is 20% or more, the accumulated energy is secured by cold working, and recrystallized structure can be obtained during the annealing process. If the cold rolling reduction is less than 20%, the elongation is lower than that of the annealing plate. In addition, when the cold rolling exceeds 70%, the work hardening rate is very high, resulting in an excessive rolling load, thereby rapidly decreasing the rolling productivity.
  • the cold-rolled steel material is heated to a temperature range of more than the recrystallization temperature of more than 900 °C at a rate of 1 ⁇ 50 °C / s for recrystallization, and then annealed for 10 to 180 seconds.
  • the heating rate is less than 1 ° C / s, a large amount of surface concentration of elements such as Mn, Si, Al occurs to form a surface oxide not only causes a surface defect of the product, but also causes contamination of the annealing apparatus.
  • the cooling is performed at a cooling rate of 1 to 100 °C per second. If the cooling rate is slow, (Fe, Mn) 3AlC precipitates are formed to reduce the ductility, and if the cooling rate is faster than the standard range, the plate shape is worse, and the cooling end temperature is controlled when cooling is terminated at 400 ⁇ 500 °C for hot dip plating. It becomes difficult to do it.
  • the cold rolled steel sheet thus obtained has finer grains than the hot rolled steel sheet.
  • Zn, Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg, Al-Si and Al-Mg-Si at least one selected from the group consisting of 20 ⁇ Plated in the range of 120g / m 2 It can be produced as a plated steel sheet. If the coating amount is less than 20mg / m 2 , the plating layer is destroyed in the corrosion atmosphere, and the effect of improving corrosion resistance is not sufficient, and when the plating amount is more than 120mg / m 2 , the manufacturing cost due to excessive plating is wasted compared to the plating layer required for securing corrosion resistance. There is a problem. Electroplating or hot-dip plating may be used as the plating method.
  • Ingots having the composition shown in Table 1 below were prepared as steel sheets using the conditions shown in Table 2 below.
  • the hot rolling start temperature was 1150 °C
  • the heating rate was 5 °C / s
  • the annealing time was 45 seconds in the production of cold rolled steel sheet. Then, after measuring the physical properties and microstructure of the hot rolled steel sheet and cold rolled steel sheet prepared as described above, the results are shown in Table 3 below.
  • the invention materials 1 to 9 satisfying the composition range and manufacturing conditions proposed by the present invention showed a yield ratio of 72 ⁇ 87%, hot rolled steel sheet 67 ⁇ 83%, Elongation was 34 ⁇ 44% in hot rolled steel sheet and 36 ⁇ 48% in cold rolled steel sheet.
  • the inventive materials 1 to 9 consist of austenite single-phase structure, and have a specific gravity of 7.4 g / cm 3 or less depending on the addition of Al of 5% or more.
  • the Mn / Al ratio is 2 to 3
  • the Mn / Si ratio is less than 30 in relation to the flash weldability is showing a good level.
  • the elongation is lower than that of Inventive Material 4, because it does not satisfy the finish rolling temperature and the winding temperature range, respectively. It can be seen that the tissue also consists of austenite and cementite mixed tissue.
  • Comparative materials 3 to 6 were steel sheets having the same hot rolled steel sheet properties as Inventive Material 4, as the rolling reduction rate, annealing temperature, and cooling rate were outside the scope of the present invention, the elongation and yield ratio were found to be poor. .
  • Comparative Materials 7 to 11 were manufactured to meet the manufacturing conditions of the present invention, it can be seen that the elongation is low or the yield ratio is low because it does not satisfy the component system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 자동차 내판 또는 외판 판넬이나 구조용 부품을 만드는데 사용될 수 있는 고강도 강판 및 그의 제조방법에 관한 것이다. 본 발명은 중량%로, C: 0.6~1.0%, Si: 0.1~2.5%, Mn: 10~15%, P: 0.02%이하, S: 0.015%이하, Al: 5~8%, Ti: 0.01~0.20%, N: 0.02%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 비중이 7.4g/cm3이하이며, Mn/Al비가 2~3인 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 열연강판, 냉연강판, 도금강판 및 이들의 제조방법을 제공한다. 본 발명의 일측면에 따르면, 종래의 AHSS와 같은 고강도강보다 비중이 낮고, 항복비가 높으며, 연성이 매우 우수하여 구조부재의 강성을 유지하는데 효과적이고, 프레스 가공성이 우수하기 때문에 자동차 부품의 경량화는 물론 여러 개의 부품을 한 개의 부품으로 일체화하는 것이 가능하고, 이를 통해 가공공정을 단순화할 수 있는 효과를 발휘한다.

Description

항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
본 발명은 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법에 관한 것으로서, 보다 상세하게는 자동차 내판 또는 외판 판넬이나 구조용 부품을 만드는데 사용될 수 있는 고강도 강판 및 그의 제조방법에 관한 것이다.
최근 배기가스 규제와 연비향상을 위한 자동차 차체의 경량화와 자동차 충돌시 안정성 개선의 두 가지 목적을 달성하기 위하여 자동차 부품의 고강도화가 강하게 요구되고 있으며, 이러한 시장 요구에 대응하기 위하여 강도와 연성 모두 우수한 고연성 고강도 강판이 개발되어 상용화되고 있다.
그러나, 석유를 대체하는 새로운 에너지를 이용한 구동방식의 차세대 자동차로 주목을 받고 있는 전기자동차의 경우처럼 축전지를 사용하거나 차량 안전성과 편의성 향상을 위한 부품채용이 증가함에 따라 차체 중량이 점차 증가하는 추세에 있기 때문에 그 동안의 고연성 고강도 강판에 의한 경량화는 한계가 있고, 따라서 강판의 비중을 낮춘 저비중의 경량 소재 적용을 통한 추가적인 경량화가 필요하다. 이러한 강판은 경쟁 소재인 알루미늄 보다 강도와 연성이 현저히 우수하고 가격이 상대적으로 저렴하기 때문에 시장의 요구에 대응할 수 있는 대체재로서 각광받고 있다.
자동차용 고연성 고강도 강판으로 지금까지 알려진 가장 대표적인 강종들은 이상조직강(Dual Phase Steel, DP강), 변태유기소성강(Transformation Induced Plasticity Steel, TRIP강) 등과 같은 신개념의 변태조직강(Advanced High Stength Steel, AHSS)이다. 그러나, 이러한 강판들은 페라이트 조직에 마르텐사이트나 잔류 오스테나이트를 포함시켜 강도와 연성을 확보하는데, 기본적으로 전위활주에 의한 변형기구에 의하여 변형이 이루어지고, 서로 다른 조직간의 계면이 존재하기 때문에 높은 강도에서 우수한 연성을 얻는데는 한계가 있다.
또 다른 강종에 관한 대표적인 기술로는 한국 공개특허공보 제1994-0002370호가 있는데, 상기 기술에는 15%이상의 망간을 함유하고 있는 고강도 TWIP(Twinning Induced Plasticity)강이 개시되어 있는데, 상기 TWIP강은 오스테나이트 단상조직을 가지며 강도-연성이 매우 우수한 강이지만 항복강도가 낮아서 항복비가 40~60% 수준으로 낮기 때문에 자동차 구조용 부품에 필요한 강성을 확보하는데 어려움이 있으며, 다량의 Mn을 첨가하기 때문에 제조비용과 제강공정에서의 생산성이 저하되는 문제가 있다.
한편, 고강도-고연성 강종으로 경원소인 Al을 첨가하여 비중을 낮춘 경량 강판의 개발도 이루어지고 있는데, 이러한 기술의 대표적인 특허로는 유럽 등록특허 EP0889144가 있다. 상기 기술에는 저탄소강에 8%까지의 Al을 첨가하고 Mn을 10~30% 첨가한 오스테나이트계 강판에 관하여 기재되어 있는데, 상기 강의 경우는 탄소함량이 낮기 때문에 다량의 Mn첨가에 의하여 오스테나이트 조직의 안정화를 도모하고 있다. 그러나, Al을 다량으로 첨가하기 때문에 변형중 오스테나이트가 마르텐사이트로 변태하기 쉽고, 그로 인하여 연성이 저하하는 문제가 있다.
또한, 일본 공개특허공보 특개 2006-176843호에는 0.8~1.2%의 탄소를 함유하고 10~30%의 Mn과 8~12%의 Al을 첨가한 강에 관하여 개시되어 있는데, 상기 강은 Al함량 대비 Mn함량이 낮기 때문에 (Fe, Mn)3AlC와 같은 석출물이 다량으로 형성되고, 이로 인하여 연성이 감소하고 가공 후 수소흡장에 의한 지연파괴가 촉진되는 문제가 있다.
본 발명의 일측면은 Mn, Si 및 Al 등의 합금성분을 적절히 제어함으로써, 종래의 고탄소 고망간강이나 고망간 경량강판에서 확보하기 어려운 800MPa이상의 인장강도와 30%이상의 우수한 연신율을 동시에 가지며, 항복비가 60%이상인 오스테나이트계 경량 고강도 강판 및 그의 제조방법을 제공하고자 하는 것이다.
본 발명은 중량%로, C: 0.6~1.0%, Si: 0.1~2.5%, Mn: 10~15%, P: 0.02%이하, S: 0.015%이하, Al: 5~8%, Ti: 0.01~0.20%, N: 0.02%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 비중이 7.4g/cm3이하이며, Mn/Al비가 2~3인 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판을 제공한다.
상기 강판은 열연강판, 냉연강판 또는 도금강판 중 어느 하나인 것이 바람직하다. 상기 강판은 Cr: 0.1~3.0%, Ni: 0.05~2.0%, Cu: 0.1~2.0% 및 Mo: 0.05~0.5%로 이루어지는 그룹으로부터 선택된 1종 이상을 추가로 포함할 수 있고, V: 0.005~0.5%, Nb: 0.005~0.2%, Zr: 0.005~0.2% 및 B: 0.0005~0.0030%로 이루어지는 그룹으로부터 선택된 1종 이상을 추가로 포함할 수 있으며, Sb: 0.005~0.2% 및 Ca: 0.001~0.02%중 1종 또는 2종을 추가로 포함할 수 있다. 상기 강판의 미세조직은 오스테나이트 단상 조직인 것이 바람직하며, 인장강도가 800~1200MPa이며, 항복비가 60%이상이고, 연신율이 30%이상인 것이 바람직하다.
본 발명은 중량%로, C: 0.6~1.0%, Si: 0.1~2.5%, Mn: 10~15%, P: 0.02%이하, S: 0.015%이하, Al: 5~8%, Ti: 0.01~0.20%, N: 0.02%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 비중이 7.4g/cm3이하이며, Mn/Al비가 2~3인 슬라브를 1000~1200℃에서 열간압연을 개시한 후, 850℃이상에서 열간압연을 마무리하는 열간압연단계; 및 상기 열간압연된 강재를 600℃이하에서 권취하는 단계를 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판의 제조방법 을 제공한다.
상기 열간압연단계 전에는 슬라브를 냉각 후, 1000~1200℃로 재가열하는 재가열단계를 추가로 포함할 수 있다. 또한, 상기 권취단계 후, 권취된 강재를 20~70%의 압하율로 냉간압연하는 냉간압연단계; 상기 냉간압연된 강재를 1~50℃/s의 속도로 재결정 온도 이상 900℃이하의 온도 영역까지 가열한 후, 10~180초간 소둔하는 소둔단계; 및 상기 소둔된 강재를 1~100℃/s의 속도로 냉각하는 냉각단계를 추가로 포함할 수 있다. 또한, 상기 강판에 Zn, Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg, Al-Si 및 Al-Mg-Si로 이루어지는 그룹으로부터 선택된 1종 이상을 20~120g/m2의 범위로 도금하는 도금단계를 추가로 포함시킬 수 있다.
본 발명의 일측면에 따르면, 종래의 AHSS와 같은 고강도강보다 비중이 낮고, 항복비가 높으며, 연성이 매우 우수하여 구조부재의 강성을 유지하는데 효과적이고, 프레스 가공성이 우수하기 때문에 자동차 부품의 경량화는 물론 여러 개의 부품을 한 개의 부품으로 일체화하는 것이 가능하고, 이를 통해 가공공정을 단순화할 수 있는 효과를 발휘한다.
본 발명은 종래의 고탄소 고망간강의 항복강도대 인장강도비인 항복비가 60%미만의 낮은 수준이라는 문제점을 개선하기 위하여, 다량의 Al을 첨가하여 Fe원자와 Al원자 반경차이에 의한 초기 변형저항을 높여줌으로써 항복강도를 높이고, 동시에 C, Al, Mn 등 적층결함 에너지를 상승시키는 원소들의 함량을 조절하여 적절한 범위의 적층결함 에너지를 가지도록 함으로써 가공경화 속도를 낮추고 동시에 Al, Si 첨가에 의한 동적변형시효(Dynamic Strain Aging, DSA)를 억제함으로써 인장강도 상승을 억제하여 항복비를 제어한 것이다. 또한, 강도대비 우수한 연성을 확보하기 위하여 C, Mn에 의한 오스테나이트 열적안정화와 동시에 Al 함량을 제한하여 입실론 마르텐사이트 형성 억제를 도모하고, 과다한 Al첨가에 따른 (Fe, Mn)3AlC 석출을 억제하였다. 또한, C, Mn, Al, Si 등의 영향을 받는 적층결함에너지를 제어하여 전위활주와 쌍정변형 기구가 동시에 작동하도록 함으로써 TWIP 효과에 의한 연성확보가 가능하도록 하였다.
이하, 본 발명에 대하여 상세히 설명한다.
C: 0.6~1.0%(이하 %는 중량%를 의미함)
C는 오스테나이트를 안정화하고, 적층결함에너지를 증가시키며 동적변형시효를 유발하기 때문에 탄소함량이 증가하면 항복비가 약간 감소하지만 연성은 증가한다. 또한, 탄소를 과다하게 첨가하면 (Fe, Mn)3AlC를 형성하여 연성과 수소에 의한 지연파괴를 일으키며 동시에 용강의 응고온도를 낮추어 연속주조시 저온주조를 초래하여 슬라브 제조과정에서 설비를 열화시킨다. 따라서, 오스테나이트 안정화와 인장강도확보 및 연성개선을 위하여 상기 C 함량의 범위를 0.6~1.0%로 하는 것이 바람직하다.
Si: 0.1~2.5%
Si는 Al과 마찬가지로 강의 비중을 저하시키고 강도를 향상시키고 적층결함에너지를 상승하는 반면 동적변형시효를 감소시키는 원소이다. 또한, Si는 용접과정에서 용접부의 고온 점성에 영향을 미치므로, 특히 고망간강에서는 Mn/Si비가 30을 넘지않도록 하는 것이 바람직하다. 그러나, Si을 다량 첨가하는 경우에는 강의 표면에 고온산화 피막을 두껍고 불규칙하게 형성하고 연성을 크게 저하시키므로, 상기 Si 함량의 범위를 0.1~2.5%로 하였으며, 가능한 낮추는 것이 바람직하다.
Mn: 10~15%
Mn은 C와 함께 오스테나이트의 열적 안정화를 위한 가장 필수적인 원소이며 또한 적층결함에너지를 증가시키는 원소이다. 한편, Mn은 강의 격자상수를 증가시켜 밀도를 저하시키기 때문에 강재의 비중을 낮추는 역할을 한다. 본 발명에서는 항복비를 높이기 위하여 다량의 Al을 첨가하기 때문에 이로 인하여 적층결함에너지가 과다하게 증가하게 되므로, Mn의 함량은 C함량과 연계하여 오스테나이트의 열적 활성화를 확보하되 적층결함에너지를 낮출 수 있는 10~15%로 하는 것이 바람직하다. 이러한 Mn함량은 고망간강 제조시 합금철 비용을 낮추는 효과도 발휘한다.
P: 0.02%이하
P는 응고과정에서 주상정 또는 등축정 입계에 편석하여 고온취성과 상온 취성을 유발하여 슬라브 크랙을 가져온다. 또한, P는 가공후 연성-취성 천이온도를 높이고, 수소취성에 민감하게 하기 때문에 상한을 0.02%이하로 한정하는 것이 바람직하다.
S: 0.015%이하
S는 P와 마찬가지로 고온취성을 유발하고 MnS와 같은 개재물을 형성하여 열연 및 냉연시 압연 판파단의 원인이 되기 때문에 그 상한을 0.015%이하로 한정하는 것이 바람직하다.
Al: 5~8%
Al은 본 발명강에서 C, Mn과 함께 가장 중요한 원소이다. Al은 Fe원자반경과 차이가 크기 때문에 초기 변형과정에서 원자간 마찰에 의한 강도 상승을 유발하여 항복강도를 상승시키고, 적층결함에너지를 가장 크게 증가시키는 원소로 본 발명강의 가공경화 거동을 제어하는 중요한 원소이다. 또한, 강재의 비중을 저감시키기 때문에 다량 첨가하는 것이 바람직하지만, 과다하게 첨가하면 (Fe,Mn)3AlC와 같은 금속간 화합물이 증가하여 강의 연성을 현저히 저하시키므로 상기 Al의 범위를 5~8%로 하는 것이 바람직하다.
Ti: 0.01~0.20%
Ti는 고온에서는 TiN으로 정출하여 강중 AlN형성을 억제하고, 중온에서는 TiC를 형성하여 항복강도를 증가시키는 역할을 한다. 그러나, 다량 첨가하는 경우 과다한 TiN정출로 연주노즐막힘이나 개재물 결함을 유발시킬 수 있기 때문에 그 범위를 0.01~0.2%로 하는 것이 바람직하다.
N: 0.02%이하
N은 오스테나이트 강중에 비교적 다량 고용되어 오스테나이트를 안정화시키는 효과적인 원소이지만 본 발명과 같이 다량의 Al을 함유시키는 경우 용강 중에서 AlN정출을 일으켜 연주노즐 막힘이나 개재물성 결함을 유발하거나, 슬라브내에 다량 존재하는 경우는 크랙원인이 된다. 또한, 과다하게 첨가하는 경우는 고압에서 용강을 제조해야 하는 설비비용이 증가하고 AlN석출에 의한 연성저하의 원인이 된다. 이에 따라 상기 N의 상한을 0.02%로 한정하는 것이 바람직하다.
상기의 조성을 만족하더라도, C, Mn, Al의 적절한 조합이 고항복비와 고연성을 확보하는데 중요하다. 특히, 고항복비와 경량화를 위하여 다량의 Al을 첨가하는 것이 유리하지만 Mn/Al비가 낮으면 페라이트 상이 나타나거나, 변형기구가 쌍정변형보다는 전위활주 방식으로 변화하고 동시에 (Fe,Mn)3AlC 가 다량 발생하여 연성을 급격하게 저하시키게 된다. 따라서, Mn/Al의 비를 2이상이 되도록 제어하는 것이 중요하며, 2~3으로 제어하는 것이 보다 바람직하다. 특히, Al이 높으면서 Mn/Al비도 높을수록 MBIP(Microband Induced Plasticity)에 의한 추가적인 연성개선을 기대할 수 있다. 기존의 경량강판의 경우 Mn/Al비는 0.7~2.9 범위이지만 Al함량이 본 발명에 비하여 8%이상으로 과다하기 때문에 (Fe,Mn)3AlC 형성으로 제2상 분율 증가에 따라 강도가 증가하여 냉간 압연 부하가 현저히 증가할 뿐 아니라 압연중 냉간취성이 일어나는 문제점이 있다.
이상이 본 발명의 기본 성분계이며, 요구 강도 및 연성 수준, 그리고 강재의 특성을 위하여, Cr: 0.1~3.0%, Ni: 0.05~2.0%, Cu: 0.1~2.0%, Mo: 0.05~0.5%, V: 0.005~0.5%, Nb: 0.005~0.2%, Zr: 0.005~0.2%, B: 0.0005~0.0030%, Sb: 0.005~0.2% 및 Ca: 0.001~0.02% 중 1종 또는 2종 이상을 미량 첨가할 수 있다.
Cr: 0.1~3.0%
Cr은 적층결함에너지를 낮추기 때문에 고Al함유강인 본 발명강에서는 적층결함에너지를 조절하기 위하여 첨가될 수 있으며, 또한 내식성을 개선시키기 때문에 부식과정에서 수소흡장을 억제하는데 역할도 한다. Cr첨가량이 과다하면 크롬 탄화물을 형성하여 연성이 저하될 수 있으므로, 그 범위를 0.1~3.0%로 하는 것이 바람직하다.
Ni: 0.05~2.0%
Ni는 오스테나이트를 안정화시키고 적층결함에너지를 증가시키는 원소로써 본 발명에 적합한 원소이지만 고가의 원소이기 때문에 본 발명에서는 C,Mn으로 Ni역할을 대체하였다. 이외에도 표층에 농화되어 내식성과 내산화성이 우수하기 때문에 열연공정에서의 스케일 결함을 감소시키고 도금밀착성을 개선하며 부식과정에서의 수소흡장을 억제하는 효과가 있다. 따라서, 상기 Ni의 함량 범위를 0.05∼2.0%로 하는 것이 바람직하다.
Cu: 0.1~2.0%
Cu는 Ni와 같이 오스테나이트를 안정화시키고 적층결함에너지를 증가시키는 원소로써 Ni대비 저렴한 원소이다. 따라서 본 발명에 적합한 원소이지만 다량 첨가되는 경우 고온에서 입계에 액체상태로 존재하여 용융금속에 의한 입계취성을 유발하고 압연판의 톱귀 발생의 원인이 되기 때문에, 상기 Cu의 함량 범위를 0.1~2.0%로 하는 것이 바람직하다.
Mo: 0.05~0.5%
Mo는 Cr과 마찬가지로 페라이트 형성원소이지만 오스테나이트 열적 안정화에 영향을 주는 원소이고 미세한 탄화물을 형성시켜 강도를 상승시키는 효과가 있다. 그러나, Mo도 고가의 원소이고 다량 함유하면 강의 연성을 저하시키므로, 그 함량 범위를 0.05~0.5%로 하는 것이 바람직하다.
V: 0.005~0.5%
V는 강중에서 탄질화물을 형성하여 강도를 상승시키는데 효과적인 원소이다. 그러나, 응고과정에서 입계에 석출하여 슬라브 크랙을 유발하고 열간압연공정에서는 고용강화와 재결정을 현저하게 지연시켜 압연 하중을 현저히 증가시키는 문제가 있다. 따라서, 상기 V의 함량 범위를 0.005~0.5%로 하는 것이 바람직하다.
Nb: 0.005~0.2%
Nb는 V와 같이 강력한 탄질화물 형성원소이고 재결정 지연효과가 크기 때문에 강도상승을 위하여 첨가될 수 있다. 이러한 효과를 위해서는 상기 Nb의 범위를 0.005~0.2%로 하는 것이 바람직하다.
Zr: 0.005~0.2%
Zr은 Ti과 같이 강중 질소를 사전에 제거하여 AlN형성을 억제하는 효과가 있지만 합금철 가격이 높기 때문에 그 범위를 0.005~0.2%로 하는 것이 바람직하다.
B: 0.0005~0.0030%
B는 강중에서 P보다 입계에서 편석하며 P의 편석에 의한 문제점을 개선하는 효과가 있지만 과다하게 첨가하면 산화물로 표면에 농화되어 아연도금의 젖음성을 저하시키거나 보론 카바이드(Boron-Carbide)를 형성하여 강의 연성을 저하시키기 때문에 그 범위를 0.0005~0.003%로 하는 것이 바람직하다.
Sb: 0.005~0.2%
Sb는 본 발명에서 또 하나의 특징적인 원소가 될 수 있다. 상기 Sb는 입계에 편석하여 입계에너지를 저하시키므로 (Fe,Mn)3AlC 형성을 억제하며, 아울러 탄소나 알루미늄의 입계확산을 억제하므로 산화에 의한 표층부의 성분저감을 방지하여 표층 조직의 안정화 시키는데 효과가 있다. 그러나, 과다하게 첨가하면 연성을 저하시키기 때문에 그 범위를 0.005~0.2%로 하는 것이 바람직하다.
Ca: 0.001~0.02%
Ca는 주로 강중 S를 제거하는 수단으로 첨가하는 원소로써 CaS와 같은 조대한 유화물을 형성하여 강의 열간 가공성을 개선한다. 그러나, 휘발성 원소로서 제강에서 다량 첨가하는 경우 합금철 첨가량이 급증하며, 과잉으로 첨가하면 강의 인성을 저하시키므로 그 범위를 0.001~0.02%로 하는 것이 바람직하다.
이하, 본 발명의 제조방법에 대하여 상세히 설명한다.
상기 조성성분 및 범위를 만족하는 슬라브를 1000~1200℃에서 열간압연을 개시한 후, 850℃이상에서 열간압연을 마무리한다. 이 때, 상기 열간압연은 슬라브 제조 후 바로 행하거나, 슬라브를 냉각한 후에 1000~1200℃로 재가열하고 이후 열간압연을 행할 수 있다. 상기 열간압연 개시온도가 이 범위를 벗어나게 되면 열간압연 도중 에지 크랙(edge crack)이 발생하기 쉽다. 또한, 재가열 온도가 1200℃를 초과하게 되면 입계에 저융점 화합물이 형성되어 압연판의 크랙을 유발할 수 있고, 동시에 스크랩 결함을 발생시킬 수 있다. 열간 마무리압연은 가급적 낮은 온도로 실시하는 것이 미세립을 확보하는데 유리하나, 850℃ 미만의 온도에서 압연을 마무리 하게 되면 열간 변형저항이 증가하여 박강판을 제조할 수 없게 되고, (Fe, Mn)3AlC 석출에 따라 강판의 연성저하를 유발할 수 있다.
이후, 상기 열간압연된 강재를 600℃이하에서 권취하게 되는데, 권취온도가 600℃를 초과하게 되면 과다한 (Fe,Mn)3AlC의 형성으로 인하여 열연강판의 연성을 크게 저하시키고, 그로 인하여 냉간압연에서도 소멸하지 않고 잔류하게 되어 냉연강판의 연성에도 나쁜 영향을 미치게 된다. 이와 같이 제조된 열연강판은 비중이 7.4g/cm3이하이고, 인장강도가 800~1200MPa이며, 항복비가 60%이상이고, 연신율이 30%이상인 우수한 물성을 가질 수 있게 된다.
상기 열연강판은 산세 후, 냉간압연을 행하게 되는데, 상기 권취된 강재를 20~70%의 압하율로 냉간압연하는 것이 바람직하다. 냉간압하율을 20%이상으로 해야 냉간 가공에 의해 축적에너지가 확보되고, 소둔 과정에서 재결정 조직을 얻을 수 있다. 만약 냉간 압하율이 20%미만이 되면 소둔판에 비하여 연신율이 낮아진다. 그리고 70%를 초과하여 냉간압연하게 되면 가공경화속도가 매우 높기 때문에 과다한 압연부하를 초래하여 압연 생산성이 급격하게 낮아질 수 있다.
이후, 재결정을 위하여 상기 냉간압연된 강재를 1~50℃/s의 속도로 재결정 온도 이상 900℃이하의 온도 영역까지 가열한 후, 10~180초간 소둔한다. 이 때, 가열속도가 1℃/s미만이 되면 Mn, Si, Al 등의 원소들의 표면농화가 다량 발생하여 표면 산화물을 형성함으로써 제품의 표면 결함을 유발할 뿐 아니라 소둔 장치를 오염시키는 원인이 된다. 한편, 초당 50℃/s를 초과하는 경우에는 재결정온도를 지나치게 상승시키는 문제가 있고, 동시에 별도의 급속가열 설비등 제조비용이 증가하는 단점이 있다. 소둔은 재결정온도 이상 900℃이하에서 10초~180초 범위로 행하는데 재결정온도 미만이거나 시간이 10초 미만인 경우에는 가공경화 조직이 남아 연성확보가 곤란하고, 900℃가 초과하거나 180초를 초과하는 경우에는 소둔시간이 길어지면 결정립 조대화가 일어나 강도가 저하되고 동시에 표면에 산화물도 증가하는 문제가 있다. 본 발명강의 재결정 온도는 600~650℃이다.
소둔이 끝나면 초당 1~100℃의 냉각속도로 냉각을 행한다. 냉각속도가 느리면 (Fe,Mn)3AlC 석출물이 형성되어 연성을 저하시키고 냉각속도가 기준범위보다 빠르면 판형상이 나빠지고, 또한 용융도금을 위해 400~500℃에서 냉각을 종료하는 경우 냉각 종료 온도를 제어하기 어렵게 된다. 이와 같이 얻어진 냉연강판은 열연강판에 비하여 결정립이 더욱 미세해진다.
한편, 상기 냉연강판의 내식성 확보를 위하여 Zn, Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg, Al-Si 및 Al-Mg-Si로 이루어지는 그룹으로부터 선택된 1종 이상을 20~120g/m2의 범위로 도금하여 도금강판으로 제조할 수 있다. 상기 도금부착량이 20mg/m2미만이면 부식분위기에서 도금층이 파괴되어 내식성 개선효과가 충분하지 못하고, 120mg/m2를 초과하는 경우에는 내식성 확보에 필요한 도금층에 비하여 과다한 도금으로 인한 제조비용이 낭비되는 문제점이 있다. 상기 도금방법으로는 전기도금 또는 용융도금을 이용할 수 있다.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다. 다만, 하기 실시예는 본 발명을 보다 구체적으로 설명하기 위한 예일 뿐, 본 발명의 권리범위를 제한하지는 않는다.
(실시예)
하기 표 1과 같은 조성을 가지는 잉곳을 하기 표 2의 조건을 이용하여 강판으로 제조하였다. 이 때, 열간압연 개시온도는 1150℃였으며, 냉연강판 제조시에 가열속도는 5℃/s, 소둔 시간은 45초였다. 이후, 상기와 같이 제조된 열연강판 및 냉연강판의 물성 및 미세조직을 측정한 뒤, 그 결과를 하기 표 3에 나타내었다.
표 1
구분 C Si Mn P S Al Ti N 기타 Mn/Al Mn/Si
발명강1 0.97 0.60 14.0 0.011 0.0020 5.7 0.11 0.0031 - 2.5 23
발명강2 0.98 0.65 14.8 0.011 0.0015 6.2 0.10 0.0011 - 2.4 23
발명강3 0.95 0.45 12.2 0.011 0.0039 5.2 0.10 0.0053 - 2.3 27
발명강4 0.82 0.46 12.5 0.011 0.0005 5.3 0.10 0.0034 - 2.4 27
발명강5 0.67 0.45 12.3 0.011 0.0011 5.6 0.11 0.0083 - 2.2 27
발명강6 0.80 0.65 14.7 0.011 0.0005 5.5 0.10 0.0015 0.51Cr-0.32Ni-0.0025B 2.7 23
발명강7 0.82 0.64 14.5 0.011 0.0020 5.5 0.10 0.0031 0.50Cr-0.25Ni-0.05Nb-0.1Mo 2.6 23
발명강8 0.81 0.65 14.5 0.011 0.0039 5.5 0.10 0.0040 0.5Cr-1.0Cu-0.05Zr-0.005Ca 2.6 22
발명강9 0.80 0.65 14.6 0.012 0.0040 5.6 0.11 0.0030 0.2V-0.03Sb 2.6 22
비교강1 1.18 0.50 12.5 0.011 0.0005 5.5 0.10 0.0031 - 2.3 25
비교강2 0.69 0.51 8.7 0.011 0.0005 6.8 0.10 0.0019 - 1.3 17
비교강3 0.73 0.51 12.6 0.011 0.0005 8.9 0.11 0.0013 - 1.4 25
비교강4 0.75 0.50 12.5 0.011 0.0005 2.1 0.11 0.0011 - 6.0 25
비교강5 0.43 0.51 12.5 0.011 0.0005 7.5 0.10 0.0017 - 1.7 25
표 2
구분 재가열온도(℃) 마무리 압연온도(℃) 권취온도(℃) 냉연압하율(%) 소둔온도(℃) 냉각속도(℃/s)
강종 시편No.
발명강1 발명재1 1150 900 450 50 800 20
발명강2 발명재2 1150 900 450 50 800 20
발명강3 발명재3 1150 900 450 50 800 20
발명강4 발명재4 1150 900 450 50 800 20
비교재1 1150 750 450 50 800 20
비교재2 1150 900 700 50 800 20
비교재3 1150 900 450 10 800 20
비교재4 1150 900 450 33 500 20
비교재5 1150 900 450 33 950 20
비교재6 1150 900 450 33 800 0.1
발명강5 발명재5 1150 900 450 33 800 20
발명강6 발명재6 1150 900 450 50 800 20
발명강7 발명재7 1150 900 450 50 800 20
발명강8 발명재8 1150 900 450 50 800 20
발명강9 발명재9 1150 900 450 50 800 20
비교강1 비교재7 1150 900 450 50 800 20
비교강2 비교재8 1150 900 450 50 800 20
비교강3 비교재9 1150 900 450 50 800 20
비교강4 비교재10 1150 900 450 50 800 20
비교강5 비교재11 1150 900 450 50 800 20
표 3
구분 비중(g/cm3) 미세조직 열연강판 냉연강판
강종 시편No. YS(MPa) TS(MPa) El(%) 항복비(YS/TS) YS(MPa) TS(MPa) El(%) 항복비(YS/TS)
발명강1 발명재1 7.32 γ 731 1014 44.5 72 645 1030 48.1 63
발명강2 발명재2 7.29 γ 921 1118 42.3 82 852 1063 45.4 80
발명강3 발명재3 7.34 γ 950 1087 41.8 87 889 1098 43.5 81
발명강4 발명재4 7.34 γ 889 1025 38.9 87 837 1055 41.0 79
비교재1 γ+θ 815 1004 24 81 765 980 28.3 78
비교재2 γ+θ 725 911 22.3 80 734 945 27.5 78
비교재3 γ - - - - 853 1025 28.5 83
비교재4 γ - - - - 1094 1242 23.9 88
비교재5 γ - - - - 550 981 47.2 56
비교재6 γ+θ - - - - 655 980 26.4 67
발명강5 발명재5 7.32 γ 861 990 34.2 87 836 1009 36.5 83
발명강6 발명재6 7.33 γ 741 1022 40.5 73 727 1051 42.9 69
발명강7 발명재7 7.33 γ 835 1099 37.5 76 787 1130 42.5 70
발명강8 발명재8 7.33 γ 710 981 41.1 72 688 1022 44.0 67
발명강9 발명재9 7.32 γ 855 1092 35.6 78 805 1108 39.1 73
비교강1 비교재7 7.33 γ 1094 1242 23.9 88 976 1129 20.6 86
비교강2 비교재8 7.26 γ+α 427 1025 12.7 42 562 1245 14.5 45
비교강3 비교재9 7.16 γ+α 889 1025 17.1 87 937 1104 20.1 85
비교강4 비교재10 7.50 γ 475 965 52.0 49 442 981 55.3 45
비교강5 비교재11 7.23 γ 848 976 17.6 87 806 954 22.2 84
단, γ는 오스테나이트, α는 페라이트, θ는 시멘타이트 조직을 의미함.
상기 표 1 내지 3에서 알 수 있듯이, 본 발명이 제안하는 조성범위와 제조조건을 만족하는 발명재 1 내지 9는 항복비가 열연강판은 72~87%, 냉연강판은 67~83%를 나타내었으며, 연신율은 열연강판에서는 34~44%, 냉연강판에서는 36~48%를 나타내었다. 또한, 발명재 1 내지 9는 오스테나이트 단상 조직으로 이루어지는 것을 알 수 있고, 5%이상의 Al첨가에 따라 7.4g/cm3이하의 비중을 갖고 있음을 알 수 있다. 또한, Mn/Al비가 2~3이며, 플래쉬 용접성과 관련하여 Mn/Si비가 30이하로 양호한 수준을 보이고 있다.
그러나, 비교재 1 및 2의 경우, 본 발명의 조성성분 및 범위에 부합하고는 있으나, 각각 마무리 압연온도 및 권취온도 범위를 만족하지 않음에 따라 발명재 4 대비 연신율이 낮은 수준을 이루고 있으며, 미세조직 또한 오스테나이트와 시멘타이트 혼합조직으로 이루어지고 있음을 알 수 있다.
비교재 3 내지 6은 발명재 4와 동일한 열연강판 특성을 가지고 있는 강종임에도 불구하고, 냉연시 압하율, 소둔온도 및 냉각속도가 본 발명의 범위에 벗어남에 따라, 연신율과 항복비가 열위한 것으로 나타났다. 비교재 7 내지 11의 경우에는 본 발명의 제조조건에 부합되도록 제조되었으나, 성분계를 만족하지 않아 연신율이 낮거나 항복비가 낮은 수준임을 알 수 있다.

Claims (12)

  1. 중량%로, C: 0.6~1.0%, Si: 0.1~2.5%, Mn: 10~15%, P: 0.02%이하, S: 0.015%이하, Al: 5~8%, Ti: 0.01~0.20%, N: 0.02%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 비중이 7.4g/cm3이하이며, Mn/Al비가 2~3인 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  2. 제1항에 있어서, 상기 강판은 열연강판, 냉연강판 또는 도금강판 중 어느 하나인 것을 특징으로 하는 항복비 및 연성이 우수한 오스테나이트께 경량 고강도 강판.
  3. 제2항에 있어서, 상기 강판은 Cr: 0.1~3.0%, Ni: 0.05~2.0%, Cu: 0.1~2.0% 및 Mo: 0.05~0.5%로 이루어지는 그룹으로부터 선택된 1종 이상을 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  4. 제2항 또는 제3항에 있어서, 상기 강판은 V: 0.005~0.5%, Nb: 0.005~0.2%, Zr: 0.005~0.2% 및 B: 0.0005~0.0030%로 이루어지는 그룹으로부터 선택된 1종 이상을 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  5. 제2항 또는 제3항에 있어서, 상기 강판은 Sb: 0.005~0.2% 및 Ca: 0.001~0.02%중 1종 또는 2종을 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  6. 제4항에 있어서, 상기 강판은 Sb: 0.005~0.2% 및 Ca: 0.001~0.02%중 1종 또는 2종을 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  7. 제1항 또는 제2항에 있어서, 상기 강판의 미세조직은 오스테나이트 단상 조직인 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  8. 제1항 또는 제2항에 있어서, 상기 강판은 인장강도가 800~1200MPa이며, 항복비가 60%이상이고, 연신율이 30%이상인 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판.
  9. 중량%로, C: 0.6~1.0%, Si: 0.1~2.5%, Mn: 10~15%, P: 0.02%이하, S: 0.015%이하, Al: 5~8%, Ti: 0.01~0.20%, N: 0.02%이하, 잔부 Fe 및 기타 불가피한 불순물로 이루어지고, 비중이 7.4g/cm3이하이며, Mn/Al비가 2~3인 슬라브를 1000~1200℃에서 열간압연을 개시한 후, 850℃이상에서 열간압연을 마무리하는 열간압연단계; 및
    상기 열간압연된 강재를 600℃이하에서 권취하는 단계를 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판의 제조방법.
  10. 제9항에 있어서, 상기 열간압연단계 전, 슬라브를 냉각 후, 1000~1200℃로 재가열하는 재가열단계를 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판의 제조방법.
  11. 제9항에 있어서, 상기 권취단계 후, 권취된 강재를 20~70%의 압하율로 냉간압연하는 냉간압연단계;
    상기 냉간압연된 강재를 1~50℃/s의 속도로 재결정 온도 이상 900℃이하의 온도 영역까지 가열한 후, 10~180초간 소둔하는 소둔단계; 및
    상기 소둔된 강재를 1~100℃/s의 속도로 냉각하는 냉각단계를 추가로 포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판의 제조방법.
  12. 제9항 내지 제11항에 기재된 어느 한 항에 있어서, 상기 강판에 Zn, Zn-Fe, Zn-Al, Zn-Mg, Zn-Al-Mg, Al-Si 및 Al-Mg-Si로 이루어지는 그룹으로부터 선택된 1종 이상을 20~120g/m2의 범위로 도금하는 도금단계를 추가로포함하는 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판의 제조방법.
PCT/KR2011/009537 2010-12-13 2011-12-12 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법 WO2012081871A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2013544386A JP5699226B2 (ja) 2010-12-13 2011-12-12 降伏比及び延性に優れたオーステナイト系軽量高強度鋼板及びその製造方法
CN201180067455.XA CN103370434B (zh) 2010-12-13 2011-12-12 具有高的屈强比和延性的奥氏体型轻质高强度钢板及其制备方法
US13/993,452 US9738958B2 (en) 2010-12-13 2011-12-12 Austenitic, lightweight, high-strength steel sheet having high yield ratio and ductility, and method for producing the same
EP11848590.3A EP2653581B1 (en) 2010-12-13 2011-12-12 Austenitic, lightweight, high-strength steel sheet of which the yield ratio and flexibility are outstanding and a production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100126603A KR20120065464A (ko) 2010-12-13 2010-12-13 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
KR10-2010-0126603 2010-12-13

Publications (2)

Publication Number Publication Date
WO2012081871A2 true WO2012081871A2 (ko) 2012-06-21
WO2012081871A3 WO2012081871A3 (ko) 2012-09-07

Family

ID=46245201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009537 WO2012081871A2 (ko) 2010-12-13 2011-12-12 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법

Country Status (6)

Country Link
US (1) US9738958B2 (ko)
EP (1) EP2653581B1 (ko)
JP (1) JP5699226B2 (ko)
KR (1) KR20120065464A (ko)
CN (1) CN103370434B (ko)
WO (1) WO2012081871A2 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884661A (zh) * 2012-12-26 2015-09-02 Posco公司 焊接热影响区韧性优异的高强度奥氏体类钢材及其制备方法
JP2017507242A (ja) * 2013-12-26 2017-03-16 ポスコPosco 高強度低比重鋼板及びその製造方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101360639B1 (ko) * 2012-06-26 2014-02-10 주식회사 포스코 자동차의 전방 차체
WO2014209064A1 (ko) * 2013-06-27 2014-12-31 현대제철 주식회사 고강도 강판 및 그 제조 방법
KR101505305B1 (ko) * 2013-06-27 2015-03-23 현대제철 주식회사 고강도 강판 및 그 제조 방법
KR101543916B1 (ko) * 2013-12-25 2015-08-11 주식회사 포스코 표면 가공 품질이 우수한 저온용강 및 그 제조 방법
CN103667883B (zh) * 2013-12-26 2017-01-11 北京科技大学 一种低密度、高强韧汽车用钢板及制备工艺
CN103820735B (zh) * 2014-02-27 2016-08-24 北京交通大学 一种超高强度C-Al-Mn-Si系低密度钢及其制备方法
KR20160003967A (ko) * 2014-07-01 2016-01-12 주식회사 포스코 고속변형 하에서 에너지 흡수능이 우수한 강재 및 이의 제조방법
CN105506513B (zh) * 2014-09-26 2017-08-11 鞍钢股份有限公司 超高强度冷轧汽车用钢及其制备方法
CN105441796B (zh) * 2014-09-26 2017-02-22 鞍钢股份有限公司 具有高强塑积twip钢及其制备方法
KR101683987B1 (ko) * 2014-10-17 2016-12-08 현대자동차주식회사 석출 경화형 고강도 및 고연신 저비중 강판 및 그 제조방법
KR101665801B1 (ko) * 2014-12-23 2016-10-13 주식회사 포스코 도금 품질이 우수한 오스테나이트계 고강도 고망간 용융 알루미늄 도금강판 및 그의 제조방법
KR101665807B1 (ko) * 2014-12-23 2016-10-13 주식회사 포스코 도금성이 우수한 오스테나이트계 고강도 고망간 용융 알루미늄 도금강판 및 그의 제조방법
KR101586962B1 (ko) * 2014-12-26 2016-01-19 현대제철 주식회사 고강도 강판 및 그 제조 방법
CN104928456B (zh) * 2015-06-30 2017-08-25 宝山钢铁股份有限公司 一种提高普冷铁素体轻质钢延展性的制造方法
RU2625512C2 (ru) * 2015-12-03 2017-07-14 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский технологический университет "МИСиС" Конструкционная литейная аустенитная стареющая сталь с высокой удельной прочностью и способ ее обработки
KR101726093B1 (ko) * 2015-12-24 2017-04-12 주식회사 포스코 항복강도 및 피로특성이 우수한 열연강판 및 그 제조방법
KR101746996B1 (ko) 2015-12-24 2017-06-28 주식회사 포스코 도금 밀착성이 우수한 고망간 용융 알루미늄계 도금강판
EP3395979B1 (en) * 2015-12-24 2020-06-03 Posco Austenite-based molten aluminum-plated steel sheet having excellent properties of plating and weldability, and method for manufacturing same
JP6965246B2 (ja) 2015-12-28 2021-11-10 ザ・ナノスティール・カンパニー・インコーポレーテッド 高強度鋼の延伸の間の遅れクラッキング防止
JP2019510880A (ja) * 2016-03-01 2019-04-18 タタ、スティール、ネダーランド、テクノロジー、ベスローテン、フェンノートシャップTata Steel Nederland Technology Bv 高延性を有する低密度及び高強度のオーステナイト系鋼ストリップ又はシート、該鋼の製造方法及びその用途
KR101747034B1 (ko) 2016-04-28 2017-06-14 주식회사 포스코 항복비가 우수한 초고강도 고연성 강판 및 이의 제조방법
MA45114A (fr) * 2016-05-24 2019-04-10 Arcelormittal Procédé de fabrication d'une tôle d'acier twip ayant une matrice austénitique
WO2017203311A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203315A1 (en) 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
WO2017203310A1 (en) 2016-05-24 2017-11-30 Arcelormittal Method for producing a twip steel sheet having an austenitic microstructure
WO2017203312A1 (en) * 2016-05-24 2017-11-30 Arcelormittal Cold rolled and annealed steel sheet, method of production thereof and use of such steel to produce vehicle parts
RU2615932C1 (ru) * 2016-06-16 2017-04-11 Юлия Алексеевна Щепочкина Сталь
CN106011652B (zh) * 2016-06-28 2017-12-26 宝山钢铁股份有限公司 一种磷化性能优异的冷轧低密度钢板及其制造方法
DE102016117508B4 (de) * 2016-09-16 2019-10-10 Salzgitter Flachstahl Gmbh Verfahren zur Herstellung eines Stahlflachprodukts aus einem mittelmanganhaltigen Stahl und ein derartiges Stahlflachprodukt
KR101836714B1 (ko) * 2016-10-12 2018-03-09 현대자동차주식회사 고망간강
CN107675098A (zh) * 2016-12-05 2018-02-09 东北大学 一种轻质高锰钢材料的制备方法
KR101889185B1 (ko) 2016-12-21 2018-08-16 주식회사 포스코 성형성 및 피로특성이 우수한 열연강판 및 그 제조방법
US11034132B2 (en) 2016-12-21 2021-06-15 Posco High manganese hot dip aluminum-plated steel sheet having excellent sacrificial corrosion resistance and platability and manufacturing method therefor
KR101940874B1 (ko) 2016-12-22 2019-01-21 주식회사 포스코 저온인성 및 항복강도가 우수한 고 망간 강 및 제조 방법
KR101839253B1 (ko) 2016-12-23 2018-03-15 주식회사 포스코 가공부 내식성이 우수한 알루미늄계 합금 도금강판
KR101917473B1 (ko) 2016-12-23 2018-11-09 주식회사 포스코 내마모성과 인성이 우수한 오스테나이트계 강재 및 그 제조방법
KR101940886B1 (ko) * 2016-12-26 2019-01-21 주식회사 포스코 점용접성 및 내식성이 우수한 아연합금도금강재
KR101940885B1 (ko) * 2016-12-26 2019-01-21 주식회사 포스코 점용접성 및 내식성이 우수한 단층 아연합금도금강재 및 그 제조방법
KR20190035142A (ko) * 2017-09-26 2019-04-03 주식회사 포스코 항복강도 및 드로잉성형성이 우수한 냉연강판 및 그 제조방법
KR102002301B1 (ko) * 2018-03-20 2019-07-23 두산중공업 주식회사 내식성과 비강도가 뛰어난 경량철강 및 이의 제조방법
KR102098483B1 (ko) * 2018-07-27 2020-04-07 주식회사 포스코 성형성 및 피로특성이 우수한 저비중 클래드 강판 및 그 제조방법
KR102109258B1 (ko) * 2018-07-30 2020-05-11 주식회사 포스코 강도, 성형성 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법
KR102109261B1 (ko) * 2018-08-07 2020-05-11 주식회사 포스코 강도 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법
CN109136761B (zh) * 2018-09-26 2020-10-30 首钢集团有限公司 一种980MPa级高延性低密度汽车用奥氏体钢及其制备方法
CN111332367B (zh) * 2018-12-18 2023-02-03 通用汽车环球科技运作有限责任公司 加压硬化焊接钢合金部件
CN111020367B (zh) * 2019-10-28 2021-04-27 鞍钢股份有限公司 一种冷轧高强轻质钢及其制备方法
CN110747399B (zh) * 2019-11-13 2020-11-03 甘肃酒钢集团宏兴钢铁股份有限公司 一种高屈强比高锰高铝无磁钢板的控轧控冷生产方法
CN110819908B (zh) * 2019-11-18 2021-03-23 燕山大学 一种高强低密度奥氏体钢及其制备方法
CN111663085B (zh) * 2020-07-02 2021-08-27 武汉科技大学 一种超高强度和塑性的热轧奥氏体低密度钢及生产方法
CN113737104B (zh) * 2021-09-07 2022-05-10 燕山大学 一种高铝耐候钢及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (ko) 1992-07-24 1994-02-17 정명식 성형성, 강도 및 용접성이 우수한 오스테나이트계 고 망간강과 그 제조방법
EP0889144A1 (de) 1997-07-01 1999-01-07 Max-Planck-Institut für Eisenforschung GmbH Leichtbaustahl und seine Verwendung
JP2006176843A (ja) 2004-12-22 2006-07-06 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55145154A (en) * 1979-04-28 1980-11-12 Daido Steel Co Ltd Rail steel with low weld crack sensibility and thermal expansion coefficient
RU2074900C1 (ru) 1991-12-30 1997-03-10 Поханг Айрон энд Стил Ко., Лтд. Способ обработки стали (варианты)
KR970001324B1 (ko) * 1994-03-25 1997-02-05 김만제 열간가공성이 우수한 고망간강 및 그 열간압연 방법
DE19900199A1 (de) 1999-01-06 2000-07-13 Ralf Uebachs Leichtbaustahllegierung
FR2796083B1 (fr) * 1999-07-07 2001-08-31 Usinor Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
JP2005325388A (ja) * 2004-05-13 2005-11-24 Kiyohito Ishida 低比重鉄合金
JP4324072B2 (ja) 2004-10-21 2009-09-02 新日本製鐵株式会社 延性に優れた軽量高強度鋼とその製造方法
CN101111622B (zh) 2005-02-02 2011-09-07 塔塔钢铁艾默伊登有限责任公司 具有高的强度和可成形性的奥氏体钢,制造所述钢的方法及其应用
JP4654440B2 (ja) * 2005-09-22 2011-03-23 国立大学法人東北大学 低加工硬化型鉄合金
KR100742833B1 (ko) 2005-12-24 2007-07-25 주식회사 포스코 내식성이 우수한 고 망간 용융도금강판 및 그 제조방법
KR100742823B1 (ko) * 2005-12-26 2007-07-25 주식회사 포스코 표면품질 및 도금성이 우수한 고망간 강판 및 이를 이용한도금강판 및 그 제조방법
JP5052029B2 (ja) * 2006-04-11 2012-10-17 株式会社ブリヂストン 軽量で延性に優れたビード用ワイヤおよびその製造方法ならびに軽量タイヤ
KR20090070503A (ko) * 2007-12-27 2009-07-01 주식회사 포스코 딥드로잉성이 우수한 고강도 고망간강, 열연강판,냉연강판, 도금강판 및 이들의 제조방법
KR100985298B1 (ko) * 2008-05-27 2010-10-04 주식회사 포스코 리징 저항성이 우수한 저비중 고강도 열연 강판, 냉연강판, 아연도금 강판 및 이들의 제조방법
JP5403660B2 (ja) * 2009-03-09 2014-01-29 本田技研工業株式会社 高強度鋼板およびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR940002370A (ko) 1992-07-24 1994-02-17 정명식 성형성, 강도 및 용접성이 우수한 오스테나이트계 고 망간강과 그 제조방법
EP0889144A1 (de) 1997-07-01 1999-01-07 Max-Planck-Institut für Eisenforschung GmbH Leichtbaustahl und seine Verwendung
JP2006176843A (ja) 2004-12-22 2006-07-06 Nippon Steel Corp 延性に優れた高強度低比重鋼板およびその製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104884661A (zh) * 2012-12-26 2015-09-02 Posco公司 焊接热影响区韧性优异的高强度奥氏体类钢材及其制备方法
JP2016507648A (ja) * 2012-12-26 2016-03-10 ポスコ 溶接熱影響部の靭性に優れた高強度オーステナイト系鋼材及びその製造方法
EP2940173A4 (en) * 2012-12-26 2016-08-10 Posco HIGH-RESISTANCE AUSTENITIC STEEL WITH REMARKABLE TOUGHNESS OF WELD-HEATED ZONES AND MANUFACTURING METHOD THEREFOR
US10041156B2 (en) 2012-12-26 2018-08-07 Posco High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor
JP2017507242A (ja) * 2013-12-26 2017-03-16 ポスコPosco 高強度低比重鋼板及びその製造方法

Also Published As

Publication number Publication date
CN103370434A (zh) 2013-10-23
JP2014501852A (ja) 2014-01-23
US9738958B2 (en) 2017-08-22
JP5699226B2 (ja) 2015-04-08
EP2653581B1 (en) 2018-08-22
EP2653581A2 (en) 2013-10-23
CN103370434B (zh) 2015-10-14
WO2012081871A3 (ko) 2012-09-07
EP2653581A4 (en) 2016-10-05
KR20120065464A (ko) 2012-06-21
US20130295409A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
WO2012081871A2 (ko) 항복비 및 연성이 우수한 오스테나이트계 경량 고강도 강판 및 그의 제조방법
KR100711468B1 (ko) 성형성과 도금특성이 우수한 고강도 냉연강판 및용융아연도금강판, 그리고 이들의 제조방법
US8449698B2 (en) Dual phase steel sheet and method of manufacturing the same
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2020130560A1 (ko) 가공성이 우수한 냉연강판, 용융아연도금강판 및 이들의 제조방법
WO2020130666A1 (ko) 열간성형 후 충격특성이 우수한 열간성형용 도금강판, 열간성형 부재 및 이들의 제조방법
WO2010074370A1 (ko) 고강도 고연신 강판 및 열연강판, 냉연강판, 아연도금강판 및 아연도금합금화강판의 제조방법
KR20140081599A (ko) 재질 및 두께 편차가 작고 내도금박리성이 우수한 열연강판 및 그 제조방법
KR20150074971A (ko) 표면 품질이 우수한 고강도 열연강판 및 그 제조방법
WO2020060051A1 (ko) 충격 인성이 우수한 페라이트계 스테인리스 열연 무소둔 강판 및 그 제조방법
WO2022124609A1 (ko) 연성 및 성형성이 우수한 고강도 용융아연도금강판 및 그 제조방법
KR102450998B1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2010074458A2 (ko) 딥드로잉성이 우수하고 고항복비를 갖는 고강도 냉연강판, 이를 이용한 용융아연도금강판, 합금화 용융아연도금강판 및 이들의 제조방법
JP2022513132A (ja) 耐食性及び耐熱性に優れた熱間成形用アルミニウム-鉄合金めっき鋼板、熱間プレス成形部材及びこれらの製造方法
WO2011081236A1 (ko) 열간 프레스 가공성이 우수한 열처리 강화형 강판 및 그 제조방법
WO2016047840A1 (ko) 압연강판 및 그의 제조방법
JP2005256141A (ja) 穴広げ性に優れる高強度鋼板の製造方法
WO2014038759A1 (en) Ferritic lightweight high-strength steel sheet having excelent stiffness and ductility, and method of manufacturing the same
WO2020130257A1 (ko) 연성 및 가공성이 우수한 고강도 강판 및 그 제조방법
KR20090069880A (ko) 신장 플랜지성과 연성이 우수한 복합조직 고강도 열연강판및 그의 제조방법
KR20150047043A (ko) 고강도 저비중 냉연강판 및 이의 제조방법
WO2023048449A1 (ko) 표면 품질이 우수하고 재질 편차가 적은 고강도 냉연강판 및 이의 제조 방법
WO2009157661A9 (ko) 표면특성 및 내2차 가공취성이 우수한 소부경화강 및 그 제조방법
WO2022103024A1 (ko) 성형성이 우수한 고강도 아연계 도금강판 및 그 제조방법
KR20200013289A (ko) 강도, 성형성 및 도금성이 우수한 저비중 클래드 강판 및 그 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11848590

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2013544386

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13993452

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011848590

Country of ref document: EP