WO2020111881A1 - 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법 - Google Patents

내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법 Download PDF

Info

Publication number
WO2020111881A1
WO2020111881A1 PCT/KR2019/016763 KR2019016763W WO2020111881A1 WO 2020111881 A1 WO2020111881 A1 WO 2020111881A1 KR 2019016763 W KR2019016763 W KR 2019016763W WO 2020111881 A1 WO2020111881 A1 WO 2020111881A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
aluminum
plated steel
alloying
less
Prior art date
Application number
PCT/KR2019/016763
Other languages
English (en)
French (fr)
Inventor
오진근
김성우
김상헌
조열래
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to US17/297,920 priority Critical patent/US11529795B2/en
Priority to CN201980079328.8A priority patent/CN113166914B/zh
Priority to JP2021529844A priority patent/JP7241283B2/ja
Priority to EP19890089.6A priority patent/EP3889312A4/en
Priority to MX2021006198A priority patent/MX2021006198A/es
Priority claimed from KR1020190156855A external-priority patent/KR102280093B1/ko
Publication of WO2020111881A1 publication Critical patent/WO2020111881A1/ko
Priority to US17/983,759 priority patent/US20230086620A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/012Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/12Aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Definitions

  • the present invention relates to an aluminum-iron plated steel sheet for hot press excellent in corrosion resistance and weldability and a method for manufacturing the same.
  • the hot press forming method is a method of forming a low-temperature structure such as martensite in a steel sheet by processing the steel sheet at a high temperature, which is good for processing, and then rapidly cooling the steel sheet to increase the strength of the final product. In this case, when manufacturing a member having high strength, there is an advantage of minimizing the problem of processability.
  • Patent Document 1 has been proposed as a method for solving this problem.
  • a steel plate subjected to aluminum plating is used in a process of heating and quenching (shortly'post heat treatment') after hot press forming or room temperature forming. Since the aluminum plating layer is present on the surface of the steel sheet, the steel sheet is not oxidized upon heating.
  • a step of heating the steel sheet is performed. At this stage, the temperature of the steel sheet rises, and as a result, the diffusion of Fe from the base iron of the steel sheet to the plating layer on the surface occurs and alloying occurs in the plating layer.
  • Patent Document 1 U.S. Patent Publication No. 6,296,805
  • an aluminum-iron plated steel sheet for hot press molding having excellent corrosion resistance and weldability and a method of manufacturing the same can be provided.
  • An aluminum-iron plated steel sheet includes a steel sheet; And a plating layer formed on the surface of the steel sheet, wherein the plating layer is formed on the surface of the steel sheet and includes at least one of Fe 3 Al, FeAl(Si), Fe 2 Al 5, and FeAl 3 ; And an aluminum layer formed on the alloying layer and having a thickness of less than 10% of the thickness of the plating layer.
  • the thickness of the plating layer is 20 ⁇ 35 ⁇ m
  • Mg measured by GDS at a depth of 0.1 ⁇ m from the surface of the plating layer is 1-20% by weight, measured by GDS at a depth of 0.1 ⁇ m from the surface of the plating layer
  • Oxygen is 10% by weight or less.
  • the plating layer is in weight%, when the alloy composition is 100% excluding the Fe content diffused from the steel sheet, Si: 7-15%, Mg: 1.1-15%, the balance Al and other It may contain unavoidable impurities.
  • the steel sheet is C: 0.04 to 0.5% by weight, Si: 0.01 to 2%, Mn: 0.01 to 10%, Al: 0.001 to 1.0%, P: 0.05% or less, S : 0.02% or less, N: 0.02% or less, residual Fe and other unavoidable impurities.
  • the steel sheet is a weight percent, sum of one or more selected from the group consisting of Cr, Mo and W: 0.01 to 4.0%, one or more from the group consisting of Ti, Nb, Zr and V Sum: 0.001 ⁇ 0.4%, Cu+Ni: 0.005 ⁇ 2.0%, Sb+Sn: 0.001 ⁇ 1.0% and B: 0.0001 ⁇ 0.01%.
  • the present invention provides a hot press forming member obtained by hot press forming the above-described aluminum-iron plated steel sheet.
  • a method of manufacturing an aluminum-iron plated steel sheet used for hot press forming includes preparing a steel sheet; The steel sheet is immersed in an aluminum plating bath containing Si: 7-15%, Mg: 1.1-15%, residual Al, and other unavoidable impurities by weight%, and is plated in a plating amount of 40 to 100 g/m2 on one side basis to produce aluminum.
  • after the initial cooling may further include the step of spraying aluminum powder on the surface of the aluminum plated steel sheet.
  • the average particle diameter of the aluminum powder may be 5 ⁇ 40 ⁇ m.
  • the present invention is formed by forming a plating layer on a steel sheet in advance before heating for hot press forming, and appropriately controlling the thickness and layer composition of the plating layer, thereby hot press forming. There is an effect that can improve the corrosion resistance and weldability of the member.
  • FIG. 1 schematically shows a manufacturing apparatus in which a manufacturing method according to an aspect of the present invention is implemented.
  • FIG. 2 is a photograph of a cross-section of an aluminum-iron plated steel sheet prepared by Inventive Example 1 observed with a scanning electron microscope (SEM).
  • FIG 3 is a photograph of a cross-section of an aluminum-iron plated steel sheet prepared by Comparative Example 1 observed with a scanning electron microscope (SEM).
  • FIG. 4 is a photograph obtained by scanning electron microscopy (SEM) on the plated cross section after hot press forming the aluminum-iron plated steel sheet prepared according to Inventive Example 1.
  • FIG. 5 is a photograph obtained by hot-pressing the aluminum-iron plated steel sheet prepared according to Comparative Example 1 with a scanning electron microscope (SEM).
  • An aluminum-iron-based plated steel sheet includes a steel plate, and a plating layer formed on the surface of the steel plate, wherein the plating layer is formed on the steel plate and is Fe 3 Al, FeAl(Si), Fe 2 An alloying layer comprising at least one of Al 5 and FeAl 3 , and an aluminum layer formed on the alloying layer and having a thickness of less than 10% of the thickness of the plating layer, the thickness of the plating layer is 20 to 35 ⁇ m, and the thickness direction It is characterized in that Mg measured by GDS at a depth of 0.1 ⁇ m from the surface of the plating layer is 1 to 20% by weight, and oxygen measured by GDS at a depth of 0.1 ⁇ m from the surface of the plating layer in the thickness direction is 10% by weight or less.
  • an aluminum-iron plated steel sheet includes a steel plate and a plating layer formed on the surface of the steel plate.
  • the plating layer includes an alloying layer formed on the surface of the steel sheet and made of at least one of Fe 3 Al, FeAl(Si), Fe 2 Al 5 and FeAl 3 , and an aluminum layer formed on the alloying layer.
  • the alloy phase of the Al-Fe-based intermetallic compound constituting the alloying layer includes Fe 3 Al, FeAl (Si), Fe 2 Al 5 , FeAl 3 and the like.
  • the alloying layer may include one or more of Fe 3 Al, FeAl (Si), Fe 2 Al 5 and FeAl 3 .
  • the alloying layer may preferably mainly include one or more of Fe 3 Al, FeAl (Si), Fe 2 Al 5 and FeAl 3 .
  • the alloying layer may include one or more of Fe 3 Al, FeAl (Si), Fe 2 Al 5 and FeAl 3 50% or more, preferably 80% or more, more preferably 90% or more, and most preferably 95% or more.
  • the alloying layer mainly includes one or more alloy phases of Fe 3 Al, FeAl(Si), Fe 2 Al 5, and FeAl 3 , but inevitably included in the impurity and plating bath Other elements of interest may also be included in small amounts.
  • Mg when Mg is added, Mg may be partially included in the Al-Fe-based alloy phase in the alloying layer, and the alloying layer may include other alloy phases including the Al-Fe-Mg-based alloy phase. It can contain.
  • an aluminum layer containing Fe which is the same as the original plating layer component or diffused in a small amount from the steel sheet may be present, and in some cases, the aluminum layer may not be present by complete alloying.
  • the thickness of the plating layer may be 20 ⁇ 35 ⁇ m.
  • the thickness of the plated layer in the present invention is preferably limited to 20 ⁇ 35 ⁇ m thickness. More preferably, it may be 20 to 30 ⁇ m thick.
  • Mg measured by a GDS (glow discharge spectrometer) at a depth of 0.1 ⁇ m from the surface of the plating layer may be 1 to 20% by weight.
  • Mg is added at 1.1 to 15% by weight in the aluminum plating bath according to the manufacturing method of the present invention for the purpose of improving corrosion resistance and alloying speed, but Mg in the plating layer tends to diffuse toward the surface and concentrate, so the plating layer in the thickness direction Mg content measured by GDS at the point of 0.1 ⁇ m from the surface of the may be 1 to 20% by weight.
  • it may be 2 to 15%, and more preferably 3 to 10%.
  • oxygen measured by GDS Glow Discharge Spectrometer
  • the temperature is increased without cooling, and the alloying heat treatment is performed for a short time, so that the oxygen content on the surface of the plating layer can be effectively suppressed. If the oxygen content of the surface of the plating layer exceeds 10% by weight, the surface quality of the plated steel sheet may be inferior. On the other hand, the smaller the oxygen content on the surface of the plating layer, the more advantageous, so the lower limit may not be limited.
  • An aluminum layer mainly made of aluminum may be formed on the surface side of the plating layer and on the alloying layer.
  • the thickness of the aluminum layer may be controlled to less than 10% of the thickness of the plating layer, and in some cases, sufficient alloying may be performed so that the aluminum layer may not exist (ie, 0% of the thickness of the plating layer). . Since the interface between the aluminum layer and the alloying layer in the plated steel sheet is unstable, if the thickness of the aluminum layer is greater than 10% of the thickness of the plating layer, peeling of the aluminum layer may occur when winding after alloying heat treatment.
  • the thickness of the aluminum layer is, the lower limit of the thickness may not be limited. Meanwhile, preferably, the thickness of the aluminum layer may be less than 5%, more preferably less than 1%, and most preferably 0%.
  • the plating layer is weight%, when the remaining alloy composition excluding the Fe content diffused from the steel sheet is 100%, Si: 7-15%, Mg: 1.1-15%, the balance Al And other unavoidable impurities.
  • the Si serves to uniformize alloying with Fe in the plating layer, and should be included at least 7% or more to obtain such an effect.
  • Si also serves to suppress the diffusion of Fe, so when it is contained in excess of 15%, the diffusion of Fe is excessively suppressed, so that the desired plating structure in the present invention may not be obtained.
  • the Si content may be preferably 7 to 14%, and more preferably 7.5 to 13.1%.
  • the Mg serves to improve the corrosion resistance of the plated steel sheet, and also has an effect of increasing the alloying speed. In order to obtain the above effect, it should be included at least 1.1% or more, whereas when it is included in excess of 15%, there may be a problem in that weldability and paintability are inferior. Preferably it may be 1.1 to 11%, more preferably 1.5 to 10.5%.
  • the steel sheet is a hot press forming steel sheet, if used in hot press forming may not be particularly limited.
  • the steel sheet is in weight percent, C: 0.04 to 0.5%, Si: 0.01 to 2%, Mn: 0.01 to 10%, Al: 0.001 to 1.0%, P: 0.05% or less, S: 0.02% or less and N: 0.02% or less.
  • the C may be added in an appropriate amount as an essential element to increase the strength of the heat treatment member. That is, the C may be added 0.04% or more in order to ensure sufficient strength of the heat treatment member.
  • the lower limit of the C content may be 0.1% or more.
  • the content is too high, in the case of producing a cold rolled material, when the hot rolled material is cold rolled, the strength of the hot rolled material is too high, which greatly deteriorates the cold rolling property, and significantly reduces the spot weldability. It can be added to 0.5% or less to ensure weldability.
  • the C content may be 0.45% or less, and more preferably, the content may be limited to 0.4% or less.
  • the Si not only has to be added as a deoxidizing agent in steelmaking, but also serves to suppress the formation of carbides that most affect the strength of the hot press-formed member.
  • carbon may be added to the martensite lath grain boundary to be added in an amount of 0.01% or more to secure residual austenite.
  • the upper limit of the Si content can be set to 2% in order to secure sufficient plating properties when aluminum is plated on the steel sheet after rolling.
  • the Si content may be limited to 1.5% or less.
  • the Mn can be added in an amount of 0.01% or more to lower the critical cooling rate for securing martensite in the hot press-formed member as well as securing the solid solution strengthening effect.
  • the Mn content may be limited to 10% or less in that the strength of the steel sheet is properly maintained to secure workability in a hot press forming process, reduce manufacturing cost, and improve spot weldability.
  • the Mn content may be 9% or less, and in some cases, 8% or less.
  • the Al may be deoxidized in steel making together with Si to increase the cleanliness of the steel, and may be added in an amount of 0.001% or more to obtain the effect.
  • the content of Al may be limited to 1.0% or less in order to prevent the Ac3 temperature from becoming too high so that heating required during hot press forming can be performed within an appropriate temperature range.
  • the P is present as an impurity in the steel, and the smaller the content, the better. Therefore, in the present invention, the P content may be limited to 0.05% or less, and preferably may be limited to 0.03% or less.
  • the smaller the P the more advantageous the impurity element, so there is no need to specifically set an upper limit for its content.
  • the lower limit may be set to 0.001%.
  • the maximum content is limited to 0.02%, preferably 0.01% or less.
  • the lower limit of the content may be set to 0.0001%.
  • the N is an element included as an impurity in the steel.
  • the lower the content the more advantageous. Therefore, it can be included in 0.02% or less.
  • the N content may be set to 0.001% or more.
  • the Cr, Mo and W can improve the hardenability and secure the strength and grain refinement through the precipitation strengthening effect, so one or more of these can be added at least 0.01% based on the total content.
  • the content may be limited to 4.0% or less in order to secure the weldability of the member.
  • the effect is saturated when the content of these elements exceeds 4.0%, the content can be limited to 4.0% or less.
  • the Ti, Nb and V are effective in improving the steel sheet of the heat-treated member by forming fine precipitates and stabilizing residual austenite and improving impact toughness by grain refinement, so that one or more of them can be added in an amount of 0.001% or more as a total of contents. have. However, if the addition amount exceeds 0.4%, the effect is not only saturated, but the addition of excessive ferroalloy may cause a cost increase.
  • Cu and Ni are elements that improve the strength by forming a fine precipitate.
  • the sum of one or more of these components may be 0.005% or more.
  • the upper limit can be set to 2.0%.
  • the Sb and Sn are concentrated on the surface to suppress the formation of Si or Mn oxide on the surface, thereby improving plating properties. More than 0.001% may be added to achieve this effect. However, if the addition amount exceeds 1.0%, not only does it require excessive ferroalloy cost, but it is also employed at the slab grain boundary and may cause coil edge cracking during hot rolling, so the upper limit is set to 1.0%.
  • the B is an element capable of suppressing the brittleness of the hot press-formed member due to segregation of grains of P and/or S by segregation at the grain boundaries of old austenite, as well as improving the hardenability by adding a small amount. Therefore, B can be added more than 0.0001%. However, if it exceeds 0.01%, the effect is not only saturated, but also causes brittleness in hot rolling, so the upper limit can be set to 0.01%, and in one embodiment, the B content can be set to 0.005% or less.
  • Residues other than the above-mentioned components include iron (Fe) and unavoidable impurities, and additional addition is not particularly limited as long as they are components that can be included in the hot press forming steel sheet.
  • the diffusion layers (FeAlSi and Fe 3 Al) Configuration), Fe 2 Al 5 and FeAlSi alloying layer is formed can be improved corrosion resistance.
  • the spot welding current range satisfies 1 kA or more to improve spot welding.
  • an aluminum-iron plated steel sheet for hot press forming according to another aspect of the present invention will be described in detail.
  • the manufacturing method of the aluminum-iron plated steel sheet for hot press forming below is only an example, and the aluminum-iron plated steel sheet for hot press forming of the present invention does not necessarily have to be manufactured by the present manufacturing method. Even if it is a method that satisfies the claims of the present invention, it should be noted that there is no problem in using it to implement each embodiment of the present invention.
  • the aluminum-iron plated steel sheet according to another aspect of the present invention includes Si: 7-15%, Mg: 1.1-15%, balance Al and other unavoidable impurities in weight percent on the surface of the hot rolled or cold rolled steel sheet. It can be obtained by performing hot-dip aluminum plating at a plating amount of 40 to 100 g/m2 on a single-sided basis using an aluminum plating bath, and performing an on-line alloying treatment to heat treatment immediately after initial cooling in the plating process.
  • a steel sheet is prepared, and the steel sheet is immersed in an aluminum plating bath containing Si: 7-15%, Mg: 1.1-15%, balance Al and other unavoidable impurities by weight%.
  • An aluminum plated steel sheet can be obtained by plating aluminum on the surface of the steel sheet with a plating amount of 40 to 100 g/m2 on one side.
  • annealing treatment may be optionally performed on the steel sheet before plating.
  • the Si is an element that serves to uniformize alloying with Fe in the plating layer, and may be included at least 7% or more to obtain the effect.
  • Si plays a role of suppressing the diffusion of Fe, when it is contained in excess of 15%, the alloying rate is lowered, and it is difficult to obtain sufficient alloying. Therefore, the Si content in the plating bath in the present invention can be limited to 7 to 15%. Preferably it may be 7 to 14%, and more preferably 7.5 to 13.1%.
  • the Mg serves to improve the corrosion resistance of the aluminum-iron plated steel sheet and also increases the alloying speed. In order to secure a sufficient alloying rate, it should be included at least 1.1% or more. On the other hand, if the Mg is included in excess of 15%, there may be a problem that weldability and paintability are inferior. Therefore, in the present invention, the Mg content included in the aluminum plating bath can be limited to 1.1 to 11%. Preferably it may be 1.5 to 10.5%, and more preferably 2 to 7%.
  • the plating amount may be 40 to 100 g/m 2 on one side. If the plating amount is less than 40 g/m 2, corrosion resistance becomes too inferior, whereas when the plating amount exceeds 100 g/m 2, there is a problem in that weldability deteriorates. Therefore, in the present invention, it is preferable to limit the plating amount to 40 to 100 g/m2 on one side when plating aluminum. On the other hand, more preferably, the plating amount during the aluminum plating may be 55 to 100 g/m 2 on one side.
  • initial cooling may be performed at a cooling rate of 0.1 to 5°C/sec to 640°C or higher.
  • the initial cooling may be performed in a temperature range of 640°C or more and 680°C or less after aluminum plating, and the cooling rate may be 1 to 4°C/sec.
  • Initial cooling after aluminum plating in the present invention is important in that it is possible to secure the desired corrosion resistance and spot weldability by optimizing the Mg content during alloying and/or hot press molding on the plating surface. If the initial cooling end temperature is less than 640°C, there is a problem that a facility load may occur because more output must be applied for alloying in the subsequent online alloying heat treatment.
  • the cooling rate is less than 0.1°C/sec, a solidification layer is not sufficiently formed on the plating surface, and thus, during online alloying, Mg is excessively diffused on the surface, thereby deteriorating the spot welding property of the hot forming member.
  • the cooling rate exceeds 5°C/sec, the plated layer is excessively cooled, and the load and time of the equipment are prolonged in order to secure a predetermined temperature for alloying, which may hinder productivity.
  • aluminum powder may be sprayed on the surface of the aluminum plated steel sheet as necessary.
  • the aluminum powder not only cools the surface locally, but can also refine the surface spangles.
  • the Mg in the plating layer is further suppressed from being diffused to the surface during the online alloying process. Improve it.
  • the average particle diameter of the aluminum powder may be 5 to 40 ⁇ m, more preferably 10 to 30 ⁇ m, and most preferably 10 to 25 ⁇ m. If the average particle diameter of the aluminum powder is less than 5 ⁇ m, the surface cooling and sequin refinement effect are insufficient, whereas when the average particle diameter exceeds 40 ⁇ m, it does not sufficiently dissolve in the plating layer and remains on the surface, which may cause surface quality problems.
  • the injection amount of the aluminum powder may be determined within a limit that satisfies the condition that the surface temperature does not drop below 640°C after powder injection. If the surface temperature of the steel sheet after powder spraying falls below 640°C, equipment load may occur because more power must be applied for alloying in the subsequent online alloying heat treatment.
  • the injection amount of aluminum powder is related to the surface temperature of the steel sheet, but the surface temperature of the steel sheet may vary greatly depending on the process conditions, facilities, and environmental conditions at the time of implementation, and thus cannot be uniformly determined. Therefore, the aluminum powder injection amount is sufficient if the above conditions are satisfied, and the range of the specific injection amount may not be particularly limited. However, as one non-limiting example, the aluminum powder may be sprayed within a range of 0.01 to 10 g per 1 m 2 of an aluminum plated steel sheet.
  • an on-line alloying treatment may be performed to continuously heat treatment.
  • the heating temperature range at the time of alloying heat treatment may be 670 to 900°C, and the holding time may be 1 to 20 seconds. Meanwhile, more preferably, the heating temperature range may be 680 to 880°C, and the holding time may be 1 to 10 seconds.
  • On-line alloying treatment in the present invention refers to a process of heating by heating after molten aluminum plating.
  • the on-line alloying heat treatment method according to the present invention since a heat treatment for alloying is started before the plating layer is cooled and hardened after hot-dip aluminum plating, there is no need for a separate heating process, so alloying is possible in a short time.
  • it was difficult to apply an on-line alloying method to heat treatment immediately after plating because the alloying speed was slow in the plating layer component system of the conventionally known aluminum plated steel sheet, and sufficient alloying could not be completed in a short time.
  • the alloying rate of the plating layer was increased by controlling the content of the plating bath component, especially Si and Mg, which affects the alloying rate, it is possible to effectively complete the alloying of the aluminum plating layer despite a short heat treatment time of 1 to 20 seconds. have.
  • the heating temperature is based on the surface temperature of the steel sheet to be heat treated.
  • the heating temperature at the time of alloying heat treatment is preferably limited to 670 to 900°C, and more preferably 700 to 800°C.
  • the holding time during the alloying heat treatment may be limited to 1 to 20 seconds.
  • the holding time means the time at which the heating temperature (including deviation ⁇ 10°C) is maintained in the steel sheet. If the holding time is less than 1 second, the heating time is too short to achieve sufficient alloying. On the other hand, if the holding time exceeds 20 seconds, a problem that productivity is too low may occur. Therefore, the holding time at the time of alloying heat treatment is preferably limited to 1 to 20 seconds, and more preferably 1 to 10 seconds.
  • the alloying of the plating layer through the alloying heat treatment depends on the heat treatment temperature and the holding time, but is also affected by the Si and Mg contents included in the aluminum plating layer. Since the alloying rate increases as the Si content in the aluminum plating layer decreases and as the Mg content increases, the thickness of the alloyed region may also increase.
  • the heat treatment time is relatively very short compared to the normal annealing (BAF) method, so a sufficiently alloyed plating layer cannot be obtained unless the process conditions are closely controlled. Accordingly, the present inventors can effectively obtain a sufficiently alloyed plating layer despite a short heat treatment time of 1 to 20 seconds by appropriately controlling the Si and Mg content and heat treatment conditions.
  • hot press forming may use a method commonly used in the art, for example, after heating the aluminum-iron plated steel sheet according to the present invention at a temperature range of 880 ⁇ 950°C for 3-10 minutes, press The heated steel sheet may be hot formed into a desired shape by using, but is not limited thereto.
  • the composition of the steel sheet of the hot press forming member may be the same as the composition of the steel sheet of the above-mentioned-aluminum-iron-based alloy steel sheet.
  • a cold rolled steel sheet for hot press molding having a composition of Table 1 below was prepared as a holding steel plate, and aluminum plating was performed on the surface of the holding steel plate at a plating bath composition plating bath temperature of 660° C. shown in Table 2 below. Thereafter, initial cooling and alloying heat treatment were performed under the initial cooling and alloying heat treatment conditions shown in Table 2 below.
  • the peeling of the plating layer was expressed as X when the specimen was peeled off at a bending angle of 30 degrees when the 60 mm ⁇ 60 mm specimen was subjected to a 3-point bending test using a punch having a diameter of 5 mm, and O if not.
  • the surface sequin determination was indicated as X if the diameter was 5 mm or more, and O if it was less than 5 mm.
  • the steel sheet was heated at 930° C. for 6 minutes in an atmospheric atmosphere, followed by hot press forming to obtain a hot press forming member. Thereafter, the plating layer structure and GDS of the member (using GDS 850A, LECO, USA) were observed, and corrosion resistance and spot welding properties were measured and shown in Table 3 below. Corrosion resistance was measured by measuring the blister width after CCT 52 cycles after crosscuting the phosphating and painting the member, and spot weldability was evaluated according to ISO 18278 standards to analyze the current range. In the case of corrosion resistance, it was judged to be inferior if the blister width was 2.5 mm or more and in the case of spot welding, the spot welding current range was less than 1 kA.
  • Inventive Examples 1 to 9 satisfy all of the plating bath components, the thickness of the plating layer, the Mg and O content of the surface, the aluminum layer ratio and the alloying heat treatment conditions presented in the present invention, and the bliss It can be seen that the blister width is 2.0 mm or less, and the spot welding current range satisfies 1.0 kA or more, so that it has excellent corrosion resistance and spot weldability.
  • Comparative Examples 5 and 7 the holding time during the alloying heat treatment was outside the scope of the present invention.
  • the heat treatment time was very short, so that the plating layer was not sufficiently alloyed, and accordingly, the plating layer was not only peeled off, but also the corrosion resistance. This was lowered.
  • the plating layer was thickly formed to a thickness of 40.8 ⁇ m, and a long heat treatment time of 25 seconds was applied, confirming that the corrosion resistance was deteriorated.
  • Comparative Examples 9 to 11 are examples in which the Si and/or Mg content in the aluminum plating bath component does not satisfy the conditions of the present invention.
  • Comparative Example 9 when both the Si and Mg contents were not satisfied, a sufficient alloying rate was not secured, and the alloying layer ratio was small. In addition, the Mg content was low, so that sufficient Mg was not concentrated on the surface after hot press molding, resulting in poor corrosion resistance. Got done In addition, peeling of the plating layer and occurrence of surface sequins were also confirmed.
  • Comparative Example 10 when the Mg content was excessive, the surface of the plated steel sheet was enriched with Mg more than necessary, and the viscosity of the spot decreased.
  • Comparative Example 11 when the Si content was excessively added, the alloying rate was lowered, resulting in a smaller alloying layer ratio, and as a result, peeling of the plating layer was observed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Thermal Sciences (AREA)
  • Coating With Molten Metal (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

본 발명은 소지강판; 및 상기 소지강판 표면에 형성된 도금층을 포함하고, 상기 도금층은 상기 소지강판의 표면에 형성되고 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 포함하는 합금화층; 및 상기 합금화층 위에 형성되고 두께가 상기 도금층 두께의 10% 미만인 알루미늄층;을 포함하고, 상기 도금층의 두께는 20~35㎛ 이고, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 Mg 가 1~20 중량% 이며, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 산소가 10 중량% 이하인 알루미늄-철계 도금 강판 및 그 제조방법을 제공한다.

Description

내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
본 발명은 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법에 관한 것이다.
최근 석유 에너지 자원의 고갈과 환경에 관한 높은 관심으로 인하여 자동차의 연비 향상에 대한 규제는 날로 강력해지고 있다. 재료적인 측면에서 자동차의 연비를 향상시키기 위한 하나의 방법으로서 사용되는 강판의 두께를 감소시키는 것을 들 수 있으나, 두께를 감소시킬 경우 자동차의 안전성에 문제가 발생할 수 있으므로, 반드시 강판의 강도 향상이 뒷받침되어야 한다.
이와 같은 이유로 고강도 강판에 대한 수요가 지속적으로 발생하였으며, 다양한 종류의 강판이 개발된 바 있다. 그런데 이들 강판은 그 자체로 높은 강도를 가지고 있기 때문에 가공성이 불량하다는 문제가 있다. 즉, 강판의 등급별로 강도와 연신율의 곱이 항상 일정한 값을 가지려는 경향을 가지고 있기 때문에, 강판의 강도가 높아질 경우에는 가공성의 지표가 되는 연신율이 감소하게 된다는 문제가 있었다.
이러한 문제를 해결하기 위하여 열간 프레스 성형법이 제안된 바 있다. 열간 프레스 성형법은 강판을 가공하기 좋은 고온으로 가공한 후 이를 낮은 온도로 급냉함으로써 강판 내에 마르텐사이트 등의 저온 조직을 형성시켜, 최종 제품의 강도를 높이는 방법이다. 이와 같이 할 경우에는 높은 강도를 가지는 부재를 제조할 때 가공성의 문제를 최소화 할 수 있다는 장점이 있다.
그런데, 상기 열간 프레스 성형법에 의할 경우에는 강판을 고온으로 가열하여야 하기 때문에 강판 표면이 산화되고 따라서 프레스 성형 이후에 강판 표면의 산화물을 제거하는 과정이 추가되어야 한다는 문제가 있었다. 이러한 문제점을 해결하기 위한 방법으로 특허문헌 1 이 제안된 바 있다. 상기 발명에서는 알루미늄 도금을 실시한 강판을 열간 프레스 성형 또는 상온 성형 후 가열하고 급냉하는 과정(간략히 '후 열처리')에 이용하고 있다. 알루미늄 도금층이 강판 표면에 존재하기 때문에 가열 시에 강판이 산화되지는 않는다.
상술한 알루미늄 도금 강판을 열간 프레스 성형하기 위해서는 강판을 가열하는 단계가 수행된다. 이 단계에서 강판의 온도가 상승하고 그 결과 강판의 소지철로부터 표면의 도금층까지 Fe의 확산이 일어나서 도금층에 합금화가 일어난다.
이러한 알루미늄 도금 강판을 열간 프레스 성형하면 프레스 시에 금형과 밀착되는 부위의 도금층에 크랙이 발생하는 문제가 발생한다. 그 뿐만 아니라, 프레스에 의해 굴곡이 발생하는 부분에서는 도금층의 최표면에 강한 인장응력이 가해지게 되는데, 취약한 합금층의 특성상 인장응력이 가해지면 표면부터 크랙이 발생하게 된다. 그런데 알루미늄 도금층의 두께가 얇아 크랙이 도금층을 관통하여 소지강판의 표면이 노출되면, 최종적으로 얻어지는 열간 프레스 성형 부재의 내식성이 감소할 수 있다.
(특허문헌 1) 미국 특허공보 제6,296,805호
본 발명의 일 측면에 따르면 내식성 및 용접성이 우수한 열간 프레스 성형용 알루미늄-철계 도금 강판 및 그 제조방법을 제공할 수 있다.
본 발명의 과제는 상술한 내용에 한정되지 아니한다. 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명 명세서의 전반적인 사항으로부터 본 발명의 추가적인 과제를 이해하는데 아무런 어려움이 없을 것이다.
본 발명의 일 측면에 따른 알루미늄-철계 도금 강판은 소지강판; 및 상기 소지강판 표면에 형성된 도금층을 포함하고, 상기 도금층은 상기 소지강판의 표면에 형성되고 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 포함하는 합금화층; 및 상기 합금화층 위에 형성되고 두께가 상기 도금층 두께의 10% 미만인 알루미늄층; 을 포함하고, 상기 도금층의 두께는 20~35㎛ 이고, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 Mg 가 1~20 중량% 이며, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 산소가 10 중량% 이하이다.
본 발명의 일 측면에 따르면, 상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 합금조성을 100%로 할 때, Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 소지강판은 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함할 수 있다.
본 발명의 다른 측면에 따르면, 본 발명은 상술한 알루미늄-철계 도금 강판을 열간 프레스 성형하여 얻어진 열간 프레스 성형 부재를 제공한다.
본 발명의 다른 일 측면에 따른 열간 프레스 성형에 이용되는 알루미늄-철계 도금 강판의 제조방법은 소지강판을 준비하는 단계; 상기 소지강판을, 중량%로 Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 편면기준 40~100g/㎡의 도금량으로 도금하여 알루미늄 도금 강판을 얻는 단계; 알루미늄 도금 직후 640℃ 이상의 온도까지 0.1~5℃/초의 냉각속도로 초기 냉각을 실시하는 단계; 및 상기 초기 냉각 후 연속하여 670~900℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 알루미늄-철계 도금 강판을 얻는 단계; 를 포함한다.
본 발명의 일 측면에 따르면, 상기 초기냉각 후, 상기 알루미늄 도금 강판의 표면에 알루미늄 파우더를 분사하는 단계를 더 포함할 수 있다.
본 발명의 일 측면에 따르면, 상기 알루미늄 파우더의 평균 입경은 5~40㎛ 일 수 있다.
상술한 바와 같이, 본 발명은 열간 프레스 성형 전의 알루미늄-철계 도금 강판에서, 열간 프레스 성형을 위한 가열 전 미리 소지강판 상에 도금층을 형성시키고 상기 도금층의 두께 및 층구성을 적절히 제어함으로써, 열간 프레스 성형 부재의 내식성 및 용접성을 향상시킬 수 있는 효과가 있다.
또한, 도금욕의 조성 중 Si 및 Mg 의 함량을 적절히 조절하여, 도금층 형성 후 곧바로 연속하여 열처리하는 온라인(on-line) 합금화 열처리를 가능하게 함으로써, 제조비용이 절감되고 생산성이 향상된 알루미늄-철계 도금 강판의 제조방법을 제공할 수 있는 효과가 있다.
도 1 은 본 발명의 일 측면에 따른 제조방법이 구현된 제조장치를 개략적으로 나타낸 것이다.
도 2 는 발명예 1 에 의해 제조된 알루미늄-철계 도금 강판의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 3 는 비교예 1 에 의해 제조된 알루미늄-철계 도금 강판의 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 4 은 발명예 1 에 의해 제조된 알루미늄-철계 도금 강판을 열간 프레스 성형한 후의 도금 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
도 5 는 비교예 1 에 의해 제조된 알루미늄-철계 도금 강판을 열간 프레스 성형한 후의 도금 단면을 주사전자현미경(SEM)으로 관찰한 사진이다.
이하 본 발명의 일 측면에 따른 알루미늄-철계 도금 강판에 대하여 자세히 설명한다.
본 발명에서 각 원소를 함량을 나타낼 때 특별히 달리 정하지 아니하는 한, 중량%를 의미한다는 것에 유의할 필요가 있다. 또한, 결정이나 조직의 비율은 특별히 달리 표현하지 아니하는 한 면적을 기준으로 한다.
[알루미늄-철계 도금 강판]
본 발명의 일 구현례에 따른 알루미늄-철계 도금 강판은 소지강판, 및 상기 소지강판 표면에 형성된 도금층을 포함하고, 상기 도금층은 상기 소지강판 상에 형성되고 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 포함하는 합금화층, 및 상기 합금화층 상에 형성되고 두께가 상기 도금층 두께의 10% 미만인 알루미늄층을 포함하고, 상기 도금층의 두께는 20~35㎛ 이고, 두께 방향으로 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 Mg 가 1~20 중량% 이며, 두께 방향으로 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 산소가 10 중량% 이하인 것을 특징으로 한다.
먼저 본 발명의 일 구현례에 따른 알루미늄-철계 도금 강판은 소지강판, 및 상기 소지강판 표면에 형성된 도금층을 포함한다. 또한 상기 도금층은 상기 소지강판의 표면에 형성되고 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상으로 이루어진 합금화층, 및 상기 합금화층 위에 형성된 알루미늄층을 포함한다.
소지강판에 알루미늄 도금한 후 합금화 열처리를 실시하면, 소지강판의 Fe 가 Al 함량이 높은 알루미늄 도금층으로 확산된다. 그 결과, 소지강판 상에는 확산의 결과 형성된 Al 및 Fe의 금속간 화합물로 이루어지는 합금화 층이 형성될 수 있다. 이것으로 제한되는 것은 아니나 상기 합금화층을 이루는 Al-Fe계 금속간화합물의 합금상으로는 Fe 3Al, FeAl(Si), Fe 2Al 5, FeAl 3 등을 들 수 있다.
즉, 상기 합금화층은 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 포함할 수 있다. 또한, 본 발명의 일 측면에 따르면, 상기 합금화층은 바람직하게는 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 주로 포함할 수 있다.
구체적으로, 상기 합금화층은 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 50% 이상 포함할 수 있고, 바람직하게는 80% 이상 포함할 수 있으며, 보다 바람직하게는 90% 이상 포함할 수 있고, 가장 바람직하게는 95% 이상 포함할 수 있다.
즉, 본 발명의 일 측면에 따르면, 상기 합금화층은 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상의 합금상을 주로 포함하되, 불가피하게 포함되는 불순물 및 도금욕에 포함될 여지가 있는 다른 원소들도 소량 포함할 수 있다.
예를 들어, 본 발명에 있어서, Mg을 첨가하면, 합금화층 중의 Al-Fe계 합금상에 Mg이 일부 포함될 수도 있고, 합금화층은 Al-Fe-Mg계 합금상을 포함하는 다른 합금상들도 포함할 수 있다.
상술한 합금화 층의 위에는 원래 도금층 성분과 동일하거나 소지강판으로부터 소량 확산된 Fe를 포함하는 알루미늄층이 존재할 수도 있으며, 경우에 따라서는 완전 합금화에 의하여 상기 알루미늄층은 존재하지 않을 수도 있다.
상기 도금층의 두께는 20~35㎛ 일 수 있다. 상기 도금층의 두께가 20㎛ 미만이면 내식성이 너무 열위해지고, 반면 상기 도금층의 두께가 35㎛를 초과하면 용접성이 저하되는 문제가 발생한다. 따라서 본 발명에서 상기 도금층의 두께는 20~35㎛ 두께로 제한하는 것이 바람직하다. 보다 바람직하게는 20~30㎛ 두께일 수 있다.
한편, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS(glow discharge spectrometer)로 측정한 Mg 가 1~20 중량% 일 수 있다. Mg 는 내식성 향상 및 합금화 속도 향상을 목적으로 본 발명의 제조방법에 따른 알루미늄 도금욕에서 1.1~15 중량%로 첨가되나, 도금층 내의 Mg 는 표면 쪽으로 확산하여 농화되는 경향이 있으므로, 두께 방향으로 상기 도금층의 표면으로부터 0.1㎛ 지점에서 GDS로 측정한 Mg 함량은 1~20 중량% 일 수 있다. 바람직하게는 2~15% 일 수 있고, 보다 바람직하게는 3~10% 일 수 있다.
또한, 상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS(Glow Discharge Spectrometer)로 측정한 산소가 10 중량% 이하일 수 있다. 본 발명에서는 알루미늄 도금층의 합금화 시, 용융 알루미늄 도금 후 냉각하지 않고 승온하여 짧은 시간으로 합금화 열처리를 실시하기 때문에 도금층 표면의 산소 함량이 높아지는 것을 효과적으로 억제할 수 있다. 도금층 표면의 산소 함량이 10 중량%를 초과하면 도금 강판의 표면 품질이 열위해질 수 있다. 반면, 도금층 표면에서의 산소 함량은 적을수록 유리하므로, 그 하한은 별도로 제한하지 않을 수 있다.
상기 도금층 내 표면 측, 그리고 합금화층 위에는 주로 알루미늄으로 이루어진 알루미늄층이 형성되어 있을 수 있다. 본 발명에서 상기 알루미늄층의 두께는 상기 도금층 두께의 10% 미만으로 제어될 수 있으며, 경우에 따라서는 충분한 합금화가 이루어져 알루미늄층이 존재하지 않을 수도 있다(즉, 도금층 두께의 0%도 포함한다). 도금 강판에서 알루미늄층과 합금화층 사이의 계면은 불안정하기 때문에 알루미늄층의 두께가 도금층 두께의 10% 이상으로 두꺼우면 합금화 열처리 후 권취할 때 알루미늄층의 박리가 발생할 수 있다.
상기 알루미늄층의 두께는 작을수록 바람직하므로, 그 두께의 하한은 별도로 한정하지 않을 수 있다. 한편, 바람직하게는 상기 알루미늄층의 두께는 5% 미만일 수 있고, 보다 바람직하게는 1% 미만일 수 있으며, 가장 바람직하게는 0%일 수 있다.
본 발명의 일 구현례에 따르면, 상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 나머지 합금조성을 100%로 할 때, Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함할 수 있다.
상기 Si 는 도금층 내에서 Fe 와의 합금화를 균일하게 하는 역할을 하며, 이와 같은 효과를 얻기 위해서는 적어도 7% 이상 포함되어야 한다. 반면 Si 는 Fe 의 확산을 억제하는 역할도 하므로 15% 를 초과하여 함유될 경우 Fe 확산이 과도하게 억제되어 본 발명에서 원하는 도금 구조를 얻지 못하게 될 수 있다. 상기 Si 함량은 바람직하게는 7~14% 일 수 있으며, 보다 바람직하게는 7.5~13.1% 일 수 있다.
상기 Mg 는 도금 강판의 내식성을 향상시키는 역할을 하며, 합금화 속도를 증가시키는 효과도 있다. 상기 효과를 얻기 위해서는 적어도 1.1% 이상 포함되어야 하며, 반면에 15% 를 초과하여 포함되는 경우 용접성 및 도장성이 열위해지는 문제가 발생할 수 있다. 바람직하게는 1.1~11% 일 수 있으며, 보다 바람직하게는 1.5~10.5% 일 수 있다.
본 발명의 일 구현례에 따르면, 소지강판은 열간 프레스 성형용 강판으로서, 열간 프레스 성형에 사용된다면 특별히 제한하지 않을 수 있다. 다만 한가지 비제한적인 예를 든다면 소지강판은 중량%로, C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하 및 N: 0.02% 이하를 포함하는 조성을 가질 수 있다.
C: 0.04~0.5%
상기 C는 열처리 부재의 강도를 상향시키기 위해 필수적인 원소로서 적정한 양으로 첨가될 수 있다. 즉, 열처리 부재의 강도를 충분하기 확보하기 위해서 상기 C는 0.04% 이상 첨가될 수 있다. 바람직하게는 상기 C 함량의 하한은 0.1%이상일 수 있다. 다만, 그 함량이 너무 높으면 냉연재를 생산하는 경우 열연재를 냉간압연할 때 열연재 강도가 너무 높아 냉간압연성이 크게 열위하게 될 뿐만 아니라, 점용접성을 크게 저하시키기 때문에, 충분한 냉간압연성과 점용접성을 확보하기 위해 0.5% 이하로 첨가될 수 있다. 또한, 상기 C 함량은 0.45% 이하일 수 있으며, 보다 바람직하게는 0.4% 이하로 그 함량을 제한할 수도 있다.
Si: 0.01~2%
상기 Si 는 제강에서 탈산제로 첨가되어야 할 뿐만 아니라, 열간 프레스 성형 부재의 강도에 가장 크게 영향을 미치는 탄화물 생성을 억제하는 역할을 한다. 본 발명에서는 열간 프레스 성형에 있어서 마르텐사이트 생성 후 마르텐사이트 라스(lath) 입계로 탄소를 농화시켜 잔류오스테나이트를 확보하기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 압연 후 강판에 알루미늄 도금을 행할 때 충분한 도금성을 확보하기 위해서 상기 Si 함량의 상한을 2%로 정할 수 있다. 바람직하게는 상기 Si 함량을 1.5% 이하로 제한할 수도 있다.
Mn: 0.01~10%
상기 Mn 은 고용강화 효과를 확보할 수 있을 뿐만 아니라 열간 프레스 성형 부재에 있어서 마르텐사이트를 확보하기 위한 임계냉각속도를 낮추기 위하여 0.01% 이상의 함량으로 첨가될 수 있다. 또한, 강판의 강도를 적절하게 유지함으로써 열간 프레스 성형 공정 작업성을 확보하고, 제조원가를 절감하며, 점용접성을 향상시킨다는 점에서 상기 Mn 함량은 10% 이하로 제한 할 수 있다. 바람직하게는 상기 Mn 함량은 9% 이하일 수 있으며, 경우에 따라서는 8% 이하일 수 있다.
Al: 0.001~1.0%
상기 Al 은 Si 과 더불어 제강에서 탈산 작용을 하여 강의 청정도를 높일 수 있으며, 상기 효과를 얻기 위해 0.001% 이상의 함량으로 첨가될 수 있다. 또한, Ac3 온도가 너무 높아지지 않도록 하여 열간 프레스 성형시 필요한 가열을 적절한 온도범위에서 할 수 있도록 하기 위하여 상기 Al의 함량은 1.0% 이하로 제한할 수 있다.
P: 0.05% 이하
상기 P 는 강 내에 불순물로서 존재하며, 가급적 그 함량이 적을수록 유리하다. 따라서, 본 발명에서 P 함량을 0.05% 이하로 제한할 수 있으며, 바람직하게는 0.03% 이하로 제한될 수도 있다. P는 적으면 적을수록 유리한 불순물 원소이기 때문에 그 함량의 상한을 특별히 정할 필요는 없다. 다만, P 함량을 과도하게 낮추기 위해서는 제조비용이 상승할 우려가 있으므로, 이를 고려할 경우에는 그 하한을 0.001%로 할 수 있다.
S: 0.02% 이하
상기 S 는 강 중에 불순물로서, 부재의 연성, 충격특성 및 용접성을 저해하는 원소이기 때문에 최대함량을 0.02%로 제한하며, 바람직하게는 0.01% 이하로 제한할 수 있다. 또한 그 최소함량이 0.0001% 미만에서는 제조비용이 상승될 수 있으므로, 그 함량의 하한을 0.0001%로 할 수 있다.
N: 0.02% 이하
상기 N은 강 중에 불순물로 포함되는 원소로서, 슬라브 연속주조 시에 크랙 발생에 대한 민감도를 감소시키고, 충격특성을 확보하기 위해서는 그 함량이 낮을 수록 유리하며, 따라서 0.02% 이하로 포함할 수 있다. 하한을 특별히 정할 필요는 없으나, 제조비용의 상승 등을 고려하면 N 함량을 0.001% 이상으로 정할 수도 있다.
본 발명에서는 필요에 따라 선택적으로, 상술한 강 조성에 더하여 Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu + Ni: 0.005~2.0%, Sb + Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중에서 하나 이상을 추가로 첨가할 수 있다.
Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합 : 0.01~4.0%
상기 Cr, Mo 및 W 은 경화능 향상과, 석출강화 효과를 통한 강도 및 결정립 미세화를 확보할 수 있으므로, 이들 1종 이상을 함량 합계 기준으로 0.01% 이상 첨가할 수 있다. 또한, 부재의 용접성을 확보하기 위해서 그 함량을 4.0% 이하로 제한할 수도 있다. 또한, 이들 원소의 함량이 4.0%를 초과하면 효과가 포화되기 때문에 함량을 4.0% 이하로 제한할 수 있다.
Ti, Nb, Zr 및 V로 이루어진 그룹 중 선택된 1종 이상의 합 : 0.001~0.4%
상기 Ti, Nb 및 V 은 미세 석출물 형성으로 열처리 부재의 강판 향상과, 결정립 미세화에 의해 잔류 오스테나이트 안정화와 충격인성 향상에 효과가 있으므로 이들 중 1종 이상을 함량의 합계로 0.001% 이상 첨가할 수 있다. 다만, 그 첨가량이 0.4%를 초과하면 그 효과가 포화될 뿐만 아니라 과다한 합금철 첨가로 비용 상승을 초래할 수 있다.
Cu + Ni: 0.005~2.0%
상기 Cu와 Ni는 미세 석출물을 형성시켜 강도를 향상시키는 원소이다. 상술한 효과를 얻기 위해서 이들 중 하나 이상의 성분의 합을 0.005% 이상으로 할 수 있다. 다만, 그 값이 2.0%를 초과하면 과다한 비용 증가가 되기 때문에 그 상한을 2.0% 로 할 수 있다.
Sb + Sn: 0.001~1.0%
상기 Sb와 Sn은 Al-Si도금을 위한 소둔 열처리 시, 표면에 농화되어 Si 또는 Mn 산화물이 표면에 형성되는 것을 억제하여 도금성을 향상시킬 수 있다. 이와 같은 효과를 얻기 위해서 0.001% 이상 첨가될 수 있다. 다만, 그 첨가량이 1.0%를 초과하면 과다한 합금철 비용이 소요될 뿐만 아니라 슬라브 입계에 고용되어 열간압연 시 코일 에지(edge) 크랙을 유발시킬 수 있기 때문에 그 상한을 1.0%로 한다.
B: 0.0001~0.01%
상기 B은 소량의 첨가로도 경화능을 향상시킬 수 있을 뿐만 아니라, 구오스테나이트 결정립계에 편석되어 P 및/또는 S 의 입계 편석에 의한 열간 프레스 성형 부재의 취성을 억제할 수 있는 원소이다. 따라서 B는 0.0001% 이상 첨가될 수 있다. 다만, 0.01%를 초과하면 그 효과가 포화될 뿐만 아니라, 열간압연에서 취성을 초래하므로 그 상한을 0.01%로 할 수 있으며, 한가지 구현례에서는 상기 B 함량을 0.005% 이하로 할 수 있다.
상술한 성분 이외의 잔부로서는 철(Fe) 및 불가피한 불순물을 들 수 있으며, 또한 열간 프레스 성형용 강판에 포함될 수 있는 성분이라면 특별히 추가적인 첨가를 제한하지 않는다.
상술한 층 구조를 가지는 도금층으로 이루어진 알루미늄-철계 도금 강판을 880~950℃ 의 온도범위에서 3~10분의 열처리 후 열간 프레스 성형하여 열간 프레스 성형 부재를 제조하면, 확산층(FeAlSi 및 Fe 3Al 으로 구성), Fe 2Al 5 및 FeAlSi 로 이루어지는 합금화층이 형성되어 내식성이 향상될 수 있다. 또한 점용접 전류범위가 1 kA 이상을 만족하여 점용접성이 향상될 수 있다.
다음으로는 본 발명의 다른 일 측면에 따른 열간 프레스 성형용 알루미늄-철계 도금 강판의 제조방법을 상세히 설명한다. 다만, 하기의 열간 프레스 성형용 알루미늄-철계 도금 강판의 제조방법은 일 예시일 뿐이며, 본 발명의 열간 프레스 성형용 알루미늄-철계 도금 강판이 반드시 본 제조방법에 의해 제조되어야 한다는 것은 아니며, 어떠한 제조방법이라도 본 발명의 청구범위를 충족하는 방법이라면 본 발명의 각 구현례를 구현하는데 사용함에 아무런 문제가 없다는 것에 유의할 필요가 있다.
[알루미늄-철계 도금 강판의 제조방법]
본 발명의 다른 일 측면에 따른 알루미늄-철계 도금 강판은 열간 압연 또는 냉간 압연된 소지강판의 표면에 중량%로 Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕을 이용하여 편면기준 40~100g/㎡의 도금량으로 용융 알루미늄 도금을 실시하고, 도금 공정에 연속하여 초기 냉각 후 곧바로 열처리하는 온라인(on-line) 합금화 처리를 실시함으로써 얻을 수 있다.
알루미늄 도금 강판을 얻는 단계
본 발명의 일 구현례에서는 소지강판을 준비하고, 상기 소지강판을 중량%로 Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 소지강판의 표면에 편면기준 40~100g/㎡의 도금량으로 알루미늄을 도금함으로써 알루미늄 도금 강판을 얻을 수 있다. 또한 선택적으로 도금 전 강판에 대해 소둔 처리를 실시할 수도 있다.
상기 Si 는 도금층 내에서 Fe 와의 합금화를 균일하게 하는 역할을 하는 원소로서, 상기 효과를 얻기 위하여 적어도 7% 이상 포함될 수 있다. 다만 Si 는 Fe의 확산을 억제하는 역할을 하기 때문에 15% 를 초과하여 함유될 경우 합금화 속도가 저하되어 충분한 합금화를 얻기 어렵다. 따라서 본 발명에서 도금욕에 포함되는 Si 함량은 7~15%로 제한할 수 있다. 바람직하게는 7~14% 일 수 있으며, 보다 바람직하게는 7.5~13.1% 일 수 있다.
한편 상기 Mg 는 알루미늄-철계 도금 강판의 내식성을 향상시키는 역할을 하며, 합금화 속도를 증가시키는 역할도 한다. 충분한 합금화 속도를 확보하기 위해서는 적어도 1.1% 이상으로 포함되어야 한다. 반면에 상기 Mg 가 15%를 초과하여 포함되면 용접성 및 도장성이 열위해지는 문제가 발생할 수 있다. 따라서 본 발명에서 알루미늄 도금욕에 포함되는 Mg 함량을 1.1~11%로 제한할 수 있다. 바람직하게는 1.5~10.5% 일 수 있으며, 보다 바람직하게는 2~7% 일 수 있다.
상기 알루미늄 도금 시에 도금량은 편면기준 40~100g/㎡일 수 있다. 도금량이 40g/㎡ 미만이면 내식성이 너무 열위해지고, 반면 도금량이 100g/㎡을 초과하면 용접성이 저하되는 문제가 발생한다. 따라서 본 발명에서 알루미늄 도금 시 도금량은 편면기준 40~100g/㎡으로 제한하는 것이 바람직하다. 한편, 보다 바람직하게는 상기 알루미늄 도금 시 도금량은 편면기준 55~100 g/㎡일 수 있다.
초기 냉각 단계
상기 알루미늄 도금 후 640℃ 이상까지 0.1~5℃/초의 냉각속도로 초기 냉각을 실시할 수 있다. 또한, 바람직하게는 상기 초기 냉각은 알루미늄 도금 후 640℃ 이상 680℃ 이하의 온도범위로 실시할 수 있고, 상기 냉각속도는 1~4℃/초일 수 있다.
본 발명에서 알루미늄 도금 후의 초기 냉각은 도금 표면에 합금화 및/또는 열간프레스 성형 시 Mg 함량을 적정화 함으로써 목적하는 내식성과 점용접성을 확보할 수 있는 점에서 중요하다. 초기 냉각 종료 온도가 640℃ 미만이면 뒤따르는 온라인 합금화 열처리에서 합금화를 위하여 보다 많은 출력을 가해야 하기 때문에 설비 부하가 발생할 수 있는 문제가 있다.
한편 냉각속도가 0.1℃/초 미만이면 도금 표면에 응고층이 충분히 생성되지 않아 온라인 합금화 시 Mg 가 표면에 과다하게 확산되어 열간성형 부재의 점용접성을 열위하게 할 수 있다. 반면, 냉각속도가 5℃/초를 초과하면 과다하게 도금층이 냉각되어 합금화를 위한 소정의 온도를 확보하기 위하여 설비 부하 및 시간이 길어져 생산성을 저해할 수 있다.
알루미늄 파우더를 분사하는 단계
상기 초기 냉각 후 필요에 따라 상기 알루미늄 도금 강판의 표면에 알루미늄 파우더를 분사할 수 있다. 알루미늄 파우더는 표면을 국부적으로 냉각시킬 뿐만 아니라, 표면 스팽글(spangle)을 미세화시킬 수 있다. 이때 알루미늄 파우더에 의해 국부적으로 표면만 냉각되면 이후 온라인 합금화 과정에서 도금층에 있는 Mg가 표면으로 확산되는 것을 보다 억제하여 열간 프레스 성형 후 Mg 가 표면에 확산되어 생성되는 Mg 산화물을 줄여줄 수 있어 점용접성을 향상시킬 수 있다. 또한 표면 스팽글을 미세화시킴으로써 열간 프레스 성형 후 표면을 균일하게 생성시킬 수 있는 장점이 있다.
상기 알루미늄 파우더의 평균 입경은 5~40㎛ 일 수 있고, 보다 바람직하게는 10~30㎛일 수 있고, 가장 바람직하게는 10~25㎛일 수 있다. 상기 알루미늄 파우더의 평균 입경이 5㎛ 미만이면 표면 냉각 및 스팽글 미세화 효과가 부족하고, 반면에 평균 입경이 40㎛ 를 초과하면 도금층에 충분히 용해되지 않고 표면에 잔존하여 표면 품질 문제를 야기할 수 있다.
본 발명에서 알루미늄 파우더의 분사량은 파우더 분사 후 표면온도가 640℃ 미만으로 떨어지지 않는 조건을 만족하는 한도 내에서 결정될 수 있다. 파우더 분사 후 강판 표면온도가 640℃ 미만으로 떨어지면, 뒤따르는 온라인 합금화 열처리에서 합금화를 위하여 보다 많은 출력을 가해야 하기 때문에 설비 부하가 발생할 수 있다. 알루미늄 파우더의 분사량은 강판 표면온도와 관련되나, 상기 강판 표면온도는 실시 시의 공정조건, 설비, 환경조건 등에 따라 크게 달라질 수 있어 일률적으로 정할 수 없다. 따라서 알루미늄 파우더 분사량은 상기 조건을 만족하면 족하고 그 구체적인 분사량의 범위는 특별히 한정하지 않을 수 있다. 다만 비제한적인 일 구현례로서 상기 알루미늄 파우더는 알루미늄 도금 강판의 1㎡ 당 0.01~10g 의 범위 내에서 분사될 수 있다.
합금화 열처리하여 알루미늄-철계 도금 강판을 얻는 단계
상기 초기 냉각 후 및/또는 상기 알루미늄 파우더를 분사한 후 바로 연속하여 열처리하는 온라인(on-line) 합금화 처리를 실시할 수 있다. 또한 합금화 열처리 시의 가열 온도 범위는 670~900℃ 일 수 있으며, 유지시간은 1~20초 일 수 있다. 한편, 보다 바람직하게는 상기 가열 온도 범위는 680~880℃일 수 있고, 상기 유지시간은 1~10초일 수 있다.
본 발명에서 온라인 합금화 처리는 도 1 에 도시된 개략도에서 볼 수 있는 바와 같이, 용융 알루미늄 도금 후 승온하여 열처리하는 공정을 의미한다. 본 발명에 따른 온라인 합금화 열처리 방식에서는 용융 알루미늄 도금 후 도금층이 냉각되어 굳어지기 전에 합금화를 위한 열처리가 시작되기 때문에 별도의 승온 과정이 필요 없어 짧은 시간에 합금화가 가능하다. 다만 종래 알려진 알루미늄 도금 강판의 도금층 성분계에서는 합금화 속도가 느려 짧은 시간 안에 충분한 합금화를 완료시킬 수 없었기 때문에 도금 후 바로 열처리하는 온라인(on-line) 합금화 방법을 적용하기 어려웠다. 그러나 본 발명에서는 합금화 속도에 영향을 미치는 도금욕 성분, 특히 Si 및 Mg 의 함량을 제어함으로써 도금층의 합금화 속도를 증가시켰기 때문에 1~20초의 짧은 열처리 시간에도 불구하고 알루미늄 도금층의 합금화를 효과적으로 완료할 수 있다.
상기 가열 온도는 열처리되는 강판의 표면온도를 기준으로 한다. 가열온도가 670℃ 미만이면 합금화가 불충분하게 되는 문제가 발생할 수 있고, 반면 가열 온도가 900℃를 초과하면 합금화 후 냉각시키기가 어렵고, 냉각속도를 빠르게 할 경우 소지강판의 강도가 너무 높아지는 문제가 발생할 수 있다. 따라서 합금화 열처리 시의 가열 온도는 670~900℃로 제한하는 것이 바람직하며, 보다 바람직하게는 700~800℃ 일 수 있다.
한편, 합금화 열처리 시 유지시간은 1~20초로 제한할 수 있다. 본 발명에서 유지시간은 강판에서 상기 가열 온도(편차 ±10℃ 포함)가 유지되는 시간을 의미한다. 상기 유지시간이 1초 미만이면 가열 시간이 너무 짧아 충분한 합금화가 이루어지지 않는다. 반면 상기 유지시간이 20초를 초과하면 생산성이 너무 저하되는 문제가 발생할 수 있다. 따라서 합금화 열처리 시의 유지시간은 1~20초로 제한하는 것이 바람직하며, 보다 바람직하게는 1~10초일 수 있다.
합금화 열처리를 통한 도금층의 합금화는 열처리 온도와 유지시간에 의존하지만, 동시에 알루미늄 도금층에 포함된 Si 및 Mg 함량에도 영향을 받는다. 알루미늄 도금층 내에 포함된 Si 가 적을수록, 그리고 Mg 가 많을수록 합금화 속도가 증가하게 되기 때문에 합금화되는 영역의 두께도 두꺼워질 수 있다. 본 발명에서와 같이 도금 단계에 연속하여 온라인 열처리를 실시하는 경우 상소둔(BAF) 방식에 비해 열처리 시간이 상대적으로 매우 짧기 때문에 그 공정조건을 세밀하게 제어하지 않으면 충분히 합금화된 도금층을 얻을 수 없다. 따라서 본 발명자들은 Si 및 Mg 함량 및 열처리 조건을 적절히 제어함으로써 1~20초의 짧은 열처리시간에도 불구하고 충분히 합금화된 도금층을 효과적으로 얻을 수 있다.
상기한 바에 따라 합금화를 완료한 다음, 열간 프레스 성형을 행하여 성형부재로서 제조할 수 있다. 이때, 열간 프레스 성형은 당해 기술분야에 일반적으로 이용되는 방법을 이용할 수 있으며, 예컨대 본 발명에 따른 알루미늄-철계 도금 강판을 880~950℃ 온도범위에서 3~10분 가열한 후 프레스(press)를 이용하여 상기 가열된 강판을 원하는 형상으로 열간 성형할 수 있으나, 이에 한정되는 것은 아니다. 또한 열간 프레스 성형 부재의 소지강판의 조성은 상술한-알루미늄-철계 합금 조금 강판의 소지강판의 조성과 동일할 수 있다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
(실시예)
먼저 소지강판으로 하기 표 1 의 조성을 가지는 열간 프레스 성형용 냉간압연 강판을 준비하고, 상기 소지강판의 표면에 하기 표 2 에 나타낸 도금욕 조성 도금욕 온도 660℃ 로 알루미늄 도금을 실시하였다. 이후 하기 표 2 에 나타낸 초기 냉각 및 합금화 열처리 조건으로 초기 냉각 및 합금화 열처리를 실시하였다. 도금층 박리 여부는 60mm × 60mm 시편을 직경이 5mm인 펀치를 이용하여 3점 굽힘 시험을 했을 때 굽힘각도가 30도에서 도금층의 박리가 발생하면 X, 발생하지 않으면 O로 표시하였다. 또한 표면 스팽글 판정은 직경이 5mm 이상이면 X, 5mm 미만이면 O로 표시하였다.
[표 1]
Figure PCTKR2019016763-appb-img-000001
[표 2]
Figure PCTKR2019016763-appb-img-000002
이후 각각의 알루미늄-철계 도금 강판에 대해 대기분위기에서 930℃에서 6분간 강판을 가열한 후 열간 프레스 성형을 실시하여 열간 프레스 성형 부재를 얻었다. 그 후 상기 부재의 도금층 구조 및 GDS(미국 LECO사 GDS 850A를 사용)를 관찰하고, 내식성 및 점용접성을 측정하여 하기 표 3 에 나타내었다. 내식성은 상기 부재를 인산염 처리 및 도장 후 크로스컷(crosscut)을 낸 후 CCT 52 cycle 후 블리스터(blister) 폭을 측정하였고, 점용접성은 ISO 18278기준으로 평가하여 전류범위를 분석하였다. 내식성의 경우 블리스터(blister) 폭이 2.5mm 이상, 점용접성의 경우 점용접 전류범위가 1 kA 미만이면 열위한 것으로 판단하였다.
[표 3]
Figure PCTKR2019016763-appb-img-000003
상기 표 1 내지 3 에서 볼 수 있는 바와 같이, 발명예 1 내지 9 는 본 발명에서 제시하는 도금욕 성분, 도금층 두께, 표면의 Mg 및 O 함량 및 알루미늄층 비율과 합금화 열처리 조건을 모두 만족하여, 블리스터(blister) 폭이 2.0mm 이하이며, 점용접 전류범위가 1.0kA 이상을 만족하여, 내식성 및 점용접성이 우수한 것을 확인할 수 있다.
그러나 비교예 1, 2 및 6 은 합금화 열처리 온도가 670℃ 미만인 경우로서, 합금화가 충분히 일어나지 않아 합금화층 두께 비율이 90% 미만, 즉 알루미늄층의 비율이 10% 이상이 되어 도금층의 박리가 관찰되었다.
비교예 3 및 8 은 도금층을 두껍게 형성하고 900℃ 를 초과한 온도로 합금화 열처리를 실시한 경우로서, 표면 스팽글 직경이 5mm 이상이 되어 표면 품질이 열위하였다.
비교예 4 는 합금화 열처리를 실시하지 않아 합금화층 두께비율이 13%로 합금화층의 형성이 미미하여 도금층 박리가 발생하였고, 열간 프레스 성형 후 표면측 Mg 함량이 5wt% 미만이 되어 내식성이 열위하였다.
한편 비교예 5, 7 은 합금화 열처리 시의 유지시간이 본 발명의 범위를 벗어난 경우로서, 비교예 5 의 경우 열처리 시간이 매우 짧아 도금층이 충분히 합금화되지 못하였고, 이에 따라 도금층이 박리될 뿐만 아니라 내식성이 저하되었다. 또한 비교예 7 의 경우 도금층을 두께 40.8㎛ 로 두껍게 형성하여 25초의 긴 열처리 시간을 적용한 결과 내식성이 열위해진 것을 확인하였다.
비교예 9 내지 11 은 알루미늄 도금욕 성분 중 Si 및/또는 Mg 함량이 본 발명의 조건을 만족하지 않는 실시예이다. 먼저 비교예 9 는 Si 및 Mg 함량이 모두 만족하지 않는 경우로서 충분한 합금화 속도를 확보하지 못하여 합금화층 비율이 작았고, 이와 더불어 Mg 함량이 적어 열간 프레스 성형 후 표면에 충분한 Mg 이 농화되지 못하여 내식성이 열위해졌다. 또한 도금층의 박리 및 표면 스팽글 발생도 확인할 수 있었다. 한편 비교예 10 은 Mg 함량이 과다한 경우로서 도금 강판의 표면에 Mg 가 필요이상으로 농화되어 점용점성이 저하되었다. 또한 비교예 11 은 Si 함량이 과다 첨가된 경우로서 합금화 속도가 저하되어 합금화층 비율이 작아졌고, 그 결과 도금층의 박리가 관찰되었다.
이상에서 설명한 바와 같이, 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예에 관하여 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 범주에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능함은 물론이다. 따라서 본 발명의 권리 범위는 설명된 실시예에 국한되어 정해져서는 안되며, 후술하는 청구범위뿐만 아니라, 이와 균등한 것들에 의해 정해져야 한다.
[부호의 설명]
1 : 열처리로
2 : 알루미늄 도금욕
3 : 초기 냉각 장치
4 : 알루미늄 파우더 분사 장치
5 : 합금화 열처리 장치

Claims (11)

  1. 열간 프레스 성형에 이용되는 알루미늄-철계 도금 강판으로서,
    소지강판; 및 상기 소지강판 표면에 형성된 도금층을 포함하고,
    상기 도금층은
    상기 소지강판의 표면에 형성되고 Fe 3Al, FeAl(Si), Fe 2Al 5 및 FeAl 3 중 하나 이상을 포함하는 합금화층; 및
    상기 합금화층 위에 형성되고 두께가 상기 도금층 두께의 10% 미만인 알루미늄층;
    을 포함하고,
    상기 도금층의 두께는 20~35㎛ 이고,
    상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 Mg 가 1~20 중량% 이며,
    상기 도금층의 표면으로부터 0.1㎛ 깊이에서 GDS로 측정한 산소가 10 중량% 이하인 알루미늄-철계 도금 강판.
  2. 제 1 항에 있어서,
    상기 도금층은 중량%로, 소지강판으로부터 확산된 Fe 함량을 제외한 합금조성을 100%로 할 때, Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 알루미늄-철계 도금 강판.
  3. 제 1 항에 있어서,
    상기 소지강판은 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 알루미늄-철계 도금 강판.
  4. 제 3 항에 있어서,
    상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 알루미늄-철계 도금 강판.
  5. 제 1 항 내지 제 4 항 중 어느 한 항의 알루미늄-철계 도금 강판을 열간 프레스 성형하여 얻어진 열간 프레스 성형 부재.
  6. 제 5 항에 있어서,
    상기 열간 프레스 성형 부재의 점용접 전류범위가 1kA 이상인 것을 특징으로 하는 열간 프레스 성형 부재.
  7. 열간 프레스 성형에 이용되는 알루미늄-철계 도금 강판의 제조방법으로서,
    소지강판을 준비하는 단계;
    상기 소지강판을, 중량%로 Si: 7~15%, Mg: 1.1~15%, 잔부 Al 및 기타 불가피한 불순물을 포함하는 알루미늄 도금욕에 침지하여 편면기준 40~100g/㎡의 도금량으로 도금하여 알루미늄 도금 강판을 얻는 단계;
    알루미늄 도금 직후 640℃ 이상의 온도까지 0.1~5℃/초의 냉각속도로 초기 냉각을 실시하는 단계; 및
    상기 초기 냉각 후 연속하여 670~900℃의 가열 온도 범위에서 1~20초 유지하여 열처리하는 온라인(on-line) 합금화를 통해 알루미늄-철계 도금 강판을 얻는 단계;
    를 포함하는 알루미늄-철계 도금 강판의 제조방법.
  8. 제 7 항에 있어서,
    상기 초기 냉각 후, 상기 알루미늄 도금 강판의 표면에 알루미늄 파우더를 분사하는 단계를 더 포함하는 것을 특징으로 하는 알루미늄-철계 도금 강판의 제조방법.
  9. 제 8 항에 있어서,
    상기 알루미늄 파우더의 평균 입경은 5~40㎛ 인 것을 특징으로 하는 알루미늄-철계 도금 강판의 제조방법.
  10. 제 7 항에 있어서,
    상기 소지강판은 중량%로 C: 0.04~0.5%, Si: 0.01~2%, Mn: 0.01~10%, Al: 0.001~1.0%, P: 0.05% 이하, S: 0.02% 이하, N: 0.02% 이하, 잔부 Fe 및 기타 불가피한 불순물을 포함하는 것을 특징으로 하는 알루미늄-철계 도금 강판의 제조방법.
  11. 제 10 항에 있어서,
    상기 소지강판은 중량%로, Cr, Mo 및 W으로 이루어진 그룹에서 선택된 1종 이상의 합: 0.01~4.0%, Ti, Nb, Zr 및 V으로 이루어진 그룹에서 1종 이상의 합: 0.001~0.4%, Cu+Ni: 0.005~2.0%, Sb+Sn: 0.001~1.0% 및 B: 0.0001~0.01% 중 에서 하나 이상을 더 포함하는 것을 특징으로 하는 알루미늄-철계 도금 강판의 제조방법.
PCT/KR2019/016763 2018-11-30 2019-11-29 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법 WO2020111881A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/297,920 US11529795B2 (en) 2018-11-30 2019-11-29 Steel sheet plated with Al—Fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof
CN201980079328.8A CN113166914B (zh) 2018-11-30 2019-11-29 耐蚀性和焊接性优异的用于热压的铝-铁系镀覆钢板及其制造方法
JP2021529844A JP7241283B2 (ja) 2018-11-30 2019-11-29 耐食性及び溶接性に優れた熱間プレス用アルミニウム-鉄系めっき鋼板及びその製造方法
EP19890089.6A EP3889312A4 (en) 2018-11-30 2019-11-29 AL-FE CLADED STEEL SHEET FOR HOT FORMING WITH EXCELLENT CORROSION RESISTANCE AND POINT WELDABILITY AND PROCESS FOR ITS MANUFACTURING
MX2021006198A MX2021006198A (es) 2018-11-30 2019-11-29 Lamina de acero chapada con al-fe para formacion en prensa caliente que tiene excelente resistencia a la corrosion y soldabilidad por puntos y metodo de manufactura de la misma.
US17/983,759 US20230086620A1 (en) 2018-11-30 2022-11-09 Steel sheet plated with al-fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20180152572 2018-11-30
KR10-2018-0152572 2018-11-30
KR10-2019-0156855 2019-11-29
KR1020190156855A KR102280093B1 (ko) 2018-11-30 2019-11-29 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/297,920 A-371-Of-International US11529795B2 (en) 2018-11-30 2019-11-29 Steel sheet plated with Al—Fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof
US17/983,759 Division US20230086620A1 (en) 2018-11-30 2022-11-09 Steel sheet plated with al-fe for hot press forming having excellent corrosion resistance and spot weldability, and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2020111881A1 true WO2020111881A1 (ko) 2020-06-04

Family

ID=70853544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/016763 WO2020111881A1 (ko) 2018-11-30 2019-11-29 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법

Country Status (4)

Country Link
US (2) US11529795B2 (ko)
JP (1) JP7241283B2 (ko)
MX (1) MX2021006198A (ko)
WO (1) WO2020111881A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225050B1 (en) 2020-06-30 2022-01-18 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102307954B1 (ko) * 2019-12-20 2021-09-30 주식회사 포스코 가공성 및 내식성이 우수한 알루미늄계 합금 도금강판 및 이의 제조방법
US20230043638A1 (en) * 2020-10-14 2023-02-09 Questek Innovations Llc Steel to tungsten functionally graded material systems

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR20090020751A (ko) * 2007-08-24 2009-02-27 동부제철 주식회사 알루미늄-실리콘-마그네슘계 용융합금도금욕과합금도금강판 및 합금도금강판의 제조방법
JP2012255204A (ja) * 2011-05-13 2012-12-27 Nippon Steel & Sumitomo Metal Corp 塗装後耐食性に優れた表面処理鋼板、その製造法、及びそれを用いて製造された自動車部品
KR101591982B1 (ko) * 2014-08-06 2016-02-05 포스코강판 주식회사 표면외관 및 도장성이 우수한 용융 Al-Zn계 도금강판의 제조방법
KR101839253B1 (ko) * 2016-12-23 2018-03-15 주식회사 포스코 가공부 내식성이 우수한 알루미늄계 합금 도금강판
KR20180074449A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61104091A (ja) * 1984-10-25 1986-05-22 Nippon Steel Corp 表面処理鋼板の製造法
JP4551034B2 (ja) 2001-08-09 2010-09-22 新日本製鐵株式会社 溶接性、塗装後耐食性に優れた高強度自動車部材用アルミめっき鋼板及びそれを使用した自動車部材
JP4023710B2 (ja) 2001-06-25 2007-12-19 新日本製鐵株式会社 耐食性,耐熱性に優れたホットプレス用アルミ系めっき鋼板およびそれを使用した自動車用部材
KR20150073531A (ko) 2013-12-23 2015-07-01 주식회사 포스코 내식성 및 용접성이 우수한 열간 프레스 성형용 강판, 성형부재 및 그 제조방법
KR101696121B1 (ko) 2015-12-23 2017-01-13 주식회사 포스코 내수소지연파괴특성, 내박리성 및 용접성이 우수한 열간성형용 알루미늄-철 합금 도금강판 및 이를 이용한 열간성형 부재
PT3589771T (pt) * 2017-02-28 2023-05-09 Tata Steel Ijmuiden Bv Método para produzir uma tira de aço com uma camada de revestimento de liga de alumínio
EP3722447A4 (en) 2017-12-05 2021-05-26 Nippon Steel Corporation ALUMINUM CLAD STEEL SHEET, METHOD FOR MANUFACTURING ALUMINUM CLAD STEEL SHEET AND METHOD FOR MANUFACTURING COMPONENT FOR MOTOR VEHICLES

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6296805B1 (en) 1998-07-09 2001-10-02 Sollac Coated hot- and cold-rolled steel sheet comprising a very high resistance after thermal treatment
KR20090020751A (ko) * 2007-08-24 2009-02-27 동부제철 주식회사 알루미늄-실리콘-마그네슘계 용융합금도금욕과합금도금강판 및 합금도금강판의 제조방법
JP2012255204A (ja) * 2011-05-13 2012-12-27 Nippon Steel & Sumitomo Metal Corp 塗装後耐食性に優れた表面処理鋼板、その製造法、及びそれを用いて製造された自動車部品
KR101591982B1 (ko) * 2014-08-06 2016-02-05 포스코강판 주식회사 표면외관 및 도장성이 우수한 용융 Al-Zn계 도금강판의 제조방법
KR101839253B1 (ko) * 2016-12-23 2018-03-15 주식회사 포스코 가공부 내식성이 우수한 알루미늄계 합금 도금강판
KR20180074449A (ko) * 2016-12-23 2018-07-03 주식회사 포스코 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11225050B1 (en) 2020-06-30 2022-01-18 Hyundai Steel Company Steel sheet for hot press and manufacturing method thereof

Also Published As

Publication number Publication date
US20230086620A1 (en) 2023-03-23
US11529795B2 (en) 2022-12-20
MX2021006198A (es) 2021-07-16
US20220048277A1 (en) 2022-02-17
JP2022513647A (ja) 2022-02-09
JP7241283B2 (ja) 2023-03-17

Similar Documents

Publication Publication Date Title
WO2018117716A1 (ko) 내식성이 우수한 알루미늄계 도금 강재, 이를 이용한 알루미늄계 합금화 도금 강재 및 이들의 제조방법
WO2019132461A1 (ko) 열간 프레스 성형용 도금강판, 이를 이용한 성형부재 및 이들의 제조방법
WO2013069937A1 (ko) 온간프레스 성형용 강판, 온간프레스 성형 부재 및 이들의 제조방법
WO2010079995A2 (ko) 내식성이 우수한 알루미늄 도금강판, 이를 이용한 열간 프레스 성형 제품 및 그 제조방법
WO2014181907A1 (ko) 인성이 향상된 핫스탬핑 부품 및 그 제조 방법
WO2020111881A1 (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2018117769A1 (ko) 내식성 및 가공성이 우수한 용융 알루미늄계 도금강재 및 그 제조방법
WO2016190538A1 (ko) 내박리성이 우수한 hpf 성형부재 및 그 제조방법
WO2009145563A2 (ko) 열처리성이 우수한 초고강도 열간성형 가공용 강판, 열처리 경화형 부재 및 이들의 제조방법
WO2015099399A1 (ko) 내식성 및 용접성이 우수한 열간 프레스 성형용 강판, 성형부재 및 그 제조방법
WO2017111431A1 (ko) 내식성이 우수한 열간 프레스 성형품 및 그 제조방법
WO2014098503A1 (ko) 우수한 도금성과 초고강도를 갖는 고망간 용융아연도금강판의 제조방법 및 이에 의해 제조된 고망간 용융아연도금강판
WO2020116876A2 (ko) 수소취성에 대한 저항성이 우수한 열간 프레스 성형 부재 및 그 제조방법
WO2021125696A2 (ko) 알루미늄합금 도금강판, 열간성형 부재 및 이들의 제조방법
WO2017111491A1 (ko) 도금성 및 용접성이 우수한 오스테나이트계 용융 알루미늄 도금강판 및 그 제조방법
WO2022004969A1 (ko) 열간 프레스용 강판 및 이의 제조 방법
WO2019004662A1 (ko) 액상금속취화 균열 저항성이 우수한 강판 및 그 제조방법
KR20200066238A (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
KR102280093B1 (ko) 내식성 및 용접성이 우수한 열간 프레스용 알루미늄-철계 도금 강판 및 그 제조방법
WO2015099223A1 (ko) 강도와 연성이 우수한 경량강판 및 그 제조방법
WO2020111883A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 철-알루미늄계 도금 강판 및 그 제조방법
WO2018117770A1 (ko) 가공부 내식성이 우수한 알루미늄계 합금 도금강판
WO2020111879A1 (ko) 내식성 및 내열성이 우수한 열간성형용 알루미늄-철 합금 도금 강판, 열간 프레스 성형 부재 및 이들의 제조방법
WO2020111884A1 (ko) 수소지연파괴특성 및 점용접성이 우수한 열간 프레스용 알루미늄계 도금 강판 및 그 제조방법
WO2021125581A1 (ko) 핫 스탬핑 부품, 및 이의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890089

Country of ref document: EP

Effective date: 20210630