WO2020111045A1 - 金属ベース回路基板の製造方法 - Google Patents

金属ベース回路基板の製造方法 Download PDF

Info

Publication number
WO2020111045A1
WO2020111045A1 PCT/JP2019/046115 JP2019046115W WO2020111045A1 WO 2020111045 A1 WO2020111045 A1 WO 2020111045A1 JP 2019046115 W JP2019046115 W JP 2019046115W WO 2020111045 A1 WO2020111045 A1 WO 2020111045A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit pattern
circuit
metal
intermediate transfer
circuit board
Prior art date
Application number
PCT/JP2019/046115
Other languages
English (en)
French (fr)
Inventor
秀一 星野
慎二 斎藤
朋弘 瓦林
佐藤 恵
Original Assignee
日本発條株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本発條株式会社 filed Critical 日本発條株式会社
Publication of WO2020111045A1 publication Critical patent/WO2020111045A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/44Manufacturing insulated metal core circuits or other insulated electrically conductive core circuits

Definitions

  • the present invention relates to a method for manufacturing a metal base circuit board having a circuit pattern on a flat or heat sink-shaped metal board via an insulating layer.
  • This metal base circuit board is manufactured by applying an uncured insulating layer on a metal substrate, pasting a circuit pattern on the insulating layer, and heating and hardening the insulating layer while applying pressure to the circuit pattern.
  • the circuit pattern 103 of the metal base circuit board 100 shown in FIG. 11 is formed by, for example, etching processing.
  • the circuit pattern 103 is supported by the frame 107 via the feet 105 for positioning.
  • the semi-finished product 101 of the circuit pattern 103 is attached to the uncured insulating layer applied to the metal substrate, and the insulating layer is cured by the heat treatment performed simultaneously with the pressurization. After that, the frame 107 and the like are removed.
  • a thick copper pattern corresponding to a large current having a thickness of more than 0.5 mm slows down the etching process and the like, and the frame 107 and the legs which are unnecessary as the circuit pattern 103 are used. Since 105 is required, there is a limit to cost reduction.
  • Such a method includes a step of forming a conductive circuit pattern on the adhesive layer of the adhesive tape, a step of applying an insulating material to the circuit forming surface of the adhesive tape to form an insulating layer, and peeling the adhesive tape to insulate.
  • the steps of exposing the circuit on the surface of the layers are carried out in sequence.
  • the problem to be solved is that if there is a floating island shape part in the circuit pattern, it can not be coped with, and the processing speed becomes slow with a thick circuit pattern corresponding to large current, and there is a limit to cost reduction.
  • the present invention provides a method for manufacturing a metal-based circuit board that can cope with the presence of a floating island shape portion in a circuit pattern, improve the processing speed even with a thick circuit pattern according to a large current, and reduce the cost.
  • a punching step of collectively punching a circuit pattern having a plurality of circuit independent portions from a material plate, and insulating the punched plurality of circuit independent portions from a punching position on a metal substrate.
  • a transfer step of indirectly transferring all at once to the layer to form the circuit pattern, or directly transferring all at once to the insulating layer on the metal substrate to form the circuit pattern.
  • circuit patterns are punched together, and the independent parts for each circuit are batch-transferred to the insulating layer on the metal substrate indirectly or directly from the punching position to the intermediate transfer receiving part. Therefore, it is possible to cope with the presence of the floating island-shaped portion in the circuit pattern, and it is possible to improve the processing speed even with a thick circuit pattern according to the increase in current and to reduce the cost. Further, the shift of the circuit pattern can be suppressed, and the short circuit of current can be prevented.
  • FIG. 1 is a schematic plan view of a metal base circuit board according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a metal base circuit board using a flat plate-shaped metal board according to a first embodiment of the present invention.
  • 1 is a schematic cross-sectional view of a metal base circuit board using a heat sink-shaped metal board according to a first embodiment of the present invention.
  • 1 is a schematic sectional view of a pressing device according to a first embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional explanatory view showing an operation of punching a circuit pattern, showing a punching step according to Example 1 of the present invention. It is a schematic plan view of the circuit pattern punched in the punching process and held by the die plate.
  • FIG. 6 is a schematic cross-sectional explanatory view showing an operation of punching a circuit pattern, showing a punching step according to Example 1 of the present invention. It is a schematic plan view of the circuit pattern pun
  • FIG. 7 is a schematic cross-sectional explanatory view showing an operation of intermediate transfer of the circuit pattern onto the adhesive sheet of the support plate, showing the intermediate transfer step according to the first embodiment of the present invention. It is a schematic bottom view showing the state in which the circuit pattern is intermediately transferred to the adhesive sheet of the support plate in the intermediate transfer step.
  • FIG. 6 is a schematic cross-sectional explanatory view showing an operation of transferring from the adhesive sheet of the support plate to the insulating layer of the metal substrate, showing the transfer step according to Example 1 of the present invention. It is a schematic cross-sectional explanatory view explaining the pressurizing and heating treatment according to Example 1 of the present invention.
  • the metal-based circuit board manufacturing method includes a punching step of collectively punching a circuit pattern having a plurality of circuit independent portions from a material plate, and the punched plurality of circuit independent portions at the punching positions. From the substrate to the insulating layer on the metal substrate indirectly to form the circuit pattern, or directly to the insulating layer on the metal substrate to collectively transfer the circuit pattern to form the circuit pattern. Equipped with.
  • An intermediate transfer step of holding the punching position and intermediately transferring the plurality of circuit independent parts to an intermediate transfer receiving portion is provided, and the plurality of circuit independent parts are intermediately transferred to the intermediate transfer receiving portion after the punching step.
  • the indirect transfer may be performed by performing the transfer in the transfer step from the intermediate transfer receiving unit.
  • the intermediate transfer receiving portion in the intermediate transfer step may be a support plate having an adhesive sheet on its surface, and the plurality of independent circuit parts may be collectively attached to the adhesive sheet to perform the intermediate transfer.
  • the pressure-sensitive adhesive sheet is a heat release sheet, and the adhesive sheet side can be peeled from the circuit pattern on the insulating layer by reducing or losing the adhesive force of the pressure-sensitive adhesive sheet to the circuit pattern by heat treatment. May be
  • FIG. 1 is a schematic plan view of a metal base circuit board.
  • FIG. 2 is a schematic cross-sectional view of a metal base circuit board using a flat metal substrate.
  • the metal base circuit board 1 shown in FIGS. 1 and 2 has a thick circuit pattern 3 corresponding to a large current.
  • the metal base circuit board 1 includes a circuit board 3 on a flat metal board 5 with an insulating layer 7 interposed therebetween.
  • the circuit pattern 3 is formed of copper, for example, and is formed of a thick copper pattern circuit copper material having a thickness of more than 0.5 mm.
  • the thickness of the circuit pattern 3 can be variously selected and may be less than 0.5 mm.
  • the circuit pattern 3 includes a plurality of electrically independent circuit independent parts 3a.
  • the plurality of independent circuit parts 3 a are formed according to the required characteristics of the circuit pattern 3.
  • the insulating layer 7 plays a role of electrically insulating the circuit pattern 3 from the metal substrate 5.
  • the insulating layer 7 also plays a role as an adhesive for bonding the circuit pattern 3 and the metal substrate 5 to each other. Therefore, a resin is generally used for the insulating layer 7.
  • the insulating layer 7 is required to have high heat resistance with respect to high heat generation of the element mounted on the circuit pattern 3 and high heat transferability for transmitting this heat generation to the metal substrate 5. Therefore, the insulating layer 7 preferably further contains an inorganic filler.
  • Examples of the matrix resin of the insulating layer 7 include epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin and triazine type epoxy resin; bisphenol E type cyanate resin, bisphenol A type cyanate resin, novolac type cyanate resin and the like. Cyanate resins and the like can be used alone or in combination of two or more.
  • the inorganic filler contained in the insulating layer 7 preferably has excellent electric insulation and high thermal conductivity.
  • the inorganic filler include alumina, silica, aluminum nitride, boron nitride, silicon nitride, magnesium oxide and the like, and one or more selected from these inorganic fillers are used for the insulating layer 7. Preferably.
  • the filling rate of the inorganic filler in the insulating layer 7 can be appropriately set according to the type of the inorganic filler.
  • the total volume of the matrix resin contained in the insulating layer 7 is preferably 85% by volume or less, and more preferably 30 to 85% by volume.
  • the insulating layer 7 may further contain, for example, a coupling agent, a dispersant, etc. in addition to the matrix resin and the inorganic filler described above.
  • a semi-cured insulating sheet may be used as the insulating layer 7.
  • the metal substrate 5 is made of, for example, a single metal or an alloy. As a material of the metal substrate 5, for example, aluminum, iron, copper, aluminum alloy, or stainless can be used.
  • the metal substrate 5 may further contain a nonmetal such as carbon.
  • the metal substrate 5 may include aluminum compounded with carbon. Further, the metal substrate 5 may have a single layer structure or a multilayer structure.
  • the metal substrate 5 has high thermal conductivity.
  • the heat of copper is 370 to 400 W ⁇ m ⁇ 1 ⁇ K-1
  • the aluminum is 190 to 220 W ⁇ m ⁇ 1 ⁇ K-1
  • the iron is 60 to 80 W ⁇ m ⁇ 1 ⁇ K-1. Has conductivity.
  • the metal substrate 5 may or may not have flexibility.
  • the thickness of the metal substrate 5 is, for example, in the range of 0.2 to 5 mm.
  • FIG. 3 is a schematic sectional view of a metal base circuit board using a heat sink-shaped metal board.
  • the metal base circuit board 1A using the heat sink-shaped metal board 5A basically has the same configuration as the metal base circuit board 1 using the flat metal board 5 in FIGS. 1 and 2.
  • the metal board 5A is provided with the protruding portion 5a for heat dissipation.
  • the thickness of the flat plate shape of the metal substrate 5A not including the protrusions 5a is, for example, in the range of 0.2 to 5 mm as described above.
  • FIG. 4 is a schematic sectional view of the press machine.
  • FIG. 5 is a schematic cross-sectional explanatory diagram showing the punching step and the operation of punching the circuit pattern.
  • FIG. 6 is a schematic plan view of a circuit pattern which is punched in the punching process and held on the die plate.
  • FIG. 7 is a schematic cross-sectional explanatory view showing an operation of intermediate transfer, in which the circuit pattern is intermediately transferred to the adhesive sheet of the support plate.
  • FIG. 8 is a schematic bottom view showing a state in which the circuit pattern is intermediately transferred to the adhesive sheet of the support plate in the intermediate transfer step.
  • FIG. 9 is a schematic cross-sectional explanatory view showing an operation of transferring from the pressure-sensitive adhesive sheet of the support plate to the insulating layer of the metal substrate in the heat transfer step.
  • FIG. 10 is a schematic cross-sectional explanatory view for explaining the pressure heating process.
  • the method for manufacturing a metal base circuit board according to the embodiment of the present invention includes a punching step S1, an intermediate transfer step S2, and a heat transfer step S3 as a transfer step.
  • the press device shown in FIG. 4 is used.
  • the press machine 9 includes an upper mold 11 and a lower mold 13 as molds.
  • the upper die 11 is attached to a pressure mechanism side (not shown), and can be lowered by a hydraulic pressure such as a hydraulic pressure or a mechanical press to generate a pressing force.
  • the upper die 11 has a punch plate 17 attached to an upper die set plate 15.
  • the punch plate 17 supports a plurality of types of punches 19a.
  • the punch 19a is provided corresponding to the circuit independent portion 3a (FIG. 1) of the circuit pattern 3.
  • a stripper plate 21 is arranged on the tip side of the punch 19a.
  • the stripper plate 21 includes a stripper unit 23 and a sub guide post (not shown). Therefore, the stripper plate 21 is arranged so as to be retracted toward the punch plate 17 side while being guided by the sub guide post. This retreat movement is performed against the biasing force of the coil spring 23 of the stripper unit.
  • the lower mold 13 includes a lower die set plate 24 and a die plate 25 and a knockout 27 shown in FIG.
  • the lower die set plate 24 is fixed to a base plate (not shown).
  • a guide post 28 connects the lower die set plate 24 and the upper die set plate 15.
  • the die plate 25 is supported by a base plate (not shown) and has a die 25a corresponding to the punch 19a.
  • the knockout 27 is supported on the base plate side so that it can be raised and lowered.
  • the knockout 27 includes a knockout pin 27a that fits in correspondence with the die 25a.
  • the knockout 27 is configured to be driven up and down with respect to the base plate side by a hydraulic device, a pneumatic device, or the like.
  • the knockout pin 27a is located slightly inside the die 25a from the upper surface of the die plate 25.
  • the punched independent circuit portion 3a is held in the die 25a on the knockout pin 27a.
  • a flat rectangular copper plate material W is supplied between the upper mold 11 and the lower mold 13.
  • the copper plate material W is loaded from the X direction by the transport jig.
  • the copper plate material W can be carried in from the Y direction, and the copper plate material W can be continuously supplied between the upper mold 11 and the lower mold 13 as a continuous plate material.
  • the stripper plate 21 makes elastic contact with the copper plate material W.
  • the punch 19a further descends to punch the plurality of independent circuit parts 3a of the circuit pattern 3 from the copper plate material W.
  • the plurality of circuit independent parts 3a of the punched circuit pattern 3 are held in the upper side of the die 25a on the knockout pins 27a.
  • the plurality of circuit independent parts 3a hold the relative position as the circuit pattern 3 in the die plate 25 as the punching position, and stand by as it is.
  • an adhesive sheet 33 is provided on the surface of a support plate 31.
  • the adhesive sheet is also called an adhesive tape.
  • the plurality of independent circuit parts 3a are collectively extruded in the punched positions and attached to the adhesive sheet 33 so that the relative positions of the circuit patterns 3 are maintained.
  • the support plate 31 is formed of the same material as the circuit pattern 3, for example.
  • the support plate 31 is made of the same copper as the circuit pattern 3.
  • the thermal expansion coefficients of the both can be matched.
  • the support plate 31 may be formed of a material different from that of the circuit pattern 3 if the matching of the thermal expansion coefficients is not considered.
  • the planar shape of the support plate 31 is formed, for example, in a size and shape corresponding to the metal substrate 5, and in the present embodiment, is formed in a rectangular shape, for example.
  • the thickness of the support plate 31 is set to 2 to 4 mm.
  • the support plate 31 is required not to be easily deformed at the time of pressurizing and heating. Other thicknesses of the support plate 31 can be selected as long as they are not easily deformed.
  • the adhesive sheet 33 is a heat release sheet in this embodiment.
  • the adhesive sheet 33 reduces or loses the adhesive force to the circuit pattern 3 by the heat treatment, and can be peeled from the circuit pattern 3 on the insulating layer 7.
  • the heat release sheet as the adhesive sheet 33 has, for example, a thickness of 0.1 to 0.2 mm and a double-sided adhesive structure.
  • the adhesive to the support plate 31 on one surface of the adhesive sheet 33 can be peeled off after the heat transfer step.
  • the adhesive on the other surface of the pressure-sensitive adhesive sheet 33 reduces or loses its adhesive force by the heat treatment, and the pressure-sensitive adhesive sheet 33 side can be peeled off together with the support plate 31 from the circuit pattern 3 on the insulating layer 7.
  • the adhesive may include a foaming agent or the like, and the foaming agent or the like expands at a set temperature to reduce or lose the adhesive force of the adhesive surface.
  • Other adhesives include those containing capsules, in which the capsules are exposed to the adhesive surface by heat treatment to form irregularities, and the adhesive strength of the adhesive surface is reduced or lost. It is also possible to use an adhesive whose adhesive force changes at the melting point.
  • the adhesive sheet 33 is not limited to the heat release sheet in a form in which the adhesive force of the insulating material 7 to the circuit pattern 3 exceeds the adhesive force of the circuit pattern 3 by the adhesive sheet 33 when the insulating material 7 is heated and cured.
  • the intermediate transfer receiving portion 29 supported by a transfer jig (not shown) via the spring 35 is carried in between the upper die 11 and the lower die 13 from the Y direction, for example.
  • the gap between the adhesive sheet 33 and the die plate 25 is about half the plate thickness of the circuit pattern 3. This gap is set so that half of the plate thickness of the circuit pattern 3 is retained inside the die to maintain the positional accuracy and to adhere to the adhesive sheet 33 while maintaining the punching position of each circuit independent portion 3a. Therefore, the gap can be freely set as long as it can be adhered while maintaining the punching position.
  • the knockout 27 is lifted by driving a hydraulic device or the like, and the knockout pin 27a pushes up the circuit independent portion 3a to adhere it to the adhesive sheet 33 as it is.
  • each circuit independent portion 3a accurately holds the relative position as the circuit pattern 3 by the punching position.
  • the heat transfer step S3 of FIG. 9 is performed on the metal substrate 5 by the intermediate transfer step S2 in which the plurality of punched independent circuit parts 3a are collectively pushed from the punched positions. It is indirectly transferred to the layer 7 to form the circuit pattern 3.
  • the intermediate transfer receiving portion 29 in which the circuit pattern 3 is intermediately transferred onto the adhesive sheet 33 is arranged on the metal substrate 5 by the movement of the carrying jig. At this position, the intermediate transfer receiving portion 29 descends and the circuit pattern 3 is overlapped with the intermediate transfer receiving portion 29 on the insulating layer 7 of the metal substrate 5. By this superposition, the circuit pattern 3 is butted against the insulating layer 7.
  • a heat sink-shaped metal substrate 5A (FIG. 3) in FIG. 3 can be applied.
  • the stacked set of the metal substrate 5 and the support plate 31 is put into the heating furnace.
  • the space between the metal substrate 5 and the support plate 31 is pressed by the pressing device and heat treatment is performed.
  • the height of the circuit independent part 3a may be slightly different such that the center part is relatively low.
  • the insulating layer 7 absorbs a slight difference in height during pressurization.
  • the circuit pattern 3 is pressed through the support plate 31 that is not easily deformed. Therefore, even when pressure is applied, the independent parts 3a for each circuit accurately hold the relative position during punching without shifting.
  • the heat treatment is, for example, 200° C. ⁇ 60 minutes. By this heat treatment, the adhesive force of the adhesive sheet 33 to the circuit pattern 3 is reduced or lost. Therefore, the adhesive sheet 33 can be peeled off from the circuit pattern 3 transferred onto the insulating layer 7.
  • the intermediate transfer receiving portion 29 is raised together with the jig inside the heating furnace or outside the heating furnace after the heat treatment, the circuit pattern 3 and the adhesive sheet 33 are separated from each other, and the insulating layer 7 of the metal substrate 5 is removed. The transfer of the circuit pattern 3 is completed.
  • the circuit pattern 3 thus transferred to the metal substrate 5 side retains the punching position of each circuit independent part 3a. Therefore, according to the method of the present embodiment, it is possible to obtain an accurate circuit pattern 3 having no deviation as designed.
  • the method for manufacturing a metal-based circuit board according to the embodiment of the present invention includes a punching step S1 in which a circuit pattern 3 having a plurality of independent circuit portions 3a is punched from a material plate W at once, and a punching position is held to hold the plurality of circuits.
  • the heat transfer step S3 of indirectly transferring the insulating layer 7 on the metal substrate 5 from the punching position to form the circuit pattern 3 is provided.
  • the circuit independent portions 3a of the circuit pattern 3 punched together in the punching step S1 are intermediately transferred collectively to the intermediate transfer receiving portion 29 while holding the punching position, and the metal substrate is held while the punching position is held. 5 can be collectively transferred to the insulating layer 7 on the surface 5.
  • circuit patterns 3 are punched together, the processing speed can be improved and the cost can be reduced even for thick circuit patterns 3 whose thickness exceeds 0.5 mm according to the increase in current. ..
  • the intermediate transfer receiving portion 29 in the intermediate transfer step S2 is a support plate 31 having an adhesive sheet 33 on the surface thereof, and the plurality of independent circuit parts 3a are collectively attached to the adhesive sheet 33 to perform the intermediate transfer. To do. Therefore, the intermediate transfer can be performed while the punching position of the circuit independent portion 3a is securely held.
  • the plurality of circuit independent parts 3a are pressed under substantially the same pressure condition, and it is possible to reliably suppress the displacement and relative displacement of the plurality of circuit independent parts 3a.
  • the pressure-sensitive adhesive sheet 33 is a heat release sheet, and the adhesive force of the pressure-sensitive adhesive sheet 33 to the circuit pattern 3 is reduced or lost by heat treatment so that the pressure-sensitive adhesive sheet 33 can be peeled from the circuit pattern 3 on the insulating layer 7.
  • the circuit pattern 3 can be reliably and easily transferred to the metal substrate 5 side.
  • the adhesive sheet 33 is provided on the support plate 31 that is not easily deformed. Therefore, the adhesive sheet 33 is adhered and supported by the support plate 31 under the same condition as a whole.
  • the circuit pattern 3 and the support plate 31 are made of copper.
  • the thermal expansion coefficients of the circuit pattern 3 and the support plate 31 become the same, and the change in the relative positional relationship between the support plate 31, the adhesive sheet 33, and the circuit pattern 3 is suppressed during the pressure heating process, and the circuit pattern 3 is suppressed. It is possible to realize reliable transfer while suppressing the displacement and displacement of the.
  • the circuit pattern 3 can sufficiently cope with a large current.
  • the intermediate transfer step S2 can be omitted.
  • the metal substrate 5 provided with the insulating layer 7 is placed between the upper mold 11 and the lower mold 13 by a carrying jig, and the plurality of independent circuit parts 3a are extruded at once, and the semi-cured state is left as it is. It is also possible to temporarily fix it to the insulating layer 7. After the temporary fixing, the insulating layer 7 is cured by the pressure and heat treatment as described above.
  • the direct batch transfer of the circuit pattern 3 means a step of extruding the circuit independent portion 3a in a batch, directly adhering it to the insulating layer 7 on the metal substrate 5 and temporarily fixing it.
  • the insulating layer 7 it is also possible to use an insulating adhesive tape or the like having an adhesive force capable of temporarily fixing a plurality of independent circuit parts 3a.
  • the functions of the upper mold 11 and the lower mold 13 may be reversed.
  • the upper die 11 is made to stand by the plurality of independent circuit parts 3a after punching, and the knockout of the upper die 11 is operated with respect to the metal substrate 5 carried upward between the upper die 11 and the lower die 13, A plurality of independent circuit parts 3a are temporarily temporarily fixed to the insulating layer 7 of the metal substrate 5 at the punching positions.
  • An electrostatic chuck or a suction chuck can be used as a means for holding the plurality of independent circuit parts 3a after punching in the upper mold 11.
  • a UV release sheet may be used as the adhesive sheet 33.
  • the support plate 31 may be made of transparent plastic or glass.
  • the adhesive sheet 33 is irradiated with ultraviolet rays through the support plate 31 to reduce or lose the adhesive force of the adhesive sheet 33, thereby peeling it from the circuit pattern 3 on the insulating layer 7. It is possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

大電流化に応じた厚い回路パターンでも加工スピードを向上させことが可能な金属ベース回路基板の製造方法を得る。 材料板から複数の回路用独立部3aを有する回路パターン3を一括して打ち抜く打抜き工程と、打ち抜かれた複数の回路用独立部3aを、その打ち抜き位置から金属基板5上の絶縁層7に間接的に一括転写して回路パターン3を構成する、又は直接的に一括転写して回路パターン3を構成する加熱転写工程とを備え、大電流化に応じた厚い回路パターンでも加工スピードを向上でき、コストを低減させることができ、回路パターン3のずれを抑制でき、電流の短絡を防止できる。

Description

金属ベース回路基板の製造方法
 本発明は、平板形状やヒートシンク形状の金属基板に絶縁層を介して回路パターンを備えた金属ベース回路基板の製造方法に関する。
 近年、パワーデバイスの大電流化ニーズは益々高まっており、同時に半導体のコスト低減ニーズも高まっている。つまり、低価格で大電流に対応できる金属ベース回路基板の開発要求が高まっている。
 従来の金属ベース回路基板としては、WO2016/125650A1に記載のものがある。この金属ベース回路基板は、金属基板に未硬化の絶縁層を塗布し、この絶縁層上に回路パターンを貼り付け、回路パターンを加圧しながら絶縁層を加熱硬化させることで製造される。
 しかし、回路パターンの圧着時に回路パターンにずれを生じるという問題があった。
 この問題に対し、図11に示す金属ベース回路基板100の回路パターン103を図12の半製品101を用いて形成する方法がある。図12の半製品101は、例えばエッチング加工等により形成している。この回路パターンの半製品101は、回路パターン103が位置決め用の足105を介して枠107に支持されている。
 そして、回路パターン103の半製品101が金属基板に塗布された未硬化の絶縁層に貼り付けられ、加圧と同時に行われる加熱処理により絶縁層が硬化する。その後枠107等が除去される。
 従って、圧着時には存在する足105及び枠107により回路パターン103のずれの問題を改善できる利点がある。
 しかし、図13に示す金属ベース回路基板100Aの回路パターン103Aでは、浮島形状部109が存在する。このため、図14の半製品101Aのように浮島形状部109を足105により枠107に支持することができないという問題があった。
 また、このような従来の製造方法の場合、厚みが0.5mmを超える大電流化に応じた厚銅パターンではエッチング加工等のスピードが遅くなり、且つ回路パターン103としては不要な枠107や足105が必要であるためコスト低減に限界があった。
 一方、枠を利用せずにパターンのずれを抑制できる製造方法としては、粘着テープを利用した特開2003-338678号に記載のものがある。
 かかる方法は、粘着テープの粘着剤層上に導電性の回路パターンを形成する工程、粘着テープの回路形成面に絶縁性材料を塗布して絶縁層を形成する工程、粘着テープを剥離して絶縁層表面に回路を露出させる工程を順に行なわせる。
 従って、回路パターンとして不要な枠や足が無く、ある程度のコスト低減はできる。
 しかし、粘着テープ上にエッチングやスクリーン印刷法により回路パターンを形成する。このため、大電流化に応じた厚銅パターンでは加工スピードが遅くなり、コスト低減に限界があった。
 解決しようとする問題点は、回路パターンに浮島形状部が存在すると対応できず、大電流化に応じた厚い回路パターンでは加工スピードが遅くなり、コスト低減に限界があった点である。
 本発明は、回路パターンに浮島形状部が存在しても対応でき、大電流化に応じた厚い回路パターンでも加工スピードを向上させ、コストを低減させる金属ベース回路基板の製造方法を提供する。
 本発明の一態様では、材料板から複数の回路用独立部を有する回路パターンを一括して打ち抜く打抜き工程と、前記打ち抜かれた複数の回路用独立部を、その打ち抜き位置から金属基板上の絶縁層に間接的に一括転写して前記回路パターンを構成する、又は金属基板上の絶縁層に直接的に一括転写して前記回路パターンを構成する転写工程とを備える。
 本発明の一態様によれば、回路パターンを一括して打ち抜き、各回路用独立部を中間転写受部に打ち抜き位置から間接的に又は直接的に金属基板上の絶縁層に一括転写する。従って、回路パターンに浮島形状部が存在しても対応でき、大電流化に応じた厚い回路パターンでも加工スピードを向上でき、コストを低減することができる。また、回路パターンのずれを抑制することができ、電流の短絡を防止できる。
本発明の実施例1に係る金属ベース回路基板の概略平面図である。 本発明の実施例1に係る平板形状の金属基板を用いた金属ベース回路基板の概略断面図である。 本発明の実施例1に係るヒートシンク形状の金属基板を用いた金属ベース回路基板の概略断面図である。 本発明の実施例1に係るプレス装置の概略断面図である。 本発明の実施例1に係る打抜き工程を示し回路パターンを打ち抜く動作の概略断面説明図である。 打抜き工程で打ち抜かれてダイプレートに保持された回路パターンの概略平面図である。 本発明の実施例1に係る中間転写工程を示し回路パターンをサポート板の粘着シートへ中間転写する動作の概略断面説明図である。 中間転写工程で回路パターンがサポート板の粘着シートへ中間転写された状態を示す概略下面図である。 本発明の実施例1に係る転写工程を示しサポート板の粘着シートから金属基板の絶縁層へ転写する動作の概略断面説明図である。 本発明の実施例1に係る加圧加熱処理を説明する概略断面説明図である。 従来例に係る浮島形状部を有しない回路パターンを備えた金属ベース回路基板の平面図である。 従来例に係る浮島形状部を有しない回路パターンを枠に支持した状態を示す平面図である。 従来例に係る浮島形状部を有した回路パターンを備えた金属ベース回路基板の平面図である。 従来例に係る浮島形状部を有した回路パターンを枠に支持した状態を示す平面図である。
 大電流化に応じた厚い回路パターンでも加工スピードを向上させ、コストを低減させるという目的を、以下のように実現した。
 本実施形態の金属ベース回路基板の製造方法は、材料板から複数の回路用独立部を有する回路パターンを一括して打ち抜く打抜き工程と、前記打ち抜かれた複数の回路用独立部を、その打ち抜き位置から金属基板上の絶縁層に間接的に一括転写して前記回路パターンを構成する、又は金属基板上の絶縁層に直接的に一括転写して前記回路パターンを構成する転写工程として加熱転写工程とを備えた。
 前記打ち抜き位置を保持して前記複数の回路用独立部を中間転写受部に中間転写させる中間転写工程を備え、前記複数の回路用独立部を前記打抜き工程後に前記中間転写受部に中間転写させ、前記転写工程の転写を前記中間転写受部から行うことで前記間接的な転写を行う構成としてもよい。
 前記中間転写工程の前記中間転写受部を、粘着シートを表面に備えたサポート板とし、前記複数の回路用独立部を前記粘着シートに一括して貼り付け前記中間転写を行う構成としてもよい。
 前記粘着シートは、熱剥離シートであり、加熱処理により前記回路パターンに対する前記粘着シートの接着力を低下させるか失わせることで前記絶縁層上の回路パターンから前記粘着シート側を剥離可能とする構成としてもよい。
[金属ベース回路基板]
 図1は、金属ベース回路基板の概略平面図である。図2は、平板形状の金属基板を用いた金属ベース回路基板の概略断面図である。
 図1、図2の金属ベース回路基板1は、大電流化に応じた厚い回路パターン3を備える。この金属ベース回路基板1は、平板形状の金属基板5に絶縁層7を介して回路パターン3を備えている。
 回路パターン3は、例えば銅で形成され、厚みが0.5mmを超える厚銅パターンの回路用銅材料で形成している。回路パターン3の厚みは、種々選択でき、0.5mmを下回ってもよい。
 回路パターン3は、電気的に独立した複数の回路用独立部3aを備えている。複数の回路用独立部3aの構成は、回路パターン3の要求特性に応じて形成される。
 絶縁層7は、回路パターン3を金属基板5から電気的に絶縁する役割を果たしている。加えて、絶縁層7は、それら回路パターン3及び金属基板5を互いに張り合わせる接着剤としての役割も果たしている。そのため、絶縁層7には一般に樹脂が使用される。さらに、絶縁層7は、回路パターン3に実装される素子の高い発熱性に対する高い耐熱性と、この発熱を金属基板5に伝達する高い熱伝達性とが必要とされる。このため、絶縁層7は無機充填材を更に含有することが好ましい。
 絶縁層7のマトリクス樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、トリアジン型エポキシ樹脂等のエポキシ樹脂;ビスフェノールE型シアネート樹脂、ビスフェノールA型シアネート樹脂、ノボラック型シアネート樹脂等のシアネート樹脂等を単独又は2種以上を混合して用いることができる。    
 絶縁層7が含有する無機充填材としては、電気絶縁性に優れかつ熱伝導率が高い方が好ましい。無機充填材としては、例えば、アルミナ、シリカ、窒化アルミ、窒化ホウ素、窒化ケイ素、酸化マグネシウム等が挙げられ、これらの無機充填材の中から選ばれる1種又は2種以上を絶縁層7に用いることが好ましい。
 絶縁層7における無機充填材の充填率は、無機充填剤の種類に応じて適宜設定することができる。例えば、絶縁層7に含有されるマトリクス樹脂の全体積を基準として85体積%以下であることが好ましく、30~85体積%がより好ましい。
 絶縁層7は、上述したマトリックス樹脂及び無機充填材以外に、例えば、カップリング剤、分散剤等を更に含有してもよい。
 なお、絶縁層7として半硬化状態の絶縁シートを用いることもできる。
 金属基板5は、例えば、単体金属又は合金からなる。金属基板5の材料としては、例えば、アルミニウム、鉄、銅、アルミニウム合金、又はステンレスを使用することができる。金属基板5は、炭素などの非金属を更に含んでいてもよい。例えば、金属基板5は、炭素と複合化したアルミニウムを含んでいてもよい。また、金属基板5は、単層構造、又は多層構造を有していてもよい。
 金属基板5は、高い熱伝導率を有している。例えば、銅材では、370~400W・m-1・K-1、アルミ材では、190~220W・m-1・K-1、鉄材では、60~80W・m-1・K-1の熱伝導率を有している。  
 金属基板5は、可撓性を有していてもよく、可撓性を有していなくてもよい。金属基板5の厚さは、例えば、0.2~5mmの範囲内にある。
 図3は、ヒートシンク形状の金属基板を用いた金属ベース回路基板の概略断面図である。
 このヒートシンク形状の金属基板5Aを用いた金属ベース回路基板1Aは、基本的には図1、図2の平板形状の金属基板5を用いた金属ベース回路基板1と同様の構成である。一方、金属ベース回路基板1Aの場合は、金属基板5Aが放熱用の突起部5aを備えている。金属基板5Aの突起部5aを含まない平板形状の厚さは、上記同様に例えば、0.2~5mmの範囲内にある。
[製造方法]
 図4は、プレス装置の概略断面図である。図5は、打抜き工程を示し回路パターンを打ち抜く動作の概略断面説明図である。図6は、打抜き工程で打ち抜かれてダイプレートの保持された回路パターンの概略平面図である。図7は、中間転写工程を示し回路パターンをサポート板の粘着シートへ中間転写する動作の概略断面説明図である。図8は、中間転写工程で回路パターンがサポート板の粘着シートへ中間転写された状態を示す概略下面図である。図9は、加熱転写工程を示しサポート板の粘着シートから金属基板の絶縁層へ転写する動作の概略断面説明図である。図10は、加圧加熱処理を説明する概略断面説明図である。
 本発明実施例の金属ベース回路基板の製造方法は、打抜き工程S1、中間転写工程S2、転写工程として加熱転写工程S3を含んでいる。
 (打抜き工程)
 図4、図5のように、打抜き工程S1は、材料板としての銅板材Wから複数の回路用独立部3aを有する回路パターン3を一括して打ち抜くことを行う。
 この打ち抜きには、例えば図4のプレス装置が用いられる。
 図4のように、プレス装置9は、金型として上型11と下型13とを備えている。
 上型11は、図示しない加圧機構側に取り付けられ、油圧などの液圧や機械プレス等により下降して加圧力を発生させることができる。
 上型11は、上部ダイセットプレート15にパンチプレート17が取り付けられている。パンチプレート17には、複数種のパンチ19aが支持されている。パンチ19aは、回路パターン3の回路用独立部3a(図1)に対応して備えられている。
 パンチ19aの先端側にはストリッパプレート21が配置されている。ストリッパプレート21は、ストリッパユニット23、図示しないサブガイドポストを備えている。従って、ストリッパプレート21は、サブガイドポストにガイドされつつパンチプレート17側へ退避移動できるように配置されている。この退避移動は、ストリッパユニットのコイルスプリング23の付勢力に抗して行われる。
 下型13は、下部ダイセットプレート24にダイプレート25及び図5で示すノックアウト27を備えている。
 下部ダイセットプレート24は、図示しないベースプレートに固定されている。下部ダイセットプレート24と上部ダイセットプレート15との間は、ガイドポスト28で結合されている。
 ダイプレート25は、図示しないベースプレートに支持され、パンチ19aに対応したダイ25aを備えている。
 ノックアウト27は、ベースプレート側に昇降可能に支持されている。ノックアウト27は、ダイ25aに対応して嵌合するノックアウトピン27aを備えている。ノックアウト27は、油圧装置、空気圧装置等でベースプレート側に対して昇降駆動される構成となっている。打ち抜き位置では、ノックアウトピン27aがダイプレート25の上面より若干ダイ25a内に位置している。この位置で、打ち抜かれた回路用独立部3aがノックアウトピン27a上でダイ25a内に保持される構成となっている。
 そして、図5の左図ように、材料板として、例えば平板矩形の銅板材Wが上型11及び下型13間に供給される。例えば、図4の左右方向をX方向、X方向に直交する紙面直行方向をY方向とすると、銅板材Wが搬送治具によりX方向から搬入される。なお、銅板材Wの搬入は、Y方向から行わせることもでき、銅板材Wは、連続した板材として上型11及び下型13間に連続して供給させることもできる。
 NC制御によって上型13が下降するとストリッパプレート21が銅板材W上に弾接する。次いでパンチ19aがさらに下降して銅板材Wから回路パターン3の複数の回路用独立部3aを打ち抜く。
 図5右図のように、打ち抜かれた回路パターン3の複数の回路用独立部3aは、ノックアウトピン27a上でダイ25a上部側内に保持される。
 図6のように、打ち抜かれた回路パターン3を平面で見ると複数の回路用独立部3aがダイプレート25内で回路パターン3としての相対位置を打ち抜き位置として保持し、そのまま待機する。
 (中間転写工程)
 図7のように、中間転写工程S2は、前記打ち抜き位置を保持して前記複数の回路用独立部3aを中間転写受部29に中間転写させる。つまり、前記複数の回路用独立部3aを前記打抜き工程S1後に前記中間転写受部29に中間転写させ、後述する加熱転写工程の転写を前記中間転写受部29から行うことで前記間接的な転写を行う。
 図7のように、中間転写受部29の一例としては、サポート板31の表面に粘着シート33を備えている。なお、粘着シートは、粘着テープとも称される。前記複数の回路用独立部3aを打ち抜かれた位置のまま一括して押し出し前記粘着シート33に貼り付け、前記回路パターン3としての相対位置を維持させるようにする。
 サポート板31は、例えば回路パターン3と同じ材質で形成されている。本実施例では、回路パターン3と同じ銅でサポート板31が形成されている。サポート板31を、回路パターン3と同じ材質で形成することにより両者の熱膨張係数を一致させることができる。但し、熱膨張係数の一致を考慮しなければ回路パターン3とは異なる材質でサポート板31を形成することもできる。
 サポート板31の平面形状は、例えば金属基板5に対応した大きさ、形状に形成され、本実施例では例えば矩形に形成されている。
 サポート板31の厚みは、2~4mmに設定されている。サポート板31は、加圧加熱処理時等に容易に変形しないことが要求される。容易に変形しない限り、サポート板31は他の厚みを選択することもできる。
 粘着シート33は、本実施例では熱剥離シートである。この粘着シート33は、加熱処理により回路パターン3に対する接着力が低下するか失われ、絶縁層7上の回路パターン3から剥離可能とする。
 粘着シート33としての熱剥離シートは、例えば、厚みが0.1~0.2mmであり、両面接着構成である。粘着シート33の一方の面のサポート板31に対する接着剤は、加熱転写工程後に剥離が可能である。粘着シート33の他方の面の接着剤は、加熱処理により接着力が低下するか失われ絶縁層7上の回路パターン3から粘着シート33側がサポート板31と共に剥離可能となる。例えば、接着剤は、発泡剤等を含み、設定温度で発泡剤等が膨張して接着表面の接着力が低下し、或は失うものが用いられる。他の接着剤としては、カプセルを含み、加熱処理によってカプセルが接着面に露出して凹凸を形成し、接着表面の接着力が低下し、或は失うものがある。又、融点を境に接着力が変化する接着剤を用いることもできる。
 なお、絶縁材7が加熱硬化したとき回路パターン3に対する絶縁材7の接着力が粘着シート33による回路パターン3の接着力を上回る形態では、粘着シート33は、熱剥離シートに限られない。
 そして、図7左図のように、図示しない搬送治具にばね35を介して支持された中間転写受部29が上型11及び下型13間に例えばY方向から搬入される。この搬入状態で粘着シート33とダイプレート25との間の隙間は、回路パターン3の板厚の半分程度となっている。この隙間は、回路パターン3の板厚の半分をダイ内部に留めることで位置精度を保持させ、各回路用独立部3aの打ち抜き位置を保持しながら粘着シート33へ接着させるために設定される。従って、打ち抜き位置を保持しながら接着できる範囲であれば、隙間の設定は自由である。
 次いで、図7右図のように、油圧装置等の駆動でノックアウト27が上昇し、ノックアウトピン27aが回路用独立部3aを押し上げ、そのまま粘着シート33に接着させる。
 粘着シート33への中間転写状態は、図8のようになる。この中間転写状態で、各回路用独立部3aは、打ち抜き位置により回路パターン3としての相対位置を正確に保持している。
 (加熱転写工程)
 図9の加熱転写工程S3は、本実施例において、前記打ち抜かれた複数の回路用独立部3aを、その打ち抜き位置から一括して押し出す前記中間転写工程S2を経ることで金属基板5上の絶縁層7に間接的に転写して前記回路パターン3を構成する。
 図9のように、粘着シート33に回路パターン3を中間転写した中間転写受部29は、搬送治具の移動により金属基板5上に配置される。この位置で中間転写受部29が下降して回路パターン3が金属基板5の絶縁層7上に中間転写受部29と共に重ねられる。この重ね合わせにより回路パターン3が絶縁層7に突き合わせられる。
 なお、金属基板5に代えて図3のヒートシンク形状の金属基板5A(図3)を適用することもできる。
 図10のように、金属基板5及びサポート板31等の重ねられた組が加熱炉に投入される。加熱炉内で金属基板5及びサポート板31間が加圧装置により加圧され、且つ加熱処理される。
 回路用独立部3aは、中央部が相対的に低いなど高さが多少異なることもある。多少の高さの相違は、加圧時に絶縁層7が吸収する。
 なお、ヒートシンク形状の金属基板5Aの場合は、突起部5a(図3)を避ける穴あきの加圧板などが用いられる。
 この加圧加熱処理では、回路パターン3が容易には変形しないサポート板31を介して加圧される。従って、加圧時においても各回路用独立部3aはずれることなく打ち抜き時の相対位置を正確に保持する。
 加熱処理は、例えば200℃×60分である。この加熱処理により前記回路パターン3に対する前記粘着シート33の接着力が低下するか失われる。従って、絶縁層7上に転写された回路パターン3から粘着シート33が剥離可能となる。
 このため、加熱処理後に加熱炉内、或は加熱炉外にて中間転写受部29を治具と共に上昇させれば回路パターン3及び粘着シート33間が剥離し、金属基板5の絶縁層7に対する回路パターン3の転写が完了する。
 こうして金属基板5側に転写された回路パターン3は、各回路用独立部3aの打ち抜き位置がそのまま保持される。従って、本実施例の方法では、設計通りにずれの無い正確な回路パターン3を得ることができる。
[実施例の作用効果]
 本発明実施例の金属ベース回路基板の製造方法は、材料板Wから複数の回路用独立部3aを有する回路パターン3を一括して打ち抜く打抜き工程S1と、打ち抜き位置を保持して前記複数の回路用独立部3aを中間転写受部29に中間転写させる中間転写工程S2と、打ち抜かれた複数の回路用独立部3aを、その打ち抜き位置から一括して押し出すことで中間転写させる中間転写工程S2を経ることで金属基板5上の絶縁層7に打ち抜き位置から間接的に転写して回路パターン3を構成する加熱転写工程S3とを備えた。
 つまり、前記複数の回路用独立部3aを前記打抜き工程S1後に前記中間転写受部29に中間転写させ、加熱転写工程S3の転写を前記中間転写受部29から行うことで前記打ち抜き位置からの間接的な転写を行う。
 従って、打抜き工程S1で一括して打抜かれた回路パターン3の回路用独立部3aが、打ち抜き位置を保持して中間転写受部29に一括して中間転写され、打ち抜き位置を保持したまま金属基板5上の絶縁層7に一括転写させることができる。
 このため、ずれの無い正確な回路パターン3を得ることができ、使用時に電流の短絡を確実に抑制することができる。
 回路パターン3を一括して打ち抜くため、大電流化に応じた厚みが0.5mmを上回る厚い回路パターン3でも加工スピードを向上させ、コストを低減させることができる。 
 前記中間転写工程S2の前記中間転写受部29を、粘着シート33を表面に備えたサポート板31とし、前記複数の回路用独立部3aを前記粘着シート33に一括して貼り付け前記中間転写を行う。このため、回路用独立部3aの打ち抜き位置を確実に保持した状態で中間転写させることができる。
 特に、加熱転写工程S3での加圧加熱処理において、容易には変形しないサポート板31を介し複数の回路用独立部3aを均一に加圧することができる。
 このため、複数の回路用独立部3aがほぼ同じ加圧条件で加圧され、複数の回路用独立部3aの変位、相対的な位置ずれ等を確実に抑制することができる。
 前記粘着シート33は、熱剥離シートであり、加熱処理により前記回路パターン3に対する前記粘着シート33の接着力を低下させるか失わせ前記絶縁層7上の回路パターン3から剥離可能とする。
 このため、回路パターン3を金属基板5側へ確実且つ容易に転写させることができる。
 前記粘着シート33は、容易には変形しないサポート板31に備えられている。このため、粘着シート33がサポート板31により全体的に同条件で接着支持される。
 このため、粘着シート33が回路パターン3から剥離するとき、複数の回路用独立部3aに対し均一の剥離作用を得ることができ、回路パターン3の転写を確実に行わせることができる。 
 前記回路パターン3及びサポート板31は、銅製である。
 このため、回路パターン3及びサポート板31の熱膨張率が同一となり、加圧加熱処理中にサポート板31、粘着シート33、及び回路パターン3間の相対位置関係の変化が抑制され、回路パターン3の変位、位置ずれを抑制した確実な転写を実現できる。
 前記回路パターン3は、厚みが0.5mmを上回る場合には、大電流化にも十分に応ずることができる。
[その他]
 前記中間転写工程S2は省略することもできる。例えば、打抜き工程S1後に絶縁層7を備えた金属基板5を搬送治具により上型11及び下型13間に配置し、複数の回路用独立部3aを一括して押し出し、そのまま半硬化状態等の絶縁層7に仮止めさせることも可能である。仮止め後は、前記同様に加圧加熱処理により絶縁層7を硬化させる。
 従って、回路パターン3の直接的な一括転写は、回路用独立部3aを一括して押し出し、金属基板5上の絶縁層7に直接貼り付けて仮止めする工程を経ることを意味する。
 この場合、絶縁層7としては複数の回路用独立部3aを仮止めできる接着力を備えた絶縁接着テープ等を用いることもできる。
 また、前記上型11と下型13との機能を逆となるように構成してもよい。この場合、上型11に打ち抜き後の複数の回路用独立部3aを待機させ、上型11及び下型13間に上向きに搬入された金属基板5に対して上型11のノックアウトを動作させ、金属基板5の絶縁層7に複数の回路用独立部3aを打ち抜き位置のまま一括して仮止めさせる。打ち抜き後の複数の回路用独立部3aを上型11に待機させる手段としては、静電チャックや吸引チャックを用いることができる。
 前記中間転写工程S2では、粘着シート33としてUV剥離シートを用いることもできる。この場合、サポート板31としては、透過性のあるプラスチック製やガラス製等を用いることができる。粘着シート33を回路パターン3から剥離するときは、サポート板31を通して粘着シート33に紫外線を照射し、粘着シート33の接着力を低下させるか失わせることで絶縁層7上の回路パターン3から剥離可能とする。
 

Claims (6)

  1.  材料板から複数の回路用独立部を有する回路パターンを一括して打ち抜く打抜き工程と、
     前記打ち抜かれた複数の回路用独立部を、その打ち抜き位置から金属基板上の絶縁層に間接的に一括転写して前記回路パターンを構成する、又は金属基板上の絶縁層に直接的に一括転写して前記回路パターンを構成する転写工程と、
     を備えたことを特徴とする金属ベース回路基板の製造方法。
  2.  請求項1記載の金属ベース回路基板の製造方法であって、
     前記打ち抜き位置を保持して前記複数の回路用独立部を中間転写受部に中間転写させる中間転写工程を備え、
     前記複数の回路用独立部を前記打抜き工程後に前記中間転写受部に中間転写させ、前記転写工程の転写を前記中間転写受部から行うことで前記間接的な転写を行う、
     ことを特徴とする金属ベース回路基板の製造方法。
  3.  請求項2記載の金属ベース回路基板の製造方法であって、
     前記中間転写工程の前記中間転写受部を、粘着シートを表面に備えたサポート板とし、
     前記複数の回路用独立部を前記粘着シートに一括して貼り付け前記中間転写を行う、
     ことを特徴とする金属ベース回路基板の製造方法。
  4.  請求項3記載の金属ベース回路基板の製造方法であって、
     前記粘着シートは、熱剥離シートであり、
     加熱処理により前記回路パターンに対する前記粘着シートの接着力を低下させるか失わせることで前記絶縁層上の回路パターンから前記粘着シート側を剥離可能とする、
     ことを特徴とする金属ベース回路基板の製造方法。
  5.  請求項3又は4記載の金属ベース回路基板の製造方法であって、
     前記回路パターン及びサポート板は、同じ材質である、
     ことを特徴とする金属ベース回路基板の製造方法。
  6.  請求項1~5の何れか1項に記載の金属ベース回路基板の製造方法であって、
     前記回路パターンは、厚みが0.5mmを上回る、
     ことを特徴とする金属ベース回路基板の製造方法。

     
PCT/JP2019/046115 2018-11-26 2019-11-26 金属ベース回路基板の製造方法 WO2020111045A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018220007A JP2020088149A (ja) 2018-11-26 2018-11-26 金属ベース回路基板の製造方法
JP2018-220007 2018-11-26

Publications (1)

Publication Number Publication Date
WO2020111045A1 true WO2020111045A1 (ja) 2020-06-04

Family

ID=70853953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046115 WO2020111045A1 (ja) 2018-11-26 2019-11-26 金属ベース回路基板の製造方法

Country Status (3)

Country Link
JP (1) JP2020088149A (ja)
TW (1) TW202021433A (ja)
WO (1) WO2020111045A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375088A (zh) * 2020-10-16 2022-04-19 Sh精密股份有限公司 金属电路图案和金属电路图案的制造方法
WO2022209402A1 (ja) * 2021-03-30 2022-10-06 デンカ株式会社 回路基板の製造方法及び回路基板

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6897847B1 (ja) * 2020-06-02 2021-07-07 三菱マテリアル株式会社 絶縁樹脂回路基板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786704A (ja) * 1993-09-10 1995-03-31 Matsushita Electric Ind Co Ltd パワー回路用配線基板及びその製造方法
JP2002026475A (ja) * 2000-07-07 2002-01-25 Mitsui Mining & Smelting Co Ltd キャリア箔付銅箔回路及びそれを用いたプリント配線板の製造方法並びにプリント配線板
JP2002305366A (ja) * 2001-02-05 2002-10-18 Tdk Corp 積層基板および電子部品の製造方法、
JP4001112B2 (ja) * 2002-03-29 2007-10-31 松下電器産業株式会社 熱伝導性基板の製造方法
WO2016080519A1 (ja) * 2014-11-20 2016-05-26 日本精工株式会社 電子部品搭載用放熱基板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786704A (ja) * 1993-09-10 1995-03-31 Matsushita Electric Ind Co Ltd パワー回路用配線基板及びその製造方法
JP2002026475A (ja) * 2000-07-07 2002-01-25 Mitsui Mining & Smelting Co Ltd キャリア箔付銅箔回路及びそれを用いたプリント配線板の製造方法並びにプリント配線板
JP2002305366A (ja) * 2001-02-05 2002-10-18 Tdk Corp 積層基板および電子部品の製造方法、
JP4001112B2 (ja) * 2002-03-29 2007-10-31 松下電器産業株式会社 熱伝導性基板の製造方法
WO2016080519A1 (ja) * 2014-11-20 2016-05-26 日本精工株式会社 電子部品搭載用放熱基板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114375088A (zh) * 2020-10-16 2022-04-19 Sh精密股份有限公司 金属电路图案和金属电路图案的制造方法
WO2022209402A1 (ja) * 2021-03-30 2022-10-06 デンカ株式会社 回路基板の製造方法及び回路基板
JPWO2022209402A1 (ja) * 2021-03-30 2022-10-06
JP7328464B2 (ja) 2021-03-30 2023-08-16 デンカ株式会社 回路基板の製造方法及び回路基板

Also Published As

Publication number Publication date
JP2020088149A (ja) 2020-06-04
TW202021433A (zh) 2020-06-01

Similar Documents

Publication Publication Date Title
WO2020111045A1 (ja) 金属ベース回路基板の製造方法
JP4345598B2 (ja) 回路基板の接続構造体とその製造方法
TWI466244B (zh) 具有凸塊/凸緣層散熱座及雙增層電路之堆疊式半導體組體製法
JP5602439B2 (ja) 加熱装置および実装体の製造方法
JP4001112B2 (ja) 熱伝導性基板の製造方法
US20190311964A1 (en) Method for manufacturing semiconductor device, and mounting device
JP4086607B2 (ja) 回路装置の製造方法
JP2020088150A (ja) 金属ベース回路基板の製造方法及び回路パターン受け具
KR100632553B1 (ko) 임프린트법을 이용한 인쇄회로기판의 제조방법
JP2007335702A (ja) 転写基板の製造方法
EP3703474A1 (en) Method for producing a circuit board
JP6863767B2 (ja) 実装装置および実装方法
JPH10173317A (ja) 転写方法および圧着装置
JP4926863B2 (ja) セラミックグリーンシートの仮積層装置
JPH1126685A (ja) 半導体装置用リードフレームの製造に使用する金型装置
JP3948317B2 (ja) 熱伝導性基板の製造方法
JP3985558B2 (ja) 熱伝導性基板の製造方法
JP7274809B1 (ja) 配線基板又は配線基板材料の製造方法
JP2008263149A (ja) 半導体装置およびその製造方法ならびに製造装置
CN111987032B (zh) 粘接装置以及粘接方法
KR100982791B1 (ko) 금속 스테이플을 이용한 Non-PCB 복합재료 플레이트의 절연층의 상하면 통전 방법
JP2020141125A (ja) 回路基板用半製品板材の製造方法、回路基板用半製品板材、及び金属ベース回路基板の製造方法
JP2003152143A (ja) 熱伝導性基板の製造方法
JPH0923063A (ja) 多層配線回路基板の製造方法
JP2000343143A (ja) 回路用金属基板製造装置、及び回路用金属基板の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19891222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19891222

Country of ref document: EP

Kind code of ref document: A1