WO2020110680A1 - パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品 - Google Patents

パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品 Download PDF

Info

Publication number
WO2020110680A1
WO2020110680A1 PCT/JP2019/044098 JP2019044098W WO2020110680A1 WO 2020110680 A1 WO2020110680 A1 WO 2020110680A1 JP 2019044098 W JP2019044098 W JP 2019044098W WO 2020110680 A1 WO2020110680 A1 WO 2020110680A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
perfluoropolyether
rubber composition
general formula
represented
Prior art date
Application number
PCT/JP2019/044098
Other languages
English (en)
French (fr)
Inventor
竜人 林
福田 健一
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP19890240.5A priority Critical patent/EP3889220B1/en
Priority to US17/294,286 priority patent/US20220010061A1/en
Priority to CN201980079391.1A priority patent/CN113166534A/zh
Priority to JP2020558287A priority patent/JP7070705B2/ja
Publication of WO2020110680A1 publication Critical patent/WO2020110680A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/002Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds
    • C08G65/005Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens
    • C08G65/007Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from unsaturated compounds containing halogens containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/321Polymers modified by chemical after-treatment with inorganic compounds
    • C08G65/325Polymers modified by chemical after-treatment with inorganic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/337Polymers modified by chemical after-treatment with organic compounds containing other elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/08Polyhydrazides; Polytriazoles; Polyaminotriazoles; Polyoxadiazoles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2650/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G2650/28Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type
    • C08G2650/46Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen
    • C08G2650/48Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule characterised by the polymer type containing halogen containing fluorine, e.g. perfluropolyethers

Definitions

  • the present invention relates to a linear perfluoropolyether compound having at least two azido groups in one molecule and a linear perfluoropolyether compound having at least three ethynyl groups (—C ⁇ C—H) in one molecule.
  • the present invention relates to a perfluoropolyether rubber composition containing a polyether compound and a cured product thereof. Specifically, a curable composition containing the compound is heated to cause a crosslinking reaction (formation of a triazole structure by a click reaction) to be cured, or (c) a transition metal catalyst is added to the composition at room temperature.
  • the present invention relates to a polyether rubber composition, a cured product thereof, and an article containing the same.
  • the heat-curable perfluoropolyether rubber composition has a good balance of heat resistance, low temperature resistance, chemical resistance, solvent resistance, oil resistance and the like, and is applied in a wide range of fields mainly in the automobile industry (Patent Document 1: Japanese Patent Laid-Open No. 2001-192546, Japanese Patent Laid-Open No. 2000-248166, and Japanese Patent Laid-Open No. 2002-20615).
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-192546, Japanese Patent Laid-Open No. 2000-248166, and Japanese Patent Laid-Open No. 2002-20615.
  • a heat-curable perfluoropolyether-based rubber composition that is mainly cured by hydrosilylation using a catalyst such as a metal such as platinum as a crosslinking reaction is known.
  • An example of the above-mentioned heat-curable perfluoropolyether rubber composition is one that uses a perfluoropolyether compound having a skeleton of [aromatic ring-silicon atom-vinyl group] at the end as a base polymer.
  • a perfluoropolyether compound having a skeleton of [aromatic ring-silicon atom-vinyl group] is unstable, and there were cases where chemical resistance, mainly acid resistance, was insufficient.
  • This problem can be ameliorated by using a perfluoropolyether compound having [an amide group having an aromatic substituent as a side chain-alkylene group-silicon atom-vinyl group] at the terminal as a base polymer. It is known (Patent Document 4: Japanese Patent No.
  • the heat-curable perfluoropolyether-based rubber composition that cures by hydrosilylation as a crosslinking reaction may cause curing failure in the presence of a substance containing atoms such as phosphorus, sulfur, and nitrogen.
  • a substance containing atoms such as phosphorus, sulfur, and nitrogen.
  • heating is required to obtain a cured product, it is unsuitable for application to large parts that cannot enter a heating furnace or parts that cannot be heated.
  • there is a condensation curing type room temperature curable perfluoropolyether rubber composition This does not require heating to obtain a cured product, and the resulting cured product is excellent in heat resistance, low temperature resistance, chemical resistance, solvent resistance, oil resistance, etc.
  • Patent Document 5 JP-A-9-077944.
  • Japanese Patent Laid-Open No. 9-137027 Japanese Patent Laid-Open No. 9-137027.
  • the conventionally known dealcoholization type condensation curing type room temperature curable perfluoropolyether rubber composition is easily deteriorated under the condition of being exposed to an acid for a long time because of the low acid resistance of the siloxane bond. I will end up.
  • JP 2001-192546 A Japanese Patent Laid-Open No. 2000-248166 JP 2002-20615 A Japanese Patent No. 6160540 JP-A-9-077944 JP-A-9-137027
  • the present invention has been made in view of the above circumstances, and is a perfluoropolyether rubber that gives a cured product excellent in heat resistance, low temperature resistance (cold resistance), organic solvent resistance, and chemical resistance (particularly acid resistance).
  • An object is to provide a composition, a cured product thereof, and an article containing the composition.
  • the 1,3-dipolar cycloaddition reaction which proceeds between an azide and an alkyne to give a triazole structure proceeds under heating conditions, and when the transition metal catalyst such as copper is added, the reaction is performed at room temperature. It is known to progress underneath.
  • This reaction is known as the Huisgen cycloaddition reaction or click reaction.
  • the present inventors focused their attention on the utilization of this reaction, and conducted intensive studies to (a) have at least two azide groups in one molecule and have 2 azide groups in the main chain.
  • a heat-curable perfluoropolyether rubber composition comprising three linear perfluoropolyether compounds has excellent heat resistance, cold resistance, solvent resistance, and chemical resistance. It has been found that it gives a cured product with excellent acid resistance and has excellent curing properties under heating conditions. Further, they have found that a room temperature curable perfluoropolyether rubber composition obtained by adding a transition metal catalyst (c) to the above (a) and (b) has excellent curing characteristics at room temperature, and completed the present invention. ..
  • the present invention provides the following perfluoropolyether rubber composition, a cured product thereof, and an article containing the same.
  • An ether compound
  • B A perfluoropolyether-based rubber composition comprising a linear perfluoropolyether compound having at least three ethynyl groups in one molecule.
  • A is a divalent linear aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms
  • Rf 1 is a divalent perfluoropolyether group.
  • R 1 and R 2 are each independently a divalent linear or branched saturated aliphatic hydrocarbon group or an arylene group
  • B is a hydrogen atom, a phenyl group
  • Monovalent linear or branched aliphatic unsaturated hydrocarbon group the following general formula (3)
  • R 3 is a divalent linear or branched aliphatic saturated hydrocarbon group or an arylene group
  • Rf 2 is It is a divalent perfluoropolyether group.
  • R 1 and R 2 on the left side, R 1 and B on the right side are each a single bond or They may be linked by a double bond to form a cyclic structure bonded to the same nitrogen atom.
  • the broken line is a bond.
  • R 1 and R 2 are divalent linear aliphatic saturated hydrocarbon groups having 1 to 10 carbon atoms, and divalent branched aliphatic saturated hydrocarbon groups having 2 to 10 carbon atoms.
  • R 3 is a divalent straight-chain aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms or a divalent branched aliphatic saturated hydrocarbon group having 2 to 10 carbon atoms; 5.
  • a perfluoropolyether rubber composition which is excellent in heat resistance, low temperature resistance (cold resistance), organic solvent resistance, chemical resistance, etc., and gives a cured product having excellent acid resistance.
  • You can A rubber product using a cured product of the above composition is suitable for automobiles, chemical plants, inkjet printers, semiconductor production lines, analytical/physical and chemical equipment, medical equipment, living environments or aircraft rubber parts. Can be used for.
  • FIG. 5 is a diagram showing changes in hardness variation in a heat aging test of the cured products produced in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing changes in tensile strength in a heat aging test of the cured products produced in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing changes in elongation at break in a heat aging test of the cured products produced in Examples 1 to 4 and Comparative Examples 1 and 2.
  • FIG. 3 is a diagram showing changes in hardness variation in a sulfuric acid resistance test of the cured products produced in Examples 1 to 4 and Comparative Example 2.
  • FIG. 4 is a diagram showing changes in hardness variation in a nitric acid resistance test of the cured products produced in Examples 1 to 4 and Comparative Examples 1 and 2.
  • the perfluoropolyether rubber composition according to the present invention (A) A linear perfluoropolyol having a number average molecular weight of 1,000 to 100,000, which has at least two azido groups in one molecule and has a divalent perfluoroalkyl ether structure in the main chain. An ether compound, (B) A linear perfluoropolyether compound having at least three ethynyl groups (—C ⁇ C—H) in one molecule.
  • the component (a) of the present invention has at least two azido groups in one molecule, and has a divalent perfluoropolyether structure (one kind or two or more kinds of perfluoroalkyl ether units) in the main chain. It is a linear fluoropolyether compound (base polymer) having a number average molecular weight of 1,000 to 100,000 having a structure including repetitions).
  • the component (a) is represented by the following general formula (1) (In the formula, A is a divalent linear aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms, and Rf 1 is a divalent perfluoropolyether group.) A linear compound having azide group (N 3 ) at both ends of a divalent perfluoropolyether group via a linear alkylene group (A) as a polymer both-end structure (fluorine It is preferably a polymer).
  • A is a divalent linear aliphatic saturated hydrocarbon group having 1 to 6 carbon atoms
  • Rf 1 is a divalent perfluoropolyether group.
  • A is preferably a linear alkylene group such as a methylene group, an ethylene group, a propylene group, a butylene group, a pentamethylene group or a hexamethylene group, more preferably a methylene group or ethylene.
  • a group more preferably a methylene group.
  • the divalent perfluoropolyether group which is Rf 1 is one or more perfluoroalkyl groups represented by —C a F 2a O— (wherein a is an integer of 1 to 6).
  • a is an integer of 1 to 6
  • x is an integer of 5 to 600, preferably 10 to 400, and more preferably 30 to 200.
  • Examples of the repeating unit represented by the above formula (—C a F 2a O—) include units represented by the following formula. -CF 2 O- -CF 2 CF 2 O- -CF 2 CF 2 CF 2 O- -CF (CF 3 )CF 2 O- -CF 2 CF 2 CF 2 O- -CF 2 CF 2 CF 2 CF 2 O-
  • the unit represented by the following formula is particularly preferable. -CF 2 O- -CF 2 CF 2 O- -CF 2 CF 2 CF 2 O- -CF (CF 3 )CF 2 O-
  • the repeating unit in the divalent perfluoropolyether group may be composed of one type of these alone or may be composed of a combination of two or more types.
  • the divalent perfluoropolyether group preferably contains a structure of any of the following formulas (10) to (13).
  • Y is a fluorine atom or a trifluoromethyl group
  • o, p and q are o ⁇ 0, p ⁇ 0, 0 ⁇ o+p ⁇ 202, and particularly 2 ⁇ o+p ⁇ .
  • Rf 1 divalent perfluoropolyether group
  • Rf 1 divalent perfluoropolyether group
  • h, j, and k are integers satisfying h ⁇ 0, j ⁇ 0, 0 ⁇ h+j ⁇ 200, particularly 2 ⁇ h+j ⁇ 150, and 0 ⁇ k ⁇ 6.
  • n 2 to 200.
  • z 1 to 200.
  • linear fluorine-containing polymer represented by the above formula (1) those represented by the following formulas (22) to (25) are particularly preferable.
  • the linear perfluoropolyether compound (fluorine-containing polymer) of the above formula (1) has a polystyrene-equivalent number average molecular weight of 1,000 to by gel permeation chromatography (GPC) using a fluorine-based solvent as a developing solvent. It is preferably 100,000, particularly preferably 1,500 to 50,000. When the molecular weight is less than 1,000, swelling with gasoline or various solvents may increase. When the molecular weight exceeds 100,000, the viscosity is high and the workability may be poor.
  • the above number average molecular weight (or number average degree of polymerization) can also be calculated from the ratio of the terminal structure and the repeating unit structure obtained from the 19 F-NMR spectrum.
  • Examples of the method for producing the azido group-containing perfluoropolyether compound (fluorine-containing polymer) represented by the general formula (1) of the present invention include the following methods, but are not limited thereto.
  • the following general formula (1A) (In the formula, Rf 1 and A are the same as above.)
  • a hydroxy group of a fluoropolymer having both ends of a molecular chain represented by is reacted with a sulfonyl halide to prepare a fluoropolymer having both ends of a molecular chain blocked with a sulfonyl ester group,
  • the sulfonyl ester group of the fluoropolymer in which both ends of the molecular chain are blocked with a sulfonyl ester group is reacted with sodium azide in a mixed liquid of a non-fluorine-containing organic solvent and an at least partially fluorinated organic solvent.
  • Rf 1 of the general formula (1) is a divalent perfluoropolyether group represented by the formula (15) and A is a methylene group, it can be produced by the following steps. ..
  • First step In the first step, a fluoropolymer in which both ends of the molecular chain are blocked with a hydroxyalkyl group such as a hydroxymethyl group, for example, a fluoropolymer represented by the following formula, is added to a sulfonyl halide compound such as perfluoro-1-butanesulfonyl.
  • a fluoropolymer in which both ends of the molecular chain are blocked with a hydroxyalkyl group such as a hydroxymethyl group for example, a fluoropolymer represented by the following formula, is added to a sulfonyl halide compound such as perfluoro-1-butanesulfonyl.
  • Fluoride by reacting in the presence of a base such as triethylamine, the hydroxy group to a sulfonyl ester group, a fluoropolymer having a sulfonyl ester group through alkylene groups such as methylene groups at both ends of the molecular chain,
  • a base such as triethylamine
  • a fluoropolymer having a sulfonyl ester group through alkylene groups such as methylene groups at both ends of the molecular chain For example, a polymer having a hexafluoropropylene oxide (HFPO) structure represented by the following formula as a main chain is obtained.
  • HFPO hexafluoropropylene oxide
  • n, m, and n+m are the same as above.
  • a fluoropolymer represented by the general formula (15) having a HFPO (hexafluoropropylene oxide) structure as a main chain is used instead of the above.
  • a fluoropolymer having a backbone represented by the general formulas (14) and (16) to (21) as main chains and both ends of which are blocked with hydroxyalkyl groups is used, a sulfonyl having a corresponding main chain structure is obtained. An esterified product is obtained.
  • the amount of the sulfonyl halide compound used is preferably 1.0 equivalent or more, more preferably 1.0 equivalent or more with respect to the hydroxy group of the fluoropolymer having both ends of the molecular chain blocked with hydroxyalkyl groups. It is 5.0 equivalents or less.
  • suitable sulfonyl halide compounds include p-toluenesulfonyl chloride, mesyl chloride, p-nitrobenzenesulfonyl chloride, and the like, in addition to perfluoro-1-butanesulfonyl fluoride.
  • a base such as triethylamine to neutralize the hydroxy group at the end of the fluoropolymer and the hydrogen halide generated when the sulfonyl halide compound reacts. Therefore, the addition amount of a base such as triethylamine is preferably 1.1 equivalents or more and 1.5 equivalents or less with respect to the hydroxy group of the fluoropolymer in which both ends of the molecular chain are blocked with hydroxyalkyl groups.
  • a suitable base in addition to triethylamine, diisopropylethylamine, pyridine and the like can be used.
  • the above reaction is preferably performed under a nitrogen blanket.
  • the reaction temperature may be about 20 to 50°C, especially about 20 to 40°C.
  • heat is generated, so if the temperature rises excessively, cooling is performed for about 10 minutes.
  • the triethylamine-hydrofluoric acid salt produced in the reaction is dissolved in water, the fluorinated organic solvent layer is recovered, and concentrated under reduced pressure to give a sulfonyl group through a methylene group at both ends of the molecular chain.
  • a fluoropolymer having ester groups is obtained.
  • Second step In the second step, a fluoropolymer having a sulfonyl ester group at both ends of the molecular chain obtained in the first step through alkylene groups (methylene group etc.), for example, a hexafluoropropylene oxide (HFPO) structure represented by the following formula A sulfonyl ester group of a polymer having a main chain of, at least partially fluorinated organic solvent, in a mixed solution of a non-fluorine-based organic solvent, by reacting with sodium azide, the above-mentioned general An azido group-containing fluoropolymer having an azido group at both ends of the molecular chain represented by the formula (1) through alkylene groups (methylene group etc.), for example, a hexafluoropropylene oxide (HFPO) structure represented by the following formula: An azido group-containing polymer having the main chain is obtained.
  • n, m, and n+m are the same as above.
  • the amount of sodium azide used is preferably 1.0 equivalent or more, and particularly 1.1 equivalent or more and 3.0 equivalents or less with respect to the sulfonyl ester group of the fluoropolymer having a sulfonyl ester group. If the equivalent amount of sodium azide is too small, the reaction may not proceed sufficiently. If the equivalent amount of sodium azide is too large, a large amount of sodium azide remains in the system after the reaction is completed, which may cause an explosion during liquid separation operation.
  • non-fluorine-based organic solvent dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), acetonitrile and the like are preferable.
  • the amount of the non-fluorine-containing organic solvent used is preferably 0.5 times or more the mass of the fluoropolymer having a sulfonyl ester group through alkylene groups such as methylene groups at both ends of the molecular chain, and more preferably 1. It is 5 times or more and 2.5 times or less. If the amount of the non-fluorine-based organic solvent used is too small, the reaction rate may decrease and side reactions may occur.
  • a fluoropolymer having a sulfonyl ester group such as hexafluorometa-xylene (HFMX), H Galden ZV130 (manufactured by Solvay), AC-6000 (manufactured by Asahi Glass) is dissolved. It is desirable to be one.
  • the amount of the at least partially fluorinated organic solvent used is preferably 0.5 times or more the mass of the fluoropolymer having a sulfonyl ester group through alkylene groups such as methylene groups at both ends of the molecular chain, It is more preferably 1.5 times or more and 2.5 times or less. If the amount of the at least partially fluorinated organic solvent used is too small, the reaction rate may decrease and the side reaction may progress.
  • the use ratio (mass ratio) of the at least partially fluorinated organic solvent and the non-fluorine-based organic solvent is 0.5:1 to 3:1, particularly 1:1 to 2:1, and particularly 1: It is preferably 1. If the proportion of the at least partially fluorinated organic solvent is too low, the reaction rate of azidation may be reduced or a side reaction may proceed. Similarly, even when the proportion of the at least partially fluorinated organic solvent is too large, the reaction rate of the azidation may decrease or a side reaction may proceed.
  • the reaction is a fluoropolymer having a sulfonyl ester group through an alkylene group such as a methylene group at both ends of the molecular chain, at least partially fluorinated organic solvent, a non-fluorinated organic solvent, and sodium azide And heating at a temperature of 60 to 120° C., especially 80 to 115° C. for 12 hours to 3 days, especially 1 to 2.8 days.
  • water and an at least partially fluorinated organic solvent such as hexafluorometaxylene (HFMX) are added, the aqueous layer is removed by a liquid separation operation, and an organic solvent such as acetone is added to cause precipitation.
  • HMFX hexafluorometaxylene
  • the product is recovered, concentrated under reduced pressure, and treated with activated carbon to give an azide group through the alkylene group such as a methylene group at both ends of the molecular chain represented by the general formula (1), which is the target.
  • the component (b) of the present invention is a linear perfluoropolyether compound (crosslinking agent) having at least three ethynyl groups (—C ⁇ C—H) which are terminal alkynes in one molecule.
  • the component (b) is preferably a perfluoropolyether compound represented by the following general formula (2).
  • R 1 and R 2 are each independently a divalent linear or branched saturated aliphatic hydrocarbon group or an arylene group.
  • the divalent linear hydrocarbon group is preferably a linear aliphatic saturated carbon group having 1 to 10 carbon atoms, such as a methylene group, an ethylene group, a propylene group, a butylene group, an octylene group and a decylene group. It is a hydrogen group.
  • the divalent branched hydrocarbon group is preferably 1-methylmethylene group, 1-methylethylene group, 1,2-dimethylethylene group, 1-ethylpropylene group, 1,2-diethylpropylene group, 1,2.
  • the arylene group is preferably a phenylene group having a structure represented by the general formulas (4) to (6), or preferably an arylene group other than the phenylene group having a structure represented by the general formulas (7) to (9) ( That is, a phenylene group in which one hydrogen atom on the aromatic ring is substituted with an ethynyl group) and the like can be mentioned.
  • a divalent linear hydrocarbon group having 1 to 4 carbon atoms a phenylene group represented by the general formulas (4) to (6), or a general formula (7) to (9).
  • the structure of R 1 may be one kind of the above structures or a combination of two or more kinds.
  • R 2 has any of the above structures, but may be the same as or different from R 1 .
  • B in the general formula (2) is a hydrogen atom, a phenyl group, a monovalent linear or branched aliphatic unsaturated hydrocarbon group, or the following general formula (3) (In the formula (3), R 3 is the same as the groups represented by R 1 and R 2 in the general formula (2), and the broken line is a bond.) Is one of the groups represented by.
  • the monovalent linear or branched aliphatic unsaturated hydrocarbon group preferably has an aliphatic unsaturated bond and has 2 to 8 carbon atoms, excluding the group represented by the above formula (3). More preferably, it is a monovalent hydrocarbon group having 2 to 6 carbon atoms, such as an ethynyl group; an alkenyl group such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, an isobutenyl group, a hexenyl group, and the like. It is preferably an ethynyl group.
  • R 3 is preferably a divalent linear aliphatic saturated hydrocarbon group having 1 to 10 carbon atoms or a divalent branched aliphatic saturated hydrocarbon group having 2 to 10 carbon atoms, and the above general formula (4) to Any of the arylene groups represented by (9) (that is, the phenylene groups represented by the general formulas (4) to (6) or the arylene groups other than the phenylene groups represented by the general formulas (7) to (9)). And preferably a divalent straight-chain hydrocarbon group having 1 to 10 carbon atoms or an arylene group represented by the above general formulas (4) to (9), more preferably methylene (having 1 carbon atom).
  • R 3 is a linear aliphatic saturated hydrocarbon group having more than 10 carbon atoms, the fluorinated alkyne compound is likely to swell in a polar solvent and the organic solvent resistance derived from the main chain structure may not be exhibited. is there.
  • R 3 is any one of the above-described structure, it may be the same as R 1 and / or R 2, may be different, but are preferably the same as R 1 and / or R 2.
  • R 1 and R 2 on the left side, R 1 and B on the right side are chemically bonded to each other. They may be linked by (single bond or double bond) to form a cyclic structure bonded to the same nitrogen atom.
  • examples of the structure bonded to the terminal of Rf 2 include the following structures. (In the formula, the broken line is a bond.)
  • Rf 2 (divalent perfluoropolyether group) may be the same as Rf 1 in the formula (1).
  • Rf 2 include those represented by the following formulas (26) to (28) in addition to those represented by the above formulas (14) to (21).
  • n′ and m′ are mutually independent integers, and n′ ⁇ 1, m′ ⁇ 1, and 2 ⁇ n′+m′ ⁇ 150.
  • n′ is preferable. Is 1 ⁇ n′ ⁇ 50, more preferably 15 ⁇ n′ ⁇ 40, m′ is preferably 1 ⁇ m′ ⁇ 50, more preferably 15 ⁇ m′ ⁇ 40, and n′+m′ is preferable.
  • z′ is an integer of 1 to 150, preferably an integer of 1 to 100, more preferably an integer of 6 to 80.
  • the addition amount of the component (b) is such that the ethynyl group (-C ⁇ C) in the component (b) is based on 1 mol of the azide group contained in the component (a).
  • 0.0) more preferably 0.6 to 1.5 moles, and even more preferably 0.8 to 1.2 moles.
  • the amount of the ethynyl group in the component (b) is less than 0.5 mol with respect to 1 mol of the azido group in the component (a), a rubber-like cured product may not be formed and may become a gel or liquid, Even if the ethynyl group in the component (b) exceeds 2.0 mols relative to 1 mol of the azido group in the component a), a rubber-like cured product may not be formed and may be in a gel or liquid state.
  • the method for producing the perfluoropolyether compound represented by the general formula (2) of the present invention includes, for example, a dicarbonyl compound represented by the following general formula (2A) and an alkyne derivative having a primary amino group.
  • a dicarbonyl compound represented by the following general formula (2A) By reacting, an intermediate product represented by the following general formula (2B) is prepared, and then the intermediate product is reacted with an alkyne derivative having a leaving group to obtain the peroxy compound represented by the above formula (2).
  • a fluoropolyether compound fluorine-containing alkyne compound
  • R 1 is a divalent linear or branched aliphatic saturated hydrocarbon group or an arylene group
  • Rf 2 is a divalent perfluoropolyether group.
  • X is a halogen atom, preferably fluorine, chlorine, bromine or iodine, more preferably fluorine.
  • R 2 is a divalent linear or branched saturated aliphatic hydrocarbon group or an arylene group, and the description thereof is common with the description of R 2 in the general formula (2).
  • B is a hydrogen atom, a phenyl group, a monovalent linear or branched aliphatic unsaturated hydrocarbon group, or a group represented by the general formula (3), and the general formula ( It is preferably a group represented by 3), and the description thereof is common with the description of B in the general formula (2).
  • D is a leaving group.
  • An alkyne compound which is an intermediate product is produced.
  • the above reaction is preferably carried out in the presence of a basic compound exemplified by triethylamine, diisopropylethylamine, pyridine and the like.
  • the alkyne derivative having a primary amino group can be used as the alkyne derivative having a primary amino group.
  • Aminoalkynes such as propargylamine, 4-amino-1-butyne, 5-amino-1-pentyne and 6-amino-1-hexyne, ethynylanilines such as 3-ethynylaniline, 4-ethynylaniline and 2-ethynylaniline, and These include hydrochlorides.
  • the alkyne derivative having a primary amino group is a hydrochloride
  • an excess amount of triethylamine is necessary to neutralize the hydrochloride.
  • the amount of triethylamine used is preferably 2.2 equivalents or more based on the terminal C( ⁇ O)X group of the dicarbonyl compound represented by the general formula (2A).
  • the alkyne derivative having a primary amino group When the alkyne derivative having a primary amino group is solid, it is dissolved in a small amount of an organic solvent and then added dropwise into the system in which the dicarbonyl compound represented by the general formula (2A) is present. May be.
  • organic solvents include acetone, methyl ethyl ketone, tetrahydrofuran (THF), diethyl ether, dibutyl ether, 1,4-dioxane, ethyl acetate, N,N-dimethylformamide, and the like, preferably THF, diethyl ether, Dibutyl ether 1,4-dioxane may be mentioned.
  • the reaction in the first step described above is preferably performed under a nitrogen atmosphere.
  • the alkyne derivative having a primary amino group is dropped into the system in which the dicarbonyl compound represented by the general formula (2A) is present.
  • the dropping temperature is 40°C or lower, preferably 20°C or lower.
  • heat is generated, so if the temperature rises too much, the dropping is interrupted and cooling is performed.
  • aging is performed at room temperature for about overnight.
  • the intermediate product represented by the general formula (2B) obtained in the first step the alkyne derivative having a leaving group (H—C ⁇ C—R 2 —D) and the leaving group are
  • the alkyne compound represented by the above general formula (2) is produced by reacting the compound (BD) with the compound.
  • the leaving group D contained in the alkyne derivative is preferably a halogeno group, more preferably a bromo group, an iodo group or a chloro group.
  • the alkyne derivative having a leaving group D includes 3-bromo-1-propyne, 3-iodo-1-propyne, 4-bromo-1-butyne, 4-chloro-1-butyne, 4-iodo. -1-butyne, 5-bromo-1-pentyne, 5-chloro-1-pentyne, 5-iodo-1-pentyne, 6-bromo-1-hexyne, 6-chloro-1-hexyne, 6-iodo-1
  • An example is a halogenated alkyne having 3 to 6 carbon atoms such as hexyne.
  • the amount of the alkyne derivative having a leaving group used is 1.2 equivalents or more, preferably 3.0 equivalents or more, relative to the amount of NH contained in the intermediate product represented by the general formula (2B). is there.
  • the predetermined compound having the leaving group D is preferably an alkyne derivative having the leaving group D.
  • the intermediate product represented by the general formula (2B) when the intermediate product represented by the general formula (2B) is reacted with the alkyne derivative having a leaving group and the predetermined compound having a leaving group, potassium carbonate, cesium carbonate, sodium hydroxide, A basic compound such as lithium hydroxide, potassium hydroxide, triethylamine or diisopropylethylamine may be added.
  • the amount of the basic compound used is 1.1 equivalents or more, and preferably 6 equivalents or more, with respect to the amount of NH contained in the alkyne compound which is the intermediate product represented by the general formula (2B). ..
  • a solvent can be used for the above reaction in the second step.
  • the solvent used at this time is not particularly limited, but is preferably a fluorine-based solvent or a polar organic solvent.
  • the fluorine-based solvent include 1,3-bistrifluoromethylbenzene and trifluoromethylbenzene.
  • the polar organic solvent include acetone, methyl ethyl ketone, DMSO, N,N-dimethylformamide and the like.
  • the reaction in the second step is preferably performed under a nitrogen atmosphere.
  • the intermediate product represented by the general formula (2B) obtained in the first step, the alkyne derivative having a leaving group D and the predetermined compound having a leaving group are preferably present in the presence of potassium carbonate.
  • the reaction temperature is preferably 50°C or higher, preferably 70°C or higher.
  • potassium carbonate is removed by filtration, and concentrated under reduced pressure.
  • the unreacted alkyne derivative having a leaving group D, a predetermined compound having a leaving group, and a by-product are removed to obtain the above general formula.
  • the perfluoropolyether compound (alkyne compound) represented by (2) can be obtained. With such a method for producing a fluorinated alkyne compound, a complicated production process is not required, and the perfluoropolyether compound represented by the general formula (2) can be efficiently produced.
  • R 1 and R 2 in the general formula (2) are arylene groups (not divalent linear or branched saturated aliphatic hydrocarbon groups), and B is a hydrogen atom group or a monovalent group.
  • B is a hydrogen atom group or a monovalent group.
  • R 3 is a divalent straight-chain or branched aliphatic saturated hydrocarbon A perfluoropolyether compound which is an arylene group instead of a group
  • R 3 each of which is linked to each other by a chemical bond (single bond or double bond) to form a cyclic structure bonded to the same nitrogen atom, is a compound represented by the above general formula:
  • the perfluoropolypolysiloxane represented by the above formula (2) is produced by the same method as the production method via the intermediate product represented by the above general formula (2B).
  • An ether compound fluorine-containing alkyne compound
  • the method for producing the perfluoropolyether compound represented by the general formula (2) shown above is an example, and the production method is not limited to these production methods.
  • the perfluoropolyether rubber composition of the present invention is a heat-curable perfluoropolyether rubber composition which is cured by heating to give a cured product as long as it contains the components (a) and (b). Become.
  • the perfluoropolyether rubber composition of the present invention preferably further contains a transition metal catalyst as the component (c).
  • a room temperature curable perfluoropolyether rubber composition is obtained which can cure the perfluoropolyether rubber composition at room temperature (23° C. ⁇ 10° C.).
  • component (c) examples include transition metal complexes, particularly complexes containing elements such as copper, ruthenium, and silver, and preferably complexes containing copper element.
  • a copper complex containing a copper element a copper complex containing a halide ion, a copper complex containing acetonitrile and phosphorus- and boron-based anions, a copper complex containing a sulfate ion, a copper complex containing an acetate ion, or the like is used. be able to.
  • the component (c) used may be an anhydride or a hydrate.
  • the above-mentioned component (c) is often a powder, it may be used after dissolving it in a solvent, if necessary.
  • the solvent used may be a solvent that dissolves the component (c) used, such as a polar organic solvent or water.
  • a polar organic solvent dimethyl sulfoxide (DMSO), N,N-dimethylformamide (DMF), acetonitrile, tetrahydrofuran (THF) and ethanol are preferable, and dimethyl sulfoxide (DMSO) and N,N-dimethylformamide (DMF) are more preferable. preferable.
  • the addition amount of the component (c) is preferably 1 to 300 mol %, as a ratio of the substance amount (mol) of the transition metal of the component (c) to the amount (mol/100 g) of the azide group contained in the component (a), It is preferably 5 to 200 mol%, more preferably 30 to 150 mol%.
  • the addition amount of the component (c) increases, the time required for curing becomes shorter, and a cured product becomes easier to obtain.
  • the addition amount is too large, the powder of the component (c) may float on the surface of the cured product, which may cause poor appearance, and if it is too small, crosslinking due to the formation of a triazole structure necessary for curing is difficult to proceed. And may become a gel or liquid.
  • -A substance that reduces the component (c) (particularly a copper complex (copper salt)), ⁇ Nitrogen ligands that activate the crosslinking reaction, -Inorganic fillers are included.
  • the Huisgen cycloaddition reaction is initiated by the reaction of monovalent copper with acetylene.
  • monovalent copper is often unstable, and divalent copper, which is partially oxidized and inactive in the reaction, may be by-produced. That is, by adding a reducing agent to reduce the valence of copper from divalent to monovalent, it can function again as a reaction-active catalyst.
  • a reducing agent to reduce the valence of copper from divalent to monovalent, it can function again as a reaction-active catalyst.
  • As the substance for reducing the component (c), particularly the copper complex sodium ascorbate and ascorbic acid can be preferably used. Since these are powdery or granular, they may be dissolved in an appropriate solvent and then converted.
  • the type of solvent is not particularly limited as long as it dissolves the above compound.
  • the addition amount (in terms of mol) is preferably 0.5 to 5.0 times, more preferably 1.0 to 3.0 times, and further preferably 1 to the amount (mol) of the substance of
  • the Huisgen cycloaddition reaction click reaction
  • the reaction is activated by adding a nitrogen-based compound (ligand) that coordinates to a copper salt, and the reaction can be completed in a shorter time. Therefore, the curing time may be shortened by adding the nitrogen compound (ligand) to the room temperature curable perfluoropolyether rubber composition containing the component (c) of the present invention.
  • the nitrogen-based ligand that activates the crosslinking reaction a compound having at least one skeleton among primary amine, secondary amine, tertiary amine, imidazole, and triazole can be preferably used.
  • Examples thereof include bathophenanthroline disulfonic acid disodium hydrate, N-(2-aminoethyl)thioacetamide trifluoroacetate, and L-histidine.
  • those in powder or granular form may be added after being dissolved in a suitable solvent.
  • the type of solvent is not particularly limited as long as it dissolves the above compound.
  • the addition amount is preferably 0.5 to 5.0 equivalents, more preferably 1.0 to 3.0 equivalents, and still more preferably 1.0 to 2. with respect to the addition amount (mol) of the component (c) used. It is 0 equivalent.
  • the inorganic filler is, for example, iron oxide, zinc oxide, titanium oxide, various metal oxide powders such as alumina, various carbonates such as calcium carbonate, magnesium carbonate, zinc carbonate, carbon black, fumed silica (dry silica), Wet silica (precipitable silica, sol-gel method silica), pulverized silica, fused silica, crystalline silica (quartz powder), various silica-based fillers such as diatomaceous earth, and the like, can be obtained from the composition by addition thereof. The hardness and mechanical strength of the cured product can be adjusted.
  • ion exchange resins such as hydrotalcite, hollow inorganic fillers or rubbery spherical fillers can be added.
  • the perfluoroether-based rubber composition of the present invention is obtained as a one-pack type composition by uniformly mixing the components (a) and (b). Further, the component (a) and the component (b) may be configured as a two-component type, and these may be mixed and used as necessary.
  • the room-temperature-curable perfluoropolyether rubber composition of the present invention is configured as a two-component type in which the component (a) and the component (b) are separated, and the component (c) is contained on the component (a) side. It may be contained in the component (b) side, or may be contained in both the component (a) and the component (b).
  • the above component (b) has a predetermined number of moles of ethynyl groups in the component (b) with respect to a total of 1 mole of azide groups contained in the component (a).
  • a composition containing an amount for example, an amount of 0.5 to 2.0 mol is heated (at 100° C. to 150° C., preferably for about 1.5 to 9 hours) to be cured, whereby A cured product of perfluoropolyether rubber can be obtained.
  • the composition becomes room temperature curable, and at room temperature (5 to 40° C.), preferably about 1 day to 1 week.
  • the cured perfluoropolyether rubber of the present invention can be obtained by curing with.
  • the room-temperature-curable perfluoropolyether rubber composition of the present invention can be used for various perfluoropolyether rubber applications, but it can be used for large parts that do not enter a heating furnace, or for surrounding parts. It is particularly useful for application to non-heatable parts that cannot be heated in relation to the member.
  • the perfluoropolyether rubber cured product of the present invention is excellent in heat resistance, low temperature resistance, solvent resistance, oil resistance, chemical resistance, and particularly excellent in acid resistance, so heat resistance and the like are required, It is particularly useful for articles that require acid resistance.
  • automotive rubber parts that require oil resistance specifically, automotive diaphragms, valves, sealing materials, etc.
  • rubber parts for chemical plants specifically pump diaphragms, valves, hoses.
  • Packings, oil seals, gaskets, sealing materials such as tank piping repair sealing materials, etc.
  • rubber parts for inkjet printers rubber parts for semiconductor manufacturing lines, specifically diaphragms and valves for equipment in contact with chemicals , Seals such as packings, gaskets, etc., valves requiring low friction and wear resistance
  • rubber parts for analysis and physics and chemistry equipment specifically diaphragms for pumps, valves, seal parts (packings etc.)
  • medical Rubber parts for equipment specifically pumps, valves, joints, etc.
  • rubber parts for living environment specifically aviation equipment
  • tent film materials sealants
  • sealants molded parts; extruded parts
  • coating materials copier roll materials
  • 1,128 g of the fluoropolymer of the formula (32) obtained above and 1,692 g of DMSO were charged into a 10 L flask, and the inside of the flask was replaced with nitrogen. After 10 minutes, the same flask was sealed with nitrogen, 1,692 g of HFMX and 60 g of sodium azide were charged, the system temperature was raised to 110° C., and stirring was started. After stirring for 66.5 hours, water was added to quench the reaction, HFMX was added, and the HFMX layer was recovered by liquid separation operation. Acetone was added to the collected HFMX layer to collect the precipitated product, which was filtered and then concentrated under reduced pressure (267 Pa, 100° C.) for about 1 hour.
  • 1,050 g of the obtained polymer represented by the formula (34) was subjected to azidation in a mixed solution of 2,100 g of DMSO and 1,050 g of HFMX in the same manner as in Synthesis Example A1 to obtain the following formula (35).
  • An azido group-containing fluoropolymer represented by the following formula (colorless and transparent, number average molecular weight: 15,860, azide group content: 0.116 ⁇ 10 ⁇ 3 mol/g) was obtained. (M+n ⁇ 94)
  • the obtained fluoropolymer represented by the above formula (37) was subjected to 1 H-NMR measurement in the same manner as in Synthesis Example A1. As a result, the —OSO 2 C 4 F 9 valence of the polymer of the above formula (37) was measured. The calculated value was 1.10 ⁇ 10 ⁇ 3 mol/g.
  • Acetone was added to the collected PF-5060 layer to wash the PF-5060 layer, and then the PF-5060 layer (filtrate (1)) and the acetone layer (filtrate (2)) were collected.
  • the filtrate (1) was dehydrated with anhydrous magnesium sulfate, filtered, and then concentrated under reduced pressure (267 Pa, 100° C.) for 1 hour to obtain a colorless transparent oil (product (1)).
  • the filtrate (2) was concentrated under reduced pressure (2,670 Pa, 50° C.) for 1.5 hours, then 1,000 g of PF-5060 and 100 g of acetone were added to the obtained residue, and PF- was separated by a liquid separation operation. 5060 layers were collected.
  • the collected PF-5060 layer was dehydrated with anhydrous magnesium sulfate, filtered, and then concentrated under reduced pressure (267 Pa, 100° C.) for 1 hour to obtain a colorless transparent oil (product (2)).
  • the azido group-containing fluoropolymer represented by the following formula (38) is colorless and transparent (number average molecular weight: 1,722, azide group-containing). Amount: 1.08 ⁇ 10 ⁇ 3 mol/g) was obtained as a colorless and transparent product, and 988 g was obtained. (M+n ⁇ 18)
  • Second step In a 300 mL flask, 100 g of an alkyne represented by the above general formula (40) obtained in the first step (H value: 0.277 ⁇ 10 ⁇ 3 mol/g) and 9.9 mL of 3-bromo-1-propyne (9 A mixture of 0.2 mol/L toluene solution (0.091 mol) and 23 g (0.17 mol) of potassium carbonate was added, and the inside of the flask was sealed with nitrogen. To this, 200 g of acetone was added, and the mixture was stirred under reflux conditions (temperature 77° C.) overnight.
  • Example 2 The following formula (35) obtained in Synthesis Example A2 (M+n ⁇ 94) 75.4 g of the compound represented by (Azido group content: 0.116 ⁇ 10 ⁇ 3 mol/g) and 17.8 g of the compound represented by the above formula (41) obtained in Synthesis Example B1 The mixture was put in a container made of a resin and mixed until uniform, and then degassed under reduced pressure. The obtained composition was poured into a 2 mm-thick stainless steel mold and press-cured at 150° C. for 8.5 hours to obtain a 2 mm-thick light orange transparent rubber-like cured product.
  • Example 3 42.9 g of the compound represented by the above formula (33) obtained in Synthesis Example A1 and the following formula (42) obtained in Synthesis Example B2 (M+n ⁇ 94) 47.6 g of the compound represented by (Ethinyl group content: 0.247 ⁇ 10 ⁇ 3 mol/g) was placed in a plastic container and mixed until uniform, followed by degassing under reduced pressure. The obtained composition was poured into a 2 mm-thick stainless steel mold and press-cured at 150° C. for 6 hours to obtain a 2 mm-thick light orange transparent rubber-like cured product.
  • Example 5 34.0 g of the compound represented by the above formula (33) obtained in Synthesis Example A1 and 19.0 g of the compound represented by the above formula (41) obtained in Synthesis Example B1 were placed in a plastic container. After mixing until uniform, 3.59 g of a 25 mass% copper iodide-DMSO solution (amount (mol) of copper substance relative to amount (mol/100 g) of azide group contained in the compound represented by the formula (33)) Ratio (50 mol%) was added and further mixed. After centrifugal defoaming, the obtained composition was poured into a stainless steel mold having a thickness of 2 mm and solidified at 23° C. and a humidity of 60% for one week to obtain a brown rubber-like cured product.
  • Heat resistance evaluation Using the cured product samples obtained in Examples 1 to 4 and Comparative Examples 1 and 2, a heat aging test (air heating aging test: durometer hardness (A type), tensile strength at 150° C. according to JIS K6257. , Elongation at cutting). The results are shown in FIGS.
  • the amount of change in hardness is the amount of change in hardness based on the hardness before heating.
  • the cured product samples of Comparative Examples 1 and 2 exhibited relatively stable heat aging characteristics when heated at 150°C.
  • the cured product obtained in Comparative Example 1 became oily as the polymer decomposed one week after immersion in sulfuric acid. Therefore, it is not shown. Further, even when immersed in nitric acid, the cured product obtained in Comparative Example 1 showed a tendency of softening deterioration due to decomposition of the polymer. In the cured product obtained in Comparative Example 2, an increase in the amount of change in hardness was observed especially when immersed in nitric acid. On the other hand, the hardened materials obtained in Examples 1 to 4 did not undergo a large change in hardness up to 1,000 hours after immersion, regardless of whether they were immersed in sulfuric acid or nitric acid. From these results, it was found that the cured products obtained in Examples 1 to 4 had excellent acid resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Polyethers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

耐熱性、耐低温性、耐有機溶剤性、耐酸性に優れた硬化物を与える、(a)1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量1,000~100,000である直鎖状パーフルオロポリエーテル化合物と、(b)1分子中に少なくとも3個のエチニル基を有する直鎖状パーフルオロポリエーテル化合物とを含有してなることを特徴とするパーフルオロポリエーテル系ゴム組成物である。

Description

パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品
 本発明は、1分子中に少なくとも2個のアジド基を有する直鎖状パーフルオロポリエーテル化合物と、1分子中にエチニル基(-C≡C-H)を少なくとも3個有する直鎖状パーフルオロポリエーテル化合物を含有するパーフルオロポリエーテル系ゴム組成物及びその硬化物に関するものである。詳細には、前記化合物を含有する硬化性組成物を加熱することで架橋反応(クリック反応によるトリアゾール構造の形成)が進行し硬化する、又は、更に(c)遷移金属触媒を含有して室温下(23℃±10℃)で上記クリック反応によりトリアゾール構造の形成が進行し硬化することを特徴とし、耐熱性、耐有機溶剤性、耐薬品性、特に耐酸性に優れた硬化物を与えるパーフルオロポリエーテル系ゴム組成物とその硬化物及びこれを含む物品に関する。
 加熱硬化性パーフルオロポリエーテル系ゴム組成物は、耐熱性、低温性、耐薬品性、耐溶剤性、耐油性等のバランスが良く、自動車産業を中心に幅広い分野で応用されている(特許文献1:特開2001-192546号公報、特許文献2:特開2000-248166号公報、及び特許文献3:特開2002-20615号公報)。主に、金属、例えば白金などの触媒によるヒドロシリル化を架橋反応として硬化する加熱硬化性パーフルオロポリエーテル系ゴム組成物が知られている。
 上記の加熱硬化性パーフルオロポリエーテル系ゴム組成物の一例としては、ベースポリマーとして、末端に[芳香環-ケイ素原子-ビニル基]という骨格を持ったパーフルオロポリエーテル系化合物を使用するものが知られている。このような組成物においては、[芳香環-ケイ素原子]の骨格が不安定であり、耐薬品性、主に耐酸性が不十分であるケースがあった。この課題は、末端に[芳香族系置換基を側鎖に持つアミド基-アルキレン基-ケイ素原子-ビニル基]を持つパーフルオロポリエーテル系化合物をベースポリマーとして使用することで改善されることが知られている(特許文献4:特許第6160540号公報)。しかし、ゴム組成物及びその硬化物においては、耐硫酸性は確かに改善されているものの、耐硝酸性においては硬化劣化の傾向がみられることがあった。このような劣化は、接着剤等の用途展開を視野に入れた場合、界面剥離が起こりやすくなることに繋がるという理由で不向きである。
 更に、上記ヒドロシリル化を架橋反応とし硬化する加熱硬化性パーフルオロポリエーテル系ゴム組成物は、リン、硫黄、窒素等の原子を含んだ物質が存在する場合において硬化不良を起こすことがある。また、硬化物を得るために加熱が必要となるため加熱炉に入らないような大型部品や加熱不可部品への応用等には不向きである。これらの欠点を克服しうるパーフルオロポリエーテル系ゴム組成物として、縮合硬化タイプの室温硬化性パーフルオロポリエーテル系ゴム組成物がある。これは、硬化物を得るために加熱が不要である上、得られる硬化物が耐熱性、低温性、耐薬品性、耐溶剤性、耐油性等に優れる(特許文献5:特開平9-077944号公報、特許文献6:特開平9-137027号公報)。しかし、従来公知の脱アルコール型縮合硬化タイプの室温硬化性パーフルオロポリエーテル系ゴム組成物は、シロキサン結合の耐酸性の低さ故に、長時間酸に晒されるような条件では容易に劣化してしまう。
 以上の背景より、加熱硬化及び室温硬化の両方において、耐薬品性、特に耐酸性に優れた硬化性パーフルオロポリエーテル系ゴム組成物の開発が強く望まれている。
特開2001-192546号公報 特開2000-248166号公報 特開2002-20615号公報 特許第6160540号公報 特開平9-077944号公報 特開平9-137027号公報
 本発明は、上記事情に鑑みなされたもので、耐熱性、耐低温性(耐寒性)、耐有機溶剤性、耐薬品性(特に耐酸性)に優れた硬化物を与えるパーフルオロポリエーテル系ゴム組成物とその硬化物及びこれを含む物品を提供することを目的とする。
 ところで、アジドとアルキンの間で進行しトリアゾール構造を与える1,3-双極子環化付加反応が加熱条件下で進行すること、また銅などの遷移金属触媒を添加することにより、同反応が室温下でも進行することが知られている。この反応はHuisgen環化付加反応、又はクリック反応として有名である。本発明者らは上記目的を達成するため、この反応を利用することに着目し、鋭意研究を行い、(a)1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量1,000~100,000である直鎖状パーフルオロポリエーテル化合物と、(b)1分子中にエチニル基(-C≡C-H)を少なくとも3個有する直鎖状パーフルオロポリエーテル化合物を含有してなることを特徴とする加熱硬化性パーフルオロポリエーテル系ゴム組成物が、耐熱性、耐寒性、耐溶剤性に優れる上、耐薬品性、特に耐酸性に優れた硬化物を与え、加熱条件下での硬化特性にも優れることを見出した。また、上記(a)、(b)に更に(c)遷移金属触媒を加えた室温硬化性パーフルオロポリエーテル系ゴム組成物が室温下での硬化特性に優れることを見出し、本発明を完成した。
 即ち、本発明は、下記パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む物品を提供する。
1.
 (a)1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量1,000~100,000である直鎖状パーフルオロポリエーテル化合物と、
(b)1分子中に少なくとも3個のエチニル基を有する直鎖状パーフルオロポリエーテル化合物とを含有してなることを特徴とするパーフルオロポリエーテル系ゴム組成物。
2.
 (a)成分が、下記一般式(1)で表される化合物である1に記載のパーフルオロポリエーテル系ゴム組成物。
Figure JPOXMLDOC01-appb-C000006
(式中、Aは炭素数1~6の2価の直鎖状脂肪族飽和炭化水素基であり、Rf1は2価のパーフルオロポリエーテル基である。)
3.
 (b)成分が、下記一般式(2)で表される化合物である1又は2に記載のパーフルオロポリエーテル系ゴム組成物。
Figure JPOXMLDOC01-appb-C000007
(一般式(2)中、R1及びR2は、互いに独立して、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基又はアリーレン基であり、Bは水素原子、フェニル基、1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基、下記一般式(3)
Figure JPOXMLDOC01-appb-C000008
(上記一般式(3)中、R3は、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基又はアリーレン基である。)で表される基のいずれかであり、Rf2は2価のパーフルオロポリエーテル基である。但し、一般式(2)中、左側のR1とR2、右側のR1とB(Bが式(3)で表される基である場合はR3)は、それぞれ、互いに単結合又は二重結合で連結して同じ窒素原子に結合した環状構造を形成していてもよい。破線は結合手である。)
4.
 一般式(2)において、R1及びR2が、炭素数1~10の2価の直鎖状脂肪族飽和炭化水素基、炭素数2~10の2価の分岐状脂肪族飽和炭化水素基、下記一般式(4)~(9)のいずれかで表されるアリーレン基のいずれか一つである3に記載のパーフルオロポリエーテル系ゴム組成物。
Figure JPOXMLDOC01-appb-C000009
(式(4)~(9)中、破線は結合手である。)
5.
 一般式(3)において、R3が、炭素数1~10の2価の直鎖状脂肪族飽和炭化水素基若しくは炭素数2~10の2価の分岐状脂肪族飽和炭化水素基、下記一般式(4)~(9)のいずれかで表されるアリーレン基のいずれか一つである3又は4に記載のパーフルオロポリエーテル系ゴム組成物。
Figure JPOXMLDOC01-appb-C000010
(式(4)~(9)中、破線は結合手である。)
6.
 加熱硬化性である1~5のいずれかに記載のパーフルオロポリエーテル系ゴム組成物。
7.
 更に、(c)遷移金属触媒を含有する1~5のいずれかに記載のパーフルオロポリエーテル系ゴム組成物。
8.
 室温硬化性である7に記載のパーフルオロポリエーテル系ゴム組成物。
9.
 上記1~8のいずれかに記載のパーフルオロポリエーテル系ゴム組成物を硬化してなるパーフルオロポリエーテル系ゴム硬化物。
10.
 9に記載の硬化物を含むことを特徴とする物品。
11.
 自動車用、化学プラント用、インクジェットプリンター用、半導体製造ライン用、分析・理化学機器用、医療機器用、住環境用又は航空機器用ゴム部品である10に記載の物品。
 本発明によれば、耐熱性、耐低温性(耐寒性)、耐有機溶剤性、耐薬品性等に優れ、更に耐酸性に優れた硬化物を与えるパーフルオロポリエーテル系ゴム組成物を得ることができる。上記組成物の硬化物を用いたゴム製品は、自動車用、化学プラント用、インクジェットプリンター用、半導体製造ライン用、分析・理化学機器用、医療機器用、住環境用又は航空機用ゴム部品等として好適に用いることができる。
実施例1~4、比較例1、2で作製した硬化物の耐熱老化試験における硬さ変化量の推移を示す図である。 実施例1~4、比較例1、2で作製した硬化物の耐熱老化試験における引張強さの推移を示す図である。 実施例1~4、比較例1、2で作製した硬化物の耐熱老化試験における切断時伸びの推移を示す図である。 実施例1~4、比較例2で作製した硬化物の耐硫酸性試験における硬さ変化量の推移を示す図である。 実施例1~4、比較例1、2で作製した硬化物の耐硝酸性試験における硬さ変化量の推移を示す図である。
 本発明に係るパーフルオロポリエーテル系ゴム組成物は、
(a)1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量1,000~100,000である直鎖状パーフルオロポリエーテル化合物と、
(b)1分子中に少なくとも3個のエチニル基(-C≡C-H)を有する直鎖状パーフルオロポリエーテル化合物とを含有するものである。
 以下、本発明を詳細に説明する。
[(a)成分]
 本発明の(a)成分は、1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロポリエーテル構造(1種又は2種以上のパーフルオロアルキルエーテル単位の繰り返しを含む構造)を有する数平均分子量1,000~100,000である直鎖状フルオロポリエーテル化合物(ベースポリマー)である。
 上記(a)成分は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000011
(式中、Aは炭素数1~6の2価の直鎖状脂肪族飽和炭化水素基であり、Rf1は2価のパーフルオロポリエーテル基である。)
で表され、ポリマー両末端構造として、2価のパーフルオロポリエーテル基の両末端にそれぞれ直鎖状のアルキレン基(A)を介してアジド基(N3)を有する直鎖状の化合物(フッ素ポリマー)であることが好ましい。
 上記一般式(1)中、Aは、好ましくはメチレン基、エチレン基、プロピレン基、ブチレン基、ペンタメチレン基、ヘキサメチレン基などの直鎖状のアルキレン基であり、より好ましくはメチレン基、エチレン基であり、更に好ましくはメチレン基である。上記アルキレン基よりも長鎖の直鎖状アルキレン基とした場合、硬化物の耐有機溶剤性が低下する場合がある。従って、ポリマーの分子鎖両末端に存在するアジドアルキル基(-A-N3)としてはアジドメチル基、アジドエチル基等が好ましい。
 上記Rf1である2価のパーフルオロポリエーテル基は、-Ca2aO-(式中、aは1~6の整数である。)で示される1種又は2種以上のパーフルオロアルキルエーテルの繰り返し単位を含むものが好ましく、例えば下記式で表されるもの等が挙げられる。
-(Ca2aO)x
(上記式中、aは1~6の整数であり、xは5~600、好ましくは10~400、より好ましくは30~200の整数である。)
 上記式(-Ca2aO-)で表される繰り返し単位としては、例えば下記式で表される単位が挙げられる。
-CF2O-
-CF2CF2O-
-CF2CF2CF2O-
-CF(CF3)CF2O-
-CF2CF2CF2CF2O-
-CF2CF2CF2CF2CF2CF2O-
 これらの中で、特に下記式で表される単位が好適である。
-CF2O-
-CF2CF2O-
-CF2CF2CF2O-
-CF(CF3)CF2O-
 なお、上記2価のパーフルオロポリエーテル基中の繰り返し単位は、これらのうち1種単独で構成されていてもよいし、2種以上の組み合わせで構成されていてもよい。
 また、上記2価のパーフルオロポリエーテル基は、下記式(10)~(13)のいずれかの構造を含んでいることが好ましい。
Figure JPOXMLDOC01-appb-C000012
(式(10)~(13)中、Yはフッ素原子又はトリフルオロメチル基であり、o、p及びqは、それぞれo≧0、p≧0、0≦o+p≦202、特に2≦o+p≦150、及び0≦q≦6を満たす整数であり、r、s、t、u及びvは、それぞれ0≦r≦3、2≦t≦6、0≦s≦100、0≦v≦100、2≦s+v≦100、0≦u≦6、s+u+v≦100を満たす整数であり、w及びxは、それぞれ1≦w≦100及び1≦x≦100を満たす整数であり、zは1≦z≦200の整数である。)
 上記一般式(1)において、Rf1(2価のパーフルオロポリエーテル基)の具体例としては、下記式(14)~(21)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000013
(上記式(14)中、h、j及びkは、それぞれh≧0、j≧0、0≦h+j≦200、特に2≦h+j≦150、及び0≦k≦6を満たす整数である。上記式(15)、(16)、(17)、(19)、(20)において、n=1~100、m=1~100、n+m=2~198である。上記式(18)において、n=2~200である。上記式(21)において、z=1~200である。)
 上記式(1)で表される直鎖状の含フッ素ポリマーとしては、特に下記式(22)~(25)で表されるものが好適である。
Figure JPOXMLDOC01-appb-C000014
(m=1~100、n=1~100、m+n=2~200である。)
 上記式(1)の直鎖状のパーフルオロポリエーテル化合物(含フッ素ポリマー)は、フッ素系溶剤を展開溶媒としたゲルパーミエーションクロマトグラフィー(GPC)によるポリスチレン換算の数平均分子量が1,000~100,000であることが好ましく、特に1,500~50,000であることが好ましい。分子量が1,000未満である場合は、ガソリンや各種溶剤に対する膨潤が大きくなることがある。また、分子量が100,000を超える場合は、粘度が高く、作業性に劣ることがある。なお、上記の数平均分子量(又は数平均重合度)は、19F-NMRスペクトルから得られる末端構造と繰り返し単位構造の比率から算出することもできる。
 本発明の一般式(1)で表されるアジド基含有のパーフルオロポリエーテル化合物(含フッ素ポリマー)の製造方法としては、例えば、以下の方法等が挙げられるが、この方法のみに限定されない。
 下記一般式(1A)
Figure JPOXMLDOC01-appb-C000015
(式中、Rf1及びAは上記と同じである。)
で表される分子鎖両末端がヒドロキシアルキル基で封鎖されたフルオロポリマーのヒドロキシ基を、ハロゲン化スルホニル化合物と反応させて、分子鎖両末端がスルホニルエステル基で封鎖されたフルオロポリマーを調製し、次いで、該分子鎖両末端がスルホニルエステル基で封鎖されたフルオロポリマーのスルホニルエステル基を、非フッ素系有機溶剤と少なくとも部分的にフッ素化された有機溶剤との混合液中、アジ化ナトリウムと反応させることにより、上記式(1)で表されるアジド基含有含フッ素ポリマーを得ることができる。
 上記一般式(1)のRf1が式(15)で表される2価のパーフルオロポリエーテル基、Aがメチレン基である場合を例にすれば、下記に示す工程により製造することができる。
第1工程:
 第1工程では、分子鎖両末端がヒドロキシメチル基等のヒドロキシアルキル基で封鎖されたフルオロポリマー、例えば、下記式で表されるフルオロポリマーに、ハロゲン化スルホニル化合物、例えばパーフルオロ-1-ブタンスルホニルフルオライドを、トリエチルアミン等の塩基の存在下にて反応させて、ヒドロキシ基をスルホニルエステル基とすることにより、分子鎖両末端にメチレン基等のアルキレン基を介してスルホニルエステル基を有するフルオロポリマー、例えば、下記式で表されるヘキサフルオロプロピレンオキサイド(HFPO)構造を主鎖とするポリマーを得る。
Figure JPOXMLDOC01-appb-C000016
(式中、n、m、n+mは上記と同じである。)
 分子鎖両末端がヒドロキシメチル基などのヒドロキシアルキル基で封鎖されたフルオロポリマーとして、一般式(15)で表されるHFPO(ヘキサフルオロプロピレンオキサイド)構造を主鎖とするフルオロポリマーの代わりに、上記一般式(14)、(16)~(21)で表される骨格を主鎖とする分子鎖両末端がヒドロキシアルキル基で封鎖されたフルオロポリマーを用いると、それぞれ対応する主鎖構造を持つスルホニルエステル化体が得られる。
 上記反応において、ハロゲン化スルホニル化合物の使用量は、分子鎖両末端がヒドロキシアルキル基で封鎖されたフルオロポリマーのヒドロキシ基に対して、好ましくは1.0当量以上、より好ましくは1.0当量以上5.0当量以下である。なお、好適なハロゲン化スルホニル化合物としては、パーフルオロ-1-ブタンスルホニルフルオライドの他に、p-トルエンスルホニルクロライド、メシルクロライド、p-ニトロベンゼンスルホニルクロライドなどが挙げられる。
 トリエチルアミン等の塩基は、フルオロポリマーの末端のヒドロキシ基と、ハロゲン化スルホニル化合物が反応する際に発生するハロゲン化水素を中和するために加える。よって、トリエチルアミン等の塩基の添加量は、分子鎖両末端がヒドロキシアルキル基で封鎖されたフルオロポリマーのヒドロキシ基に対して、1.1当量以上1.5当量以下であることが望ましい。好適な塩基としては、トリエチルアミンの他に、ジイソプロピルエチルアミン、ピリジンなどが使用可能である。
 上記反応は、窒素シール下で行うことが好ましい。反応温度は20~50℃、特に20~40℃程度でよい。反応開始直後は発熱を伴うので、温度が上がりすぎる場合には10分程度冷却を行う。反応開始から1時間~3日、特に3時間~24時間程度撹拌を行い、反応終了とする。反応終了後は水にて反応で生成したトリエチルアミン-フッ化水素酸塩を溶解し、フッ素化された有機溶剤層を回収し、減圧濃縮することにより、分子鎖両末端にメチレン基を介してスルホニルエステル基を有するフルオロポリマーが得られる。
第2工程:
 第2工程では、第1工程で得られた分子鎖両末端にアルキレン基(メチレン基等)を介してスルホニルエステル基を有するフルオロポリマー、例えば下記式で表されるヘキサフルオロプロピレンオキサイド(HFPO)構造を主鎖とするポリマーのスルホニルエステル基を、少なくとも部分的にフッ素化された有機溶剤と、非フッ素系有機溶剤との混合液中、アジ化ナトリウムと反応させることで、目的物である上記一般式(1)で表される分子鎖両末端にアルキレン基(メチレン基等)を介してアジド基を有するアジド基含有フルオロポリマー、例えば、下記式で表されるヘキサフルオロプロピレンオキサイド(HFPO)構造を主鎖とするアジド基含有ポリマーが得られる。
Figure JPOXMLDOC01-appb-C000017
(式中、n、m、n+mは上記と同じである。)
 上記反応において、アジ化ナトリウムの使用量は、スルホニルエステル基を有するフルオロポリマーのスルホニルエステル基に対して、1.0当量以上、特に1.1当量以上3.0当量以下であることが望ましい。アジ化ナトリウムの当量が少なすぎると反応が十分に進行しない場合がある。アジ化ナトリウムの当量が多すぎると、反応終了後に大量のアジ化ナトリウムが系内に残存するため、分液操作中の爆発などが懸念される。
 非フッ素系有機溶剤としては、ジメチルスルホキシド(DMSO)やN,N-ジメチルホルムアミド(DMF)、アセトニトリルなどが好ましい。非フッ素系有機溶剤の使用量は、分子鎖両末端にメチレン基等のアルキレン基を介してスルホニルエステル基を有するフルオロポリマーの質量の0.5倍以上であることが好ましく、より好ましくは1.5倍以上2.5倍以下である。非フッ素系有機溶剤の使用量が少なすぎると反応速度の低下や、副反応の進行などを引き起こす場合がある。
 少なくとも部分的にフッ素化された有機溶剤としては、ヘキサフルオロメタキシレン(HFMX)やH Galden ZV130(ソルベイ社製)、AC-6000(旭硝子社製)など、スルホニルエステル基を有するフルオロポリマーを溶解するものであることが望ましい。少なくとも部分的にフッ素化された有機溶剤の使用量は、分子鎖両末端にメチレン基等のアルキレン基を介してスルホニルエステル基を有するフルオロポリマーの質量の0.5倍以上であることが好ましく、より好ましくは1.5倍以上2.5倍以下である。少なくとも部分的にフッ素化された有機溶剤の使用量が少なすぎても、やはり反応速度の低下や、副反応の進行などを引き起こす場合がある。
 なお、少なくとも部分的にフッ素化された有機溶剤と非フッ素系有機溶剤との使用割合(質量比)は、0.5:1~3:1、特に1:1~2:1、とりわけ1:1であることが好ましい。少なくとも部分的にフッ素化された有機溶剤の割合が少なすぎると、アジド化の反応速度の低下や、副反応が進行する場合がある。同様に、少なくとも部分的にフッ素化された有機溶剤の割合が多すぎる場合においても、アジド化の反応速度の低下や、副反応が進行する場合がある。
 上記反応は、分子鎖両末端にメチレン基等のアルキレン基を介してスルホニルエステル基を有するフルオロポリマーに、少なくとも部分的にフッ素化された有機溶剤と、非フッ素系有機溶剤と、アジ化ナトリウムとを加え、60~120℃、特に80~115℃の温度で12時間~3日、特に1~2.8日程度加熱することで行う。反応終了後、水とヘキサフルオロメタキシレン(HFMX)等の少なくとも部分的にフッ素化された有機溶剤を加え、分液操作により水層を除去し、アセトン等の有機溶剤を加えることで沈降した生成物を回収し、減圧濃縮後、活性炭により生成物を処理することで、目的物である上記一般式(1)で表される分子鎖両末端にメチレン基等のアルキレン基を介してアジド基を有するパーフルオロポリエーテル化合物(フルオロポリマー)が得られる。
[(b)成分]
 本発明の(b)成分は、1分子中に末端アルキンであるエチニル基(-C≡C-H)を少なくとも3個有する直鎖状パーフルオロポリエーテル化合物(架橋剤)である。
 具体的には、上記(b)成分は、下記一般式(2)で表されるパーフルオロポリエーテル化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
 この化合物は、Rf2で表される2価のパーフルオロポリエーテル基と、該2価のパーフルオロポリエーテル基Rf2の両末端に、それぞれアミド結合(-CON=)を介して結合した末端アルキンであるエチニル基(-C≡C-H)を分子中に少なくとも3つ有することが特徴である。
 上記一般式(2)中、R1、R2は、互いに独立して、2価の直鎖状又は分岐状の脂肪族飽和炭化水素基、アリーレン基のいずれかである。これらのうち、2価の直鎖状炭化水素基として、好ましくはメチレン基、エチレン基、プロピレン基、ブチレン基、オクチレン基、デシレン基等の、炭素数1~10の直鎖状脂肪族飽和炭化水素基である。2価の分岐状炭化水素基としては、好ましくは1-メチルメチレン基、1-メチルエチレン基、1,2-ジメチルエチレン基、1-エチルプロピレン基、1,2-ジエチルプロピレン基、1,2,3-トリエチルブチレン基等の、炭素数2~10の分岐状脂肪族飽和炭化水素基である。アリーレン基としては、好ましくは一般式(4)~(6)で表される構造のフェニレン基や、好ましくは一般式(7)~(9)で表される構造のフェニレン基以外のアリーレン基(即ち、芳香環上の水素原子1個がエチニル基で置換されたフェニレン基)などが挙げられる。
 これらのうち、更に好ましくは、炭素数1~4の2価の直鎖状炭化水素基、一般式(4)~(6)で表されるフェニレン基、又は一般式(7)~(9)で表されるフェニレン基以外のアリーレン基である。
Figure JPOXMLDOC01-appb-C000019
(式中、破線は結合手である。)
 上記一般式(2)中、R1の構造は、上記構造のうちの1種単独でも良いし、2種以上の組み合わせでもよい。また、R2は上記構造のうちのいずれかであるが、R1と同じでもよいし、異なっていてもよい。
 一般式(2)におけるBは、水素原子、フェニル基、1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基、下記一般式(3)
Figure JPOXMLDOC01-appb-C000020
(式(3)中、R3は上記一般式(2)におけるR1及びR2で示される基と同様であり、破線は結合手である。)
で表される基のいずれかである。
 1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基としては、好ましくは、上記式(3)で表される基を除く、脂肪族不飽和結合を有する、炭素数2~8、さらに好ましくは炭素数2~6の1価炭化水素基であり、エチニル基;ビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、イソブテニル基、ヘキセニル基等のアルケニル基が挙げられ、特にエチニル基であることが好ましい。
 R3として好ましくは、炭素数1~10の2価の直鎖状脂肪族飽和炭化水素基又は炭素数2~10の2価の分岐状脂肪族飽和炭化水素基、上記一般式(4)~(9)で表されるアリーレン基(即ち、一般式(4)~(6)で表されるフェニレン基又は一般式(7)~(9)で表されるフェニレン基以外のアリーレン基)のいずれかであり、好ましくは、炭素数1~10の2価の直鎖状炭化水素基又は上記一般式(4)~(9)で表されるアリーレン基、更に好ましくは、メチレン(炭素数1)からブチレン(炭素数4)までの2価の直鎖状炭化水素基又は上記一般式(4)~(9)で表されるアリーレン基である。R3が炭素数10を超える直鎖状脂肪族飽和炭化水素基である場合、含フッ素アルキン化合物が極性溶剤に対し膨潤しやすくなり、主鎖構造に由来する耐有機溶剤性が発揮されない場合がある。なお、R3は上記構造のうちのいずれかであり、R1及び/又はR2と同じでもよいし、異なっていてもよいが、R1及び/又はR2と同じであることが好ましい。
 また、上記一般式(2)中の左側のR1とR2、右側のR1とB(Bが式(3)で表される基である場合はR3)は、それぞれ、互いに化学結合(単結合又は二重結合)で連結して同じ窒素原子に結合した環状構造を形成していてもよい。その場合において、Rf2の末端に結合する構造としては、例えば以下の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000021
(式中、破線は結合手である。)
 上記式(2)中、Rf2(2価のパーフルオロポリエーテル基)は、式(1)におけるRf1と同じでよい。
 なお、Rf2の具体例としては、上記式(14)~(21)で表されるものに加えて、下記式(26)~(28)で表されるものが例示される。
Figure JPOXMLDOC01-appb-C000022
(上記式(26)、(27)中、n´及びm´は互いに独立した整数で、n´≧1、m´≧1、かつ2≦n´+m´≦150である。n´は好ましくは1≦n´≦50、より好ましくは15≦n´≦40である。m´は好ましくは1≦m´≦50、より好ましくは15≦m´≦40である。n´+m´は好ましくは5≦n´+m´≦100、より好ましくは35≦n´+m´≦80である。
 上記式(28)中、z´は1~150の整数、好ましくは1~100の整数、より好ましくは6~80の整数である。)
 上記式(2)で表される直鎖状の含フッ素アルキン化合物としては、特に下記式(29)、(30)で表されるものが好適である。
Figure JPOXMLDOC01-appb-C000023
(m=1~100の整数、n=1~100の整数、m+n=2~200である。)
 本発明のパーフルオロポリエーテル系ゴム組成物では、(b)成分の添加量は、(a)成分中に含まれるアジド基の合計1モルに対する(b)成分中のエチニル基(-C≡C-H)の合計モル数が好ましくは0.5~2.0モルとなる量(即ち、(a)成分中のアジド基に対する(b)成分中のエチニル基のモル比が0.5~2.0となる量)、より好ましくは0.6~1.5モルとなる量、更に好ましくは0.8~1.2モルとなる量とする。(a)成分中のアジド基1モルに対して(b)成分中のエチニル基が0.5モルより少ないとゴム状の硬化物が形成されず、ゲル状又は液状となる場合があり、(a)成分中のアジド基1モルに対して(b)成分中のエチニル基が2.0モルを超える場合も、ゴム状の硬化物が形成されずゲル状又は液状となるおそれがある。
 本発明の一般式(2)で表されるパーフルオロポリエーテル化合物の製造方法としては、例えば、下記一般式(2A)で表されるジカルボニル化合物と第一級アミノ基を有するアルキン誘導体とを反応させて、下記一般式(2B)で表される中間生成物を調製し、次いで該中間生成物を脱離基を有するアルキン誘導体と反応させることにより、上記式(2)で表されるパーフルオロポリエーテル化合物(含フッ素アルキン化合物)を得ることができる。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
 一般式(2A)、(2B)における、R1、Rf2についての説明は、一般式(2)のR1、Rf2についての説明と共通する。すなわち一般式(2A)、(2B)中、R1は、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基、又はアリーレン基であり、Rf2は2価のパーフルオロポリエーテル基である。また一般式(2A)中、Xはハロゲン原子であり、フッ素、塩素、臭素、ヨウ素が好ましく、フッ素がより好ましい。
 以下に本発明で用いるパーフルオロポリエーテル化合物(含フッ素アルキン化合物)の好ましい製造方法の製造工程を示す。
(第1工程)
Figure JPOXMLDOC01-appb-C000026
(第2工程)
Figure JPOXMLDOC01-appb-C000027
 上記の第1工程、第2工程に示す各反応式中のR1、Rf2、Xは、一般式(2A)、(2B)のR1、Rf2、Xとそれぞれ共通する。R2は、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基又はアリーレン基であり、その説明は一般式(2)のR2についての説明と共通する。また、Bは、水素原子、フェニル基、1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基、上記一般式(3)で表される基のいずれかであり、上記一般式(3)で表される基であることが好ましく、その説明は、一般式(2)のBについての説明と共通する。Dは脱離基である。
 第1工程では、上記一般式(2A)で表されるジカルボニル化合物の末端C(=O)X基と、第一級アミノ基を有するアルキン誘導体とを反応させることで、上記一般式(2B)で表される中間生成物であるアルキン化合物を製造する。上記の反応は、トリエチルアミン、ジイソプロピルエチルアミン、ピリジン等に例示される塩基性化合物の存在下で行うことが好ましい。
 上記反応において、第一級アミノ基を有するアルキン誘導体としては、例えば以下の化合物が使用できる。プロパルギルアミン、4-アミノ-1-ブチン、5-アミノ-1-ペンチン、6-アミノ-1-ヘキシン等のアミノアルキン、3-エチニルアニリン、4-エチニルアニリン、2-エチニルアニリン等のエチニルアニリン及びこれらの塩酸塩などである。上記第一級アミノ基を有するアルキン誘導体の使用量は、分子鎖両末端がC(=O)X基で封鎖されたジカルボニル化合物の末端C(=O)X基に対して、1.2当量以上であることが好ましい。
 上記一般式(2A)で表されるジカルボニル化合物の末端C(=O)X基と、上記第一級アミノ基を有するアルキン誘導体とが反応する際に生成されるハロゲン化水素を中和するために、第1工程の反応系中に、トリエチルアミン、ジイソプロピルエチルアミン、ピリジンに例示される塩基性化合物を添加してもよい。トリエチルアミンを添加する場合、その添加量は、分子鎖両末端がC(=O)X基で封鎖されたジカルボニル化合物の末端C(=O)X基に対して、1.1当量以上であることが好ましい。しかし、上記第一級アミノ基を有するアルキン誘導体が塩酸塩である場合は、塩酸塩を中和するために過剰量のトリエチルアミンが必要である。この場合におけるトリエチルアミンの使用量は、上記一般式(2A)で表されるジカルボニル化合物の末端C(=O)X基に対して、2.2当量以上であることが好ましい。
 また、上記第一級アミノ基を有するアルキン誘導体が固体である場合、少量の有機溶剤に溶解させた上で、上記一般式(2A)で表されるジカルボニル化合物が存在する系内に滴下してもよい。使用可能な有機溶剤として、アセトン、メチルエチルケトン、テトラヒドロフラン(THF)、ジエチルエーテル、ジブチルエーテル、1,4-ジオキサン、酢酸エチル、N,N-ジメチルホルムアミドなどが挙げられ、好ましくは、THF、ジエチルエーテル、ジブチルエーテル1,4-ジオキサンが挙げられる。
 上記の第1工程の反応は、窒素雰囲気下で行うことが好ましい。まず、上記第一級アミノ基を有するアルキン誘導体を、上記一般式(2A)で表されるジカルボニル化合物の存在する系内に滴下する。滴下温度は40℃以下、好ましくは20℃以下である。反応開始直後は発熱を伴うので、温度が上がりすぎる場合には滴下を中断し冷却を行う。上記第一級アミノ基を有するアルキン誘導体の滴下が終了後、一晩程度室温下で熟成を行う。反応終了後は生成したトリエチルアミン-ハロゲン化水素塩、未反応のエチニル基を有する第一級アミノ基を有するアルキン誘導体をそれぞれ取り除き、最後に活性炭で処理することで、上記一般式(2B)で表される中間生成物が得られる。
 第2工程では、第1工程で得られた上記一般式(2B)で表される中間生成物と脱離基を有するアルキン誘導体(H-C≡C-R2-D)及び脱離基を有する所定の化合物(B-D)とを反応させることで、上記一般式(2)により表されるアルキン化合物を製造する。アルキン誘導体が有する脱離基Dとしてはハロゲノ基が好ましく、ブロモ基、ヨード基、クロロ基がより好ましい。
 上記反応において、脱離基Dを有するアルキン誘導体としては、3-ブロモ-1-プロピン、3-ヨード-1-プロピン、4-ブロモ-1-ブチン、4-クロロ-1-ブチン、4-ヨード-1-ブチン、5-ブロモ-1-ペンチン、5-クロロ-1-ペンチン、5-ヨード-1-ペンチン、6-ブロモ-1-ヘキシン、6-クロロ-1-ヘキシン、6-ヨード-1-ヘキシンなど炭素数3~6のハロゲン化アルキンを例示できる。上記脱離基を有するアルキン誘導体の使用量は、上記一般式(2B)で表される中間生成物が有するN-H量に対して、1.2当量以上、好ましくは3.0当量以上である。
 また、上記脱離基Dを有する所定の化合物は、上記脱離基Dを有するアルキン誘導体であることが好ましい。
 第2工程では、一般式(2B)で表される中間生成物と脱離基を有するアルキン誘導体及び脱離基を有する所定の化合物とを反応させるときに炭酸カリウム、炭酸セシウム、水酸化ナトリウム、水酸化リチウム、水酸化カリウム、トリエチルアミン、ジイソプロピルエチルアミン等の塩基性化合物を添加してもよい。その場合、塩基性化合物の使用量は、上記一般式(2B)で表される中間生成物であるアルキン化合物が有するN-H量に対して1.1当量以上、好ましくは6当量以上である。
 また、第2工程での上記反応には溶剤を使用することができる。このとき用いる溶剤は特に限定されないが、フッ素系溶剤又は極性有機溶剤であることが好ましい。フッ素系溶剤としては1,3-ビストリフルオロメチルベンゼン、トリフルオロメチルベンゼンなどが挙げられる。極性有機溶剤としては、アセトン、メチルエチルケトン、DMSO、N,N-ジメチルホルムアミドなどが挙げられる。
 上記の第2工程の反応は、窒素雰囲気下で行うことが好ましい。まず、第1工程において得られた、上記一般式(2B)で表される中間生成物と、脱離基Dを有するアルキン誘導体及び脱離基を有する所定の化合物とを、好ましくは炭酸カリウム存在下で反応させる。反応温度は、50℃以上、好ましくは70℃以上であることが好ましい。反応終了後は炭酸カリウムをろ過により取り除き、減圧濃縮を行った後、未反応の脱離基Dを有するアルキン誘導体、脱離基を有する所定の化合物及び副生成物を取り除くことで、上記一般式(2)により表されるパーフルオロポリエーテル化合物(アルキン化合物)を得ることができる。
 このような含フッ素アルキン化合物の製造方法であれば、複雑な製造工程を必要とせず、一般式(2)で表されるパーフルオロポリエーテル化合物を効率よく製造することができる。
 以下に本発明で用いるパーフルオロポリエーテル化合物(含フッ素アルキン化合物)の好ましい別の製造方法の製造工程を示す。
Figure JPOXMLDOC01-appb-C000028
 即ち、上記一般式(2)中のR1及びR2が(2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基でなく)アリーレン基であり、Bが水素原子基及び1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基でなく、フェニル基又は式(3)で表される基(ただし、R3が2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基でなくアリーレン基である)であるパーフルオロポリエーテル化合物や、一般式(2)中の左側のR1とR2、右側のR1とB(Bが式(3)で表される基である場合はR3)が、それぞれ、互いに化学結合(単結合又は二重結合)で連結して、同じ窒素原子に結合した環状構造を形成しているパーフルオロポリエーテル化合物は、上記一般式(2A)で表されるジカルボニル化合物と、窒素原子に結合したR1、R2を有するアルキン誘導体及び窒素原子に結合したR1、Bを有するアルキン誘導体とを反応させることで、上記式(2)で表されるパーフルオロポリエーテル化合物(含フッ素アルキン化合物)を得ることができる。
 このとき、上記のアルキン誘導体を用いること以外は、上述した一般式(2B)で表される中間生成物を経由する製造方法と同様の方法で、上記式(2)で表されるパーフルオロポリエーテル化合物(含フッ素アルキン化合物)を製造することができる。
 なお、上記に示した一般式(2)のパーフルオロポリエーテル化合物の製造方法は一例であり、これらの製造方法のみに限定されるものではない。
 本発明のパーフルオロポリエーテル系ゴム組成物は、(a)成分と(b)成分を含有しさえすれば、加熱により硬化し硬化物を与える加熱硬化性のパーフルオロポリエーテル系ゴム組成物となる。
[(c)成分]
 本発明のパーフルオロポリエーテル系ゴム組成物は、更に(c)成分として遷移金属触媒を含むことが好ましい。これにより、パーフルオロポリエーテル系ゴム組成物を室温下(23℃±10℃)で硬化させることが可能な室温硬化性のパーフルオロポリエーテル系ゴム組成物となる。
 (c)成分の例としては、遷移金属錯体、特に、銅、ルテニウム、銀といった元素を含む錯体、好ましくは、銅元素を含む錯体が挙げられる。銅元素を含む錯体としては、ハロゲン化物イオンを含む銅の錯体、アセトニトリルとリン系及びホウ素系のアニオンとからなる銅錯体、硫酸イオンを含む銅の錯体、酢酸イオンを含む銅の錯体などを用いることができる。好ましくは、ヨウ化銅、塩化銅、臭化銅、酢酸銅、硫酸銅、テトラキスアセトニトリル銅ヘキサフルオロホスフェート、テトラキスアセトニトリル銅テトラフルオロボレートである。なお、用いる(c)成分は、無水物であっても、水和物であってもよい。
 また、上記(c)成分は粉末であることが多いため、必要に応じて溶剤に溶解させた上で用いてもよい。用いる溶剤は、極性有機溶剤、水など、用いる(c)成分を溶解する溶剤であればよい。極性有機溶剤としては、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、アセトニトリル、テトラヒドロフラン(THF)、エタノールが好ましく、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)がより好ましい。
 (c)成分の添加量は、(a)成分に含まれるアジド基の量(mol/100g)に対する(c)成分の遷移金属の物質量(mol)の割合として好ましくは1~300mol%、より好ましくは5~200mol%、更に好ましくは30~150mol%である。(c)成分の添加量の増加に伴って硬化に要する時間が短くなり、硬化物を得やすくなる。しかし、添加量が多すぎると、硬化物表面に(c)成分の粉末が浮き出てきてしまい、外観不良を引き起こす場合があり、少なすぎると硬化に必要なトリアゾール構造の形成による架橋が進行しにくくなり、ゲル状又は液状物となってしまう場合がある。
[その他の成分]
 その他の成分としては、
・(c)成分(特に銅錯体(銅塩))を還元する物質、
・架橋反応を活性化させる窒素系配位子、
・無機質充填剤
が挙げられる。
[銅塩を還元する物質]
 Huisgen環加付加反応(クリック反応)は、一価の銅がアセチレンと反応することにより開始する。しかし、一価の銅は不安定であることが多く、一部酸化され反応に不活性な二価の銅が副生する場合がある。つまり、還元剤を加え銅の価数を二価から一価に還元することで、再び反応活性な触媒として機能させることができる。(c)成分、特に銅錯体を還元する物質としては、アスコルビン酸ナトリウム、アスコルビン酸を好適に用いることができる。これらは粉末状又は顆粒状であるため、適当な溶剤に溶解させた上で転化してもよい。溶剤の種類は、上記化合物を溶解するものであれば特に問わない。添加量(mol換算)としては、加える(c)成分の物質量(mol)に対して好ましくは0.5~5.0倍、より好ましくは1.0~3.0倍、更に好ましくは1.0~2.0倍である。
[架橋反応を活性化させる窒素系配位子]
 Huisgen環化付加反応(クリック反応)は銅塩に配位する窒素系化合物(配位子)を加えることで活性化され、より短い時間で反応を完結できることが知られている。そのため、本発明の(c)成分を配合した室温硬化性のパーフルオロポリエーテル系ゴム組成物に該窒素系化合物(配位子)を添加することで、硬化時間を短くできる場合がある。架橋反応を活性化させる窒素系配位子としては、第一級アミン、第二級アミン、第三級アミン、イミダゾール、トリアゾールのうち、少なくともひとつの骨格を有する化合物を好適に用いることができる。好ましくは、トリス[(1-ベンジル-1H-1,2,3-トリアゾール-4-イル)メチル]アミン、トリス(2-ベンゾイミダゾリルメチル)アミン、トリス(3-ヒドロキシプロピルトリアゾリルメチル)アミン、バソフェナントロリンジスルホン酸二ナトリウム水和物、N-(2-アミノエチル)チオアセトアミドトリフルオロ酢酸塩、L-ヒスチジンなどが挙げられる。これらのうち、粉末又は顆粒状であるものは、適当な溶剤に溶解させた上で添加してもよい。溶剤の種類は、上記化合物を溶解するものであれば特に問わない。添加量は、用いる(c)成分の添加量(mol)に対して好ましくは0.5~5.0当量、より好ましくは1.0~3.0当量、更に好ましくは1.0~2.0当量である。
[無機質充填剤]
 無機質充填剤は、例えば酸化鉄、酸化亜鉛、酸化チタン、アルミナ等の各種金属酸化物粉末、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛等の各種金属炭酸塩、カーボンブラック、ヒュームドシリカ(乾式シリカ)、湿式シリカ(沈降性シリカ、ゾル-ゲル法シリカ)、粉砕シリカ、溶融シリカ、結晶性シリカ(石英粉末)、珪藻土等の各種シリカ系充填剤などが挙げられ、その添加により本組成物から得られる硬化物の硬さ、機械的強度を調整することができる。他に、ハイドロタルサイト等のイオン交換樹脂や中空無機質充填剤又はゴム質の球状充填剤も添加できる。
[使用方法]
 本発明のパーフルオロエーテル系ゴム組成物は、(a)成分と(b)成分とを均一混合することにより、一液タイプの組成物として得られる。また、(a)成分と(b)成分を分けた二液タイプとして構成し、これらを必要に応じて混ぜ合わせて使用してもよい。本発明の室温硬化性のパーフルオロポリエーテル系ゴム組成物は、(a)成分と(b)成分を分けた二液タイプとして構成し、(c)成分を(a)成分側に含有させてもよく、(b)成分側に含有させてもよく、(a)成分と(b)成分の両方に含有させてもよい。
[硬化物]
 本発明のパーフルオロポリエーテル系ゴム組成物として上記(b)成分を、(a)成分中に含まれるアジド基の合計1モルに対して(b)成分中のエチニル基が所定モル数となる量(例えば0.5~2.0モルとなる量)を含有する組成物を加熱(100℃~150℃において、好ましくは1.5~9時間程度)して硬化させることにより、本発明のパーフルオロポリエーテル系ゴム硬化物を得ることができる。
 更に、上記組成物に室温下で硬化させることを目的とし上記(c)成分を添加することで、室温硬化性のものとなり、室温(5~40℃)下、好ましくは1日~1週間程度で硬化させることで本発明のパーフルオロポリエーテル系ゴム硬化物を得ることができる。このように室温硬化が可能な本発明のパーフルオロポリエーテル系ゴム組成物は、様々なパーフルオロポリエーテル系ゴム用途に用いることができるが、加熱炉に入らない様な大型部品用途、あるいは周囲の部材との関係で加熱することのできないような加熱不可部品への用途に特に有用である。
 また、本発明のパーフルオロポリエーテル系ゴム硬化物は、耐熱性、低温性、耐溶剤性、耐油性、耐薬品性に優れ、特に耐酸性に優れているので、耐熱性等が要求され、特に耐酸性が要求される物品に有用である。
 例えば、耐油性を要求される自動車用ゴム部品、具体的には、自動車用ダイヤフラム類、バルブ類、或いはシール材等;化学プラント用ゴム部品、具体的には、ポンプ用ダイヤフラム、バルブ類、ホース類、パッキン類、オイルシール、ガスケット、タンク配管補修用シール材等のシール材等;インクジェットプリンタ用ゴム部品;半導体製造ライン用ゴム部品、具体的には、薬品が接触する機器用のダイヤフラム、弁、パッキン、ガスケット等のシール材等、低摩擦耐磨耗性を要求されるバルブ等;分析、理化学機器用ゴム部品、具体的には、ポンプ用ダイヤフラム、弁、シール部品(パッキン等);医療機器用ゴム部品、具体的には、ポンプ、バルブ、ジョイント等;住環境用ゴム部品;航空機器用ゴム部品;また、テント膜材料;シーラント;成型部品;押し出し部品;被覆材;複写機ロール材料;電気用防湿コーティング材;センサー用ポッティング材;燃料電池用シール材;工作機器用シール材;積層ゴム布等に有用である。
 以下、実施例及び比較例を示し本発明について具体的に説明するが、本発明は下記の実施例に制限されるものではない。
(合成例A1)
 3Lフラスコに、下記式(31)
Figure JPOXMLDOC01-appb-C000029
(m+n≒35)
で表される35量体のHFPO骨格を主鎖とし、分子鎖両末端にヒドロキシメチル基を有するフルオロポリマー1,045g(ヒドロキシ基の濃度:0.30×10-3mol/g)を仕込み、窒素シール下、このフラスコに対し、パーフルオロ-1-ブタンスルホニルフルオライド389gと、トリエチルアミン46gを加え、撹拌を開始した。この時、系の内温が最大30℃まで上昇した。およそ20時間撹拌した後、HFMXと水を加え、分液操作によりHFMX層を回収し、アセトンを加え生成物を沈降させた。この生成物を回収し、減圧濃縮(267Pa、100℃)を1時間行った。その結果、下記式(32)で表されるフルオロポリマーを、無色透明なものとして、1,128g得た。
Figure JPOXMLDOC01-appb-C000030
(m+n≒35)
 上記と同様にして別途得られた上記式(32)で表されるフルオロポリマーから採取した1.0105g分に、トルエン0.0535g、ヘキサフルオロメタキシレン(HFMX)4.0084gを混合し、得られた溶液を用いて1H-NMR測定を行ったところ、上記式(32)のポリマーの-OSO249価が0.278×10-3mol/gと算出された。
 1H-NMR
δ4.69(m,-CH2
 上記で得られた式(32)のフルオロポリマー1,128g、DMSO1,692gを、10Lフラスコに仕込み、同様のフラスコ内を窒素置換した。10分後、同様のフラスコを窒素シールし、HFMX1,692g、アジ化ナトリウム60gを仕込み、110℃まで系内を昇温させ、撹拌を開始した。66.5時間撹拌後、水を加え反応をクエンチし、HFMXを加え、分液操作によりHFMX層を回収した。回収したHFMX層にアセトンを加え、沈降した生成物を回収し、ろ過した後、減圧濃縮(267Pa、100℃)を1時間程度行った。濃縮後の生成物に、フッ素系溶媒(商品名 PF-5060(3M社製))1,018g、活性炭(白鷺AS、大阪ガスケミカル社製)51gを加え、室温下、1時間撹拌した。ろ過により活性炭を除去後、減圧濃縮(267Pa、100℃)を1時間程度行うことで、下記式(33)で表されるアジド基含有フルオロポリマー(数平均分子量:6,114)を、無色透明なものとして、960g得た。
Figure JPOXMLDOC01-appb-C000031
(m+n≒35)
 得られた上記一般式(33)で表されるアジド基含有フルオロポリマーから採取した1.0083g分に、トルエン0.0508g、ヘキサフルオロメタキシレン(HFMX)4.0031gを混合し、得られた溶液を用いて1H-NMR測定を行ったところ、上記式(33)のフルオロポリマーのアジド基含有量が、0.274×10-3mol/gと算出された。
 1H-NMR
δ3.56(m,-CH2
(合成例A2)
 上記合成例A1において、35量体のHFPO骨格(m+n≒35)を主鎖とする式(31)で表されるフルオロポリマー1,045gに代えて、式(31)で表されるフルオロポリマーにおいて主鎖中のHFPO単位の繰り返し数を94量体(m+n≒94)としたフルオロポリマー(ヒドロキシ基の濃度:0.13×10-3mol/g)を1,045g使用したこと以外は、合成例A1と同様にして、式(34)で表されるポリマーを、無色透明なものとして、1,050g得た。
Figure JPOXMLDOC01-appb-C000032
(m+n≒94)
 得られた式(34)で表されるポリマー1,050gを、DMSO2,100g、HFMX1,050gの混合液中でアジド化を行ったこと以外は合成例A1と同様にして、下記式(35)で表されるアジド基含有フルオロポリマー(無色透明、数平均分子量:15,860、アジド基含有量:0.116×10-3mol/g)を得た。
Figure JPOXMLDOC01-appb-C000033
(m+n≒94)
(合成例A3)
 3Lフラスコに、下記式(36)
Figure JPOXMLDOC01-appb-C000034
(m+n≒18)
で表されるパーフルオロポリエーテル基を主鎖とし、分子鎖両末端にヒドロキシメチル基を有するフルオロポリマー1,023g(ヒドロキシ基の濃度:1.19×10-3mol/g)を仕込み、窒素シール下、このフラスコに対し、パーフルオロ-1-ブタンスルホニルフルオライド736gと、トリエチルアミン148gを加え、撹拌を開始した。およそ19.5時間撹拌した後、HFMXと水を加え、分液操作によりHFMX層を回収した。得られたHFMX層を硫酸マグネシウムにより脱水処理し、ろ過した後、ろ液の減圧濃縮(267Pa、100℃)を1時間行った。その結果、下記式(37)で表されるフルオロポリマーを、無色透明なものとして、1,230g得た。
Figure JPOXMLDOC01-appb-C000035
(m+n≒18)
 得られた上記式(37)で表されるフルオロポリマーについて合成例A1と同様にして、1H-NMR測定を行ったところ、上記式(37)のポリマーの-OSO249価が1.10×10-3mol/gと算出された。
 上記で得られた式(37)のフルオロポリマー1,208g、DMSO1,812gを、10Lフラスコに仕込み、同様のフラスコ内を窒素置換した。10分後、同様のフラスコを窒素シールし、HFMX1,812g、アジ化ナトリウム156gを仕込み、110℃まで系内を昇温させ、撹拌を開始した。21時間撹拌後、水を加え反応をクエンチし、フッ素系溶媒(商品名 PF-5060(3M社製))を加え、分液操作によりPF-5060層を回収した。回収したPF-5060層にアセトンを加えPF-5060層の洗浄を行った後、PF-5060層(ろ液(1))とアセトン層(ろ液(2))をそれぞれ回収した。ろ液(1)に対し無水硫酸マグネシウムによる脱水処理を行い、ろ過後、減圧濃縮(267Pa、100℃)を1時間行うことで、無色透明なオイルを得た(生成物(1))。ろ液(2)は、減圧濃縮(2,670Pa、50℃)を1.5時間行った後、得られた残渣にPF-5060を1,000g、アセトンを100g加え、分液操作によりPF-5060層を回収した。回収したPF-5060層について、無水硫酸マグネシウムによる脱水処理を行い、ろ過後、減圧濃縮(267Pa、100℃)を1時間行うことで、無色透明なオイルを得た(生成物(2))。得られた生成物(1)及び生成物(2)を混合することで、下記式(38)で表されるアジド基含有フルオロポリマーを、無色透明(数平均分子量:1,722、アジド基含有量:1.08×10-3mol/g)を、無色透明なものとして、988g得た。
Figure JPOXMLDOC01-appb-C000036
(m+n≒18)
(合成例B1)
第1工程:
 300mLフラスコに、下記式(39)により表されるパーフルオロポリエーテル209g(C(=O)F基含有量:0.300×10-3mol/g)を仕込み、フラスコ内を窒素置換した。系内の温度を10℃前後まで冷却した後、窒素雰囲気下でテトラヒドロフラン(THF)に溶解させた4-エチニルアニリン8.80g(0.075mol)及びトリエチルアミン7.00g(0.069mol)を、系内の温度が18℃以上とならないよう30分以上かけて滴下した。滴下終了後、室温で終夜撹拌した。
Figure JPOXMLDOC01-appb-C000037
(m+n≒35)
 その後、反応生成物を1,3-ビストリフルオロメチルベンゼン(70g)に溶かし込んだ溶液を水70gで洗浄し、アセトン100gで洗浄した。溶剤を減圧留去した後、反応生成物をフッ素系溶媒(商品名 PF-5060、3M社製)209gに溶かし込み、活性炭(商品名 白鷺AS、大阪ガスケミカル社製)10.5gを加え、室温下で1時間撹拌した。活性炭をろ過した後、溶剤を減圧留去することで、下記式(40)で表される生成物を、橙色オイルとして202g得た。
Figure JPOXMLDOC01-appb-C000038
(m+n≒35)
 1H-NMRにて、上記第1工程で得られた、上記式(40)のアルキンに由来する-C≡C-H基含有量を計算したところ、0.277×10-3mol/gであった。
 第1工程で得られた生成物の1H-NMRスペクトル:δ8.18(s,-NH-,1H),δ7.69-7.04(m,フェニル,4H),δ2.80(s,-C≡CH,1H)。これにより、第1工程で得られた生成物の分子鎖末端の構造が、式(40)で表されるアルキン化合物のパーフルオロエーテルの分子鎖末端構造に適合することを確認できた。
第2工程:
 300mLフラスコに、第1工程で得られた上記一般式(40)で表されるアルキン100g(H価0.277×10-3mol/g)、3-ブロモ-1-プロピン9.9mL(9.2mol/Lトルエン溶液、0.091mol)及び炭酸カリウム23g(0.17mol)の混合物を加え、フラスコ内を窒素シールした。これに、アセトン200gを加え、還流条件下(温度77℃)で終夜撹拌した。反応終了後、1,3-ビストリフルオロメチルベンゼン100gで希釈した後、炭酸カリウムをろ過により取り除いた。溶剤を減圧留去し、得られた反応生成物をフッ素系溶媒(商品名 PF-5060、3M社製、200g)に溶かし込んだ溶液を、アセトン80gで洗浄した。溶剤を減圧留去し、下記式(41)で表される化合物を、橙色オイルとして、100g得た。
 そして、上記の第1工程及び第2工程を2回繰り返して、下記式(41)で表される化合物を、橙色オイルとして、合計200g得た。
Figure JPOXMLDOC01-appb-C000039
(m+n≒35)
 1H-NMRにて上記第2工程で得られた、上記式(41)のポリマーのアルキン構造に由来する-C≡C-H価(エチニル基含有量)を計算したところ、0.491×10-3mol/gであった。
 第2工程で得られた生成物の1H-NMRスペクトル:δ7.58-7.01(m,フェニル基, 4H),δ4.41(dd,J=22Hz,8Hz,N-CH2-,2H),δ2.84(s,C(sp2)-C≡CH,1H),δ2.01(s,C(sp3)-C≡CH,1H)。これにより、第2工程で得られた生成物の分子鎖末端の構造が、式(41)に表されるアルキン化合物のパーフルオロエーテルの分子鎖末端構造に適合することが確認できた。
(合成例B2)
 上記合成例B1において、35量体のHFPO骨格(m+n≒35)を主鎖とする式(39)により表されるパーフルオロポリエーテル209gに代えて、式(39)で表されるパーフルオロポリエーテルにおいて主鎖中のHFPO単位の繰り返し数を94量体(m+n≒94)としたパーフルオロポリエーテル(C(=O)F基濃度:0.127×10-3mol/g)を209g使用したこと、及び第2工程を、還流条件下(温度100℃)で、アセトニトリル中、3.5日間撹拌することにより行ったこと以外は、合成例B1と同様にして下記式(42)で表される化合物(エチニル基含有量:0.247×10-3mol/g)を得た。
Figure JPOXMLDOC01-appb-C000040
(m+n≒94)
〔実施例1〕
 合成例A1で得た下記式(33)
Figure JPOXMLDOC01-appb-C000041
(m+n≒35)
で表される化合物(アジド基含有量:0.274×10-3mol/g)65.0gと、合成例B1で得た下記式(41)
Figure JPOXMLDOC01-appb-C000042
(m+n≒35)
で表される化合物(エチニル基含有量:0.491×10-3mol/g)36.3gとを、プラスチック製の容器に入れて均一になるまで混合した後、減圧脱泡を行った。
 得られた組成物を2mm厚のステンレス製の型に流し、150℃で4時間プレスキュアを行うことで、2mm厚の薄橙色透明ゴム状の硬化物を得た。
〔実施例2〕
 合成例A2で得た下記式(35)
Figure JPOXMLDOC01-appb-C000043
(m+n≒94)
で表される化合物(アジド基含有量:0.116×10-3mol/g)75.4gと、合成例B1で得た上記式(41)で表される化合物17.8gとを、プラスチック製の容器に入れて均一になるまで混合した後、減圧脱泡を行った。得られた組成物を2mm厚のステンレス製の型に流し150℃で8.5時間プレスキュアを行うことで、2mm厚の薄橙色透明ゴム状の硬化物を得た。
〔実施例3〕
 合成例A1で得た上記式(33)で表される化合物42.9gと、合成例B2で得た下記式(42)
Figure JPOXMLDOC01-appb-C000044
(m+n≒94)
で表される化合物(エチニル基含有量:0.247×10-3mol/g)47.6gとを、プラスチック製の容器に入れて均一になるまで混合した後、減圧脱泡を行った。得られた組成物を2mm厚のステンレス製の型に流し150℃で6時間プレスキュアを行うことで、2mm厚の薄橙色透明ゴム状の硬化物を得た。
〔実施例4〕
 合成例A3で得た下記式(38)
Figure JPOXMLDOC01-appb-C000045
(m+n≒18)
で表される化合物(アジド基含有量:1.08×10-3mol/g)17.2gと、合成例B1で得た上記式(41)で表される化合物37.8gとを、プラスチック製の容器に入れて均一になるまで混合した後、減圧脱泡を行った。得られた組成物を2mm厚のステンレス製の型に流し150℃で1.5時間プレスキュアを行うことで、2mm厚の薄橙色透明ゴム状の硬化物を得た。
〔実施例5〕
 合成例A1で得た上記式(33)で表される化合物34.0gと、合成例B1で得た上記式(41)で表される化合物19.0gとを、プラスチック製の容器に入れて均一になるまで混合した後、25質量%ヨウ化銅-DMSO溶液3.59g(式(33)で表される化合物に含まれるアジド基の量(mol/100g)に対する銅の物質量(mol)の割合:50mol%)を加え、更に混合した。遠心脱泡した後、得られた組成物を2mm厚のステンレス製の型に流し込み、23℃、湿度60%で、一週間かけて固めることで、茶色ゴム状の硬化物を得た。
〔比較例1〕
 下記式(43)
Figure JPOXMLDOC01-appb-C000046
(a+b≒97)
で表される化合物(ビニル基含有量:0.117×10-3mol/g)625gと、下記式(44)
Figure JPOXMLDOC01-appb-C000047
で表される化合物(SiH基含有量:0.606×10-3mol/g)145gと、下記一般式(45)
Figure JPOXMLDOC01-appb-C000048
で表される化合物1.56gと、白金-ジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金含有量0.5mol%)0.63gとを均一になるまで混合した後、減圧混合を10分間行った。その組成物を2mm厚のステンレス製の型に流し込み、150℃で10分間プレスキュアした。シートを型から取り出し、さらに1時間、150℃でポストキュアを施すことで、無色透明のゴム状化合物を得た。
〔比較例2〕
 下記式(46)
Figure JPOXMLDOC01-appb-C000049
(a+b≒95)
で表される化合物(ビニル基含有量:0.122×10-3mol/g)600g、上記式(44)で表される化合物145g、上記一般式(45)で表される化合物(反応制御剤)1.50g、白金-ジビニルテトラメチルジシロキサン錯体/トルエン溶液(白金含有量0.5mol%)0.63gを均一になるまで混合した後、減圧混合を10分間行った。2mm厚のステンレス製の型に流し込み、150℃で10分間プレスキュアした。シートを型から取り出し、さらに1時間、150℃でポストキュアを施すことで、無色透明ゴム状の硬化物を得た。
 実施例1~5、比較例1~2で作製した硬化物サンプル(弾性体)のゴム物性についてJIS K6250、K6251、K6253に準じて測定を行った。その結果を表1に示す。
Figure JPOXMLDOC01-appb-T000050
 表1に示された結果より、加熱により得られた実施例1~4の硬化物は十分なゴム物性を有することが確認された。更に、ヨウ化銅を(c)成分として加えた実施例5の硬化物も、十分なゴム物性を持つことが分かった。
 更に、得られた硬化物サンプルについて以下の評価を行った。
(耐熱性評価)
 上記実施例1~4、比較例1、2で得られた硬化物サンプルを用い、JIS K6257に準じて150℃における耐熱老化試験(空気加熱老化試験:デュロメータ硬さ(Aタイプ)、引張強さ、切断時伸び)を行った。その結果を図1~3に示す。なお、硬さ変化量は加熱前の硬さを基準とした硬さの変化量である。
 比較例1、2の硬化物サンプルは150℃加熱において比較的安定した熱老化特性を示した。比較例1、2の硬化物サンプル(弾性体)に比べ、実施例1~4では、試験開始の初期段階(200時間経過後)において架橋反応の促進による硬さ変化量上昇、引張強さの上昇が確認された。しかし、その度合いは軽度であることに加え、その後は各種物性が比較例1、2よりも高いレベルで安定に推移していることが確認された。これらのことから、実施例1~4のゴム硬化物は十分な耐熱性を有していることが示された。
(低温性評価)
 上記実施例1~4、比較例1、2で得られた硬化物サンプルを用い、示差走査熱量分析(DSC)によりガラス転移点(Tg)を測定した。その結果、実施例1、2、3により得られた硬化物は、Tg=-50℃であり、実施例4で得られた硬化物はTg=-90℃であることが確認され、比較例1、2により得られた硬化物のTg(-54℃)と比べても遜色ない値を示した。このことから実施例1~4の組成物により得られる硬化物が低温特性に優れることを確認した。
(耐有機溶剤性評価)
 実施例1~4、比較例1、2で得られた硬化物サンプルを用い、JIS K6258に準じて各種有機溶剤に対する浸漬試験(浸漬時間:70時間)を実施し、浸漬前後での体積変化率(%)を測定し耐溶剤膨潤性を評価した。その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000051
 表2に示された結果より、実施例1~4より得られる硬化物は、比較例1、2の硬化物と同様、耐溶剤膨潤性に優れていることが確認された。
(耐酸性試験)
 実施例1~4より得られた硬化物を40℃の下、98質量%濃硫酸、40質量%濃硝酸に対する浸漬試験を実施し、浸漬前の硬さを基準として硬さの変化量を測定し耐硫酸性、耐硝酸性を評価した。結果を図4(耐硫酸性)、図5(耐硝酸性)に示す。
 比較例1により得られた硬化物は、硫酸に浸漬後一週間で、ポリマーの分解に伴いオイル状となった。そのため、図示していない。また、硝酸に浸漬させた場合においても、比較例1により得られた硬化物はポリマーの分解に伴う軟化劣化の傾向を示した。比較例2により得られた硬化物では、特に硝酸に浸漬させた場合に硬さ変化量の上昇が見られた。
 一方で、実施例1~4により得られた硬化物は硫酸、硝酸のどちらに浸漬させても、浸漬後1,000時間まで、大きな硬さの変化は無かった。この結果により、実施例1~4により得られた硬化物は優れた耐酸性を有することが分かった。
 なお、これまで本発明を、上記実施形態をもって説明してきたが、本発明はこの実施形態に限定されるものではなく、他の実施形態、追加、変更、削除など、当業者が想到することができる範囲内で変更することができ、いずれの態様においても本発明の作用効果を奏する限り、本発明の範囲に含まれるものである。

Claims (11)

  1.  (a)1分子中に少なくとも2個のアジド基を有し、かつ主鎖中に2価のパーフルオロアルキルエーテル構造を有する数平均分子量1,000~100,000である直鎖状パーフルオロポリエーテル化合物と、
    (b)1分子中に少なくとも3個のエチニル基を有する直鎖状パーフルオロポリエーテル化合物とを含有してなることを特徴とするパーフルオロポリエーテル系ゴム組成物。
  2.  (a)成分が、下記一般式(1)で表される化合物である請求項1に記載のパーフルオロポリエーテル系ゴム組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは炭素数1~6の2価の直鎖状脂肪族飽和炭化水素基であり、Rf1は2価のパーフルオロポリエーテル基である。)
  3.  (b)成分が、下記一般式(2)で表される化合物である請求項1又は2に記載のパーフルオロポリエーテル系ゴム組成物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(2)中、R1及びR2は、互いに独立して、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基又はアリーレン基であり、Bは水素原子、フェニル基、1価の直鎖状若しくは分岐状の脂肪族不飽和炭化水素基、下記一般式(3)
    Figure JPOXMLDOC01-appb-C000003
    (上記一般式(3)中、R3は、2価の直鎖状若しくは分岐状の脂肪族飽和炭化水素基又はアリーレン基である。)で表される基のいずれかであり、Rf2は2価のパーフルオロポリエーテル基である。但し、一般式(2)中、左側のR1とR2、右側のR1とB(Bが式(3)で表される基である場合はR3)は、それぞれ、互いに単結合又は二重結合で連結して同じ窒素原子に結合した環状構造を形成していてもよい。破線は結合手である。)
  4.  一般式(2)において、R1及びR2が、炭素数1~10の2価の直鎖状脂肪族飽和炭化水素基、炭素数2~10の2価の分岐状脂肪族飽和炭化水素基、下記一般式(4)~(9)のいずれかで表されるアリーレン基のいずれか一つである請求項3に記載のパーフルオロポリエーテル系ゴム組成物。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)~(9)中、破線は結合手である。)
  5.  一般式(3)において、R3が、炭素数1~10の2価の直鎖状脂肪族飽和炭化水素基若しくは炭素数2~10の2価の分岐状脂肪族飽和炭化水素基、下記一般式(4)~(9)のいずれかで表されるアリーレン基のいずれか一つである請求項3又は4に記載のパーフルオロポリエーテル系ゴム組成物。
    Figure JPOXMLDOC01-appb-C000005
    (式(4)~(9)中、破線は結合手である。)
  6.  加熱硬化性である請求項1~5のいずれか1項に記載のパーフルオロポリエーテル系ゴム組成物。
  7.  更に、(c)遷移金属触媒を含有する請求項1~5のいずれか1項に記載のパーフルオロポリエーテル系ゴム組成物。
  8.  室温硬化性である請求項7に記載のパーフルオロポリエーテル系ゴム組成物。
  9.  請求項1~8のいずれか1項に記載のパーフルオロポリエーテル系ゴム組成物を硬化してなるパーフルオロポリエーテル系ゴム硬化物。
  10.  請求項9に記載の硬化物を含むことを特徴とする物品。
  11.  自動車用、化学プラント用、インクジェットプリンター用、半導体製造ライン用、分析・理化学機器用、医療機器用、住環境用又は航空機器用ゴム部品である請求項10に記載の物品。
PCT/JP2019/044098 2018-11-28 2019-11-11 パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品 WO2020110680A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19890240.5A EP3889220B1 (en) 2018-11-28 2019-11-11 Perfluoropolyether-based rubber composition, cured object obtained therefrom, and product including same
US17/294,286 US20220010061A1 (en) 2018-11-28 2019-11-11 Perfluoropolyether-based rubber composition, cured object obtained therefrom, and product including same
CN201980079391.1A CN113166534A (zh) 2018-11-28 2019-11-11 全氟聚醚系橡胶组合物及其固化物和包含其的制品
JP2020558287A JP7070705B2 (ja) 2018-11-28 2019-11-11 パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-222453 2018-11-28
JP2018222453 2018-11-28

Publications (1)

Publication Number Publication Date
WO2020110680A1 true WO2020110680A1 (ja) 2020-06-04

Family

ID=70853224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/044098 WO2020110680A1 (ja) 2018-11-28 2019-11-11 パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品

Country Status (5)

Country Link
US (1) US20220010061A1 (ja)
EP (1) EP3889220B1 (ja)
JP (1) JP7070705B2 (ja)
CN (1) CN113166534A (ja)
WO (1) WO2020110680A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160540B2 (ja) 1978-03-06 1986-12-22 Japan Storage Battery Co Ltd
JPH0977944A (ja) 1995-09-14 1997-03-25 Shin Etsu Chem Co Ltd 室温硬化性フッ素ポリマー系組成物
JPH09137027A (ja) 1995-05-29 1997-05-27 Shin Etsu Chem Co Ltd 室温硬化性フッ素ポリマー系組成物
JP2000248166A (ja) 1999-03-02 2000-09-12 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2001192546A (ja) 2000-01-07 2001-07-17 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2002020615A (ja) 2000-07-05 2002-01-23 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2007002228A (ja) * 2005-05-25 2007-01-11 Shin Etsu Chem Co Ltd 含フッ素材料
JP2012522881A (ja) * 2009-04-06 2012-09-27 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア 官能性pfpe誘導体の製造方法
JP2014098147A (ja) * 2012-10-18 2014-05-29 Central Glass Co Ltd シロキサン化合物およびそれを含む硬化性組成物と硬化体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050277731A1 (en) * 2004-06-11 2005-12-15 Shin-Etsu Chemical Co., Ltd. Curable perfluoropolyether compositions and rubber or gel articles comprising the same
CN104822731B (zh) * 2012-10-02 2018-01-19 3M创新有限公司 具有低玻璃化转变温度的基于含氟聚醚的弹性体
FR3038322B1 (fr) * 2015-07-01 2018-10-19 Universite De Montpellier (Universite Montpellier 2 Sciences Et Techniques) Materiaux reticules thermodurcissables a basse tg et thermostables a base d'unites fluoroethers
JP6907908B2 (ja) * 2017-12-04 2021-07-21 信越化学工業株式会社 アジド基含有フルオロポリマー及びその製造方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160540B2 (ja) 1978-03-06 1986-12-22 Japan Storage Battery Co Ltd
JPH09137027A (ja) 1995-05-29 1997-05-27 Shin Etsu Chem Co Ltd 室温硬化性フッ素ポリマー系組成物
JPH0977944A (ja) 1995-09-14 1997-03-25 Shin Etsu Chem Co Ltd 室温硬化性フッ素ポリマー系組成物
JP2000248166A (ja) 1999-03-02 2000-09-12 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2001192546A (ja) 2000-01-07 2001-07-17 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2002020615A (ja) 2000-07-05 2002-01-23 Shin Etsu Chem Co Ltd 硬化性フルオロポリエーテル系ゴム組成物
JP2007002228A (ja) * 2005-05-25 2007-01-11 Shin Etsu Chem Co Ltd 含フッ素材料
JP2012522881A (ja) * 2009-04-06 2012-09-27 ソルヴェイ・スペシャルティ・ポリマーズ・イタリー・エッセ・ピ・ア 官能性pfpe誘導体の製造方法
JP2014098147A (ja) * 2012-10-18 2014-05-29 Central Glass Co Ltd シロキサン化合物およびそれを含む硬化性組成物と硬化体

Also Published As

Publication number Publication date
EP3889220A1 (en) 2021-10-06
EP3889220A4 (en) 2022-05-11
EP3889220B1 (en) 2023-09-20
JPWO2020110680A1 (ja) 2021-09-30
JP7070705B2 (ja) 2022-05-18
CN113166534A (zh) 2021-07-23
US20220010061A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP4618230B2 (ja) 含フッ素ポリマー組成物及び硬化体
US20090176953A1 (en) Fluorine-containing polymer composition and cured body
US8143359B2 (en) Organic silicone compound
JP2014527556A (ja) イオン化フルオロポリマーの組成物
JP6907908B2 (ja) アジド基含有フルオロポリマー及びその製造方法
JP4997707B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
WO2020110680A1 (ja) パーフルオロポリエーテル系ゴム組成物とその硬化物及びそれを含む製品
EP2295488B1 (en) RT curable fluoropolyether base rubber composition and cured product
CN108026261B (zh) 基于氟代醚单元的热稳定、低tg且热固交联的材料
JP4985911B2 (ja) 導電性フルオロポリエーテル系ゴム組成物
TWI526496B (zh) Room temperature hardened fluoropolyether rubber composition and hardened product thereof
EP0621296B1 (en) Thermoplastic polyesters containing perfluoropolyoxyalkylene sequences
JP3487146B2 (ja) 含フッ素硬化性組成物
JP4665964B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4830313B2 (ja) 含フッ素エラストマーの製造方法
JP4527044B2 (ja) 含フッ素硬化性組成物
JP6885347B2 (ja) 含フッ素アルキン化合物及び含フッ素アルキン化合物の製造方法
JP5505405B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4570548B2 (ja) 含フッ素硬化性組成物
JP6750453B2 (ja) 含フッ素硬化性組成物及びゴム物品
US3691119A (en) Oxysilylene fluorochemical polymers and process for preparing same
JP2008019398A (ja) 含フッ素硬化性組成物
WO2023276779A1 (ja) フルオロポリエーテル系硬化性組成物及び硬化物、並びに電気・電子部品
JP6390591B2 (ja) 有機ケイ素化合物
JPS624228B2 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19890240

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020558287

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019890240

Country of ref document: EP

Effective date: 20210628