JP4665964B2 - 含フッ素エラストマーおよび含フッ素エラストマーの製造方法 - Google Patents

含フッ素エラストマーおよび含フッ素エラストマーの製造方法 Download PDF

Info

Publication number
JP4665964B2
JP4665964B2 JP2007504742A JP2007504742A JP4665964B2 JP 4665964 B2 JP4665964 B2 JP 4665964B2 JP 2007504742 A JP2007504742 A JP 2007504742A JP 2007504742 A JP2007504742 A JP 2007504742A JP 4665964 B2 JP4665964 B2 JP 4665964B2
Authority
JP
Japan
Prior art keywords
fluorine
group
containing elastomer
general formula
atom
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007504742A
Other languages
English (en)
Other versions
JPWO2006090728A1 (ja
Inventor
達也 森川
秀人 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Publication of JPWO2006090728A1 publication Critical patent/JPWO2006090728A1/ja
Application granted granted Critical
Publication of JP4665964B2 publication Critical patent/JP4665964B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/06Oxidation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

本発明は、不飽和結合を有する基を主鎖末端および/または側鎖末端に含む含フッ素エラストマーの製造方法に関する。また、該含フッ素エラストマーを含む硬化性組成物、該硬化性組成物を架橋して得られる成形品に関する。
含フッ素エラストマーは、優れた耐薬品性、耐溶剤性および耐熱性を示すことから、過酷な環境下でのシール材等として、自動車工業、半導体工業、化学工業等の分野において広く使用されている。
しかし、技術の進歩に伴い要求される特性はさらに厳しくなり、航空宇宙分野や半導体製造装置分野、化学プラント分野、自動車工業などの様々な分野において、より優れた耐熱性、耐薬品性、耐溶剤性、加工性が求められている。
これらの種々の特性を強化するために、末端にビニル基またはアリル基が導入された含フッ素エラストマーからなる組成物と架橋剤からなる組成物が開発されている。
たとえば、両末端に−Si(R')(CH3)CH=CH2の構造を有する含フッ素エラストマーと特定の構造を有する硬化剤からなる組成物が開示されている(たとえば、特開昭56−829号公報参照)。しかし、この含フッ素エラストマーは、シリコーン構造を有するものであるため、酸に弱いという問題を有していた。
また、主鎖末端エステル基含有フッ素オリゴマーと不飽和基含有アミンをアミド化させて得られる主鎖両末端不飽和基含有フッ素オリゴマーを含む硬化性組成物(たとえば、特開2001−81131号公報参照)や、含フッ素エラストマーの両末端に、−Si(R1)(R2)CH=CH2がアミド結合を介して結合している含フッ素アミド化合物と含フッ素オルガノシロキサンからなる組成物が開示されている(たとえば、特開平9−95615号公報参照)。しかし、該含フッ素オリゴマー、エラストマーの不飽和基は、アミド結合を介して主鎖に導入されているため、アルカリに弱いという問題を有していた。
さらに、両末端に水酸基を有する含フッ素エラストマーとイソシアネート基とビニル基を有する化合物を反応させて得られる、両末端にアリル基を有する含フッ素エラストマーからなる硬化性組成物が開示されている(たとえば、国際公開第2004/050758号パンフレット参照)。しかし、該含フッ素エラストマーは、不飽和基をウレタン結合を介して主鎖に導入しているため、耐熱性が劣るという問題を有していた。
このように、末端にビニル基を導入する方法としては、一般的にアミド結合などの結合を介して導入する方法が多く知られている。しかし、これらの結合部分は、耐熱性が低かったり、酸・アルカリに弱いという問題があるため、耐熱性や酸・アルカリに強い、炭素−炭素結合でビニル基またはアリル基が導入されている含フッ素エラストマーの開発が切望されていた。
本発明は、不飽和結合を有する基を主鎖末端および/または側鎖末端に含む含フッ素エラストマーの製造方法を提供する。また、該含フッ素エラストマーを含む硬化性組成物、該硬化性組成物を架橋して得られる成形品を提供する。
すなわち、本発明は、主鎖末端および/または側鎖末端に、一般式(1):
Figure 0004665964
または、一般式(2):
Figure 0004665964
(式中、X1、X2、X3は同じかまたは異なり水素原子、フッ素原子、−CH3または−CF3であり、Y1はヨウ素原子、臭素原子または塩素原子であり、Zはフッ素原子、ヨウ素原子、臭素原子、塩素原子、−OR1、または−SR1(R1は炭素数1〜5のアルキル基、炭素数1〜5のアシル基、ベンゾイル基、アリール基、トシル基、トリフルオロメタンスルホニル基であり、これらの基の水素原子の一部または全部がフッ素原子に置換されていてもよい))
で示される部位を有する含フッ素エラストマーに、
アルカリ金属、アルカリ土類金属、および/または遷移金属を作用させて、
一般式(1)または(2)で示される部位を、一般式(3):
Figure 0004665964
(式中、X1、X2、X3は前記と同様である)
で示される部位に変換する工程を含む含フッ素エラストマーの製造方法に関する。
さらに、酸化剤を作用させて、一般式(3):
Figure 0004665964
(式中、X1、X2、X3は前記と同様である)
で示される部位を−COOHに変換する工程を含むことが好ましい。
また、本発明は、一般式(4):
a―(M)―(A)―Cb (4)
(式中、Mはビニリデンフルオライドおよび/またはテトラフルオロエチレン由来の構造単位であり、AはMと共重合可能なエチレン性単量体由来の構造単位であり、B、Cは同じかまたは異なり、一般式(5):
Figure 0004665964
(式中、X1、X2、X3は同じかまたは異なり水素原子、フッ素原子、−CH3または−CF3であり、R2は、炭素数1〜5のエーテル結合を含んでもよいアルキレン基であって、その一部または全ての水素原子がフッ素原子で置換されていてもよく、nは0以上の整数である)
で示される基であり、a、bは、それぞれ0または1であり、a+b≠0である。)
で示される含フッ素エラストマーに関する。
含フッ素エラストマーが、ビニリデンフルオライド系フッ素ゴムであることが好ましい。
数平均分子量が500〜500000であることが好ましい。
また、本発明は、前記含フッ素エラストマーを含む硬化性組成物および該硬化性組成物を架橋して得られる成形品に関する。
本発明は、主鎖末端および/または側鎖末端に、一般式(1):
Figure 0004665964
または、一般式(2):
Figure 0004665964
(式中、X1、X2、X3は同じかまたは異なり水素原子、フッ素原子、−CH3または−CF3であり、Y1はヨウ素原子、臭素原子または塩素原子であり、Zはフッ素原子、ヨウ素原子、臭素原子、塩素原子、−OR1、または−SR1(R1は炭素数1〜5のアルキル基、炭素数1〜5のアシル基、ベンゾイル基、アリール基、トシル基、トリフルオロメタンスルホニル基であり、これらの基の水素原子の一部または全部がフッ素原子に置換されていてもよい))
で示される部位を有する含フッ素エラストマーに、
アルカリ金属、アルカリ土類金属、および/または遷移金属を作用させて、一般式(1)または(2)で示される部位を、一般式(3):
Figure 0004665964
(式中、X1、X2、X3は前記と同様である)
で示される部位に変換する工程を含む含フッ素エラストマーの製造方法に関する。
本発明の製造方法によれば、主鎖末端および/または側鎖末端に一般式(1):
Figure 0004665964
または、一般式(2):
Figure 0004665964
(式中、X1、X2、X3、Y1、Zは前記と同様である)
で示される部位を有する種々の含フッ素エラストマーに、アルカリ金属、アルカリ土類金属、および/または遷移金属を作用させることにより、脱ハロゲン化反応がおこり、Y1Zが脱離し、一般式(3):
Figure 0004665964
(式中、X1、X2、X3は前記と同様である)
で示される不飽和結合を有する部位へ経済的にかつ簡便に変換することが可能となる。
また、本発明の方法では、含フッ素エラストマーの主鎖末端および/または側鎖末端に炭素−炭素結合を介して不飽和結合を有する基を導入することができるため、本発明の方法により得られる含フッ素エラストマーの主鎖の骨格は、炭素−炭素結合のみからなるものである。このような含フッ素エラストマーを含む硬化性組成物を架橋することで、耐熱性が優れ、圧縮永久歪(CS)が小さい成形品を得ることができる。
本発明で用いる含フッ素エラストマーとしては、主鎖末端および/または側鎖末端に一般式(1)または(2)で示される部位を有する含フッ素エラストマーであれば、とくに限定されるものではない。
一般式(1)、一般式(2)中のX1,X2,X3は同じかまたは異なり水素原子、フッ素原子、−CH3または−CF3である。これらの中でも、不飽和結合の反応性を立体的に阻害しない点からは、水素原子、フッ素原子が好ましく、硬化後の架橋点の耐熱性の点からは、フッ素原子、−CF3が好ましく、ヒドロシリル化反応による硬化反応の反応性の点からは水素原子が好ましい。
1はヨウ素原子、臭素原子または塩素原子であるが、これらの中でも、ポリマー末端への導入が容易であること、アルカリ金属、アルカリ土類金属、または遷移金属との反応性が高いことからヨウ素原子、臭素原子が好ましく、ヨウ素原子がより好ましい。
Zは、脱離基として作用するものであり、フッ素原子、ヨウ素原子、臭素原子、塩素原子、−OR1、または−SR1(R1は炭素数1〜5のアルキル基、炭素数1〜5のアシル基、ベンゾイル基、アリール基、トシル基、トリフルオロメタンスルホニル基であり、またはこれらの基の水素原子の一部または全部がフッ素原子に置換されたもの)であるが、脱離反応が効率良く起こるという点から、フッ素原子、ヨウ素原子、臭素原子、−OR1が好ましい。また、−OR1の中でも脱離で生成する−OR1アニオンが安定なほど脱離しやすいため、R1がアルキル基、アシル基、含フッ素アルキル基、トシル基、トリフルオロメタンスルホニル基が好ましく、原料入手の容易性から、R1がアルキル基、アシル基が好ましい。
これらの中でも、脱離反応が効率良く起こる点、導入が容易であるという点から、一般式(1)、(2)で示される部位としては、−CF2CH2I、−CF2CFICF3
Figure 0004665964
で示される部位を有するものがより好ましい。
末端に一般式(1)または(2)で示される部位を導入する方法としては、含フッ素エラストマーの重合時に架橋部位を有する単量体を共重合する方法や、後述するようなヨウ素移動重合により重合する方法、ヨウ素移動重合法などで得られる含フッ素エラストマーのヨウ素末端に単量体を付加させる方法があげられる。
含フッ素エラストマーとしては、フッ素ゴム(a)、熱可塑性フッ素ゴム(b)、およびこれらのフッ素ゴムを含むゴム組成物などがあげられるが、これらの中でも、フッ素ゴム(a)が好ましい。
フッ素ゴム(a)としては、非パーフルオロフッ素ゴム(a−1)およびパーフルオロフッ素ゴム(a−2)があげられる。なお、パーフルオロフッ素ゴムとは、その構成単位のうち、90モル%以上がパーフルオロモノマーからなるものをいう。
非パーフルオロフッ素ゴム(a−1)としては、ビニリデンフルオライド(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/ビニリデンフルオライド(VdF)系フッ素ゴム、エチレン/ヘキサフルオロプロピレン(HFP)/テトラフルオロエチレン(TFE)系フッ素ゴム、フルオロシリコーン系フッ素ゴム、またはフルオロホスファゼン系フッ素ゴムなどがあげられ、これらをそれぞれ単独で、または本発明の効果を損なわない範囲で任意に組合わせて用いることができるが、ビニリデンフルオライド(VdF)系フッ素ゴム、テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴムを用いることが好ましい。
ビニリデンフルオライド(VdF)系フッ素ゴムとしては、下記一般式(6)で表されるものが好ましい。
―(M1)―(M2)―(N1)― (6)
(式中、構造単位M1はビニリデンフルオライド(m1)由来の構造単位であり、構造単位M2は含フッ素エチレン性単量体(m2)由来の構造単位であり、構造単位N1は単量体(m1)および単量体(m2)と共重合可能な単量体(n1)由来の繰り返し単位である)
一般式(6)で示されるビニリデンフルオライド(VdF)系フッ素ゴムの中でも、構造単位M1を45〜85モル%、構造単位M2を55〜15モル%含むものが好ましく、より好ましくは構造単位M1を50〜80モル%、構造単位M2を50〜20モル%である。構造単位N1は、構造単位M1と構造単位M2の合計量に対して、0〜10モル%であることが好ましい。
含フッ素エチレン性単量体(m2)としては、1種または2種以上の単量体が利用でき、たとえばテトラフルオロエチレン(TFE)、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロプロピレン(HFP)、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)(PAVE)、フッ化ビニルなどの含フッ素単量体があげられるが、これらのなかでも、テトラフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ(アルキルビニルエーテル)が好ましい。
単量体(n1)としては、単量体(m1)および単量体(m2)と共重合可能なものであれば、いかなるものでもよいが、たとえばエチレン、プロピレン、アルキルビニルエーテルなどがあげられる。
また、単量体(n1)としては、架橋部位を与える単量体が好ましい。
このような架橋部位を与える単量体としては、一般式(7):
CY2 2=CY2−Rf 1CHR34 (7)
(式中、Y2は、水素原子、フッ素原子または−CH3、Rf 1は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、R3は、水素原子または−CH3、X4は、ヨウ素原子または臭素原子)で表されるヨウ素または臭素含有単量体、一般式(8):
CF2=CFO(CF2CF(CF3)O)m(CF2n−X5 (8)
(式中、mは、0〜5の整数、nは、1〜3の整数、X5は、シアノ基、カルボキシル基、アルコキシカルボニル基、臭素原子、ヨウ素原子)で表される単量体、一般式(9):
CH2=CH(CF2nI (9)
(式中、nは1〜10の整数)で表される単量体などがあげられ、たとえば特公平5−63482号公報、特開平7−316234号公報に記載されているようなパーフルオロ(6,6−ジヒドロ−6−ヨード−3−オキサ−1−ヘキセン)やパーフルオロ(5−ヨード−3−オキサ−1−ペンテン)などのヨウ素含有単量体、特開平4−505341号公報に記載されている臭素含有単量体、特開平4−505345号公報、特開平5−500070号公報に記載されているようなシアノ基含有単量体、カルボキシル基含有単量体、アルコキシカルボニル基含有単量体などがあげられる。これらをそれぞれ単独で、または任意に組合わせて用いることができる。
このヨウ素原子、臭素原子が、脱ハロゲン化反応により末端にビニル基を導入することが可能になる。また、ビニル基、ヨウ素原子、臭素原子、シアノ基、カルボキシル基、アルコキシカルボニル基が、架橋点として機能することができる。
このようなビニリデンフルオライド(VdF)系フッ素ゴムとして、具体的には、VdF−HFP系ゴム、VdF−HFP−TFE系ゴム、VdF−CTFE系ゴム、VdF−CTFE−TFE系ゴムなどが好ましくあげられる。
テトラフルオロエチレン(TFE)/プロピレン系フッ素ゴムとしては、下記一般式(10)で表されるものが好ましい。
―(M3)―(M4)―(N2)― (10)
(式中、構造単位M3はテトラフルオロエチレン(m3)由来の構造単位であり、構造単位M4はプロピレン(m4)由来の構造単位であり、構造単位N2は単量体(m3)および単量体(m4)と共重合可能な単量体(n2)由来の繰り返し単位である)
一般式(10)で示されるテトラフルオロエチレン(TFE)/プロピレン系フッ素ゴムの中でも、構造単位M3を40〜70モル%、構造単位M4を60〜30モル%含むものが好ましく、より好ましくは構造単位M3を50〜60モル%、構造単位M4を50〜40モル%含むものである。構造単位N2は、構造単位M3と構造単位M4の合計量に対して、0〜40モル%であることが好ましい。
単量体(n2)としては、単量体(m3)および単量体(m4)と共重合可能なものであればいかなるものでもよいが、架橋部位を与える単量体であることが好ましい。たとえば、ビニリデンフルオライド、エチレンなどがあげられる。
パーフルオロフッ素ゴム(a−2)としては、下記一般式(11)で表されるものが好ましい。
―(M5)―(M6)―(N3)― (11)
(式中、構造単位M5はテトラフルオロエチレン(m5)由来の構造単位であり、構造単位M6はパーフルオロ(アルキルビニルエーテル)(m6)由来の構造単位であり、構造単位N3は単量体(m5)および単量体(m6)と共重合可能な単量体(n3)由来の繰り返し単位である)
一般式(11)で示されるパーフルオロフッ素ゴム(a−2)の中でも、構造単位M5を50〜90モル%、構造単位M6を10〜50モル%含むものが好ましく、より好ましくは構造単位M5を50〜80モル%、構造単位M6を20〜50モル%含むものであり、さらに好ましくは構造単位M5を55〜70モル%、構造単位M6を30〜45モル%含むものである。構造単位N3は、構造単位M5と構造単位M6の合計量に対して、0〜5モル%であることが好ましく、0〜2モル%であることがより好ましい。これらの組成の範囲を外れると、ゴム弾性体としての性質が失われ、樹脂に近い性質となる傾向がある。
パーフルオロ(アルキルビニルエーテル)(m6)としては、たとえばパーフルオロ(メチルビニルエーテル)、パーフルオロ(プロピルビニルエーテル)などがあげられ、これらをそれぞれ単独で、または任意に組合わせて用いることができる。
また、単量体(n3)としては、単量体(m5)および単量体(m6)と共重合可能なものであればいかなるものでもよいが、架橋部位を与える単量体が好ましい。
このような架橋部位を与える単量体としては、たとえばビニリデンフルオライド、一般式(7):
CY2 2=CY3−Rf 1CHR34 (7)
(式中、Y2は、水素原子、フッ素原子または−CH3、Rf 1は、フルオロアルキレン基、パーフルオロアルキレン基、フルオロポリオキシアルキレン基またはパーフルオロポリオキシアルキレン基、R3は、水素原子または−CH3、X4は、ヨウ素原子または臭素原子)で表されるヨウ素または臭素含有単量体、一般式(8):
CF2=CFO(CF2CF(CF3)O)m(CF2n−X5 (8)
(式中、mは、0〜5の整数、nは、1〜3の整数、X5は、シアノ基、カルボキシル基、アルコキシカルボニル基、臭素原子、ヨウ素原子)で表される単量体、一般式(9)
CH2=CH(CF2nI (9)
(式中、nは1〜10の整数)で表される単量体などがあげられ、たとえば特公平5−63482号公報、特開平7−316234号公報に記載されているようなパーフルオロ(6,6−ジヒドロ−6−ヨード−3−オキサ−1−ヘキセン)やパーフルオロ(5−ヨード−3−オキサ−1−ペンテン)などのヨウ素含有単量体、特開平4−505341号公報に記載されている臭素含有単量体、特開平4−505345号公報、特開平5−500070号公報に記載されているようなシアノ基含有単量体、カルボキシル基含有単量体、アルコキシカルボニル基含有単量体などがあげられる。これらをそれぞれ単独で、または任意に組合わせて用いることができる。
このヨウ素原子、臭素原子が、脱ハロゲン化反応により末端にビニル基を導入することが可能になる。また、ビニル基、ヨウ素原子、臭素原子、シアノ基、カルボキシル基、アルコキシカルボニル基が、架橋点として機能することができる。
かかるパーフルオロフッ素ゴム(a−2)の具体例としては、国際公開第97/24381号パンフレット、特公昭61−57324号公報、特公平4−81608号公報、特公平5−13961号公報などに記載されているフッ素ゴムなどがあげられる。
また、フッ素ゴム(a)は数平均分子量500〜500000のものが好ましく、1000〜500000のものがより好ましく用いられる。
一方、フッ素ゴム(a)は、常温で流動性を有するものであると、複雑な形状の成形品を容易に得ることができ、また、現場施工型の成形が可能となる点で好ましい。上記「常温」とは、0〜50℃を意味する。
具体的には、常温で流動性を有するフッ素ゴム(a)とは、常温における粘度が0.1〜2000Pa・sであることが好ましく、1〜1000Pa・sであることがより好ましい。粘度が、0.1Pa・s未満であると、ポリマー鎖が短すぎて架橋しにくい傾向があり、2000Pa・sを超えると、常温で流動性を有しない場合があり、複雑な形状の成形品を得ることが困難になる傾向がある。
さらに、常温で流動性を有するフッ素ゴム(a)は、常温におけるムーニー粘度が5〜100であるものが好ましく、50〜75であることがより好ましい。ムーニー粘度が、5未満であると、ポリマー鎖が短すぎて架橋しにくい傾向があり、100を超えると、常温で流動性を有しない場合があり、複雑な形状の成形品を得ることが困難になる傾向がある。前記ムーニー粘度は、JIS K 6300(1994年)に準拠して、ムーニー粘度計MV2000(モンサント社製)を用いて測定して得られる値である。
そして、常温で流動性を有するフッ素ゴム(a)は、数平均分子量が500〜20000であることが好ましく、900〜10000であることがより好ましい。数平均分子量が500未満であると、架橋による3次元網目構造の形成が困難となる傾向があり、20000を超えると、常温で流動性を有しない場合があり、複雑な形状の成形品を得ることが困難になる傾向がある。数平均分子量は、サイズ排除クロマトグラフィー(東ソー(株)製 HLC−8020、ポリスチレン標準)により求めた値である。
以上説明した非パーフルオロフッ素ゴム(a−1)およびパーフルオロフッ素ゴム(a−2)は、常法により製造することができるが、得られる重合体は分子量分布が狭く、分子量の制御が容易である点、末端にヨウ素原子を導入することができる点から、フッ素ゴムの製造法として公知のヨウ素移動重合法が好ましい。たとえば、実質的に無酸素下で、ヨウ素化合物、好ましくはジヨウ素化合物の存在下に、前記の含フッ素エラストマーを構成する単量体と、要すれば架橋部位を与える単量体を加圧下で撹拌しながらラジカル開始剤の存在下、水媒体中での乳化重合あるいは溶液重合を行なう方法があげられる。使用するヨウ素化合物の代表例としては、たとえば、一般式(12):
4xBry (12)
(式中、xおよびyはそれぞれ0〜2の整数であり、かつ1≦x+y≦2を満たすものであり、R4は炭素数1〜16の飽和もしくは不飽和のフルオロ炭化水素基またはクロロフルオロ炭化水素基、または炭素数1〜3の炭化水素基であり、酸素原子を含んでいてもよい)で示される化合物などをあげることができる。このようなヨウ素化合物を用いて得られる含フッ素エラストマーの末端には、ヨウ素原子または臭素原子が導入される。
一般式(12)で表される化合物としては、たとえば1,3−ジヨードパーフルオロプロパン、1,3−ジヨード−2−クロロパーフルオロプロパン、1,4−ジヨードパーフルオロブタン、1,5−ジヨード−2,4−ジクロロパーフルオロペンタン、1,6−ジヨードパーフルオロヘキサン、1,8−ジヨードパーフルオロオクタン、1,12−ジヨードパーフルオロドデカン、1,16−ジヨードパーフルオロヘキサデカン、ジヨードメタン、1,2−ジヨードエタン、1,3−ジヨード−n−プロパン、CF2Br2、BrCF2CF2Br、CF3CFBrCF2Br、CFClBr2、BrCF2CFClBr、CFBrClCFClBr、BrCF2CF2CF2Br、BrCF2CFBrOCF3、1−ブロモ−2−ヨードパーフルオロエタン、1−ブロモ−3−ヨードパーフルオロプロパン、1−ブロモ−4−ヨードパーフルオロブタン、2−ブロモ−3−ヨードパーフルオロブタン、3−ブロモ−4−ヨードパーフルオロブテン−1、2−ブロモ−4−ヨードパーフルオロブテン−1、ベンゼンのモノヨードモノブロモ置換体、ジヨード置換体、ならびに(2−ヨードエチル)および(2−ブロモエチル)置換体などがあげられ、これらの化合物は、単独で使用してもよく、相互に組み合せて使用することもできる。
これらのなかでも、重合反応性、架橋反応性、入手容易性などの点から、1,4−ジヨードパーフルオロブタン、ジヨードメタンなどが好ましい。
本発明で使用するラジカル重合開始剤は、従来から含フッ素エラストマーの重合に使用されているものと同じものであってよい。これらの開始剤には有機および無機の過酸化物ならびにアゾ化合物がある。典型的な開始剤として過硫酸塩類、過酸化カーボネート類、過酸化エステル類などがあり、好ましい開始剤として過硫酸アンモニウム(APS)があげられる。APSは単独で使用してもよく、またサルファイト類、亜硫酸塩類のような還元剤と組み合わせて使用することもできる。
乳化重合に使用される乳化剤としては、広範囲なものが使用可能であるが、重合中におこる乳化剤分子への連鎖移動反応を抑制する観点から、フルオロカーボン鎖、またはフルオロポリエーテル鎖を有するカルボン酸の塩類が望ましい。乳化剤の使用量は、添加された水の約0.05〜2重量%が好ましく、とくに0.2〜1.5重量%が好ましい。
本発明で使用するモノマー混合ガスは、カルブ(G.H.Kalb)ら、アドヴァンシーズ・イン・ケミストリー・シリーズ(Advances in Chemistry Series.),129,13(1973)に記載されるように、爆発性を有するので、重合装置には着火源となるスパークなどが発生しないように工夫する必要がある。
重合圧力は、広い範囲で変化させることができる。一般には、0.5〜7MPaの範囲である。重合圧力は、高い程重合速度が大きくなるため、生産性の向上の観点から、0.8MPa以上であることが好ましい。
前記一般式(12)で表される化合物の添加量としては、得られる含フッ素エラストマーの全重量の0.0001〜15重量%であればよい。
さらに、本発明においては、前述のようなフッ素ゴムを含む組成物を用いることもできる。
次に、アルカリ金属、アルカリ土類金属、遷移金属について説明する。
アルカリ金属、アルカリ土類金属、遷移金属は、脱ハロゲン化剤として作用するものであり、主鎖末端および/または側鎖末端に存在する一般式(1)または、一般式(2)で示される部位から脱ハロゲン化反応によりY1Zが脱離して、一般式(3)で示される部位に変換されるものである。また、添加量等の条件設定、溶媒の選択などにより、脱ハロゲン化反応に伴って、水素還元体の生成などの副反応が生じることが知られている。
アルカリ金属、アルカリ土類金属、遷移金属の中でも、アルカリ金属は、塩基性が強く、含フッ素エラストマーを劣化させる傾向があるため、アルカリ土類金属、遷移金属が好ましく、脱ハロゲン化能の点から、原子量21−30の遷移金属、Mg、Caが好ましく、安価で脱ハロゲン化能が高い点からMg、Cu、Znがより好ましい。
アルカリ金属、アルカリ土類金属、遷移金属の添加量としては、含フッ素エラストマーの一般式(1)または(2)で示される部位の含有量の1〜50倍モル量であることが好ましく、2〜20倍モル量であることがより好ましく、上記含フッ素エラストマーをより高収率で製造できる点から、5〜20倍モル量であることがさらに好ましい。1倍モル量未満であると、脱ハロゲン化反応が充分に進行しない傾向があり、20倍モル量をこえると、それ以上には収率が上昇せず、金属試薬のコストが大きくなる傾向がある。
また、脱ハロゲン化反応に用いる溶媒としては、副反応を抑制することができる点から、酸性度の低い溶媒、ラジカル連鎖を起こしにくい構造をもつ溶媒、極性が高い溶媒、含水率が低い溶媒が好ましく、反応速度を上げるために、ゴムを溶解させるものがより好ましい。
酸性度の低い溶媒としては、pKaが6以上のものであることが好ましく、10以上であることがより好ましく、14以上であるものがさらに好ましい。
極性が高い溶媒としては、誘電率が2以上のものが好ましく、5以上のものがより好ましい。
ラジカル連鎖を起こしにくい構造をもつ溶媒としては、ラジカル反応で引き抜かれやすい水素原子を持たない構造を有するものが好ましい。
具体的には、ゴムの溶解性、ラジカルに対する安定性の点からアルコール類が好ましく、ゴムの溶解性、ラジカルに対する安定性、pKaが低い点から、ニトリル類、ケトン類、エステル類、エーテル類が好ましく、ニトリル類がより好ましい。
アルコール類としては、ゴムの溶解性、ラジカルに対する安定性の点から、炭素数15以下のアルコールが好ましいく、炭素数7以下のアルコールがより好ましい。具体的には、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t−ブタノール、フェノールなどがあげられ、これらの中でも、ゴムの溶解性の点から、メタノールが好ましい。
ニトリル類としては、ゴムの溶解性、ラジカルに対する安定性の点から、炭素数10以下のものが好ましく、炭素数8以下のものがより好ましい。具体的には、アセトニトリル、シアン化エチル、ブチロニトリル、シアン化ブチル、ベンゾニトリルなどがあげられる。これらの中でもアセトニトリルがゴムの溶解性が高く好ましい。
ケトン類は、ゴムの溶解性、ラジカルに対する安定性の点から、炭素数10以下のものが好ましく、炭素数6以下のものがより好ましい。具体的には、アセトン、ジメチルケトン、メチルエチルケトン、ジエチルケトン、シクロヘキサノンなどがあげられる。
エステル類は、ゴムの溶解性、ラジカルに対する安定性の点から、炭素数10以下のものが好ましく、炭素数6以下のものがより好ましい。具体的には、酢酸メチル、酢酸エチル、酢酸ブチル、酢酸プロピルなどがあげられる。
エーテル類は、ゴムの溶解性、ラジカルに対する安定性の点から、炭素数10以下のものが好ましく、炭素数6以下のものがより好ましい。具体的には、テトラヒドロフラン、モノグライム、ジグライム、テトラグライムなどがあげられる。
溶媒の添加量としては、特に限定されるものではないが、含フッ素エラストマー100重量部に対して、500〜5000重量部であることが好ましい。
反応条件としては、含フッ素エラストマー、アルカリ金属、アルカリ土類金属、遷移金属、溶媒などの種類により適宜最適な条件を選択すればよいが、50〜100℃、1〜24時間、反応させることが好ましい。
脱ハロゲン化反応で得られた一般式(3)で示される部位を有する含フッ素エラストマーにおける、末端に対する不飽和基の割合は、両末端を反応に用いる場合は、50%以上が好ましく、70%以上がより好ましく、90%以上がさらに好ましい。片末端を反応に用いる場合は、その片末端の70%以上が好ましく、80%以上がより好ましく、90%以上がさらに好ましい。不飽和基の割合が、この範囲外であると、得られた含フッ素エラストマーを架橋する際に、充分な架橋が行なえない傾向がある。
また、本発明においては、脱ハロゲン化反応で得られた一般式(3)で示される部位を有する含フッ素エラストマーに酸化剤を作用させて、一般式(3)で示される部位を−COOHに変換する工程を含むこともできる。
酸化剤としては、特に限定されるものではなく、例えば、例えば、日本化学会編 第5版 実験化学講座17巻 2004 丸善(株)に記載される任意の酸化剤を使用することができる。具体的には、次亜塩素酸塩、クロム酸、マンガン化合物、4酸化オスミウム、4酸化ルテニウム、銅化合物、パラジウム化合物、鉄化合物、バナジウム化合物、金属酸化物、酸素、オゾンなどが好ましく、クロム酸、過マンガン酸塩、活性化ニ酸化マンガン、マンガン(III)塩、4酸化オスミウム、4酸化ルテニウムがより好ましい。
酸化剤の添加量としては、含フッ素エラストマーの一般式(3)で示される部位の含有量の1〜50倍モル量であることが好ましく、2〜50倍モル量であることがより好ましく、−COOHへの変換効率が高い点から、5〜20倍モル量であることがさらに好ましい。1倍モル量未満であると、酸化反応が充分に進行しない傾向があり、50倍モル量をこえると、酸化剤のコストがあがるだけでメリットがない。
反応条件としては、含フッ素エラストマー、酸化剤、溶媒などの種類により適宜最適な条件を選択すればよいが、室温〜100℃、1〜20時間、反応させることが好ましい。
このようにして本発明の製造方法により得られる一般式(3)で示される部位に変換された含フッ素エラストマーとしては、たとえば、一般式(4):
a―(M)―(A)―Cb (4)
で示される含フッ素エラストマーがあげられ、文献未公知の新規物質である。
式中、Mはビニリデンフルオライドおよび/またはテトラフルオロエチレン由来の構造単位であり、前記した含フッ素エラストマーであればより好適に用いることができる。
Aは、Mと共重合可能なエチレン性単量体由来の構造単位であれば、いかなるものでもよいが、たとえば、クロロトリフルオロエチレン(CTFE)、トリフルオロエチレン、ヘキサフルオロプロピレン(HFP)、トリフルオロプロピレン、テトラフルオロプロピレン、ペンタフルオロプロピレン、トリフルオロブテン、テトラフルオロイソブテン、パーフルオロ(アルキルビニルエーテル)(PAVE)、フッ化ビニルなどの含フッ素単量体、エチレン、プロピレン、アルキルビニルエーテルなどがあげられる。
B、Cは同じかまたは異なり、
一般式(5):
Figure 0004665964
で示される基である。
a、bは、それぞれ0または1であり、a+b≠0である。a、bが、それぞれ0である場合、一般式(4)で示される含フッ素エラストマーの末端としては、一般式(13a):
Figure 0004665964
一般式(13b):
Figure 0004665964
で示される基、連鎖移動残基または開始剤末端からなる群から選ばれる基である。
式中Y3は、水素原子、臭素原子、塩素原子またはヨウ素原子である。
2は、炭素数1〜5のエーテル結合を含んでもよいアルキレン基であって、その一部または全ての水素原子がフッ素原子で置換されていてもよい。
nは0以上の整数であり、0が好ましい。上限値としては、特に限定されないが、5以下であることが好ましい。
連鎖移動残基とは、含フッ素エラストマーの合成に用いられる連鎖移動剤に由来するポリマー末端の構造であり、連鎖移動剤により重合成長末端が停止した末端と、重合成長末端を停止させた連鎖移動剤から重合が再開始したポリマーの末端を含み、たとえば、−CF3、−CF2CF3、−CF2CF2CF2CF2COOH、−CF(CF32、−CF2CF2H、−CF2CH3、−CH2CF2Hなどがあげられる。
開始剤末端とは、含フッ素エラストマーの合成に用いられる重合開始剤に由来するポリマー末端の構造であり、重合開始剤の構造、あるいは重合開始剤と含フッ素エラストマーを構成する単量体が反応した構造を含み、たとえば、−CF2CH2OH、−CH2COOH、−CF2COOH、−CF2COOD、−CH2COOD(Dは、NH4、あるいは、Na、Kなどのアルカリ金属)などがあげられる。
これらの基の中でも、本発明の含フッ素エラストマーとしては、一般式(5)で示される基を有するものが好ましい。
一般式(4)で示される含フッ素エラストマーは、前述の製造方法により得られるものであることが好ましい。
また、含フッ素エラストマーの数平均分子量は、500〜500000であることが好ましく、3000〜500000であることがより好ましい。数平均分子量が、500未満では末端を用いた硬化反応を行った場合に架橋密度が上がり過ぎる傾向があり、500000をこえると含フッ素エラストマーの粘度が高すぎて架橋剤との混合が困難となる傾向がある。
次に、本発明の硬化性組成物について説明する。
本発明の硬化性組成物は、主鎖末端および/または側鎖末端に、一般式(3)で示される部位を有する含フッ素エラストマーと架橋反応可能な化合物を含むことが、充分に架橋された硬化体を得る点から好ましい。
架橋反応可能な化合物としては、含フッ素エラストマーと反応しうる官能基を分子中に複数有する多官能化合物が好ましくあげられる。多官能化合物としては、架橋を充分に行う点から、1分子あたりの官能基の保有数が少なくとも2以上、必要に応じて3以上である多官能化合物を用いることが好ましい。
また、硬化性組成物が充分に架橋するためには、前記含フッ素エラストマーが有する架橋部位に応じた多官能化合物を用いることが好ましい。以下、該多官能化合物の具体例をあげるが、該多官能化合物は1種または2種以上を用いてもよい。
架橋性部位が不飽和結合を少なくとも1つ有する炭素数2〜10の炭化水素基である場合、多官能化合物としては、−SiH基を有する化合物、多官能不飽和化合物が好ましくあげられる。
有機過酸化物を用いてパーオキサイド架橋を行なった場合、従来の末端にヨウ素を含むエラストマーと比較して、本発明のエラストマーは末端にヨウ素を持たないため、架橋時に含ヨウ素化合物を発生しないため好ましい。
架橋部位が−COOH基の場合、多官能性化合物としては、ポリアミン化合物、ポリイソシアナート化合物、ポリエポキシ化合物、ポリアミノフェノール化合物、ポリアミノチオフェノール化合物、などが好ましくあげられる。
ポリアミン化合物としては、ヘキサメチレンジアミン、トリエチレンテトラミン、トリエチレンジアミンなどのポリアミン;ポリアミン塩とグアニジン誘導体の併用などがあげられる。
ポリイソシアナート化合物としては、トリレンジイソシアナート、ジフェニルメタンジイソシアナート、ヘキサメチレンジイソシアナートなどがあげられる。ポリイソシアナート化合物は、プレポリマーや架橋温度を選択することができるブロック型であってもよい。
ポリエポキシ化合物としては、ノボラック型、ビスフェノールA型、ビスフェノールAF型などがあげられる。ポリエポキシ化合物は、プレポリマーであってもよい。
ポリアミノフェノール化合物、ポリアミノチオフェノール化合物、ポリアミン化合物としては、一般式(14):
Figure 0004665964
(式中、X6は−OH、−SH、−NH2、R5は炭素数1〜10の炭化水素基、nは2〜5の整数である)で示される化合物があげられる。
また、架橋部位が、不飽和結合を少なくとも1つ有する炭素数2〜10の炭化水素基の場合、不飽和結合がヒドロシリル化反応により3次元網目構造に寄与することができる点から、多官能性化合物としては、特に2個以上のSi−H基を有する化合物であることが好ましい。
上記2個以上の−SiH基を有する化合物としては、通常、一般式(15):
6 bcSiO(4-b-c)/2 (15)
(式中、R6は、脂肪族不飽和結合を除く、炭素数1〜10、とくに1〜8の置換または非置換の1価炭化水素基である)で示される化合物があげられる。このような1価炭化水素基としては、たとえば、トリフルオロプロピル基などのハロゲンで置換されたアルキル基、アルキル基、フェニル基などがあげられる。これらのなかでも、メチル基、エチル基、プロピル基、フェニル基、トリフルオロプロピル基が好ましく、とくにメチル基、フェニル基が好ましい。
一般式(15)において、bは、0≦b<3であることが好ましく、0.6<b<2.2であることがより好ましく、1.5≦b≦2であることがさらに好ましく、cは、0<c≦3であることが好ましく、0.002≦c<2であることがより好ましく、0.01≦c≦1であることがさらに好ましい。また、b+cは、0<b+c≦3であることが好ましく、1.5<b+c≦2.7であることがより好ましい。
上記2個以上の−SiH基を有する化合物は、1分子中のケイ素原子数が好ましくは2〜1000個、より好ましくは2〜300個、さらに好ましくは4〜200個のオルガノハイドロジェンポリシロキサンであり、具体的には、1,1,3,3−テトラメチルジシロキサン、1,3,5−トリメチルシクロトリシロキサン、1,3,5,7−テトラメチルシクロテトラシロキサン、1,3,5,7,9−ペンタメチルシクロペンタシロキサンなどのシロキサンオリゴマー;分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体、分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端シラノール基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体、R6 2(H)SiO1/2 単位とSiO4/2 単位とからなり、任意にR6 3SiO1/2 単位、R6 2SiO2/2 単位、R6(H)SiO2/2単位、(H)SiO3/2またはR6SiO3/2単位を含むシリコーン樹脂などをあげることができる。
分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば一般式(16)で表される化合物、一般式(16)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、dは、2以上の整数を表す。)
分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体としては、一般式(17)で表される化合物、一般式(17)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、eは、1以上の整数を表し、fは、2以上の整数を表す。)
分子鎖両末端シラノール基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば下記式で表される化合物、下記式においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
分子鎖両末端シラノール基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体としては、たとえば一般式(18)で表される化合物、一般式(18)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、eは、1以上の整数を表し、fは、2以上の整数を表す。)
分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンとしては、たとえば一般式(19)で表される化合物、一般式(19)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、eは、1以上の整数を表す。)
分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサンとしては、たとえば一般式(20)で表される化合物、一般式(20)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、eは、1以上の整数を表す。)
分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン/メチルハイドロジェンシロキサン共重合体としては、たとえば一般式(21)で表される化合物、一般式(21)においてメチル基の一部または全部をエチル基、プロピル基、フェニル基、トリフルオロプロピル基などで置換した化合物などがあげられる。
Figure 0004665964
(式中、gおよびhは、それぞれ、1以上の整数を表す。)
このような化合物は、公知の方法により製造することができ、たとえばオクタメチルシクロテトラシロキサンおよび/もしくはテトラメチルシクロテトラシロキサンと、末端基となり得るトリオルガノシリル基またはジオルガノハイドロジェンシロキシ基を含む化合物とを、硫酸、トリフルオロメタンスルホン酸、メタンスルホン酸などの触媒の存在下、−10〜40℃程度の温度で平衡化させることによって容易に得ることができる。上記トリオルガノシリル基を含む化合物としては、たとえばヘキサメチルジシロキサンなどがあげられ、上記ジオルガノハイドロジェンシロキシ基を含む化合物としては、たとえば1,3−ジハイドロ−1,1,3,3−テトラメチルジシロキサンなどがあげられる。
上記1分子中に2個以上のSi−H基を有する化合物は、本発明の含フッ素エラストマーとの相溶性、分散性および架橋後の均一性を考慮すると、また、1分子中に1個以上の1価のパーフルオロオキシアルキル基、1価のパーフルオロアルキル基、2価のパーフルオロオキシアルキレン基または2価のパーフルオロアルキレン基を有し、かつ、2個以上、好ましくは3個以上のSi−H基を有するものが好ましい。このパーフルオロオキシアルキル基、パーフルオロアルキル基、パーフルオロオキシアルキレン基、パーフルオロアルキレン基としては、特に下記一般式で表されるものをあげることができる。
1価のパーフルオロアルキル基としては、一般式(22):
k2k+1− (22)
(式中、kは、1〜20、好ましくは2〜10の整数を表す。)であり、
2価のパーフルオロアルキレン基としては、一般式(23):
−Ck2k− (23)
(式中、kは1〜20、好ましくは2〜10の整数を表す。)であり、
1価のパーフルオロオキシアルキル基としては、一般式(24)または(25):
Figure 0004665964
(式中、nは、1〜5の整数を表す。)
2価のパーフルオロオキシアルキレン基としては、一般式(26):
Figure 0004665964
(式中、mは、1〜50の整数を表し、nは、1〜50の整数を表す。m+nは、2〜100を満足する。)、または一般式(27):
−(CF2O)m−(CF2CF2O)n−CF2− (27)
(式中、mおよびnは、それぞれ、1〜50の整数を表す。)
上記パーフルオロアルキル基、パーフルオロオキシアルキル基、パーフルオロアルキレン基またはパーフルオロオキシアルキレン基とケイ素原子とをつなぐ2価の連結基としては、アルキレン基、アリーレン基、アルキレン基とアリーレン基とを組み合わせた基、これらの基にエーテル結合酸素原子、アミド結合、カルボニル結合などを介在させた基などであってよく、たとえば、−CH2CH2−、−CH2CH2CH2−、−CH2CH2CH2OCH2−、−CH2CH2CH2−NH−CO−、−CH2CH2CH2−N(Ph)−CO−(式中、Phは、フェニル基を表す。)、−CH2CH2CH2−N(CH3)−CO−、−CH2CH2CH2−O−CO−などの炭素数2〜12のものがあげられる。
また、上記1分子中に2個以上の−SiH基を有する化合物における1価または2価の含フッ素置換基、すなわち、パーフルオロアルキル基、パーフルオロオキシアルキル基、パーフルオロアルキレン基またはパーフルオロオキシアルキレン基を含有する1価の有機基以外のケイ素原子に結合した1価の置換基としては、たとえば、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、シクロヘキシル基、オクチル基、デシル基などのアルキル基;ビニル基、アリル基などのアルケニル基;フェニル基、トリル基、ナフチル基などのアリール基;ベンジル基、フェニルエチル基などのアラルキル基;これらの基の水素原子の少なくとも一部が塩素原子、シアノ基などで置換された、たとえばクロロメチル基、クロロプロピル基、シアノエチル基などの炭素数1〜20の非置換または置換の炭化水素基があげられる。
上記1分子中に2個以上の−SiH基を有する化合物としては、環状、鎖状、三次元網状またはそれらの組み合わせの何れでもよい。上記1分子中に2個以上の−SiH基を有する化合物のケイ素原子数は、特に制限されるものではないが、通常2〜60、好ましくは3〜60、より好ましくは3〜30である。
上記1分子中に2個以上の−SiH基を有する化合物としては、たとえば下記の化合物があげられる。下記式でMeはメチル基、Phはフェニル基を表す。なお、これらの化合物は1種を単独でまたは2種以上を組み合わせて使用することができる。
Figure 0004665964
(式中、mは、1〜20、平均10の整数を表し、nは、1〜10、平均6の整数を表す。)
Figure 0004665964
Figure 0004665964
(式中、Sは、
Figure 0004665964
を表し、nは、1〜30の整数を表し、mは、1〜30の整数を表す。n+mは、2〜60、平均2〜50を満足する。)
Figure 0004665964
(式中、Sは、
Figure 0004665964
を表し、nは、1〜30の整数を表し、mは、1〜30の整数を表す。n+mは、2〜60、平均2〜50を満足する。)
Figure 0004665964
(式中、nは、2〜60、平均3〜50の整数を表す。)
Figure 0004665964
(式中、nは、2〜60、平均3〜50の整数を表す。)
Figure 0004665964
(式中、nは、2〜60、平均3〜50の整数を表す。)
また、架橋部位が、不飽和結合を少なくとも1つ有する炭素数2〜10の炭化水素基である含フッ素エラストマーと1分子中に2個以上のSi−H基を有する化合物を含む硬化性組成物の場合、ヒドロシリル化反応の反応性の点から、ヒドロシリル化反応触媒を加えることが好ましい。
ヒドロシリル化反応触媒としては、含フッ素エラストマーと1分子中に2個以上のSi−H基を有する化合物との付加反応(アルケンのヒドロシリル化反応)を促進するものであれば特に限定されず、たとえば白金系触媒、パラジウム系触媒、ロジウム系触媒などの白金族元素よりなる付加反応触媒(周期律表8族金属、8族金属錯体、8族金属化合物などの8族金属系触媒)をあげることができ、なかでも、比較的入手しやすい点で、白金系触媒が好ましい。
白金系触媒は、通常、付加硬化型の硬化に使用される公知のものでよく、たとえば米国特許第2,970,150号明細書に記載の微粉末金属白金触媒、米国特許第2,823,218号明細書に記載の塩化白金酸触媒、米国特許第3,159,601号明細書および米国特許第159,662号明細書に記載の白金と炭化水素との錯化合物、米国特許第3,516,946号明細書に記載の塩化白金酸とオレフィンとの錯化合物、米国特許第3,775,452号明細書および米国特許第3,814,780号明細書に記載の白金とビニルシロキサンとの錯化合物などがあげられる。より具体的には、白金の単体(白金黒);塩化白金酸;塩化白金酸とエチレンなどのオレフィンとの錯体;塩化白金酸とアルコールまたはビニルシロキサンとの錯体;シリカ、アルミナ、カーボンなどの担体上に担持された白金などがあげられる。
上記パラジウム系触媒は、パラジウム、パラジウム化合物、塩化パラジウム酸などからなり、また、上記ロジウム系触媒は、ロジウム、ロジウム化合物、塩化ロジウム酸などからなり、たとえば、RhCl(PPh33、RhCl(CO)(PPh32、RhCl(C242、Ru3(CO)12、IrCl(CO)(PPh32、Pd(PPh34(Phは、フェニル基を表す。)などがあげられる。
上記ヒドロシリル化反応触媒としては、また、ルイス酸、コバルトカルボニルなどであってもよい。
また、反応抑制剤を用いることが好ましい。反応抑制剤としては、たとえば、ベンゾトリアゾール;アクリロニトリル;N,N−ジアリルアセトアミド、N,N−ジアリルベンズアミド、N,N,N’,N’−テトラアリル−o−フタル酸ジアミド、N,N,N’,N’−テトラアリル−m−フタル酸ジアミド、N,N,N’,N’−テトラアリル−p−フタル酸ジアミドなどのアミド化合物;イオウ;リン;窒素;アミン化合物;イオウ化合物;リン化合物;スズ;スズ化合物;テトラメチルテトラビニルシクロテトラシロキサン;ハイドロパーオキサイドなどの有機過酸化物などがあげられる。
上記反応抑制剤としては、また、たとえば、1−エチニル−1−ヒドロキシシクロヘキサン、3−メチル−1−ブチン−3−オール、3,5−ジメチル−1−ヘキシン−3−オール、フェニルブチノールなどのアセチレンアルコール、3−メチル−3−ペンテン−1−イン、3,5−ジメチル−3−ヘキセン−1−イン、3−メチル−1−ペンテン−3−オール、米国特許第3,445,420号明細書において配合物(4)として例示される化合物、特公昭54−3774号公報において成分(ニ)として例示される化合物などのアセチレン化合物などであってもよい。
本発明の含フッ素エラストマーの架橋部位と架橋反応可能な化合物の添加量は、含フッ素エラストマー100重量部に対して、0.05〜10重量部であることが好ましく、0.5〜5重量部であることがより好ましい。0.05重量部未満であると、充分に架橋を行うことができない傾向があり、10重量部を超えると、添加量に見合った程度にしか架橋反応が進行しない傾向がある。
本発明の硬化性組成物は、反応を促進するため、受酸剤を予め添加することも可能である。受酸剤としては、たとえば酸化マグネシウム、酸化カルシウム、酸化珪素、酸化アルミニウム、酸化鉛等の金属酸化物;水酸化マグネシウム、水酸化カルシウム、水酸化アルミニウム等の金属水酸化物;合成ハイドロタルサイト等を用いることができる。受酸剤の使用量は、含フッ素エラストマー100重量部に対し1〜30重量部であることが好ましい。
また、本発明の硬化性組成物は、加工助剤としての機能も期待できる点から、先述した本発明の製造方法により得られる含フッ素エラストマーに含まれないその他の含フッ素エラストマーを含んでいてもよい。
そして、本発明の硬化性組成物は、必要に応じて含フッ素エラストマーを含む硬化性組成物に配合される通常の添加物、たとえば充填剤、加工助剤、可塑剤、着色剤、酸化防止剤、老化防止剤、オゾン劣化剤、紫外線吸収剤などを配合することができ、前記のものとは異なる常用の架橋剤や架橋助剤を1種またはそれ以上配合してもよく、各成分を、通常のエラストマー用加工機械、たとえば、オープンロール、バンバリーミキサー、ニーダーなどを用いて混合することにより調製することができる。このほか、密閉式混合機を用いる方法やエマルジョン混合から共凝析する方法によっても調製することができる。このようにして得られた硬化性組成物は常法に従って架橋、成形される。すなわち、圧縮成形、射出成形、押し出し成形、カレンダー成形または溶剤に溶かしてディップ成形、コーティング等により成形される。
架橋条件は、成形方法や成形品の形状により異なるが、おおむね、100℃〜300℃で数秒〜5時間の範囲である。また、架橋物の物性を安定化させるために二次架橋を行ってもよい。二次架橋条件としては、150〜300℃で30分〜48時間程度である。
また、本発明の製造方法により得られた含フッ素エラストマーが低分子量であり、常温で流動性を有する場合、プラネタリーミキサーや卓上のミキサーで混合すればよい。この時、反応の促進のため、温度を50℃以上に加温してもよい。さらに、硬化性組成物は50℃以上の温度で3時間以上反応させておくことが好ましい。
常温で流動性を有する硬化性組成物は、通常、200℃以下の温度でホットメルトガン等の押出しガンによる加工、LIMS(Liquid Injection Molding System)成形機による射出成形や押出し成形、室温〜200℃で型に流し込んで行う成形等を行うことができる。
硬化性組成物を架橋させる方法としては、架橋部位の種類によっては、上記以外の方法を用いることができる。
本発明の成形品は、以下に示す分野で好適に用いることができる。
半導体製造装置、液晶パネル製造装置、プラズマパネル製造装置、プラズマアドレス液晶パネル、フィールドエミッションディスプレイパネル、太陽電池基板等の半導体関連分野では、O(角)リング、パッキン、シール材、チューブ、ロール、コーティング、ライニング、ガスケット、ダイアフラム、ホース等があげられ、これらはCVD装置、ドライエッチング装置、ウェットエッチング装置、酸化拡散装置、スパッタリング装置、アッシング装置、洗浄装置、イオン注入装置、排気装置、薬液配管、ガス配管に用いることができる。具体的には、ゲートバルブのOリング、シール材として、クォーツウィンドウのOリング、シール材として、チャンバーのOリング、シール材として、ゲートのOリング、シール材として、ベルジャーのOリング、シール材として、カップリングのOリング、シール材として、ポンプのOリング、シール材、ダイアフラムとして、半導体用ガス制御装置のOリング、シール材として、レジスト現像液、剥離液用のOリング、シール材として、ウェハー洗浄液用のホース、チューブとして、ウェハー搬送用のロールとして、レジスト現像液槽、剥離液槽のライニング、コーティングとして、ウェハー洗浄液槽のライニング、コーティングとしてまたはウェットエッチング槽のライニング、コーティングとして用いることができる。さらに、封止材・シーリング剤、光ファイバーの石英の被覆材、絶縁、防振、防水、防湿を目的とした電子部品、回路基盤のポッティング、コーティング、接着シール、磁気記憶装置用ガスケット、エポキシ等の封止材料の変性材、クリーンルーム・クリーン設備用シーラント等として用いられる。
自動車分野では、ガスケット、シャフトシール、バルブステムシール、シール材およびホースはエンジンならびに周辺装置に用いることができ、ホースおよびシール材はAT装置に用いることができ、O(角)リング、チューブ、パッキン、バルブ芯材、ホース、シール材およびダイアフラムは燃料系統ならびに周辺装置に用いることができる。具体的には、エンジンヘッドガスケット、メタルガスケット、オイルパンガスケット、クランクシャフトシール、カムシャフトシール、バルブステムシール、マニホールドパッキン、オイルホース、酸素センサー用シール、ATFホース、インジェクターOリング、インジェクターパッキン、燃料ポンプOリング、ダイアフラム、燃料ホース、クランクシャフトシール、ギアボックスシール、パワーピストンパッキン、シリンダーライナーのシール、バルブステムのシール、自動変速機のフロントポンプシール、リアーアクスルピニオンシール、ユニバーサルジョイントのガスケット、スピードメーターのピニオンシール、フートブレーキのピストンカップ、トルク伝達のO−リング、オイルシール、排ガス再燃焼装置のシール、ベアリングシール、EGRチューブ、ツインキャブチューブ、キャブレターのセンサー用ダイアフラム、防振ゴム(エンジンマウント、排気部等)、再燃焼装置用ホース、酸素センサーブッシュ等として用いることができる。
航空機分野、ロケット分野および船舶分野では、ダイアフラム、O(角)リング、バルブ、チューブ、パッキン、ホース、シール材等があげられ、これらは燃料系統に用いることができる。具体的には、航空機分野では、ジェットエンジンバルブステルシール、燃料供給用ホース、ガスケットおよびO−リング、ローテーティングシャフトシール、油圧機器のガスケット、防火壁シール等に用いられ、船舶分野では、スクリューのプロペラシャフト船尾シール、ディーゼルエンジンの吸排気用バルブステムシール、バタフライバルブのバルブシール、バタフライ弁の軸シール等に用いられる。
プラント等の化学品分野では、ライニング、バルブ、パッキン、ロール、ホース、ダイアフラム、O(角)リング、チューブ、シール材、耐薬品用コーティング等があげられ、これらは医薬、農薬、塗料、樹脂等化学品製造工程に用いることができる。具体的には、化学薬品用ポンプ、流動計、配管のシール、熱交換器のシール、硫酸製造装置のガラス冷却器パッキング、農薬散布機、農薬移送ポンプのシール、ガス配管のシール、メッキ液用シール、高温真空乾燥機のパッキン、製紙用ベルトのコロシール、燃料電池のシール、風洞のジョイントシール、耐トリクレン用ロール(繊維染色用)、耐酸ホース(濃硫酸用)、ガスクロマトグラフィー、pHメーターのチューブ結合部のパッキン、塩素ガス移送ホース、ベンゼン、トルエン貯槽の雨水ドレンホース、分析機器、理化学機器のシール、チューブ、ダイアフラム、弁部品等として用いることができる。
医薬品等の薬品分野では、薬栓等として用いることができる。
現像機等の写真分野、印刷機械等の印刷分野および塗装設備等の塗装分野では、ロール等があげられ、それぞれフィルム現像機・X線フィルム現像機、印刷ロールおよび塗装ロールに用いることができる。具体的には、フィルム現像機・X線フィルム現像機の現像ロールとして、印刷ロールのグラビアロール、ガイドロールとして、塗装ロールの磁気テープ製造塗工ラインのグラビアロール、磁気テープ製造塗工ラインのガイドロール、各種コーティングロール等として用いることができる。さらに、乾式複写機のシール、印刷設備の印刷ロール、スクレーパー、チューブ、弁部品、塗布、塗装設備の塗布ロール、スクレーパー、チューブ、弁部品、プリンターのインキチューブ、ロール、ベルト、乾式複写機のベルト、ロール、印刷機のロール、ベルト等として用いることができる。
またチューブを分析・理化学機分野に用いることができる。
食品プラント機器分野では、ライニング、バルブ、パッキン、ロール、ホース、ダイアフラム、O(角)リング、チューブ、シール材、ベルト等があげられ、食品製造工程に用いることができる。具体的には、プレート式熱交換器のシール、自動販売機の電磁弁シール等として用いることができる。
原子力プラント機器分野では、パッキン、Oリング、ホース、シール材、ダイアフラム、バルブ、ロール、チューブ等があげられる。
鉄板加工設備等の鉄鋼分野では、ロール等があげられ、鉄板加工ロール等に用いることができる。
一般工業分野では、パッキング、Oリング、ホース、シール材、ダイアフラム、バルブ、ロール、チューブ、ライニング、マンドレル、電線、フレキシブルジョイント、ベルト、ゴム板、ウェザーストリップ、PPC複写機のロール、ロールブレード、ベルト等があげられる。具体的には、油圧、潤滑機械のシール、ベアリングシール、ドライクリーニング機器の窓、その他のシール、六フッ化ウランの濃縮装置のシール、サイクロトロンのシール(真空)バルブ、自動包装機のシール、空気中の亜硫酸ガス、塩素ガス分析用ポンプのダイアフラム(公害測定器)、印刷機のロール、ベルト、酸洗い用絞りロール等に用いられる。
電気分野では、具体的には、新幹線の絶縁油キャップ、液封型トランスのベンチングシール、油井ケーブルのジャケット等として用いられる。
燃料電池分野では、具体的には、電極、セパレーター間のシール材や水素・酸素・生成水配管のシール等として用いられる。
電子部品分野では、具体的には、放熱材原料、電磁波シールド材原料、エポキシ等のプリント配線板プリプレグ樹脂の変性材、電球等の飛散防止材、コンピューターのハードディスクドライブのガスケット等に用いられる。
現場施工型の成形に用いることが可能なものとしては特に限定されず、たとえば、自動車エンジン用メタルガスケットのコーティング剤、エンジンのオイルパンのガスケット、複写機・プリンター用のロール、建築用シーリング剤、磁気記録装置用のガスケット、クリーンルーム用フィルターユニットのシーリング剤、プリント基盤のコーティング剤、電気・電子部品の固定剤、電気機器リード線端子の絶縁防湿処理、電気炉等のオーブンのシール、シーズヒーターの末端処理、電子レンジの窓枠シール、CRTウェッジおよびネックの接着、自動車電装部品の接着、厨房、浴室、洗面所等の目地シール等があげられる。
本発明の硬化用組成物は、クリーン性を活かし、磁気記録装置(ハードディスクドライブ)用のガスケット、半導体製造装置やウェハー等のデバイス保管庫等のシーリング材等のクリーン設備用シール材に特に好適に用いられる。
本発明の硬化用組成物は、耐薬品性、ガス低透過性、難燃性等の特性を活かし、燃料電池セル電極間やその周辺配管等に用いられるパッキン等の燃料電池用のシール材等にも特に好適に用いられる。
つぎに本発明を実施例をあげて説明するが、本発明はかかる実施例のみに限定されるものではない。
参考例1
(含フッ素エラストマーの重合)
磁力誘導攪拌装置を有する内容積3.0リットルの重合槽に、純水1.47L、10重量%のパーフルオロオクタン酸アンモニウム水溶液30gを供給した。系内を窒素ガスで充分置換したのち減圧状態にした後、内温を80℃にし、HFPを内圧が0.73MPaまで、さらにVdFを1.5MPaまで仕込んだ。攪拌下に、過硫酸アンモニウム塩(APS)0.114gを水8.1gに溶解して仕込み、重合を開始した。重合圧力を1.5MPaとし、重合時の圧力低下を補うため、VdF/HFP混合モノマー(78/22(モル%))を連続的に供給し、重合終了までに、300gのモノマーを槽内に供給した。途中、VdF/HFP混合モノマーを7g供給した時点で、オクタフルオロ−1,4−ジヨードブタン22.7g、重合開始後、3時間、6時間でそれぞれ、APS0.114gを水8.1gに溶解させた水溶液を追加で仕込んだ。反応時間は10時間1分であった。得られた乳濁液の重量は1851g、ポリマー濃度が17.7重量%であった。
この乳濁液を硫酸アルミ水溶液で凝析した後、温水により洗浄し、粘稠な含フッ素エラストマーを得た。得られた含フッ素エラストマーの共重合組成比は19F−NMRで測定によりVdF/HFP=77.5/22.5(モル%)であった。GPC測定でのポリスチレン換算の分子量は、重量平均分子量が10760、数平均分子量が8600であった。また、重アセトン溶媒での1H−NMRの分析において、末端構造−CF2CH2Iに由来する3.97、3.91、3.85、3.78ppmのピークが観察された。このピークの強度と含フッ素エラストマーの主鎖−CH2−に由来するピークの強度の比率は1:34であった。
実施例1
参考例1で得られた含フッ素エラストマー7.75gを還流冷却管の付いた4つ口フラスコ中、禁水条件下で無水アセトニトリル100gに溶解させ、さらに亜鉛粉末(1級、キシダ化学(株)製)0.73g(含フッ素エラストマーの−CF2CH2I含有量に対して5.6倍モル量)を供給した後、撹拌下、18時間加熱し、アセトニトリルを還流させた。
得られた反応溶液から、ろ過により亜鉛粉末を除去した後、エバポレーターを用いてアセトニトリルを除去後、析出する粘稠なエラストマーをHCFC−141bに溶解させた。このHCFC−141b溶液を4回水洗した後、飽和チオ硫酸ナトリウム水溶液で、2回洗浄し、無水硫酸マグネシウムを用いて乾燥させた。このHCFC−141b溶液からろ過により、硫酸マグネシウムを除いた後、HCFC−141bをエバポレーターと120℃の減圧加熱乾燥を用いて除去して、粘稠な含フッ素エラストマーを得た。このエラストマーの重アセトン溶媒での1H−NMRの分析においては、参考例1で観察された末端構造−CF2CH2Iに由来するピークが観察されず、末端不飽和結合の−CF=CH2に由来する5.1〜5.4ppm付近の複雑なピークが観察された。また、IR測定では、末端不飽和構造のC=C伸縮に基づく1693cm-1の鋭い吸収が観察されたので、含フッ素エラストマーの末端ヨウ素の構造は、末端不飽和構造に変換されたと考えられる。また、−CF=CH2に由来する複雑なピークの強度と含フッ素エラストマーの主鎖−CH2−に由来するピークの強度の比率は1:34であったので、ヨウ素末端の構造は全て末端不飽和の構造に変換されたと考えられる。
実施例2
300mlの3つ口フラスコに実施例1で得られた末端に不飽和構造を持つ含フッ素エラストマー2gをアセトン100mlに溶解させて供給し、氷浴で冷却した後、過マンガン酸カリウム0.316g(含フッ素エラストマーの不飽和部位の含有量の3.8倍モル量)を添加した。撹拌下、氷浴を外し、室温で5時間撹拌を続けた。再び、氷浴で冷却し、メタノール100mlを滴下した後、氷浴を外し、室温で1時間撹拌した。
得られた反応溶液をエバポレーターで濃縮すると、粘稠なエラストマーが析出するので、HCFC−141bに再溶解した後、不溶分をろ過した。このHCFC−141b溶液を分液漏斗を用いて希塩酸で洗浄した後、水洗を3回行った。このHCFC−141b溶液の溶液を無水MgSO4で乾燥し、MgSO4をろ過で除いた後、エバポレーターと120℃の減圧加熱乾燥でHCFC−141bを除き、粘稠な含フッ素エラストマーを得た。
この含フッ素エラストマーは、重アセトンを用いた1H−NMR分析で、実施例1で得られた含フッ素エラストマーに観察される末端不飽和結合に由来する複雑なピークが観察されなかった。また、IR測定において、末端のカルボン酸構造のC=O伸縮に由来する1773cm-1の大きな吸収が観察されたが、実施例1で観察された1693cm-1の鋭い吸収は観察されなかったので、末端の不飽和構造は、カルボン酸に変化したと考えられる。
実施例3
参考例1で得られた含フッ素エラストマー18.13gを還流冷却管の付いた4つ口フラスコ中、メタノール150gに溶解させ、さらに亜鉛粉末(1級 キシダ化学(株)製)1.71g(含フッ素エラストマーの−CF2CH2I含有量に対して5.6倍モル量)を添加した後、撹拌下、18時間加熱し、メタノールを還流させた。
得られた反応溶液から、ろ過により亜鉛粉末を除去し、ついで、エバポレーターを用いてメタノールを除去後、析出する粘稠なエラストマーをHCFC−141bに溶解させた。このHCFC−141b溶液を4回水洗した後、飽和チオ硫酸ナトリウム水溶液で、2回洗浄し、無水硫酸マグネシウムを用いて乾燥させた。このHCFC−141b溶液からろ過により、硫酸マグネシウムを除いた後、HCFC−141bをエバポレーターと120℃の減圧加熱乾燥を用いて除去して、粘稠な含フッ素エラストマーを得た。このエラストマーの重アセトン溶媒での1H−NMRの分析においては、参考例1で観察された末端構造−CF2CH2Iに由来するピークが観察されず、末端不飽和結合の−CF=CH2に由来する5.1〜5.4ppm付近の複雑なピークが観察された。しかし、−CF2CH2Iのヨウ素が水素に置換した−CF2CH3の構造に基づく1.6〜1.9ppm付近の複雑なピークも観察された。−CF=CH2に由来する複雑なピークの強度と含フッ素エラストマーの主鎖−CH2−に由来するピークの強度の比率は0.75:34であった。また、IR測定では、末端不飽和構造のC=C伸縮に基づく1693cm-1の鋭い吸収が観察された。以上の分析より、ヨウ素末端の構造の75%が末端不飽和の構造に変換されたと考えられる。
実施例4
参考例1で得られた含フッ素エラストマー10.41gを還流冷却管の付いた4つ口フラスコ中、禁水条件下で無水テトラヒドロフラン100gに溶解させ、さらに亜鉛粉末(1級 キシダ化学(株)製)0.981g(含フッ素エラストマーの−CF2CH2I含有量に対して5.6倍モル量)を添加した後、撹拌下、18時間加熱し、テトラヒドロフランを還流させた。
得られた反応溶液から、ろ過により亜鉛粉末を除去した後、エバポレーターを用いてテトラヒドロフランを除去後、析出する粘稠なエラストマーをHCFC−141bに溶解させた。このHCFC−141b溶液を4回水洗した後、飽和チオ硫酸ナトリウム水溶液で、2回洗浄し、無水硫酸マグネシウムを用いて乾燥させた。このHCFC−141b溶液からろ過により、硫酸マグネシウムを除いた後、HCFC−141bをエバポレーターと120℃の減圧加熱乾燥を用いて除去して、粘稠な含フッ素エラストマーを得た。このエラストマーの重アセトン溶媒での1H−NMRの分析においては、参考例1で観察された末端構造−CF2CH2Iに由来するピークが観察されず、末端不飽和結合の−CF=CH2に由来する5.1〜5.4ppm付近の複雑なピークが観察された。しかし、−CF2CH2Iのヨウ素が水素に置換した−CF2CH3の構造に基づく1.6〜1.9ppm付近の複雑なピークも観察された。−CF=CH2に由来する複雑なピークの強度と含フッ素エラストマーの主鎖−CH2−に由来するピークの強度の比率は0.74:34であった。また、IR測定では、末端不飽和構造のC=C伸縮に基づく1693cm-1の鋭い吸収が観察された。以上の分析より、ヨウ素末端の構造の74%が末端不飽和の構造に変換されたと考えられる。
本発明の製造方法では、含フッ素エラストマーの主鎖末端および/または側鎖末端に炭素−炭素結合を介して不飽和結合を有する基を導入することができるため、該含フッ素エラストマーを含む硬化性組成物を架橋することで、耐熱性が優れ、圧縮永久歪(CS)が小さい成形品を得ることができる。また、該含フッ素エラストマーを含む硬化性組成物は、加工性に優れており、複雑な形状の成形品を形成することができる。また、該含フッ素エラストマーは、反応性の高い不飽和基を有するため、その不飽和基を変換し、異なる官能基を導入することも可能である。

Claims (6)

  1. 主鎖末端および/または側鎖末端に、一般式(1):
    Figure 0004665964
    または、一般式(2):
    Figure 0004665964
    (式中、X、X、Xは同じかまたは異なり水素原子、フッ素原子、−CHまたは−CFであり、Yはヨウ素原子、臭素原子または塩素原子であり、Zはフッ素原子、ヨウ素原子、臭素原子、塩素原子、−OR、または−SR(Rは炭素数1〜5のアルキル基、炭素数1〜5のアシル基、ベンゾイル基、アリール基、トシル基、トリフルオロメタンスルホニル基であり、これらの基の水素原子の一部または全部がフッ素原子に置換されていてもよい))
    で示される部位を有する含フッ素エラストマーに、
    アルカリ金属、アルカリ土類金属、および/または遷移金属を作用させて、
    一般式(1)または(2)で示される部位を、一般式(3):
    Figure 0004665964
    (式中、X、X、Xは前記と同様である)
    で示される部位に変換する工程を含む含フッ素エラストマーの製造方法。
  2. さらに、酸化剤を作用させて、一般式(3):
    Figure 0004665964
    (式中、X、X、Xは前記と同様である)
    で示される部位を−COOHに変換する工程を含む請求の範囲第1項記載の含フッ素エラストマーの製造方法。
  3. 一般式(4):
    a―(M)―(A)―Cb (4)
    (式中、Mはビニリデンフルオライドおよび/またはテトラフルオロエチレン由来の構造単位であり、AはMと共重合可能なエチレン性単量体由来の構造単位であり、B、Cは同じかまたは異なり、一般式(5):
    Figure 0004665964
    (式中、X、X、Xは同じかまたは異なり水素原子、フッ素原子、−CHまたは−CFであり、Rは、炭素数1〜5のエーテル結合を含んでもよいアルキレン基であって、その一部または全ての水素原子がフッ素原子で置換されていてもよく、nは0以上の整数である)
    で示される基であり、a、bは、それぞれ0または1であり、a+b≠0である。)
    で示される含フッ素エラストマー。
  4. 含フッ素エラストマーが、ビニリデンフルオライド系フッ素ゴムである請求の範囲第3項記載の含フッ素エラストマー。
  5. 数平均分子量が500〜500000である請求の範囲第3項または第4項記載の含フッ素エラストマー。
  6. 請求の範囲第3項〜第5項のいずれかに記載の含フッ素エラストマーを含む硬化性組成物。
JP2007504742A 2005-02-23 2006-02-22 含フッ素エラストマーおよび含フッ素エラストマーの製造方法 Active JP4665964B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005047560 2005-02-23
JP2005047560 2005-02-23
PCT/JP2006/303141 WO2006090728A1 (ja) 2005-02-23 2006-02-22 含フッ素エラストマーおよび含フッ素エラストマーの製造方法

Publications (2)

Publication Number Publication Date
JPWO2006090728A1 JPWO2006090728A1 (ja) 2008-07-24
JP4665964B2 true JP4665964B2 (ja) 2011-04-06

Family

ID=36927366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007504742A Active JP4665964B2 (ja) 2005-02-23 2006-02-22 含フッ素エラストマーおよび含フッ素エラストマーの製造方法

Country Status (2)

Country Link
JP (1) JP4665964B2 (ja)
WO (1) WO2006090728A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112008003217T5 (de) * 2007-11-28 2011-02-10 Sekisui Chemical Co., Ltd. Terminal modifiziertes Acrylpolymer und Verfahren zur Herstellung des terminal modifizierten Acrylpolymers
JP5918628B2 (ja) * 2012-05-22 2016-05-18 株式会社カネカ ビニル系重合体の製造方法
CN108350112B (zh) * 2015-11-20 2020-10-23 Agc 株式会社 制造碘原子含量得以减少的含氟化合物的方法
CN106117395B (zh) * 2016-06-23 2019-09-06 大连海事大学 不饱和含氟聚合物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0157125B2 (ja) * 1986-04-01 1989-12-04 Nippon Mektron Kk
JPH06279537A (ja) * 1993-03-29 1994-10-04 Japan Synthetic Rubber Co Ltd カルボキシル基含有フッ素重合体の製造方法
JP2001011115A (ja) * 1999-05-21 2001-01-16 Atofina フッ素ポリマーの化学的改質法と、改質されたポリマーを含む金属基材の被膜と、リチウムイオン電池の電極
JP2001081131A (ja) * 1999-09-17 2001-03-27 Nippon Mektron Ltd 主鎖両末端官能基含有フッ素オリゴマー、その製造方法および硬化性組成物
WO2003076484A1 (fr) * 2002-03-14 2003-09-18 Daikin Industries, Ltd. Fluorocopolymere, procede de production de fluorocopolymere, composition de fluorocopolymere durcissable et objet durcissable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0157125B2 (ja) * 1986-04-01 1989-12-04 Nippon Mektron Kk
JPH06279537A (ja) * 1993-03-29 1994-10-04 Japan Synthetic Rubber Co Ltd カルボキシル基含有フッ素重合体の製造方法
JP2001011115A (ja) * 1999-05-21 2001-01-16 Atofina フッ素ポリマーの化学的改質法と、改質されたポリマーを含む金属基材の被膜と、リチウムイオン電池の電極
JP2001081131A (ja) * 1999-09-17 2001-03-27 Nippon Mektron Ltd 主鎖両末端官能基含有フッ素オリゴマー、その製造方法および硬化性組成物
WO2003076484A1 (fr) * 2002-03-14 2003-09-18 Daikin Industries, Ltd. Fluorocopolymere, procede de production de fluorocopolymere, composition de fluorocopolymere durcissable et objet durcissable

Also Published As

Publication number Publication date
WO2006090728A1 (ja) 2006-08-31
JPWO2006090728A1 (ja) 2008-07-24

Similar Documents

Publication Publication Date Title
US8242208B2 (en) Fluorine-containing polymer composition and cured body
JP4640363B2 (ja) 含フッ素共重合体、含フッ素共重合体製造方法、含フッ素共重合体硬化用組成物及び硬化体
JP4618230B2 (ja) 含フッ素ポリマー組成物及び硬化体
JP4840138B2 (ja) 含フッ素エラストマー組成物およびそれからなる成形品
JP2006316112A (ja) 含フッ素エラストマー組成物およびそれからなる成形品
JP4997707B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4665964B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4830313B2 (ja) 含フッ素エラストマーの製造方法
JP4835006B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4852879B2 (ja) 含フッ素ポリマーおよび含フッ素化合物の製造方法
JP5505405B2 (ja) 含フッ素エラストマーおよび含フッ素エラストマーの製造方法
JP4617790B2 (ja) 硬化性組成物
EP1932871A1 (en) Fluorine containing graft or block polymer
WO2007032310A1 (ja) 含フッ素エラストマー、含フッ素エラストマーの製造方法、およびケイ素含有化合物
JP3709483B2 (ja) 含フッ素グラフトまたはブロックポリマー

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20100514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100928

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20101020

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20101021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101214

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4665964

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140121

Year of fee payment: 3