WO2020110486A1 - リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 - Google Patents
リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 Download PDFInfo
- Publication number
- WO2020110486A1 WO2020110486A1 PCT/JP2019/040433 JP2019040433W WO2020110486A1 WO 2020110486 A1 WO2020110486 A1 WO 2020110486A1 JP 2019040433 W JP2019040433 W JP 2019040433W WO 2020110486 A1 WO2020110486 A1 WO 2020110486A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- metal composite
- positive electrode
- composite oxide
- lithium
- particles
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/006—Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
- C01G53/44—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
- C01G53/50—Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G53/00—Compounds of nickel
- C01G53/40—Nickelates
- C01G53/42—Nickelates containing alkali metals, e.g. LiNiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/20—Two-dimensional structures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/50—Solid solutions
- C01P2002/52—Solid solutions containing elements as dopants
- C01P2002/54—Solid solutions containing elements as dopants one element only
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/76—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by a space-group or by other symmetry indications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/30—Particle morphology extending in three dimensions
- C01P2004/45—Aggregated particles or particles with an intergrown morphology
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/50—Agglomerated particles
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/51—Particles with a specific particle size distribution
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/60—Particles characterised by their size
- C01P2004/61—Micrometer sized, i.e. from 1-100 micrometer
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a lithium metal composite oxide, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
- the present application claims priority to Japanese Patent Application No. 2018-225443 filed in Japan on November 30, 2018, the contents of which are incorporated herein by reference.
- a lithium metal composite oxide is used for the positive electrode active material for lithium secondary batteries.
- Lithium secondary batteries have already been put into practical use not only in small power sources such as mobile phone applications and notebook computer applications, but also in medium or large power sources such as automobile applications and power storage applications.
- the particle shape of the lithium metal composite oxide affects the filling property during pressing when used as a positive electrode active material.
- Patent Document 1 describes a positive electrode active material for a lithium secondary battery having secondary particles having an average circularity of 0.05 or more and 0.6 or less. Patent Document 1 describes that when the circularity of the secondary particles is within the above range, contact between the secondary particles and the conductive additive is improved, and high-power charging/discharging is possible. .. In Patent Document 1, when the average circularity is 1, it means that the positive electrode active material is a sphere (true sphere), and the smaller the average circularity is, the farther the shape of the positive electrode active material is from the spherical shape. It is described to do.
- the positive electrode active material for a lithium secondary battery as described in Patent Document 1 has room for improvement from the viewpoint of improving the volume capacity and the volume capacity retention rate.
- An object of the present invention is to provide a lithium metal composite oxide having a high volume capacity and a high volume capacity retention rate, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
- a lithium metal composite oxide composed of secondary particles in which primary particles are agglomerated and single particles existing independently of the secondary particles, and having the following composition formula (1):
- M is at least one element selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and ⁇ 0.
- the BET specific surface area of the lithium metal composite oxide is less than 2 m 2 /g.
- S is the projected area of the projected image of the particles forming the metal complex oxide powder, and L is the perimeter of the particles.
- the average particle diameter D 50 of the lithium metal composite oxide is 2 ⁇ m or more and 20 ⁇ m or less.
- the circularity has a first peak in the circularity range of 0.4 or more and 0.7 or less, and the first peak in the circularity range of 0.75 or more and 0.95 or less.
- a lithium metal composite oxide having a high volume capacity and a high volume capacity retention rate, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
- 3 is a graph showing an example of circularity distribution of a lithium metal composite oxide containing secondary particles alone. 3 is a graph showing an example of circularity distribution of a lithium metal composite oxide containing single particles alone. It is a graph which shows an example of the circularity distribution of the lithium metal composite oxide of this embodiment.
- the term “primary particle” means a particle having no grain boundary in appearance when observed in a visual field of 5000 to 20000 times using a scanning electron microscope or the like. It means a constituent particle, for example, a particle having an average particle diameter of less than 0.5 ⁇ m.
- the “secondary particles” are particles in which the primary particles are aggregated.
- the “single particle” is present independently of the secondary particles, and when observed with a scanning electron microscope or the like in a field of view of 5000 to 20000 times, the grain boundaries are apparent.
- the present embodiment is a lithium metal composite oxide composed of secondary particles in which primary particles are aggregated, and single particles existing independently of the secondary particles.
- the lithium metal composite oxide of the present embodiment is represented by the following composition formula (1) and satisfies the following requirements (A), (B) and (C). Li[Li x (Ni (1-yz-w) Co y Mn z M w ) 1-x ]O 2 (1) (However, M is at least one element selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and ⁇ 0.
- the BET specific surface area of the lithium metal composite oxide is less than 2 m 2 /g.
- S is the projected area of the projected image of the particles forming the metal complex oxide powder
- L is the perimeter of the particles.
- the average particle diameter D 50 of the lithium metal composite oxide is 2 ⁇ m or more and 20 ⁇ m or less.
- the lithium metal composite oxide of the present embodiment is represented by the following composition formula (1).
- M is at least one element selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V, and 0.1 ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4, and 0 ⁇ w ⁇ 0.1 are satisfied.
- x in the composition formula (1) is preferably more than 0, more preferably 0.01 or more, and further preferably 0.02 or more. ..
- x in the composition formula (I) is preferably 0.1 or less, more preferably 0.08 or less, and 0.06. The following is more preferable.
- the upper limit value and the lower limit value of x can be arbitrarily combined. For example, in the present embodiment, 0 ⁇ x ⁇ 0.1 is preferable, 0.01 ⁇ x ⁇ 0.08 is more preferable, and 0.02 ⁇ x ⁇ 0.06 is preferable. More preferable.
- "high cycle characteristics" means that the amount of decrease in battery capacity due to repeated charging/discharging is low, and the capacity ratio after repeated charging/discharging with respect to the initial capacity is less likely to decrease.
- y in the composition formula (1) is preferably more than 0, more preferably 0.005 or more, and more preferably 0.01 or more. It is more preferable that it is 0.05 or more, and it is particularly preferable that it is 0.05 or more. Further, from the viewpoint of obtaining a lithium secondary battery having high thermal stability, y in the composition formula (1) is more preferably 0.35 or less, and further preferably 0.33 or less. The upper limit value and the lower limit value of y can be arbitrarily combined. In this embodiment, 0 ⁇ y ⁇ 0.4 is preferable, 0.005 ⁇ y ⁇ 0.35 is more preferable, and 0.01 ⁇ y ⁇ 0.33 is further preferable. ..
- composition formula (1) 0 ⁇ x ⁇ 0.1 and 0 ⁇ y ⁇ 0.4 are more preferable.
- z in the composition formula (1) is preferably 0.01 or more, more preferably 0.02 or more, and 0.1 or more. It is more preferable that there is. Further, from the viewpoint of obtaining a lithium secondary battery having high storage stability at high temperatures (for example, in an environment of 60° C.), z in the composition formula (1) is preferably 0.39 or less, and 0.38 or less. It is more preferable, and it is still more preferable that it is 0.35 or less.
- the upper limit value and the lower limit value of z can be arbitrarily combined. For example, 0.01 ⁇ z ⁇ 0.39 is preferable, 0.02 ⁇ z ⁇ 0.38 is more preferable, and 0.02 ⁇ z ⁇ 0.35 is further preferable.
- w in the composition formula (1) is preferably more than 0, more preferably 0.0005 or more, and more preferably 0.001 or more. Is more preferable. Further, from the viewpoint of obtaining a lithium secondary battery having a large discharge capacity at a high current rate, w in the composition formula (1) is preferably 0.09 or less, more preferably 0.08 or less, and 0 It is more preferably 0.07 or less.
- the upper limit value and the lower limit value of w can be arbitrarily combined. For example, 0 ⁇ w ⁇ 0.09 is preferable, 0.0005 ⁇ w ⁇ 0.09 is more preferable, 0.001 ⁇ w ⁇ 0.08 is further preferable, and 0.001 It is even more preferable that ⁇ w ⁇ 0.07.
- y+z+w in the composition formula (1) is preferably less than 0.5, more preferably 0.48 or less, and 0.46 or less. More preferable. Further, in the present embodiment, y+z+w in the composition formula (1) preferably exceeds 0.
- M in the composition formula (1) is at least one selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga, La and V. Represents an element.
- M in the composition formula (1) is one or more elements selected from the group consisting of Ti, Mg, Al, W, B, and Zr.
- it is one or more elements selected from the group consisting of Al and Zr.
- it is preferably one or more elements selected from the group consisting of Ti, Al, W, B, and Zr.
- the lithium metal composite oxide of the present embodiment has a BET specific surface area of less than 2 m 2 /g, preferably 1.7 m 2 /g or less, more preferably 1.5 m 2 /g or less, and 1.4 m 2 /g.
- the BET specific surface area is obtained by drying 1 g of the lithium metal composite oxide in a nitrogen atmosphere at 105° C. for 30 minutes and then using a BET specific surface area meter (for example, Macsorb (registered trademark) manufactured by Mountech Co., Ltd.). The measured value is used (unit: m 2 /g).
- the lithium metal composite oxide of the present embodiment can improve the volume capacity and the volume capacity retention rate by setting the BET specific surface area to the upper limit value or less.
- the lower limit value of the BET specific surface area of the lithium metal composite oxide of the present embodiment is not particularly limited, but is, for example, 0.2 m 2 /g.
- the lithium metal composite oxide of the present embodiment has two or more peaks in the circularity distribution. It is presumed that the lithium metal composite oxide of the present embodiment has two or more peaks in the circularity distribution, whereby the volume capacity and the volume capacity retention rate can be improved.
- the circularity distribution in this embodiment is a number-based circularity distribution of the circularity calculated by the following equation (2).
- an SEM image of the lithium metal composite oxide is taken to obtain a particle image that is a projected image of particles forming the lithium metal composite oxide.
- the circularity calculated by the following formula (2) is measured for each particle (that is, secondary particle or single particle) that constitutes the lithium metal composite oxide.
- the perimeter of a particle means the length of the outer periphery of the particle in the projected image.
- the number of particles for measuring the circularity may be 50 or more, and in the present specification, for example, 50 particles are measured.
- the circularity distribution can be obtained by, for example, a method of performing image analysis using an image captured by using a scanning battery microscope (SEM) or a transmission electron microscope (TEM), or a commercially available particle image analyzer, particularly a flow. Examples include a method using a particle image analyzer of the formula.
- the lithium metal composite oxide of the present embodiment has two or more peaks in the circularity distribution obtained by the above method.
- the “peak” means that the circularity is in the horizontal axis and the particle number is in the vertical axis in the circularity distribution so that the circularity is in the range of 0 to 1.0 at an equal interval of 0.05.
- the data range for division it refers to the place where the number of particles turns from increasing to decreasing from the side with low circularity to the side with high circularity.
- a data range obtained by dividing the circularity between 0 and 1.0 into 20 or more may be set.
- the circularity distribution it is preferable to measure the circularity distribution multiple times and confirm that the peak appears with good reproducibility. In addition, it is judged that a part having no reproducibility is derived from noise and is not treated as a peak.
- the average circularity of the lithium metal composite oxide of the present embodiment is preferably 0.4 or more and 0.8 or less, and 0.45 or more and 0.75 or less from the viewpoint of increasing the volume capacity and the volume capacity retention rate. More preferably, 0.48 or more and 0.70 or less are particularly preferable.
- the average circularity can be calculated by dividing the total circularity of all particles to be measured by the total number of particles.
- the circularity in the circularity distribution in which the horizontal axis is the circularity and the particle number is the vertical axis, the circularity is 0.4 or more and 0.7 or less from the viewpoint of increasing the volume capacity and the volume capacity retention rate. It is preferable to have the first peak in the circularity range and the second peak in the circularity range where the circularity is 0.75 or more and 0.95 or less.
- the lithium metal composite oxide preferably has a circularity distribution standard deviation of 0.1 or more, more preferably 0.15 or more in the circularity distribution from the viewpoint of increasing the volume capacity. It is preferably 0.18 or more, more preferably 0.18 or more. Further, from the viewpoint of enhancing the handling property of the lithium metal composite oxide, it is preferably 0.4 or less, more preferably 0.35 or less, and further preferably 0.30 or less. That is, the standard deviation of the circularity distribution of the lithium metal composite oxide is preferably 0.1 or more and 0.4 or less, more preferably 0.15 or more and 0.35 or less, and 0.18 or more and 0.1. It is more preferably 30 or less.
- the first peak is a peak derived from a single particle and the second peak is a peak derived from a secondary particle.
- the lithium metal composite oxide of the present embodiment is composed of secondary particles and single particles.
- the secondary particles have a particle shape close to a sphere because the primary particles are aggregated. Therefore, among the peaks observed in the circularity distribution, the second peak may be a peak derived from secondary particles.
- the first peak may be a peak derived from a single particle that is another constituent. The particles from which the first peak and the second peak are derived are determined from the images taken when calculating the circularity of each particle.
- FIG. 2A to 2C show circularity distributions of lithium metal composite oxides having different particle existence modes.
- FIG. 2A is a graph showing an example of the circularity distribution of a lithium metal composite oxide containing secondary particles alone.
- FIG. 2B is a graph showing an example of circularity distribution of a lithium metal composite oxide containing single particles alone.
- FIG. 2C is a graph showing an example of the circularity distribution of the lithium metal composite oxide of the present embodiment.
- the lithium metal composite oxide containing secondary particles alone may have a peak in the circularity range of 0.8 to 0.9.
- Secondary particles are particles in which primary particles are aggregated, and most of the secondary particles are spherical particles. Therefore, in the lithium metal composite oxide containing the secondary particles alone, a single peak may be observed in a range where the circularity is large as shown in FIG. 2A.
- the lithium metal composite oxide containing the secondary particles alone may contain a small amount of the primary particles generated by the cracking of the secondary particles, but the abundance of the primary particles is very small. It is considered that the peak derived from the primary particles is not observed.
- FIG. 2C shows an example of the circularity distribution of the lithium metal composite oxide of this embodiment.
- a first peak derived from the single particles and a secondary particle derived from the secondary particles At least two of the second peaks that occur may be observed.
- the circularity distribution may have two or more peaks, and may have three or more peaks.
- particles having different particle shapes for example, elliptical particles, plate-shaped particles, fibrous particles
- a plurality of peaks derived from the circularity of each particle may be observed.
- the abundance ratio of the single particles and the secondary particles in the lithium metal composite oxide of the present embodiment is preferably 1 to 60/99 to 40. That is, the abundance ratio of single particles to secondary particles is preferably 1/99 to 60/40.
- the abundance ratio is a mass ratio of particles. That is, the abundance ratio may be a ratio between the total mass of the single particles contained in the lithium metal composite oxide and the total mass of the secondary particles, but a predetermined amount of lithium randomly sampled from the lithium metal composite oxide. The ratio may be the ratio of the total mass of the single particles contained in the metal composite oxide to the total mass of the secondary particles.
- the lithium metal composite oxide of the present embodiment has an average particle diameter D 50 of 2 ⁇ m or more and 20 ⁇ m or less, preferably 3 ⁇ m or more and 18 ⁇ m or less, and more preferably 4 ⁇ m or more and 15 ⁇ m or less from the viewpoint of increasing the volume capacity and the volume capacity retention rate. ..
- the lithium metal composite oxide of the present embodiment preferably has an average particle size of single particles of 1 ⁇ m or more, more preferably 1.1 ⁇ m or more, and 1.2 ⁇ m or more. Is more preferable.
- the upper limit of the average particle diameter of the single particles is not particularly limited.
- the average particle size of the single particles may be 5.0 ⁇ m or less, 4.0 ⁇ m or less, or 3.0 ⁇ m or less.
- the average particle size of the single particles is preferably 1 ⁇ m or more and 5.0 ⁇ m or less, more preferably 1.1 ⁇ m or more and 4.0 ⁇ m or less, and further preferably 1.2 ⁇ m or more and 3.0 ⁇ m or less.
- a lithium metal composite oxide is placed on a conductive sheet attached on a sample stage, and an acceleration voltage is 20 kV using JSM-5510 manufactured by JEOL Ltd. Then, SEM observation is performed. 50 single particles or secondary particles are arbitrarily extracted from the image (SEM photograph) obtained by SEM observation, and for each single particle or secondary particle, a projected image of the single particle or secondary particle is taken from a certain direction. The distance between the parallel lines sandwiched by the drawn parallel lines (direction diameter) is measured as the particle size of a single particle or a secondary particle. The arithmetic average value of the particle diameters of the obtained single particles or secondary particles is the average single particle diameter or the average secondary particle diameter of the lithium metal composite oxide. The number of n for calculating the average particle diameter is 50 or more.
- ..Average particle size D 50 Measured by laser diffraction scattering method. First, 0.1 g of the lithium metal composite oxide powder is put into 50 ml of a 0.2 mass% sodium hexametaphosphate aqueous solution to obtain a dispersion liquid in which the powder is dispersed. Next, a particle size distribution of the obtained dispersion is measured using a laser diffraction/scattering particle size distribution measuring device (for example, Microtrack MT3300EXII manufactured by Microtrac Bell Co., Ltd.) to obtain a volume-based cumulative particle size distribution curve.
- a laser diffraction/scattering particle size distribution measuring device for example, Microtrack MT3300EXII manufactured by Microtrac Bell Co., Ltd.
- the value of the particle diameter at the point where the cumulative volume from the small particle side is 50% is D 50 ( ⁇ m).
- the crystal structure of the lithium metal composite oxide is a layered structure, more preferably a hexagonal crystal structure or a monoclinic crystal structure.
- the hexagonal crystal structure has P3, P3 1 , P3 2 , R3, P-3, R-3, P312, P321, P3 1 12, P3 1 21, P3 2 12, P3 2 21, R32, P3m1, P31m, P3c1, P31c, R3m, R3c, P-31m, P-31c, P-3m1, P-3c1, R-3m, R-3c, P6, P6 1 , P6 5 , P6 2 , P6 4 , P6 3 , P-6, P6/m, P6 3 /m, P622, P6 1 22, P6 5 22, P6 2 22, P6 4 22, P6 3 22, P6 mm, P6 cc, P6 3 cm, P6 3 mc, P- 6m2, P-6c2, P-62m, P-62c, P6/mmm, P6/mcc, P6 3 /mcm, and P6 3 /mmc belonging to any one space group selected from the group consisting of.
- the crystal structure is a hexagonal crystal structure belonging to the space group R-3m or a monoclinic crystal structure belonging to C2/m.
- the structure is particularly preferable.
- the lithium metal composite oxide of the present embodiment can be used as a positive electrode active material to improve the electrode density when an electrode is manufactured.
- FIG. 3 shows a schematic diagram in the case where the lithium metal composite oxide of the present embodiment is press-filled.
- particles having high circularity will be described as secondary particles, and particles having low circularity will be described as single particles.
- FIG. 3 shows a state in which a positive electrode mixture containing secondary particles 56, single particles 57, a conductive agent 58, and a binder 59 is applied onto the current collector 55.
- the positive electrode mixture is pressed and fixed on the current collector, friction is generated between the secondary particles 56 and the single particles 57 due to pressure, and the secondary particles 56 are cracked, resulting in broken secondary particles.
- Reference numeral 56A occurs.
- the broken secondary particles 56A and the single particles 57 are moved and rearranged so as to fill the voids by pressurization.
- the single particles 57 enter the gaps between the split secondary particles 56A, the contact area between the secondary particles (reference numerals 56 and 56A) and the single particles 57 increases, and the voids decrease. It is considered that this improves the density of the electrodes.
- the presence of the single particles 57 increases friction with the secondary particles 56 and promotes particle cracking.
- the particles in which the single particles 57 and the secondary particles 56 are broken have a low circularity, it is considered that the particles move due to the pressurization, and voids of a certain size or less remain even if they are rearranged. Therefore, it is presumed that the electrolyte is unlikely to be depleted when the battery is charged and discharged repeatedly. Due to such an action, it is assumed that the lithium metal composite oxide of the present embodiment containing the secondary particles and the single particles has a high volume capacity and a high volume capacity retention rate.
- FIG. 4 shows a case where an electrode is manufactured by using a lithium composite metal oxide powder which does not contain single particles but has secondary particles alone as a positive electrode active material.
- the state where the positive electrode mixture containing the secondary particles 61, the binder 62, and the conductive agent 63 is applied onto the current collector 60 is shown.
- the positive electrode mixture is pressed and fixed on the current collector, if there are broken secondary particles 61A and non-cracked secondary particles, the movement and rearrangement of the particles due to the pressurization are sufficient. It is considered that a gap is created without proceeding. If this embodiment is not applied, it is considered that the density of the electrodes cannot be improved because the gap cannot be filled.
- the lithium metal composite oxide of the present embodiment can be manufactured by the following manufacturing method 1 or manufacturing method 2.
- ⁇ Manufacturing method 1>> In producing the lithium metal composite oxide of the present embodiment, first, a metal other than lithium, that is, containing at least Ni, Co, Mn, Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, It is possible to prepare a metal composite compound containing any one or more of any elements of Zn, Sn, Zr, Ga, La and V, and calcine the metal composite compound with a suitable lithium salt and an inert melting agent. preferable.
- the optional element is an element optionally included in the composite metal compound, and the optional element may not be included in the composite metal compound.
- the metal composite compound is preferably a metal composite hydroxide or a metal composite oxide.
- the metal composite compound can be produced by a commonly known batch coprecipitation method or continuous coprecipitation method.
- the production method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt and manganese as an example of the metal.
- the metal composite compound that finally forms a single particle and the metal composite compound that forms a secondary particle are respectively manufactured.
- the metal composite compound that finally forms a single particle may be referred to as a “single particle precursor”.
- a metal composite compound that finally forms secondary particles may be referred to as a “secondary particle precursor”.
- Ni (1-yz) Co Ni (1-yz) Co.
- a metal composite hydroxide represented by y Mn z (OH) 2 (in the formula, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4) is produced.
- the nickel salt that is the solute of the nickel salt solution is not particularly limited, but for example, any one or more of nickel sulfate, nickel nitrate, nickel chloride, and nickel acetate can be used.
- the cobalt salt that is the solute of the cobalt salt solution for example, any one kind or two or more kinds of cobalt sulfate, cobalt nitrate, cobalt chloride, and cobalt acetate can be used.
- As the manganese salt that is the solute of the manganese salt solution for example, any one or more of manganese sulfate, manganese nitrate, manganese chloride, and manganese acetate can be used.
- the above metal salts are used in a ratio corresponding to the composition ratio of Ni (1-yz) Co y Mn z (OH) 2 . Also, water is used as a solvent.
- the complexing agent is one capable of forming a complex with ions of nickel, cobalt and manganese in an aqueous solution, and examples thereof include ammonium ion donors (ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.). Ammonium salts), hydrazine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, uracildiacetic acid, and glycine.
- ammonium ion donors ammonium hydroxide, ammonium sulfate, ammonium chloride, ammonium carbonate, ammonium fluoride, etc.
- Ammonium salts ammonium salts
- hydrazine ethylenediaminetetraacetic acid
- nitrilotriacetic acid uracildiacetic acid
- glycine glycine
- the complexing agent may not be contained, and when the complexing agent is contained, the amount of the complexing agent contained in the mixed solution containing the nickel salt solution, the cobalt salt solution, the manganese salt solution and the complexing agent is, for example, The molar ratio of the metal salt to the total number of moles is more than 0 and 2.0 or less.
- alkali metal hydroxide eg sodium hydroxide, potassium hydroxide
- the temperature of the reaction tank is controlled, for example, in the range of 20° C. or higher and 80° C. or lower, preferably 30° C. or higher and 70° C. or lower, and the pH value in the reaction tank is, for example, pH 9 or higher and pH 13 or lower, preferably pH 11 or higher and pH 13 or lower. It is controlled within the following range, and the substances in the reaction vessel are appropriately stirred.
- the reaction tank is of a type in which the formed reaction precipitate overflows for separation.
- a first coprecipitation tank for manufacturing a single particle precursor and a second coprecipitation tank for forming a secondary particle precursor are used.
- the single particle precursor can be produced by appropriately controlling the concentration of the metal salt supplied to the first coprecipitation tank, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described below, and the like.
- the temperature of the reaction tank is preferably 30° C. or higher and 80° C. or lower, more preferably controlled in the range of 40° C. or higher and 70° C. or lower, and ⁇ 20° C. with respect to the second reaction tank described later. It is more preferable that the range is Further, the pH value in the reaction tank is preferably, for example, pH 10 or more and pH 13 or less, more preferably controlled in the range of pH 11 or more and pH 12.5 or less, and within ⁇ pH 2 with respect to the second reaction tank described later. Is more preferable, and it is particularly preferable that the pH is higher than that of the second reaction tank.
- the pH value in this specification is defined as the value measured when the temperature of the aqueous solution is 40°C.
- the secondary particle precursor can be produced by appropriately controlling the concentration of the metal salt supplied to the second coprecipitation tank, the stirring speed, the reaction temperature, the reaction pH, the firing conditions described below, and the like.
- the temperature of the reaction tank is preferably 20° C. or higher and 80° C. or lower, more preferably controlled in the range of 30° C. or higher and 70° C. or lower, and ⁇ 20° C. with respect to the second reaction tank described later. It is more preferable that the range is
- the pH value in the reaction tank is preferably, for example, pH 10 or more and pH 13 or less, more preferably controlled in the range of pH 11 or more and pH 12.5 or less, and within ⁇ pH 2 with respect to the second reaction tank described later. Is more preferable, and it is particularly preferable that the pH is lower than that of the second reaction tank.
- an inert gas such as nitrogen, argon or carbon dioxide
- an oxidizing gas such as air or oxygen
- a mixed gas thereof may be supplied into the reaction tank.
- peroxides such as hydrogen peroxide, peroxide salts such as permanganate, perchlorates, hypochlorite, nitric acid, halogens, ozone, etc. to promote the oxidation state in addition to gases. be able to.
- organic acids such as oxalic acid and formic acid, sulfite, and hydrazine can be used as substances that promote the reduced state.
- each of the obtained reaction precipitates was washed with water and then dried to isolate nickel cobalt manganese hydroxide (single particle precursor or secondary particle precursor) as a nickel cobalt manganese composite compound.
- nickel cobalt manganese hydroxide single particle precursor or secondary particle precursor
- weak acid water or an alkaline solution containing sodium hydroxide or potassium hydroxide may be used for washing.
- the nickel-cobalt-manganese composite hydroxide is manufactured, but the nickel-cobalt-manganese composite oxide may be prepared.
- the metal composite oxide or metal composite hydroxide as a single particle precursor or a secondary particle precursor is dried and then mixed with a lithium salt.
- a lithium salt By mixing the single particle precursor and the secondary particle precursor in a predetermined mass ratio at the time of mixing, the abundance ratio of the obtained single particles and secondary particles can be roughly controlled.
- the single particle precursor and the secondary particle precursor are agglomerated or separated from each other, or there are secondary particles based on the single particle precursor or single particles based on the secondary particle precursor.
- the mixing ratio of the single particle precursor and the secondary particle precursor and the conditions of the steps after mixing the presence of the single particle and the secondary particles in the finally obtained lithium metal composite oxide. The ratio can be controlled.
- the drying conditions are not particularly limited, but, for example, conditions in which the metal composite oxide or the metal composite hydroxide is not oxidized and reduced (the oxide is maintained as an oxide, or the hydroxide is hydroxylated).
- Object the condition that the metal composite hydroxide is oxidized (the hydroxide is oxidized to the oxide), and the condition that the metal composite oxide is reduced (the oxide is reduced to the hydroxide). Any of the conditions).
- An inert gas such as nitrogen, helium, and argon may be used for the condition where oxidation and reduction are not performed, and oxygen or air may be used under the condition that the hydroxide is oxidized.
- a reducing agent such as hydrazine or sodium sulfite may be used under an inert gas atmosphere.
- the lithium salt any one of lithium carbonate, lithium nitrate, lithium acetate, lithium hydroxide, lithium hydroxide hydrate, and lithium oxide can be used, or two or more can be mixed and used.
- the metal composite oxide or metal composite hydroxide After drying the metal composite oxide or metal composite hydroxide as the single particle precursor or the secondary particle precursor, classification may be appropriately performed.
- the above lithium salt and metal composite hydroxide are used in consideration of the composition ratio of the final target product.
- the lithium salt and the metal composite hydroxide are Li[Li x Ni (1-yz) Co y Mn z O 2 (-0.1 in the formula, ⁇ x ⁇ 0.2, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4).
- the lithium-nickel-cobalt-manganese composite oxide is obtained by calcining a mixture of the nickel-cobalt-manganese metal composite hydroxide and the lithium salt.
- dry air, an oxygen atmosphere, an inert atmosphere or the like is used depending on the desired composition, and if necessary, a plurality of heating steps are carried out.
- the holding temperature in firing may be appropriately adjusted depending on the type of transition metal element used and the precipitating agent.
- the holding temperature means the temperature of the atmosphere in the firing furnace, and is the maximum holding temperature in the firing process.
- a range of 200°C or higher and 1150°C or lower can be mentioned, preferably 300°C or higher and 1050°C or lower, and more preferably 500°C or higher and 1000°C or lower.
- the holding time at the holding temperature is 0.1 hours or more and 20 hours or less, preferably 0.5 hours or more and 10 hours or less.
- the temperature rising rate up to the holding temperature is usually 50° C./hour or more and 400° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10° C./hour or more and 400° C./hour or less.
- As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used.
- the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
- the lithium metal composite oxide of the present embodiment is manufactured by producing a first lithium metal composite oxide composed of single particles and a second lithium metal composite oxide composed of secondary particles, respectively. It can be manufactured by mixing the first and second lithium metal composite oxides.
- the first lithium metal composite oxide is preferably produced by firing the metal composite compound with a suitable lithium salt and an inert melting agent.
- the second lithium metal composite oxide it is preferable to calcine the metal composite compound with a suitable lithium salt.
- the metal composite compound is preferably a metal composite hydroxide or a metal composite oxide.
- an example of the method for producing the lithium metal composite oxide will be described separately for the production process of the metal composite compound and the production process of the lithium metal composite oxide.
- the metal composite compound can be produced by a commonly known batch coprecipitation method or continuous coprecipitation method.
- the production method will be described in detail by taking a metal composite hydroxide containing nickel, cobalt and manganese as an example of the metal.
- Ni (1-yz) Co Ni (1-yz) Co.
- a metal composite hydroxide represented by y Mn z (OH) 2 (in the formula, 0 ⁇ y ⁇ 0.4, 0 ⁇ z ⁇ 0.4) is produced.
- nickel salt that is the solute of the nickel salt solution the cobalt salt that is the solute of the cobalt salt solution, and the manganese salt that is the solute of the manganese salt solution is the same as the explanation in the above-mentioned manufacturing method 1.
- water is used as a solvent.
- the obtained reaction precipitate is washed with water and dried to isolate nickel cobalt manganese hydroxide as a nickel cobalt manganese composite compound. Moreover, you may wash with weak acid water or an alkaline solution containing sodium hydroxide or potassium hydroxide as needed.
- the nickel-cobalt-manganese composite hydroxide is manufactured, but the nickel-cobalt-manganese composite oxide may be prepared.
- the second lithium metal composite oxide can be produced by the same method as the production method 1, except that the secondary particle precursor is not mixed with the single particle precursor and is calcined with a lithium salt.
- the reaction of the mixture can be promoted by firing the mixture in the presence of an inert melting agent.
- the inert melting agent may remain in the lithium metal composite oxide after firing, or may be removed by washing with water or the like after firing. In the present embodiment, it is preferable to wash the first lithium mixed metal oxide after firing with water or the like.
- the second lithium mixed metal oxide after firing may also be washed with water or the like.
- the particle size of the single particles of the obtained lithium metal composite oxide or the average particle size of the secondary particles can be controlled within the preferable ranges of the present embodiment.
- the holding temperature in firing may be appropriately adjusted according to the type of transition metal element used, the type or amount of the precipitant and the inert melting agent.
- As the holding temperature specifically, a range of 200°C or higher and 1150°C or lower can be mentioned, preferably 300°C or higher and 1050°C or lower, and more preferably 500°C or higher and 1000°C or lower.
- the holding temperature of the second lithium metal composite oxide is preferably 30° C. or higher, more preferably 50° C. or higher, and 80° C. or higher. Higher is more preferable.
- the holding time at the holding temperature is 0.1 hours or more and 20 hours or less, preferably 0.5 hours or more and 10 hours or less.
- the temperature rising rate up to the holding temperature is usually 50° C./hour or more and 400° C./hour or less, and the temperature lowering rate from the holding temperature to room temperature is usually 10° C./hour or more and 400° C./hour or less.
- As the firing atmosphere air, oxygen, nitrogen, argon, or a mixed gas thereof can be used.
- the lithium metal composite oxide of the present embodiment can be obtained by mixing the obtained first and second lithium metal composite oxides in a predetermined ratio.
- the lithium metal composite oxide obtained by firing is appropriately classified after pulverization, and is used as a positive electrode active material applicable to a lithium secondary battery.
- the inert melting agent that can be used in this embodiment is not particularly limited as long as it is difficult to react with the mixture during firing.
- a fluoride of at least one element selected from the group consisting of Na, K, Rb, Cs, Ca, Mg, Sr, and Ba (hereinafter referred to as “A”), a chloride of A. , A carbonate, A sulfate, A nitrate, A phosphate, A hydroxide, A molybdate and A tungstate. .
- NaF (melting point: 993° C.), KF (melting point: 858° C.), RbF (melting point: 795° C.), CsF (melting point: 682° C.), CaF 2 (melting point: 1402° C.), MgF 2 (Melting point: 1263° C.), SrF 2 (melting point: 1473° C.) and BaF 2 (melting point: 1355° C.).
- NaCl melting point: 801° C.
- KCl melting point: 770° C.
- RbCl melting point: 718° C.
- CsCl melting point: 645° C.
- CaCl 2 melting point: 782° C.
- MgCl 2 Melting point: 714° C.
- SrCl 2 melting point: 857° C.
- BaCl 2 melting point: 963° C.
- Na 2 CO 3 (melting point: 854° C.), K 2 CO 3 (melting point: 899° C.), Rb 2 CO 3 (melting point: 837° C.), Cs 2 CO 3 (melting point: 793° C.) , CaCO 3 (melting point: 825° C.), MgCO 3 (melting point: 990° C.), SrCO 3 (melting point: 1497° C.) and BaCO 3 (melting point: 1380° C.).
- Na 2 SO 4 (melting point: 884° C.), K 2 SO 4 (melting point: 1069° C.), Rb 2 SO 4 (melting point: 1066° C.), Cs 2 SO 4 (melting point: 1005° C.) , CaSO 4 (melting point: 1460° C.), MgSO 4 (melting point: 1137° C.), SrSO 4 (melting point: 1605° C.) and BaSO 4 (melting point: 1580° C.).
- NaNO 3 (melting point: 310° C.), KNO 3 (melting point: 337° C.), RbNO 3 (melting point: 316° C.), CsNO 3 (melting point: 417° C.), Ca(NO 3 ) 2 (melting point) : 561° C.), Mg(NO 3 ) 2 , Sr(NO 3 ) 2 (melting point: 645° C.) and Ba(NO 3 ) 2 (melting point: 596° C.).
- NaOH melting point: 318° C.
- KOH melting point: 360° C.
- RbOH melting point: 301° C.
- CsOH melting point: 272° C.
- Ca(OH) 2 melting point: 408° C.
- Mg(OH) 2 melting point: 350° C.
- Sr(OH) 2 melting point: 375° C.
- Ba(OH) 2 melting point: 853° C.
- the molybdate of A includes Na 2 MoO 4 (melting point: 698° C.), K 2 MoO 4 (melting point: 919° C.), Rb 2 MoO 4 (melting point: 958° C.), Cs 2 MoO 4 (melting point: 956° C.). ), CaMoO 4 (melting point: 1520° C.), MgMoO 4 (melting point: 1060° C.), SrMoO 4 (melting point: 1040° C.) and BaMoO 4 (melting point: 1460° C.).
- Examples of the tungstate of A include Na 2 WO 4 (melting point: 687° C.), K 2 WO 4 , Rb 2 WO 4 , Cs 2 WO 4 , CaWO 4 , MgWO 4 , SrWO 4 and BaWO 4. ..
- two or more kinds of these inert melting agents may be used. When two or more kinds are used, the melting point may be lowered.
- any one of a carbonate and a sulfate of A, a chloride of A or a combination thereof is used. Is preferred.
- A is preferably one or both of sodium (Na) and potassium (K). That is, among the above, the particularly preferable inert melting agent is one or more selected from the group consisting of NaCl, KCl, Na 2 CO 3 , K 2 CO 3, Na 2 SO 4, and K 2 SO 4. ..
- the amount of the inert melting agent present during firing may be appropriately selected.
- the amount of the inert melting agent present during firing is preferably 0.1 part by mass or more, and more preferably 1 part by mass or more, based on 100 parts by mass of the lithium salt.
- an inert melting agent other than the above listed inert melting agents may be used together. Examples of the melting agent include ammonium salts such as NH 4 Cl and NH 4 F.
- Lithium secondary battery ⁇ Lithium secondary battery> Next, the positive electrode using the positive electrode active material for a lithium secondary battery containing the positive electrode active material powder of the present embodiment, and the lithium secondary battery having this positive electrode will be described while describing the configuration of the lithium secondary battery.
- An example of the lithium secondary battery of the present embodiment has a positive electrode and a negative electrode, a separator sandwiched between the positive electrode and the negative electrode, and an electrolytic solution arranged between the positive electrode and the negative electrode.
- FIGS. 1A and 1B are schematic diagrams showing an example of the lithium secondary battery of the present embodiment.
- the cylindrical lithium secondary battery 10 of this embodiment is manufactured as follows.
- a pair of separators 1 having a strip shape, a strip positive electrode 2 having a positive electrode lead 21 at one end, and a strip negative electrode 3 having a negative electrode lead 31 at one end are separated into a separator 1, a positive electrode 2, and a separator. 1 and the negative electrode 3 are laminated in this order and wound to form an electrode group 4.
- the can bottom is sealed, and the electrode group 4 is impregnated with the electrolytic solution 6 to form the positive electrode 2 and the negative electrode 3. Place the electrolyte between. Furthermore, by sealing the upper part of the battery can 5 with the top insulator 7 and the sealing body 8, the lithium secondary battery 10 can be manufactured.
- the shape of the electrode group 4 is, for example, a columnar shape such that the sectional shape when the electrode group 4 is cut in the direction perpendicular to the winding axis is a circle, an ellipse, a rectangle, or a rectangle with rounded corners.
- the shape can be mentioned.
- the shape of the lithium secondary battery having such an electrode group 4 the shape defined by IEC60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC) can be adopted. .
- IEC60086 or JIS C 8500 which is a standard for a battery defined by the International Electrotechnical Commission (IEC)
- a cylindrical shape, a rectangular shape, etc. can be mentioned.
- the lithium secondary battery is not limited to the above-mentioned wound type structure, and may have a laminated type structure in which a laminated structure of a positive electrode, a separator, a negative electrode, and a separator is repeatedly stacked.
- the laminated lithium secondary battery include so-called coin type batteries, button type batteries, and paper type (or sheet type) batteries.
- the positive electrode of the present embodiment can be manufactured by first preparing a positive electrode mixture containing a positive electrode active material, a conductive material and a binder, and supporting the positive electrode mixture on a positive electrode current collector.
- a carbon material can be used as the conductive material included in the positive electrode of the present embodiment.
- the carbon material include graphite powder, carbon black (for example, acetylene black), and fibrous carbon material. Since carbon black is a fine particle and has a large surface area, it is possible to enhance the conductivity inside the positive electrode and improve the charge/discharge efficiency and output characteristics by adding a small amount to the positive electrode mixture. Both the binding force between the positive electrode mixture and the positive electrode current collector and the binding force inside the positive electrode mixture are reduced, which rather causes an increase in internal resistance.
- the proportion of the conductive material in the positive electrode mixture is preferably 5 parts by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the positive electrode active material.
- a fibrous carbon material such as graphitized carbon fiber or carbon nanotube is used as the conductive material, it is possible to reduce this ratio.
- the ratio of the positive electrode active material to the total mass of the positive electrode mixture is preferably 80 to 98% by mass.
- thermoplastic resin can be used as the binder included in the positive electrode of the present embodiment.
- thermoplastic resin polyvinylidene fluoride (hereinafter sometimes referred to as PVdF), polytetrafluoroethylene (hereinafter sometimes referred to as PTFE), ethylene tetrafluoride/hexafluoropropylene/vinylidene fluoride system
- fluoropolymers such as copolymers, propylene hexafluoride/vinylidene fluoride copolymers and tetrafluoroethylene/perfluorovinyl ether copolymers
- polyolefin resins such as polyethylene and polypropylene.
- thermoplastic resins may be used as a mixture of two or more kinds.
- a fluororesin and a polyolefin resin as a binder, the proportion of the fluororesin to the whole positive electrode mixture is 1% by mass or more and 10% by mass or less, and the ratio of the polyolefin resin is 0.1% by mass or more and 2% by mass or less, the positive electrode It is possible to obtain a positive electrode mixture which has high adhesion to the current collector and high binding force inside the positive electrode mixture.
- a band-shaped member made of a metal material such as Al, Ni, or stainless can be used. Above all, it is preferable to use Al as a forming material and process it into a thin film because it is easy to process and inexpensive.
- the positive electrode mixture As a method of supporting the positive electrode mixture on the positive electrode current collector, there is a method of press-molding the positive electrode mixture on the positive electrode current collector. Further, the positive electrode mixture is made into a paste by using an organic solvent, and the obtained positive electrode mixture paste is applied to at least one surface side of the positive electrode current collector, dried, and pressed to fix the positive electrode current collector to the positive electrode current collector. A mixture may be supported.
- organic solvents that can be used include amine solvents such as N,N-dimethylaminopropylamine and diethylenetriamine; ether solvents such as tetrahydrofuran; ketone solvents such as methyl ethyl ketone; methyl acetate. And the like; amide-based solvents such as dimethylacetamide and N-methyl-2-pyrrolidone (hereinafter sometimes referred to as NMP);
- Examples of the method for applying the positive electrode mixture paste to the positive electrode current collector include a slit die coating method, a screen coating method, a curtain coating method, a knife coating method, a gravure coating method, and an electrostatic spraying method.
- a positive electrode can be manufactured by the method mentioned above.
- (Negative electrode) The negative electrode which the lithium secondary battery of the present embodiment has, as long as it is possible to dope and de-dope lithium ions at a lower potential than the positive electrode, a negative electrode mixture containing a negative electrode active material is carried on the negative electrode current collector. And an electrode composed of the negative electrode active material alone.
- Negative electrode active material examples of the negative electrode active material included in the negative electrode include carbon materials, chalcogen compounds (oxides, sulfides, etc.), nitrides, metals or alloys, and materials capable of lithium ion doping and dedoping at a lower potential than the positive electrode. Be done.
- Examples of the carbon material that can be used as the negative electrode active material include graphite such as natural graphite and artificial graphite, cokes, carbon black, pyrolytic carbons, carbon fiber, and a sintered body of an organic polymer compound.
- oxides that can be used as the negative electrode active material include silicon oxides represented by the formula SiO x (where x is a positive real number) such as SiO 2 and SiO; TiO 2 , such as TiO x (where x is a positive real number) (here, , X is a titanium oxide represented by a positive real number; V 2 O 5 , VO 2 or other vanadium oxide represented by a formula VO x (where x is a positive real number); Fe 3 O 4 , Fe 2 O 3 , FeO and other oxides of iron represented by the formula FeO x (where x is a positive real number); SnO 2 , SnO and other formulas SnO x (where x is a positive real number) Oxides of tin; oxides of tungsten represented by the general formula WO x (where x is a positive real number) such as WO 3 and WO 2 ; lithium and titanium such as Li 4 Ti 5 O 12 and LiVO 2. Or a complex
- Examples of sulfides that can be used as the negative electrode active material include titanium sulfides represented by the formula TiS x (where x is a positive real number) such as Ti 2 S 3 , TiS 2 , and TiS; V 3 S 4 , VS 2. Vanadium sulfide represented by the formula VS x (where x is a positive real number) such as VS; and the formula FeS x (where x is a positive real number) such as Fe 3 S 4 , FeS 2 , and FeS.
- Li 3 N Li 3-x A x N (where A is one or both of Ni and Co, and 0 ⁇ x ⁇ 3).
- Lithium-containing nitrides such as
- These carbon materials, oxides, sulfides, and nitrides may be used alone or in combination of two or more. Further, these carbon materials, oxides, sulfides and nitrides may be crystalline or amorphous.
- examples of the metal that can be used as the negative electrode active material include lithium metal, silicon metal and tin metal.
- alloys that can be used as the negative electrode active material include lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni; silicon alloys such as Si—Zn; Sn—Mn and Sn.
- lithium alloys such as Li—Al, Li—Ni, Li—Si, Li—Sn, and Li—Sn—Ni
- silicon alloys such as Si—Zn
- Sn—Mn and Sn Other examples include tin alloys such as —Co, Sn—Ni, Sn—Cu, and Sn—La; alloys such as Cu 2 Sb and La 3 Ni 2 Sn 7 .
- These metals and alloys are processed into foil, for example, and then used mainly as electrodes.
- a carbon material containing graphite as a main component such as natural graphite or artificial graphite, is preferably used because of its high performance (good cycle characteristics).
- the shape of the carbon material may be, for example, a flaky shape such as natural graphite, a spherical shape such as mesocarbon microbeads, a fibrous shape such as graphitized carbon fiber, or an aggregate of fine powder.
- the above-mentioned negative electrode mixture may contain a binder, if necessary.
- the binder include thermoplastic resins, and specific examples include PVdF, thermoplastic polyimide, carboxymethyl cellulose, polyethylene and polypropylene.
- Negative electrode current collector examples of the negative electrode current collector included in the negative electrode include a strip-shaped member made of a metal material such as Cu, Ni, and stainless. Above all, it is preferable that Cu is used as a forming material and processed into a thin film because it is difficult to form an alloy with lithium and is easy to process.
- Examples of the separator included in the lithium secondary battery according to the present embodiment include a polyolefin film such as polyethylene and polypropylene, a fluororesin, a nitrogen-containing aromatic polymer, and the like, a porous film, a nonwoven fabric, a woven fabric, or the like. Can be used. Further, the separator may be formed by using two or more kinds of these materials, or the separator may be formed by laminating these materials.
- the separator has a gas permeation resistance of not less than 50 seconds/100 cc and not more than 300 seconds/100 cc according to the Gurley method defined in JIS P 8117 in order to allow the electrolyte to satisfactorily permeate when the battery is used (during charge/discharge) It is preferably not more than 50 seconds/100 cc, more preferably not more than 200 seconds/100 cc.
- the porosity of the separator is preferably 30% by volume or more and 80% by volume or less, more preferably 40% by volume or more and 70% by volume or less with respect to the volume (100% by volume) of the separator.
- the separator may be a stack of separators having different porosities.
- the electrolytic solution included in the lithium secondary battery of the present embodiment contains an electrolyte and an organic solvent.
- the electrolyte contained in the electrolytic solution includes LiClO 4 , LiPF 6 , LiAsF 6 , LiSbF 6 , LiBF 4 , LiCF 3 SO 3 , LiN(SO 2 CF 3 ) 2 , LiN(SO 2 C 2 F 5 ) 2 , LiN.
- organic solvent contained in the electrolytic solution examples include propylene carbonate, ethylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, 4-trifluoromethyl-1,3-dioxolan-2-one, 1,2-dicarbonate.
- Carbonates such as (methoxycarbonyloxy)ethane; 1,2-dimethoxyethane, 1,3-dimethoxypropane, pentafluoropropyl methyl ether, 2,2,3,3-tetrafluoropropyl difluoromethyl ether, tetrahydrofuran, 2- Ethers such as methyltetrahydrofuran; Esters such as methyl formate, methyl acetate, ⁇ -butyrolactone; Nitriles such as acetonitrile and butyronitrile; Amides such as N,N-dimethylformamide, N,N-dimethylacetamide; 3-methyl Carbamates such as 2-oxazolidone; Sulfur-containing compounds such as sulfolane, dimethyl sulfoxide, and 1,3-propanesultone, or those in which a fluoro group is further introduced into these organic solvents (one of the hydrogen atoms contained in the organic solvent It is possible to use those obtained by substituting
- a mixed solvent containing carbonates is preferable, and a mixed solvent of cyclic carbonate and acyclic carbonate and a mixed solvent of cyclic carbonate and ethers are more preferable.
- the mixed solvent of the cyclic carbonate and the non-cyclic carbonate is preferably a mixed solvent containing ethylene carbonate, dimethyl carbonate and ethylmethyl carbonate.
- an electrolytic solution containing a lithium salt containing fluorine such as LiPF 6 and an organic solvent having a fluorine substituent because the safety of the obtained lithium secondary battery is enhanced.
- a mixed solvent containing ethers having a fluorine substituent such as pentafluoropropyl methyl ether and 2,2,3,3-tetrafluoropropyl difluoromethyl ether and dimethyl carbonate has a capacity even when charged and discharged at a high current rate. It is more preferable because the maintenance rate is high.
- a solid electrolyte may be used instead of the above electrolytic solution.
- the solid electrolyte for example, an organic polymer electrolyte such as a polyethylene oxide polymer compound or a polymer compound containing at least one or more polyorganosiloxane chains or polyoxyalkylene chains can be used. Further, a so-called gel type in which a polymer compound holds a non-aqueous electrolyte can be used.
- Li 2 S-GeS 2 -P 2 S 5 inorganic solid electrolytes containing a sulfide, and the like, may be used a mixture of two or more thereof. By using these solid electrolytes, it may be possible to further enhance the safety of the lithium secondary battery.
- the solid electrolyte when a solid electrolyte is used, the solid electrolyte may serve as a separator, and in that case, the separator may not be needed.
- a lithium metal composite oxide composed of secondary particles in which primary particles are agglomerated and single particles existing independently of the secondary particles, and having the following composition formula (1): A lithium metal composite oxide represented, which satisfies the following requirements (A), (B), and (C).
- M is one or more elements selected from the group consisting of Fe, Cu, Ti, Mg, Al, W, B, Mo, Nb, Zn, Sn, Zr, Ga and V, and 0.01 ⁇ x ⁇ 0.08, 0.01 ⁇ y ⁇ 0.33, 0.02 ⁇ z ⁇ 0.4, 0 ⁇ w ⁇ 0.07 are satisfied.
- A) The BET specific surface area of the lithium metal composite oxide is 0.2 m 2 /g or more and 1.5 m 2 /g or less.
- the lithium metal composite oxide has two or more peaks in the number-based circularity distribution of circularity determined by the following formula (2).
- Circularity 4 ⁇ S/L 2 (2) (S is the projected area of the projected image of the particles forming the metal complex oxide powder, and L is the perimeter of the particles.) (C) The average particle diameter D 50 of the lithium metal composite oxide is 3 ⁇ m or more and 18 ⁇ m or less. [10]
- the lithium metal composite oxide according to [9] or [10] which has a peak of 2.
- composition analysis of the lithium metal composite oxide powder produced by the method described below is performed by dissolving the obtained powder of the lithium composite metal compound in hydrochloric acid, and then using an inductively coupled plasma emission spectrometer (SII Nano Technology Co., Ltd.). , SPS 3000).
- Macsorb registered trademark manufactured by Mountech Co., Ltd.
- the lithium metal composite oxide powder was placed on a conductive sheet stuck on a sample stage, and using JSM-5510 manufactured by JEOL Ltd., an electron beam with an accelerating voltage of 20 kV was irradiated for SEM observation.
- the amount of the powder placed on the conductive sheet was adjusted so that the independent particles were not observed to overlap each other.
- Fifty single particles or secondary particles are arbitrarily extracted from the image (SEM photograph) obtained by SEM observation, and for each single particle or secondary particle, parallel lines drawn by drawing the projected image from a certain direction are parallel.
- the distance between the lines was measured as the particle diameter of the single particle or the secondary particle.
- the arithmetic average value of the particle diameters of the obtained single particles or secondary particles was defined as the average single particle diameter or the average secondary particle diameter of the lithium metal composite oxide powder.
- the SEM surface image is taken into a computer, image processing software Image J is used to perform binarization at an intermediate value between the maximum brightness and the minimum brightness in the SEM image, and the lithium composite metal oxide powder, that is, single particles or A binarized image was obtained in which the secondary particles were black and the portions other than the single particles or the secondary particles were white.
- the circularity was measured based on the equation (2) for each black portion corresponding to the single particle or the secondary particle.
- the circularity should be in the range of 0 to 1.0 at equal intervals of 0.05.
- the number of points (peaks) where the number of particles changed from increasing to decreasing was measured from the side having a low circularity to the side having a high circularity.
- Average circularity of lithium mixed metal oxide powder sum of circularity of all observed particles/total number of observed particles
- Average circularity of single particles sum of circularity of observed single particles / number of observed single particles
- Average circularity of secondary particles sum of observed circularity of secondary particles / number of observed secondary particles
- the single particles Alternatively, the average circularity of the secondary particles is calculated, and the peaks derived from the particles having low average circularity are referred to as the first peak and the second peak. When there are two or more peaks, they are further referred to as a third peak and a fourth peak.
- the circularity distribution standard deviation was calculated from the circularity distribution. Specifically, it was calculated as follows.
- n is the total number of data and means the number of particles.
- the average value x ⁇ means the average circularity.
- x i means the circularity of each particle.
- Preparation of lithium secondary battery Preparation of Positive Electrode for Lithium Secondary Battery
- Binder 92:5:3 (mass ratio) was added and kneaded to prepare a paste-like positive electrode mixture.
- N-methyl-2-pyrrolidone was used as an organic solvent.
- the obtained positive electrode mixture was applied to an Al foil having a thickness of 40 ⁇ m as a current collector, dried at 60° C. for 3 hours, pressed at a linear pressure of 200 kN/m, and vacuum dried at 150° C. for 8 hours.
- a positive electrode for a lithium secondary battery was obtained.
- the electrode area of this positive electrode for a lithium secondary battery was 1.65 cm 2 .
- the mass of the obtained positive electrode for lithium secondary battery was measured to calculate the density of the positive electrode mixture layer (positive electrode density).
- the electrolytic solution used was prepared by dissolving LiPF 6 in a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to a concentration of 1.0 mol/L.
- LiPF 6 LiPF 6
- a 30:35:35 (volume ratio) mixed solution of ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate to a concentration of 1.0 mol/L.
- the negative electrode was placed on the upper side of the laminated film separator, the upper lid was placed via a gasket, and the lithium secondary battery (coin type battery R2032. "Battery" may be referred to).
- cycle retention rate the volume capacity density retention rate after 50 times
- Test temperature 25°C
- Charging condition maximum charging voltage 4.3V
- charging time 6.0 hours charging current 0.2CA Pause time after charging: 10 minutes
- Discharge condition Discharge minimum voltage 2.5 V
- discharge current 0.2 CA Pause time after discharge 10 minutes
- the process of sequentially performing charging, charging pause, discharging, and discharging pause is one time.
- the initial volumetric capacity density was measured by the following method.
- a lithium secondary battery (coin cell) was produced using the positive electrode active material obtained by the method described below.
- Manufacture of Positive Electrode Active Material A1 After water was put into a reaction tank equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was kept at 55°C.
- the nickel sulfate aqueous solution, the cobalt sulfate aqueous solution, the manganese sulfate aqueous solution, and the aluminum sulfate aqueous solution have an atomic ratio of nickel atoms, cobalt atoms, manganese atoms, and aluminum atoms of 0.90:0.07:0.02:0.01.
- mixed raw material solution 1 was prepared.
- the mixed raw material solution 1 and an ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction tank under stirring.
- Aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction tank was 12.4, nickel cobalt manganese aluminum composite hydroxide particles were obtained, washed, and then dehydrated by a centrifuge, washed and dehydrated. , And was isolated and dried at 105° C. to obtain nickel cobalt manganese aluminum composite hydroxide 1.
- the above powder and pure water whose liquid temperature was adjusted to 5° C. were mixed so that the ratio of the above powder mass to the total amount was 0.3, and the slurry was stirred for 20 minutes and then dehydrated.
- the positive electrode active material A1 (mainly containing single particles) was obtained by rinsing with pure water adjusted to a liquid temperature having a mass twice that of the above powder adjusted to 5° C., followed by isolation and drying at 150° C.
- the mixed raw material solution 1 and the ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction tank under stirring.
- An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction tank was 11.9, nickel cobalt manganese aluminum composite hydroxide particles were obtained, washed, and then dehydrated by a centrifuge, washed, and dehydrated.
- the nickel cobalt manganese aluminum composite hydroxide 2 was obtained by isolating and drying at 105°C.
- the positive electrode active material B1 (mainly containing secondary particles) was obtained by firing at 10° C. for 10 hours.
- Positive Electrode Active Material C1 The positive electrode active material A1 and the positive electrode active material B1 were weighed and mixed so that the mass ratio was 20:80, and mixed to obtain a positive electrode active material C1 which is the positive electrode active material of Example 1. ..
- Table 2 shows the analysis results of the positive electrode active material C1, the measurement results of the volume capacity density and the 50-cycle volume capacity density maintenance rate.
- Manufacture of Positive Electrode Active Material A2 After water was placed in a reaction tank equipped with a stirrer and an overflow pipe, an aqueous sodium hydroxide solution was added and the liquid temperature was kept at 55°C.
- An aqueous solution of nickel sulfate, an aqueous solution of cobalt sulfate and an aqueous solution of manganese sulfate are mixed so that the atomic ratio of nickel atoms, cobalt atoms and manganese atoms is 0.88:0.08:0.04 to prepare a mixed raw material solution 2.
- the mixed raw material solution 2 and an ammonium sulfate aqueous solution were continuously added as a complexing agent in the reaction tank with stirring.
- Aqueous sodium hydroxide solution was added dropwise so that the pH of the solution in the reaction tank would be 11.8 to obtain nickel-cobalt-manganese composite hydroxide particles, which were washed and then dehydrated by a centrifuge to wash, dehydrate and
- the nickel cobalt manganese composite hydroxide 3 was obtained by isolating and drying at 105 degreeC.
- the above powder and pure water whose liquid temperature was adjusted to 5° C. were mixed so that the ratio of the above powder mass to the total amount was 0.3, and the slurry was stirred for 20 minutes and then dehydrated.
- the positive electrode active material A2 (mainly containing single particles) was obtained by rinsing with pure water adjusted to a liquid temperature having a mass twice that of the above powder adjusted to 5° C., followed by isolation and drying at 150° C.
- the above-mentioned mixed raw material solution 2 and an ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction tank under stirring.
- An aqueous sodium hydroxide solution was added dropwise at appropriate times so that the pH of the solution in the reaction tank was 11.5, nickel cobalt manganese composite hydroxide particles were obtained, washed, and then dehydrated by a centrifuge, washed, dehydrated,
- the nickel cobalt manganese composite hydroxide 4 was obtained by isolating and drying at 105 degreeC.
- Positive Electrode Active Material C2 The positive electrode active material A2 and the positive electrode active material B2 were weighed so as to have a mass ratio of 20:80 and mixed to obtain a positive electrode active material C2 which is the positive electrode active material of Example 2.
- Table 2 shows the analysis results of the positive electrode active material C2, and the measurement results of the volume capacity density and the 50-cycle volume capacity density maintenance rate.
- the above powder and pure water whose liquid temperature was adjusted to 5° C. were mixed so that the ratio of the above powder mass to the total amount was 0.3, and the slurry was stirred for 20 minutes and then dehydrated.
- the positive electrode active material A3 (mainly containing single particles) was obtained by rinsing with pure water adjusted to a liquid temperature having a mass twice that of the above powder adjusted to 5° C., followed by isolation and drying at 150° C.
- Positive Electrode Active Material C3 The positive electrode active material A3 and the positive electrode active material B2 were weighed so as to have a mass ratio of 25:75 and mixed to obtain a positive electrode active material C3 which is the positive electrode active material of Example 3.
- Table 2 shows the analysis results of the positive electrode active material C3, and the measurement results of the volume capacity density and the 50-cycle volume capacity density maintenance rate.
- the above-mentioned mixed raw material solution 2 and an ammonium sulfate aqueous solution were continuously added as a complexing agent to the reaction tank under stirring.
- Aqueous sodium hydroxide solution was added dropwise so that the pH of the solution in the reaction tank would be 12.5, nickel cobalt manganese aluminum composite hydroxide particles were obtained, washed, and then dehydrated by a centrifuge, washed and dehydrated.
- the nickel cobalt manganese composite hydroxide 5 was obtained by isolating and drying at 105°C.
- Table 2 shows the analysis results of the positive electrode active material B3, and the measurement results of the volume capacity density and the 50-cycle volume capacity density maintenance rate.
- Table 1 the composition, BET specific surface area, D 50 , circularity distribution peak number, and average circularity are collectively described.
- Table 2 shows the first peak circularity, the second peak circularity, the standard deviation of the circularity distribution, the particles derived from the first peak, the particles derived from the second peak, the average particle diameter of single particles, the electrode density, and the initial stage.
- the volume capacity density and the 50 volume cycle volume capacity density retention rate are collectively described.
- the positive electrode active materials of Examples 1 to 3 to which the present invention was applied have a high volume capacity density and a 50 volume cycle volume capacity density retention rate.
- a lithium metal composite oxide having a high volume capacity and a high volume capacity retention rate, a positive electrode active material for a lithium secondary battery, a positive electrode, and a lithium secondary battery.
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、組成式(1)で表され、要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Description
本発明は、リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池に関する。
本願は、2018年11月30日に日本に出願された特願2018-225443号について優先権を主張し、その内容をここに援用する。
本願は、2018年11月30日に日本に出願された特願2018-225443号について優先権を主張し、その内容をここに援用する。
リチウム二次電池用正極活物質には、リチウム金属複合酸化物が用いられている。リチウム二次電池は、既に携帯電話用途やノートパソコン用途などの小型電源だけでなく、自動車用途や電力貯蔵用途などの中型又は大型電源においても、実用化が進んでいる。
リチウム金属複合酸化物の粒子形状は、正極活物質として用いた際のプレス時の充填性等に影響を及ぼす。
例えば特許文献1には、平均円形度が0.05以上0.6以下の二次粒子を有するリチウム二次電池用正極活物質が記載されている。特許文献1には、二次粒子の円形度が上記の範囲であることにより、二次粒子と導電助剤との接触が向上し、高出力充放電が可能となったことが記載されている。特許文献1には、平均円形度が1の場合は、正極活物質が球体(真球)であることを意味し、平均円形度が小さくなるほど、正極活物質の形状が球状から遠ざかることを意味することが記載されている。
特許文献1に記載のようなリチウム二次電池用正極活物質においては、体積容量、及び体積容量維持率を向上させる観点から改良の余地がある。
本発明は、体積容量と体積容量維持率が高いリチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池を提供することを目的とする。
本発明は、体積容量と体積容量維持率が高いリチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池を提供することを目的とする。
すなわち、本発明は、下記[1]~[8]の発明を包含する。
[1]一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が2m2/g未満である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が2μm以上20μm以下である。
[2]平均円形度が0.4以上0.8以下である、[1]に記載のリチウム金属複合酸化物。
[3]前記円形度分布において、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有する、[1]又は[2]に記載のリチウム金属複合酸化物。
[4]前記円形度分布において、円形度分布標準偏差が0.1以上0.4以下である[3]に記載のリチウム金属複合酸化物。
[5]前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークである、[3]又は[4]に記載のリチウム金属複合酸化物。
[6]平均粒子径が1.0μm以上5.0μm以下の単粒子を含む、[1]~[5]のいずれか1つに記載のリチウム金属複合酸化物。
[7][1]~[6]のいずれか1つに記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
[8][7]に記載のリチウム二次電池用正極活物質を有する正極。
[9][8]に記載の正極を有するリチウム二次電池。
[1]一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が2m2/g未満である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が2μm以上20μm以下である。
[2]平均円形度が0.4以上0.8以下である、[1]に記載のリチウム金属複合酸化物。
[3]前記円形度分布において、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有する、[1]又は[2]に記載のリチウム金属複合酸化物。
[4]前記円形度分布において、円形度分布標準偏差が0.1以上0.4以下である[3]に記載のリチウム金属複合酸化物。
[5]前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークである、[3]又は[4]に記載のリチウム金属複合酸化物。
[6]平均粒子径が1.0μm以上5.0μm以下の単粒子を含む、[1]~[5]のいずれか1つに記載のリチウム金属複合酸化物。
[7][1]~[6]のいずれか1つに記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
[8][7]に記載のリチウム二次電池用正極活物質を有する正極。
[9][8]に記載の正極を有するリチウム二次電池。
本発明によれば、体積容量と体積容量維持率が高いリチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池を提供することができる。
本発明において、「一次粒子」とは、走査型電子顕微鏡などを用いて5000倍~20000倍の視野にて観察した際に、外観上に粒界が存在しない粒子であって、二次粒子を構成する粒子を意味し、例えば、平均粒子径が0.5μm未満の粒子を意味する。
本発明において、「二次粒子」とは、前記一次粒子が凝集している粒子である。
本発明において、「単粒子」とは、前記二次粒子とは独立して存在し、走査型電子顕微鏡などを用いて5000倍~20000倍の視野にて観察した際に、外観上に粒界が存在しない粒子であって、例えば平均粒子径が0.5μm以上の粒子を意味する。
本発明において、「粒子」と記載する場合には、単粒子又は二次粒子のいずれか一方又は両方が含まれる意味とする。
本発明において、「二次粒子」とは、前記一次粒子が凝集している粒子である。
本発明において、「単粒子」とは、前記二次粒子とは独立して存在し、走査型電子顕微鏡などを用いて5000倍~20000倍の視野にて観察した際に、外観上に粒界が存在しない粒子であって、例えば平均粒子径が0.5μm以上の粒子を意味する。
本発明において、「粒子」と記載する場合には、単粒子又は二次粒子のいずれか一方又は両方が含まれる意味とする。
<リチウム金属複合酸化物>
本実施形態は、一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物である。
本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が2m2/g未満である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が2μm以上20μm以下である。
本実施形態は、一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物である。
本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が2m2/g未満である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が2μm以上20μm以下である。
≪組成式(1)≫
本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表される。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 ・・・(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
本実施形態のリチウム金属複合酸化物は、下記組成式(1)で表される。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 ・・・(1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0≦y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるxは0を超えることが好ましく、0.01以上であることがより好ましく、0.02以上であることがさらに好ましい。また、初回クーロン効率がより高いリチウム二次電池を得る観点から、前記組成式(I)におけるxは0.1以下であることが好ましく、0.08以下であることがより好ましく、0.06以下であることがさらに好ましい。
xの上限値と下限値は任意に組み合わせることができる。
例えば、本実施形態においては、0<x≦0.1であることが好ましく、0.01≦x≦0.08であることがより好ましく、0.02≦x≦0.06であることがさらに好ましい。
本明細書において、「サイクル特性が高い」とは、充放電の繰り返しにより、電池容量の低下量が低いことを意味し、初期容量に対する、充放電を繰り返した後の容量比が低下しにくいことを意味する。
xの上限値と下限値は任意に組み合わせることができる。
例えば、本実施形態においては、0<x≦0.1であることが好ましく、0.01≦x≦0.08であることがより好ましく、0.02≦x≦0.06であることがさらに好ましい。
本明細書において、「サイクル特性が高い」とは、充放電の繰り返しにより、電池容量の低下量が低いことを意味し、初期容量に対する、充放電を繰り返した後の容量比が低下しにくいことを意味する。
また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(1)におけるyは0を超えることが好ましく、0.005以上であることがより好ましく、0.01以上であることがさらに好ましく、0.05以上であることが特に好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるyは0.35以下であることがより好ましく、0.33以下であることがさらに好ましい。
yの上限値と下限値は任意に組み合わせることができる。
本実施形態においては、0<y≦0.4であることが好ましく、0.005≦y≦0.35であることがより好ましく、0.01≦y≦0.33であることがさらに好ましい。
yの上限値と下限値は任意に組み合わせることができる。
本実施形態においては、0<y≦0.4であることが好ましく、0.005≦y≦0.35であることがより好ましく、0.01≦y≦0.33であることがさらに好ましい。
本実施形態においては、組成式(1)において、0<x≦0.1であり、0<y≦0.4であることがより好ましい。
また、サイクル特性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるzは0.01以上であることが好ましく、0.02以上であることがより好ましく、0.1以上であることがさらに好ましい。また、高温(例えば60℃環境下)での保存性が高いリチウム二次電池を得る観点から、前記組成式(1)におけるzは0.39以下であることが好ましく、0.38以下であることがより好ましく、0.35以下であることがさらに好ましい。
zの上限値と下限値は任意に組み合わせることができる。例えば、0.01≦z≦0.39であることが好ましく、0.02≦z≦0.38であることがより好ましく、0.02≦z≦0.35であることがさらに好ましい。
zの上限値と下限値は任意に組み合わせることができる。例えば、0.01≦z≦0.39であることが好ましく、0.02≦z≦0.38であることがより好ましく、0.02≦z≦0.35であることがさらに好ましい。
また、電池の内部抵抗が低いリチウム二次電池を得る観点から、前記組成式(1)におけるwは0を超えることが好ましく、0.0005以上であることがより好ましく、0.001以上であることがさらに好ましい。また、高い電流レートにおいて放電容量が多いリチウム二次電池を得る観点から、前記組成式(1)におけるwは0.09以下であることが好ましく、0.08以下であることがより好ましく、0.07以下であることがさらに好ましい。
wの上限値と下限値は任意に組み合わせることができる。例えば、0<w≦0.09であることが好ましく、0.0005≦w≦0.09であることがより好ましく、0.001≦w≦0.08であることがさらに好ましく、0.001≦w≦0.07であることがよりいっそう好ましい。
wの上限値と下限値は任意に組み合わせることができる。例えば、0<w≦0.09であることが好ましく、0.0005≦w≦0.09であることがより好ましく、0.001≦w≦0.08であることがさらに好ましく、0.001≦w≦0.07であることがよりいっそう好ましい。
また、電池容量が大きいリチウム二次電池を得る観点から、本実施形態においては、前記組成式(1)におけるy+z+wは0.5未満が好ましく、0.48以下がより好ましく、0.46以下がさらに好ましい。また、本実施形態においては、前記組成式(1)におけるy+z+wは、0を超えることが好ましい。
前記組成式(1)におけるMは、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVからなる群より選択される1種以上の元素を表す。
また、サイクル特性が高いリチウム二次電池を得る観点から、組成式(1)におけるMは、Ti、Mg、Al、W、B、及びZrからなる群より選択される1種以上の元素であることが好ましく、Al、及びZrからなる群より選択される1種以上の元素であることがより好ましい。また、熱的安定性が高いリチウム二次電池を得る観点から、Ti、Al、W、B、及びZrからなる群より選択される1種以上の元素であることが好ましい。
≪要件(A)≫
本実施形態のリチウム金属複合酸化物は、BET比表面積が2m2/g未満であり、1.7m2/g以下が好ましく、1.5m2/g以下がより好ましく、1.4m2/g以下が特に好ましい。
本実施形態において、BET比表面積は、リチウム金属複合酸化物1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えば、マウンテック社製Macsorb(登録商標))を用いて測定した値とする(単位:m2/g)。
本実施形態のリチウム金属複合酸化物は、BET比表面積が2m2/g未満であり、1.7m2/g以下が好ましく、1.5m2/g以下がより好ましく、1.4m2/g以下が特に好ましい。
本実施形態において、BET比表面積は、リチウム金属複合酸化物1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(例えば、マウンテック社製Macsorb(登録商標))を用いて測定した値とする(単位:m2/g)。
本実施形態のリチウム金属複合酸化物は、BET比表面積を上記上限値以下とすることで体積容量と体積容量維持率を向上できると推察される。
本実施形態のリチウム金属複合酸化物のBET比表面積の下限値は特に限定されないが、例えば0.2m2/gが挙げられる。
本実施形態のリチウム金属複合酸化物は、BET比表面積が2m2/g未満であり、0.2m2/g以上1.7m2/g以下が好ましく、0.3m2/g以上1.5m2/g以下がより好ましく、0.4m2/g以上1.4m2/g以下が特に好ましい。
本実施形態のリチウム金属複合酸化物のBET比表面積の下限値は特に限定されないが、例えば0.2m2/gが挙げられる。
本実施形態のリチウム金属複合酸化物は、BET比表面積が2m2/g未満であり、0.2m2/g以上1.7m2/g以下が好ましく、0.3m2/g以上1.5m2/g以下がより好ましく、0.4m2/g以上1.4m2/g以下が特に好ましい。
≪要件(B)≫
本実施形態のリチウム金属複合酸化物は、円形度分布において、2つ以上のピークを有する。本実施形態のリチウム金属複合酸化物は、円形度分布において、2つ以上のピークを有することで体積容量と体積容量維持率を向上できると推察される。
本実施形態のリチウム金属複合酸化物は、円形度分布において、2つ以上のピークを有する。本実施形態のリチウム金属複合酸化物は、円形度分布において、2つ以上のピークを有することで体積容量と体積容量維持率を向上できると推察される。
・円形度分布の測定
測定対象とするリチウム金属複合酸化物の円形度分布を測定する。本実施形態における円形度分布は、下記式(2)により求められる円形度の個数基準の円形度分布である。
まず、リチウム金属複合酸化物のSEM画像を撮影し、リチウム金属複合酸化物を構成する粒子の投影像である粒子画像を得る。次に、リチウム金属複合酸化物を構成する個々の粒子(つまり二次粒子又は単粒子)について、下記式(2)により算出される円形度を測定する。下記式(2)において、粒子の周囲長とは、投影画像における粒子の外周の長さを意味する。このとき、円形度を測定する粒子の個数は、50個以上であればよく、本明細書においては例えば50個で測定される。得られた円形度を横軸とし、粒子個数を縦軸とし、リチウム金属複合酸化物の円形度分布が得られる。下記式(2)に示す円形度は、数値が1に近づくほど真円であることを意味する。
円形度=4πS/L2 …(2)
(Sは前記粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
測定対象とするリチウム金属複合酸化物の円形度分布を測定する。本実施形態における円形度分布は、下記式(2)により求められる円形度の個数基準の円形度分布である。
まず、リチウム金属複合酸化物のSEM画像を撮影し、リチウム金属複合酸化物を構成する粒子の投影像である粒子画像を得る。次に、リチウム金属複合酸化物を構成する個々の粒子(つまり二次粒子又は単粒子)について、下記式(2)により算出される円形度を測定する。下記式(2)において、粒子の周囲長とは、投影画像における粒子の外周の長さを意味する。このとき、円形度を測定する粒子の個数は、50個以上であればよく、本明細書においては例えば50個で測定される。得られた円形度を横軸とし、粒子個数を縦軸とし、リチウム金属複合酸化物の円形度分布が得られる。下記式(2)に示す円形度は、数値が1に近づくほど真円であることを意味する。
円形度=4πS/L2 …(2)
(Sは前記粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
円形度分布は、例えば、走査型電池顕微鏡(SEM)や透過型電子顕微鏡(TEM)などを用いて撮影した画像を用いて、画像解析を行う方法や、市販される粒子画像分析装置、特にフロー式の粒子像分析装置を用いる方法等が挙げられる。
本実施形態のリチウム金属複合酸化物は、上記の方法により得られた円形度分布において、2つ以上のピークを有する。ここで「ピーク」とは、円形度を横軸とし、粒子個数を縦軸とした円形度分布において、円形度が0~1.0の間で0.05毎に等間隔となるように20分割のデータ範囲を設定した際に、円形度が低い側から高い側へ向かって、粒子個数が増加から減少に転ずる箇所をいう。
なお、円形度分布の評価において、円形度が0~1.0の間を20以上に分割したデータ範囲を設定してもよい。
なお、円形度分布の評価において、円形度が0~1.0の間を20以上に分割したデータ範囲を設定してもよい。
本実施形態においては、円形度分布測定は複数回実施し、再現性良くピークが現れることを確認することが好ましい。また、再現性がない箇所に関しては、ノイズに由来すると判断し、ピークとして取り扱わないこととする。
本実施形態のリチウム金属複合酸化物の平均円形度は、体積容量と体積容量維持率を高める観点から、0.4以上0.8以下であることが好ましく、0.45以上0.75以下がより好ましく、0.48以上0.70以下が特に好ましい。平均円形度は、測定対象の全粒子の円形度の総和を、全粒子個数で除することにより算出できる。
本実施形態においては、円形度を横軸とし、粒子個数を縦軸とした円形度分布において、体積容量と体積容量維持率を高める観点から、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有することが好ましい。
本実施形態においては、リチウム金属複合酸化物は、体積容量を高める観点から前記円形度分布において、円形度分布標準偏差が0.1以上であることが好ましく、0.15以上であることがより好ましく、0.18以上であることがさらに好ましい。また、リチウム金属複合酸化物のハンドリング性を高める観点から0.4以下であることが好ましく、0.35以下がより好ましく、0.30以下がさらに好ましい。つまり、リチウム金属複合酸化物の円形度分布標準偏差は、0.1以上0.4以下であることが好ましく、0.15以上0.35以下であることがより好ましく、0.18以上0.30以下であることがさらに好ましい。
本実施形態においては、前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークであることが好ましい。本実施形態のリチウム金属複合酸化物は、二次粒子と単粒子とから構成されている。二次粒子は一次粒子が凝集しているため、球状に近い粒子形状をしている。このため、円形度分布において観察されるピークのうち、前記第2のピークは二次粒子に由来するピークであることがある。また、第1のピークは他の構成成分である単粒子に由来するピークであることがある。第1のピーク及び第2のピークが由来する粒子は、各粒子の円形度を算出する際に撮影する画像から判断される。
図2A~図2Cに、粒子の存在態様が異なるリチウム金属複合酸化物の円形度分布をそれぞれ示す。
図2Aは、二次粒子を単独で含むリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Bは、単粒子を単独で含むリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Cは、本実施形態のリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Aは、二次粒子を単独で含むリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Bは、単粒子を単独で含むリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Cは、本実施形態のリチウム金属複合酸化物の円形度分布の一例を示すグラフである。
図2Aに示すように、二次粒子を単独で含むリチウム金属複合酸化物は、円形度が0.8~0.9の範囲にピークを有することがある。二次粒子は一次粒子が凝集している粒子であり、二次粒子の多くは球状の粒子である。このため、二次粒子を単独で含むリチウム金属複合酸化物は、図2Aに示すように円形度が大きい範囲に単一のピークが観察されることがある。
なお、二次粒子を単独で含むリチウム金属複合酸化物には、二次粒子が割れたことにより発生した一次粒子がわずかに含まれる可能性もあるが一次粒子の存在量はごく微量であるため、一次粒子に由来するピークは観察されないと考えられる。
なお、二次粒子を単独で含むリチウム金属複合酸化物には、二次粒子が割れたことにより発生した一次粒子がわずかに含まれる可能性もあるが一次粒子の存在量はごく微量であるため、一次粒子に由来するピークは観察されないと考えられる。
図2Bに示すように、単粒子を単独で含むリチウム複合金属酸化物の円形度分布は、シャープなピークは観測されず、全体的にブロードなピークとなることがある。これは、単粒子は大きく発達した結晶面が粒子表面に表れやすいためと推察される。
図2Cに、本実施形態のリチウム金属複合酸化物の円形度分布の一例を示す。一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されている場合、単粒子に由来する第1のピークと、二次粒子に由来する第2のピークの少なくとも2つが観測されることがある。
本実施形態においては、円形度分布において2つ以上のピークを有していればよく、3つ以上のピークを有していてもよい。粒子形状が異なる粒子(例えば、楕円状粒子や板状粒子、繊維状粒子)を含む場合には、それぞれの粒子の円形度に由来する複数のピークが観測される場合がある。
本実施形態においては、円形度分布において2つ以上のピークを有していればよく、3つ以上のピークを有していてもよい。粒子形状が異なる粒子(例えば、楕円状粒子や板状粒子、繊維状粒子)を含む場合には、それぞれの粒子の円形度に由来する複数のピークが観測される場合がある。
本実施形態のリチウム金属複合酸化物における、単粒子と二次粒子の存在比率としては、単粒子と二次粒子との存在比を1~60/99~40とすることが好ましい。つまり、単粒子:二次粒子の存在比が、1/99~60/40であることが好ましい。存在比は、粒子の質量比とする。つまり、存在比は、リチウム金属複合酸化物に含まれる単粒子の総質量と、二次粒子の総質量との比であり得るが、リチウム金属複合酸化物から無作為に採取した所定量のリチウム金属複合酸化物に含まれる単粒子の総質量と、二次粒子の総質量との比であってもよい。
≪要件(C)≫
本実施形態のリチウム金属複合酸化物は、体積容量と体積容量維持率を高める観点から、平均粒子径D50が2μm以上20μm以下であり、3μm以上18μm以下が好ましく、4μm以上15μm以下がより好ましい。
本実施形態のリチウム金属複合酸化物は、体積容量と体積容量維持率を高める観点から、平均粒子径D50が2μm以上20μm以下であり、3μm以上18μm以下が好ましく、4μm以上15μm以下がより好ましい。
本実施形態のリチウム金属複合酸化物は、体積容量と体積容量維持率を高める観点から、単粒子の平均粒子径が1μm以上であることが好ましく、1.1μm以上がより好ましく、1.2μm以上がさらに好ましい。
また、単粒子の平均粒子径の上限値は特に限定されない。一例を挙げると、単粒子の平均粒子径は5.0μm以下であってもよく、4.0μm以下であってもよく、3.0μm以下であってもよい。
例えば単粒子の平均粒子径は、1μm以上5.0μm以下であることが好ましく、1.1μm以上4.0μm以下がより好ましく、1.2μm以上3.0μm以下がさらに好ましい。
また、単粒子の平均粒子径の上限値は特に限定されない。一例を挙げると、単粒子の平均粒子径は5.0μm以下であってもよく、4.0μm以下であってもよく、3.0μm以下であってもよい。
例えば単粒子の平均粒子径は、1μm以上5.0μm以下であることが好ましく、1.1μm以上4.0μm以下がより好ましく、1.2μm以上3.0μm以下がさらに好ましい。
・・単粒子及び二次粒子の平均粒子径
まず、リチウム金属複合酸化物を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM-5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子又は二次粒子を抽出し、それぞれの単粒子又は二次粒子について、単粒子又は二次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子又は二次粒子の粒子径として測定する。得られた単粒子又は二次粒子の粒子径の算術平均値が、リチウム金属複合酸化物の平均単粒子径又は平均二次粒子径である。平均粒子径を算出するためのn数は50以上とする。
まず、リチウム金属複合酸化物を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM-5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行う。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子又は二次粒子を抽出し、それぞれの単粒子又は二次粒子について、単粒子又は二次粒子の投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子又は二次粒子の粒子径として測定する。得られた単粒子又は二次粒子の粒子径の算術平均値が、リチウム金属複合酸化物の平均単粒子径又は平均二次粒子径である。平均粒子径を算出するためのn数は50以上とする。
・・平均粒子径D50
レーザー回折散乱法によって測定される。まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。
次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
レーザー回折散乱法によって測定される。まず、リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得る。
次に、得られた分散液についてレーザー回折散乱粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製マイクロトラックMT3300EXII)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得る。
そして、得られた累積粒度分布曲線において、小粒子側からの累積体積が50%となる点の粒子径の値がD50(μm)である。
(層状構造)
本実施形態において、リチウム金属複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
本実施形態において、リチウム金属複合酸化物の結晶構造は、層状構造であり、六方晶型の結晶構造又は単斜晶型の結晶構造であることがより好ましい。
六方晶型の結晶構造は、P3、P31、P32、R3、P-3、R-3、P312、P321、P3112、P3121、P3212、P3221、R32、P3m1、P31m、P3c1、P31c、R3m、R3c、P-31m、P-31c、P-3m1、P-3c1、R-3m、R-3c、P6、P61、P65、P62、P64、P63、P-6、P6/m、P63/m、P622、P6122、P6522、P6222、P6422、P6322、P6mm、P6cc、P63cm、P63mc、P-6m2、P-6c2、P-62m、P-62c、P6/mmm、P6/mcc、P63/mcm、及びP63/mmcからなる群から選ばれるいずれか一つの空間群に帰属される。
また、単斜晶型の結晶構造は、P2、P21、C2、Pm、Pc、Cm、Cc、P2/m、P21/m、C2/m、P2/c、P21/c、及びC2/cからなる群から選ばれるいずれか一つの空間群に帰属される。
これらのうち、放電容量が高いリチウム二次電池を得るため、結晶構造は、空間群R-3mに帰属される六方晶型の結晶構造、又はC2/mに帰属される単斜晶型の結晶構造であることが特に好ましい。
本実施形態のリチウム金属複合酸化物は、正極活物質として用い、電極を製造した場合に電極密度を向上させることができる。図3に、本実施形態のリチウム金属複合酸化物をプレス充填した場合の模式図を示す。なお、図3及び図4においては、円形度が高い粒子を二次粒子、円形度が低い粒子を単粒子として例示して説明する。図3において集電体55上に、二次粒子56、単粒子57、導電剤58及びバインダー59を含む正極合材が塗布された状態を示す。正極合剤をプレスして、集電体上に固着させる際に、加圧により二次粒子56と単粒子57との間で摩擦が生じ、二次粒子56が割れて、割れた二次粒子(符号56A)が生じる。割れた二次粒子56Aと単粒子57は、加圧により空隙を埋めるように移動し再配列する。換言すれば、割れた二次粒子56Aの隙間に単粒子57が入り込み、二次粒子(符号56及び56A)と単粒子57同士の接触面積が大きくなり、空隙が減少すると推察される。これにより、電極の密度が向上すると考えられる。
また、単粒子57が存在することにより、二次粒子56との摩擦が大きくなり、粒子割れが促進されると推察される。加えて、単粒子57及び二次粒子56が割れた粒子は円形度が低いため、加圧により粒子移動が起き、再配列しても一定以下の大きさの空隙は残存すると考えられる。このため、電池とし、充放電を繰りさえした際に電解液の枯渇などが起こりにくいと推察される。このような作用により、二次粒子と単粒子を含む本実施形態のリチウム金属複合酸化物は、体積容量と体積容量維持率が高くなると推察される。
これに対し、単粒子を含まずに二次粒子を単独で有するリチウム複合金属酸化物粉末を正極活物質として用い、電極を製造した場合を図4に示す。集電体60の上に、二次粒子61、バインダー62、導電剤63を含む正極合材が塗布された状態を示す。正極合剤をプレスして、集電体上に固着させる際に、割れた二次粒子61Aと、割れていない二次粒子とが存在する場合、加圧による粒子の移動と再配列が十分に進まず、隙間が生じると考えられる。本実施形態を適用しない場合には、この隙間を埋めることができないため、電極の密度を向上させることができないと考えられる。
<リチウム金属複合酸化物の製造方法>
本実施形態のリチウム金属複合酸化物は、下記の製造方法1又は製造方法2によって製造できる。
本実施形態のリチウム金属複合酸化物は、下記の製造方法1又は製造方法2によって製造できる。
≪製造方法1≫
本実施形態のリチウム金属複合酸化物を製造するにあたって、まず、リチウム以外の金属、すなわち、少なくともNiを含み、Co、Mn、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意元素を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と、不活性溶融剤と焼成することが好ましい。なお、任意元素とは、複合金属化合物に所望により任意に含まれる元素であり、任意元素は、複合金属化合物に含まれない場合があってもよい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
本実施形態のリチウム金属複合酸化物を製造するにあたって、まず、リチウム以外の金属、すなわち、少なくともNiを含み、Co、Mn、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意元素を含む金属複合化合物を調製し、当該金属複合化合物を適当なリチウム塩と、不活性溶融剤と焼成することが好ましい。なお、任意元素とは、複合金属化合物に所望により任意に含まれる元素であり、任意元素は、複合金属化合物に含まれない場合があってもよい。金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
製造方法1においては、金属複合化合物の製造工程において、最終的に単粒子を形成する金属複合化合物と、二次粒子を形成する金属複合化合物をそれぞれ製造する。以下において、最終的に単粒子を形成する金属複合化合物を「単粒子前駆体」と記載することがある。また、最終的に二次粒子を形成する金属複合化合物を「二次粒子前駆体」と記載することがある。
まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoyMnz(OH)2(式中、0<y≦0.4、0<z≦0.4)で表される金属複合水酸化物を製造する。
上記ニッケル塩溶液の溶質であるニッケル塩としては、特に限定されないが、例えば硫酸ニッケル、硝酸ニッケル、塩化ニッケル及び酢酸ニッケルのうちの何れか1種又は2種以上を使用することができる。上記コバルト塩溶液の溶質であるコバルト塩としては、例えば硫酸コバルト、硝酸コバルト、塩化コバルト、及び酢酸コバルトのうちの何れか1種又は2種以上を使用することができる。上記マンガン塩溶液の溶質であるマンガン塩としては、例えば硫酸マンガン、硝酸マンガン、塩化マンガン、及び酢酸マンガンのうちの何れか1種又は2種以上を使用することができる。以上の金属塩は、上記Ni(1-y-z)CoyMnz(OH)2の組成比に対応する割合で用いられる。また、溶媒として水が使用される。
錯化剤としては、水溶液中で、ニッケル、コバルト、及びマンガンのイオンと錯体を形成可能なものであり、例えばアンモニウムイオン供給体(水酸化アンモニウム、硫酸アンモニウム、塩化アンモニウム、炭酸アンモニウム、弗化アンモニウム等のアンモニウム塩)、ヒドラジン、エチレンジアミン四酢酸、ニトリロ三酢酸、ウラシル二酢酸、及びグリシンが挙げられる。錯化剤は含まれていなくてもよく、錯化剤が含まれる場合、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液及び錯化剤を含む混合液に含まれる錯化剤の量は、例えば金属塩のモル数の合計に対するモル比が0より大きく2.0以下である。
沈殿に際しては、水溶液のpH値を調整するため、必要ならばアルカリ金属水酸化物(例えば水酸化ナトリウム、水酸化カリウム)を添加する。
上記ニッケル塩溶液、コバルト塩溶液、及びマンガン塩溶液のほか、錯化剤を反応槽に連続して供給させると、ニッケル、コバルト、及びマンガンが反応し、Ni(1-y-z)CoyMnz(OH)2が製造される。反応に際しては、反応槽の温度が例えば20℃以上80℃以下、好ましくは30℃以上70℃以下の範囲内で制御され、反応槽内のpH値は例えばpH9以上pH13以下、好ましくはpH11以上pH13以下の範囲内で制御され、反応槽内の物質が適宜撹拌される。反応槽は、形成された反応沈殿物を分離のためオーバーフローさせるタイプのものである。
製造方法1においては、単粒子前駆体を製造する第1の共沈槽と、二次粒子前駆体を形成する第2の共沈槽を用いる。
第1の共沈槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、単粒子前駆体を製造できる。
第1の共沈槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、単粒子前駆体を製造できる。
具体的には、反応槽の温度が例えば30℃以上80℃以下が好ましく、40℃以上70℃以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±20℃の範囲であることがさらに好ましい。また、反応槽内のpH値は例えばpH10以上pH13以下が好ましく、pH11以上pH12.5以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±pH2以内の範囲であることがさらに好ましく、第2の反応槽よりも高いpHであることが特に好ましい。なお、本明細書におけるpHの値は、水溶液の温度が40℃の時に測定された値であると定義する。
また、第2の共沈槽に供給する金属塩の濃度、攪拌速度、反応温度、反応pH、及び後述する焼成条件等を適宜制御することにより、二次粒子前駆体を製造できる。
具体的には、反応槽の温度が例えば20℃以上80℃以下が好ましく、30℃以上70℃以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±20℃の範囲であることがさらに好ましい。また、反応槽内のpH値は例えばpH10以上pH13以下が好ましく、pH11以上pH12.5以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±pH2以内の範囲であることがさらに好ましく、第2の反応槽よりも低いpHであることが特に好ましい。
具体的には、反応槽の温度が例えば20℃以上80℃以下が好ましく、30℃以上70℃以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±20℃の範囲であることがさらに好ましい。また、反応槽内のpH値は例えばpH10以上pH13以下が好ましく、pH11以上pH12.5以下の範囲内で制御されることがより好ましく、後述する第2の反応槽に対し±pH2以内の範囲であることがさらに好ましく、第2の反応槽よりも低いpHであることが特に好ましい。
上記の条件の制御に加えて、各種気体、例えば、窒素、アルゴン又は二酸化炭素等の不活性ガス、空気又は酸素等の酸化性ガス、あるいはそれらの混合ガスを反応槽内に供給してもよい。気体以外に酸化状態を促すものとして、過酸化水素などの過酸化物、過マンガン酸塩などの過酸化物塩、過塩素酸塩、次亜塩素酸塩、硝酸、ハロゲン又はオゾンなどを使用することができる。気体以外に還元状態を促すものとして、シュウ酸及びギ酸などの有機酸、亜硫酸塩、ヒドラジンなどを使用することができる。
以上の反応後、得られた反応沈殿物をそれぞれ水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物(単粒子前駆体又は二次粒子前駆体)を単離する。また、必要に応じて弱酸水や、水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
(リチウム金属複合酸化物の製造工程)
単粒子前駆体又は二次粒子前駆体としての上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。単粒子前駆体及び二次粒子前駆体を混合時に所定の質量比で混合することで、得られる単粒子と二次粒子の存在比率をおおよそ制御できる。
なお、混合以降の工程において単粒子前駆体及び二次粒子前駆体がそれぞれ凝集、あるいは分離し単粒子前駆体を基にした二次粒子あるいは、二次粒子前駆体を基にした単粒子も存在し得るが、単粒子前駆体と二次粒子前駆体との混合比率及び混合以降の工程の条件を調整することで、最終的に得られるリチウム金属複合酸化物における単粒子と二次粒子の存在比率は制御することができる。
単粒子前駆体又は二次粒子前駆体としての上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。単粒子前駆体及び二次粒子前駆体を混合時に所定の質量比で混合することで、得られる単粒子と二次粒子の存在比率をおおよそ制御できる。
なお、混合以降の工程において単粒子前駆体及び二次粒子前駆体がそれぞれ凝集、あるいは分離し単粒子前駆体を基にした二次粒子あるいは、二次粒子前駆体を基にした単粒子も存在し得るが、単粒子前駆体と二次粒子前駆体との混合比率及び混合以降の工程の条件を調整することで、最終的に得られるリチウム金属複合酸化物における単粒子と二次粒子の存在比率は制御することができる。
本実施形態において、乾燥条件は特に制限されないが、例えば、金属複合酸化物又は金属複合水酸化物が酸化及び還元されない条件(酸化物が酸化物のまま維持される、又は水酸化物が水酸化物のまま維持される)、金属複合水酸化物が酸化される条件(水酸化物が酸化物に酸化される)、金属複合酸化物が還元される条件(酸化物が水酸化物に還元される)のいずれの条件でもよい。酸化及び還元がされない条件のためには、窒素、ヘリウム及びアルゴン等の不活性ガスを使用すればよく、水酸化物が酸化される条件では、酸素又は空気を使用すればよい。また、金属複合酸化物が還元される条件としては、不活性ガス雰囲気下、ヒドラジン又は亜硫酸ナトリウム等の還元剤を使用すればよい。リチウム塩としては、炭酸リチウム、硝酸リチウム、酢酸リチウム、水酸化リチウム、水酸化リチウム水和物及び酸化リチウムのうち何れか一つ、又は、二つ以上を混合して使用することができる。
単粒子前駆体又は二次粒子前駆体としての金属複合酸化物又は金属複合水酸化物の乾燥後に、適宜分級を行ってもよい。以上のリチウム塩と金属複合水酸化物とは、最終目的物の組成比を勘案して用いられる。例えば、ニッケルコバルトマンガン複合水酸化物を用いる場合、リチウム塩と当該金属複合水酸化物は、Li[LixNi(1-y-z)CoyMnzO2(式中、-0.1≦x≦0.2、0<y≦0.4、0<z≦0.4)の組成比に対応する割合で用いられる。ニッケルコバルトマンガン金属複合水酸化物及びリチウム塩の混合物を焼成することによって、リチウム-ニッケルコバルトマンガン複合酸化物が得られる。なお、焼成には、所望の組成に応じて乾燥空気、酸素雰囲気又は不活性雰囲気等が用いられ、必要ならば複数の加熱工程が実施される。
焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の単粒子の平均粒子径と二次粒子の平均粒子径を本実施形態の好ましい範囲に制御できる。
焼成における保持温度は、用いる遷移金属元素の種類及び沈殿剤に応じて適宜調整すればよい。ここで保持温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度である。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
焼成における保持温度は、用いる遷移金属元素の種類及び沈殿剤に応じて適宜調整すればよい。ここで保持温度とは、焼成炉内雰囲気の温度を意味し、かつ焼成工程での保持温度の最高温度である。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
≪製造方法2≫
本実施形態のリチウム金属複合酸化物は、単粒子から構成される第1のリチウム金属複合酸化物と、二次粒子から構成される第2のリチウム金属複合酸化物とを、それぞれ製造し、第1及び第2のリチウム金属複合酸化物を混合することにより製造できる。
本実施形態のリチウム金属複合酸化物は、単粒子から構成される第1のリチウム金属複合酸化物と、二次粒子から構成される第2のリチウム金属複合酸化物とを、それぞれ製造し、第1及び第2のリチウム金属複合酸化物を混合することにより製造できる。
第1及び第2のリチウム金属複合酸化物のいずれを製造する場合においても、まず、リチウム以外の金属、すなわち、少なくともNiを含み、Co、Mn、Fe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga、La及びVのうちいずれか1種以上の任意元素を含む金属複合化合物を調製する。第1のリチウム金属複合酸化物は、当該金属複合化合物を、適当なリチウム塩と不活性溶融剤と焼成して製造することが好ましい。第2のリチウム金属複合酸化物を製造する場合には、当該金属複合化合物に、適当なリチウム塩と焼成することが好ましい。
金属複合化合物としては、金属複合水酸化物又は金属複合酸化物が好ましい。以下に、リチウム金属複合酸化物の製造方法の一例を、金属複合化合物の製造工程と、リチウム金属複合酸化物の製造工程とに分けて説明する。
(金属複合化合物の製造工程)
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
金属複合化合物は、通常公知のバッチ共沈殿法又は連続共沈殿法により製造することが可能である。以下、金属として、ニッケル、コバルト及びマンガンを含む金属複合水酸化物を例に、その製造方法を詳述する。
まず共沈殿法、特に特開2002-201028号公報に記載された連続法により、ニッケル塩溶液、コバルト塩溶液、マンガン塩溶液、及び錯化剤を反応させ、Ni(1-y-z)CoyMnz(OH)2(式中、0<y≦0.4、0<z≦0.4)で表される金属複合水酸化物を製造する。
上記ニッケル塩溶液の溶質であるニッケル塩、上記コバルト塩溶液の溶質であるコバルト塩及び上記マンガン塩溶液の溶質であるマンガン塩に関する説明は上記製造方法1における説明と同様である。また、溶媒として水が使用される。
錯化剤、沈殿に関する説明は上記製造方法1における説明と同様である。
以上の反応後、得られた反応沈殿物を水で洗浄した後、乾燥し、ニッケルコバルトマンガン複合化合物としてのニッケルコバルトマンガン水酸化物を単離する。また、必要に応じて弱酸水や水酸化ナトリウムや水酸化カリウムを含むアルカリ溶液で洗浄しても良い。なお、上記の例では、ニッケルコバルトマンガン複合水酸化物を製造しているが、ニッケルコバルトマンガン複合酸化物を調製してもよい。
(リチウム金属複合酸化物の製造工程)
上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。また、第1のリチウム金属複合酸化物を製造する場合には、この混合と同時に不活性溶融剤を混合することが好ましい。
金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、単粒子の成長を促進できる。
上記金属複合酸化物又は金属複合水酸化物を乾燥した後、リチウム塩と混合する。また、第1のリチウム金属複合酸化物を製造する場合には、この混合と同時に不活性溶融剤を混合することが好ましい。
金属複合酸化物若しくは金属複合水酸化物、リチウム塩及び不活性溶融剤を含む、不活性溶融剤含有混合物を焼成することにより、不活性溶融剤の存在下で、混合物を焼成することになる。不活性溶融剤の存在下で焼成することにより、一次粒子同士が焼結して二次粒子が生成することを抑制できる。また、単粒子の成長を促進できる。
本実施形態において、乾燥条件と分級に関する説明は、製造方法1と同様である。また第2のリチウム金属複合酸化物は、二次粒子前駆体を単粒子前駆体と混合せずにリチウム塩と焼成すること以外は、製造方法1と同じ方法で製造することができる。
第1のリチウム金属複合酸化物を製造する場合には、不活性溶融剤の存在下で混合物の焼成を行うことで、混合物の反応を促進させることができる。不活性溶融剤は、焼成後のリチウム金属複合酸化物に残留していてもよいし、焼成後に水などで洗浄すること等により除去されていてもよい。本実施形態においては、焼成後の第1のリチウム複合金属酸化物は水などを用いて洗浄することが好ましい。また、焼成後の第2のリチウム複合金属酸化物も、水などを用いて洗浄してもよい。
焼成における保持温度を調整することにより、得られるリチウム金属複合酸化物の単粒子の粒子径又は二次粒子の平均粒子径を本実施形態の好ましい範囲にそれぞれ制御できる。
焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤及び不活性溶融剤の種類又は量に応じて適宜調整すればよい。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
焼成における保持温度は、用いる遷移金属元素の種類、沈殿剤及び不活性溶融剤の種類又は量に応じて適宜調整すればよい。
保持温度として、具体的には、200℃以上1150℃以下の範囲を挙げることができ、300℃以上1050℃以下が好ましく、500℃以上1000℃以下がより好ましい。
特に、第1のリチウム金属複合酸化物を製造する場合には第2のリチウム金属複合酸化物の保持温度よりも、30℃以上高いことが好ましく、50℃以上高いことがより好ましく、80℃以上高いことがさらに好ましい。
また、前記保持温度で保持する時間は、0.1時間以上20時間以下が挙げられ、0.5時間以上10時間以下が好ましい。前記保持温度までの昇温速度は、通常50℃/時間以上400℃/時間以下であり、前記保持温度から室温までの降温速度は、通常10℃/時間以上400℃/時間以下である。また、焼成の雰囲気としては、大気、酸素、窒素、アルゴン又はこれらの混合ガスを用いることができる。
得られた第1及び第2のリチウム金属複合酸化物を所定の割合で混合することにより、本実施形態のリチウム金属複合酸化物を得ることができる。
焼成によって得たリチウム金属複合酸化物は、粉砕後に適宜分級され、リチウム二次電池に適用可能な正極活物質とされる。
本実施形態に使用することができる不活性溶融剤は、焼成の際に混合物と反応し難いものであれば特に限定されない。本実施形態においては、Na、K、Rb、Cs、Ca、Mg、Sr及びBaからなる群より選ばれる1種以上の元素(以下、「A」と称する。)のフッ化物、Aの塩化物、Aの炭酸塩、Aの硫酸塩、Aの硝酸塩、Aのリン酸塩、Aの水酸化物、Aのモリブデン酸塩及びAのタングステン酸塩からなる群より選ばれる1種以上が挙げられる。
Aのフッ化物としては、NaF(融点:993℃)、KF(融点:858℃)、RbF(融点:795℃)、CsF(融点:682℃)、CaF2(融点:1402℃)、MgF2(融点:1263℃)、SrF2(融点:1473℃)及びBaF2(融点:1355℃)を挙げることができる。
Aの塩化物としては、NaCl(融点:801℃)、KCl(融点:770℃)、RbCl(融点:718℃)、CsCl(融点:645℃)、CaCl2(融点:782℃)、MgCl2(融点:714℃)、SrCl2(融点:857℃)及びBaCl2(融点:963℃)を挙げることができる。
Aの炭酸塩としては、Na2CO3(融点:854℃)、K2CO3(融点:899℃)、Rb2CO3(融点:837℃)、Cs2CO3(融点:793℃)、CaCO3(融点:825℃)、MgCO3(融点:990℃)、SrCO3(融点:1497℃)及びBaCO3(融点:1380℃)を挙げることができる。
Aの硫酸塩としては、Na2SO4(融点:884℃)、K2SO4(融点:1069℃)、Rb2SO4(融点:1066℃)、Cs2SO4(融点:1005℃)、CaSO4(融点:1460℃)、MgSO4(融点:1137℃)、SrSO4(融点:1605℃)及びBaSO4(融点:1580℃)を挙げることができる。
Aの硝酸塩としては、NaNO3(融点:310℃)、KNO3(融点:337℃)、RbNO3(融点:316℃)、CsNO3(融点:417℃)、Ca(NO3)2(融点:561℃)、Mg(NO3)2、Sr(NO3)2(融点:645℃)及びBa(NO3)2(融点:596℃)を挙げることができる。
Aのリン酸塩としては、Na3PO4、K3PO4(融点:1340℃)、Rb3PO4、Cs3PO4、Ca3(PO4)2、Mg3(PO4)2(融点:1184℃)、Sr3(PO4)2(融点:1727℃)及びBa3(PO4)2(融点:1767℃)を挙げることができる。
Aの水酸化物としては、NaOH(融点:318℃)、KOH(融点:360℃)、RbOH(融点:301℃)、CsOH(融点:272℃)、Ca(OH)2(融点:408℃)、Mg(OH)2(融点:350℃)、Sr(OH)2(融点:375℃)及びBa(OH)2(融点:853℃)を挙げることができる。
Aのモリブデン酸塩としては、Na2MoO4(融点:698℃)、K2MoO4(融点:919℃)、Rb2MoO4(融点:958℃)、Cs2MoO4(融点:956℃)、CaMoO4(融点:1520℃)、MgMoO4(融点:1060℃)、SrMoO4(融点:1040℃)及びBaMoO4(融点:1460℃)を挙げることができる。
Aのタングステン酸塩としては、Na2WO4(融点:687℃)、K2WO4、Rb2WO4、Cs2WO4、CaWO4、MgWO4、SrWO4及びBaWO4を挙げることができる。
本実施形態においては、これらの不活性溶融剤を2種以上用いることもできる。2種以上用いる場合は、融点が下がることもある。また、これらの不活性溶融剤の中でも、より結晶性が高いリチウム金属複合酸化物を得るための不活性溶融剤としては、Aの炭酸塩及び硫酸塩、Aの塩化物のいずれか又はその組み合わせであることが好ましい。また、Aとしては、ナトリウム(Na)及びカリウム(K)のいずれか一方又は両方であることが好ましい。すなわち、上記の中で、とりわけ好ましい不活性溶融剤は、NaCl、KCl、Na2CO3,K2CO3、Na2SO4、及びK2SO4からなる群より選ばれる1種以上である。
本実施形態において、焼成時の不活性溶融剤の存在量は適宜選択すればよい。一例を挙げると、焼成時の不活性溶融剤の存在量はリチウム塩100質量部に対して0.1質量部以上であることが好ましく、1質量部以上であることがより好ましい。また、必要に応じて、上記に挙げた不活性溶融剤以外の不活性溶融剤を併せて用いてもよい。該溶融剤としては、NH4Cl、NH4Fなどのアンモニウム塩等を挙げることができる。
<リチウム二次電池>
次いで、リチウム二次電池の構成を説明しながら、本実施形態の正極活物質粉末を含有するリチウム二次電池用正極活物質を用いた正極、及びこの正極を有するリチウム二次電池について説明する。
次いで、リチウム二次電池の構成を説明しながら、本実施形態の正極活物質粉末を含有するリチウム二次電池用正極活物質を用いた正極、及びこの正極を有するリチウム二次電池について説明する。
本実施形態のリチウム二次電池の一例は、正極及び負極、正極と負極との間に挟持されるセパレータ、正極と負極との間に配置される電解液を有する。
図1A及び図1Bは、本実施形態のリチウム二次電池の一例を示す模式図である。本実施形態の円筒型のリチウム二次電池10は、次のようにして製造する。
まず、図1Aに示すように、帯状を呈する一対のセパレータ1、一端に正極リード21を有する帯状の正極2、及び一端に負極リード31を有する帯状の負極3を、セパレータ1、正極2、セパレータ1、負極3の順に積層し、巻回することにより電極群4とする。
次いで、図1Bに示すように、電池缶5に電極群4及び不図示のインシュレーターを収容した後、缶底を封止し、電極群4に電解液6を含浸させ、正極2と負極3との間に電解質を配置する。さらに、電池缶5の上部をトップインシュレーター7及び封口体8で封止することで、リチウム二次電池10を製造することができる。
電極群4の形状としては、例えば、電極群4を巻回の軸に対して垂直方向に切断したときの断面形状が、円、楕円、長方形、又は角を丸めた長方形となるような柱状の形状を挙げることができる。
また、このような電極群4を有するリチウム二次電池の形状としては、国際電気標準会議(IEC)が定めた電池に対する規格であるIEC60086、又はJIS C 8500で定められる形状を採用することができる。例えば、円筒型、角型などの形状を挙げることができる。
さらに、リチウム二次電池は、上記巻回型の構成に限らず、正極、セパレータ、負極、セパレータの積層構造を繰り返し重ねた積層型の構成であってもよい。積層型のリチウム二次電池としては、いわゆるコイン型電池、ボタン型電池、ペーパー型(又はシート型)電池を例示することができる。
以下、各構成について順に説明する。
(正極)
本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(正極)
本実施形態の正極は、まず正極活物質、導電材及びバインダーを含む正極合剤を調整し、正極合剤を正極集電体に担持させることで製造することができる。
(導電材)
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
本実施形態の正極が有する導電材としては、炭素材料を用いることができる。炭素材料として黒鉛粉末、カーボンブラック(例えばアセチレンブラック)、繊維状炭素材料などを挙げることができる。カーボンブラックは、微粒で表面積が大きいため、少量を正極合剤中に添加することにより正極内部の導電性を高め、充放電効率及び出力特性を向上させることができるが、多く入れすぎるとバインダーによる正極合剤と正極集電体との結着力、及び正極合剤内部の結着力がいずれも低下し、かえって内部抵抗を増加させる原因となる。
正極合剤中の導電材の割合は、正極活物質100質量部に対して5質量部以上20質量部以下であると好ましい。導電材として黒鉛化炭素繊維、カーボンナノチューブなどの繊維状炭素材料を用いる場合には、この割合を下げることも可能である。なお、正極合材の総質量に対する正極活物質の割合は、80~98質量%であることが好ましい。
(バインダー)
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
本実施形態の正極が有するバインダーとしては、熱可塑性樹脂を用いることができる。この熱可塑性樹脂としては、ポリフッ化ビニリデン(以下、PVdFということがある。)、ポリテトラフルオロエチレン(以下、PTFEということがある。)、四フッ化エチレン・六フッ化プロピレン・フッ化ビニリデン系共重合体、六フッ化プロピレン・フッ化ビニリデン系共重合体、四フッ化エチレン・パーフルオロビニルエーテル系共重合体などのフッ素樹脂;ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂;を挙げることができる。
これらの熱可塑性樹脂は、2種以上を混合して用いてもよい。バインダーとしてフッ素樹脂及びポリオレフィン樹脂を用い、正極合剤全体に対するフッ素樹脂の割合を1質量%以上10質量%以下、ポリオレフィン樹脂の割合を0.1質量%以上2質量%以下とすることによって、正極集電体との密着力及び正極合剤内部の結合力がいずれも高い正極合剤を得ることができる。
(正極集電体)
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。中でも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
本実施形態の正極が有する正極集電体としては、Al、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を用いることができる。中でも、加工しやすく、安価であるという点でAlを形成材料とし、薄膜状に加工したものが好ましい。
正極集電体に正極合剤を担持させる方法としては、正極合剤を正極集電体上で加圧成型する方法が挙げられる。また、有機溶媒を用いて正極合剤をペースト化し、得られる正極合剤のペーストを正極集電体の少なくとも一面側に塗布して乾燥させ、プレスし固着することで、正極集電体に正極合剤を担持させてもよい。
正極合剤をペースト化する場合、用いることができる有機溶媒としては、N,N―ジメチルアミノプロピルアミン、ジエチレントリアミンなどのアミン系溶媒;テトラヒドロフランなどのエーテル系溶媒;メチルエチルケトンなどのケトン系溶媒;酢酸メチルなどのエステル系溶媒;ジメチルアセトアミド、N-メチル-2-ピロリドン(以下、NMPということがある。)などのアミド系溶媒;が挙げられる。
正極合剤のペーストを正極集電体へ塗布する方法としては、例えば、スリットダイ塗工法、スクリーン塗工法、カーテン塗工法、ナイフ塗工法、グラビア塗工法及び静電スプレー法が挙げられる。
以上に挙げられた方法により、正極を製造することができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極)
本実施形態のリチウム二次電池が有する負極は、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能であればよく、負極活物質を含む負極合剤が負極集電体に担持されてなる電極、及び負極活物質単独からなる電極を挙げることができる。
(負極活物質)
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極が有する負極活物質としては、炭素材料、カルコゲン化合物(酸化物、硫化物など)、窒化物、金属又は合金で、正極よりも低い電位でリチウムイオンのドープかつ脱ドープが可能な材料が挙げられる。
負極活物質として使用可能な炭素材料としては、天然黒鉛、人造黒鉛などの黒鉛、コークス類、カーボンブラック、熱分解炭素類、炭素繊維及び有機高分子化合物焼成体を挙げることができる。
負極活物質として使用可能な酸化物としては、SiO2、SiOなど式SiOx(ここで、xは正の実数)で表されるケイ素の酸化物;TiO2、TiOなど式TiOx(ここで、xは正の実数)で表されるチタンの酸化物;V2O5、VO2など式VOx(ここで、xは正の実数)で表されるバナジウムの酸化物;Fe3O4、Fe2O3、FeOなど式FeOx(ここで、xは正の実数)で表される鉄の酸化物;SnO2、SnOなど式SnOx(ここで、xは正の実数)で表されるスズの酸化物;WO3、WO2など一般式WOx(ここで、xは正の実数)で表されるタングステンの酸化物;Li4Ti5O12、LiVO2などのリチウムとチタン又はバナジウムとを含有する複合金属酸化物;を挙げることができる。
負極活物質として使用可能な硫化物としては、Ti2S3、TiS2、TiSなど式TiSx(ここで、xは正の実数)で表されるチタンの硫化物;V3S4、VS2、VSなど式VSx(ここで、xは正の実数)で表されるバナジウムの硫化物;Fe3S4、FeS2、FeSなど式FeSx(ここで、xは正の実数)で表される鉄の硫化物;Mo2S3、MoS2など式MoSx(ここで、xは正の実数)で表されるモリブデンの硫化物;SnS2、SnSなど式SnSx(ここで、xは正の実数)で表されるスズの硫化物;WS2など式WSx(ここで、xは正の実数)で表されるタングステンの硫化物;Sb2S3など式SbSx(ここで、xは正の実数)で表されるアンチモンの硫化物;Se5S3、SeS2、SeSなど式SeSx(ここで、xは正の実数)で表されるセレンの硫化物;を挙げることができる。
負極活物質として使用可能な窒化物としては、Li3N、Li3-xAxN(ここで、AはNi及びCoのいずれか一方又は両方であり、0<x<3である。)などのリチウム含有窒化物を挙げることができる。
これらの炭素材料、酸化物、硫化物、窒化物は、1種のみ用いてもよく2種以上を併用して用いてもよい。また、これらの炭素材料、酸化物、硫化物、窒化物は、結晶質又は非晶質のいずれでもよい。
また、負極活物質として使用可能な金属としては、リチウム金属、シリコン金属及びスズ金属などを挙げることができる。
負極活物質として使用可能な合金としては、Li-Al、Li-Ni、Li-Si、Li-Sn、Li-Sn-Niなどのリチウム合金;Si-Znなどのシリコン合金;Sn-Mn、Sn-Co、Sn-Ni、Sn-Cu、Sn-Laなどのスズ合金;Cu2Sb、La3Ni2Sn7などの合金;を挙げることもできる。
これらの金属や合金は、例えば箔状に加工された後、主に単独で電極として用いられる。
上記負極活物質の中では、充電時に未充電状態から満充電状態にかけて負極の電位がほとんど変化しない(電位平坦性がよい)、平均放電電位が低い、繰り返し充放電させたときの容量維持率が高い(サイクル特性がよい)などの理由から、天然黒鉛、人造黒鉛などの黒鉛を主成分とする炭素材料が好ましく用いられる。炭素材料の形状としては、例えば天然黒鉛のような薄片状、メソカーボンマイクロビーズのような球状、黒鉛化炭素繊維のような繊維状、又は微粉末の凝集体などのいずれでもよい。
前記の負極合剤は、必要に応じて、バインダーを含有してもよい。バインダーとしては、熱可塑性樹脂を挙げることができ、具体的には、PVdF、熱可塑性ポリイミド、カルボキシメチルセルロース、ポリエチレン及びポリプロピレンを挙げることができる。
(負極集電体)
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。中でも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
負極が有する負極集電体としては、Cu、Ni、ステンレスなどの金属材料を形成材料とする帯状の部材を挙げることができる。中でも、リチウムと合金を作り難く、加工しやすいという点で、Cuを形成材料とし、薄膜状に加工したものが好ましい。
このような負極集電体に負極合剤を担持させる方法としては、正極の場合と同様に、加圧成型による方法、溶媒などを用いてペースト化し負極集電体上に塗布、乾燥後プレスし圧着する方法が挙げられる。
(セパレータ)
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態のリチウム二次電池が有するセパレータとしては、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、フッ素樹脂、含窒素芳香族重合体などの材質からなる、多孔質膜、不織布、織布などの形態を有する材料を用いることができる。また、これらの材質を2種以上用いてセパレータを形成してもよいし、これらの材料を積層してセパレータを形成してもよい。
本実施形態において、セパレータは、電池使用時(充放電時)に電解質を良好に透過させるため、JIS P 8117で定められるガーレー法による透気抵抗度が、50秒/100cc以上、300秒/100cc以下であることが好ましく、50秒/100cc以上、200秒/100cc以下であることがより好ましい。
また、セパレータの空孔率は、セパレータの体積(100体積%)に対して好ましくは30体積%以上80体積%以下、より好ましくは40体積%以上70体積%以下である。セパレータは空孔率の異なるセパレータを積層したものであってもよい。
(電解液)
本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
本実施形態のリチウム二次電池が有する電解液は、電解質及び有機溶媒を含有する。
電解液に含まれる電解質としては、LiClO4、LiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(COCF3)、Li(C4F9SO3)、LiC(SO2CF3)3、Li2B10Cl10、LiBOB(ここで、BOBは、bis(oxalato)borateのことである。)、LiFSI(ここで、FSIはbis(fluorosulfonyl)imideのことである)、低級脂肪族カルボン酸リチウム塩、LiAlCl4などのリチウム塩が挙げられ、これらの2種以上の混合物を使用してもよい。中でも電解質としては、フッ素を含むLiPF6、LiAsF6、LiSbF6、LiBF4、LiCF3SO3、LiN(SO2CF3)2及びLiC(SO2CF3)3からなる群より選ばれる少なくとも1種を含むものを用いることが好ましい。
また前記電解液に含まれる有機溶媒としては、例えばプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、4-トリフルオロメチル-1,3-ジオキソラン-2-オン、1,2-ジ(メトキシカルボニルオキシ)エタンなどのカーボネート類;1,2-ジメトキシエタン、1,3-ジメトキシプロパン、ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類;ギ酸メチル、酢酸メチル、γ-ブチロラクトンなどのエステル類;アセトニトリル、ブチロニトリルなどのニトリル類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミドなどのアミド類;3-メチル-2-オキサゾリドンなどのカーバメート類;スルホラン、ジメチルスルホキシド、1,3-プロパンサルトンなどの含硫黄化合物、又はこれらの有機溶媒にさらにフルオロ基を導入したもの(有機溶媒が有する水素原子のうち1以上をフッ素原子で置換したもの)を用いることができる。
有機溶媒としては、これらのうちの2種以上を混合して用いることが好ましい。中でもカーボネート類を含む混合溶媒が好ましく、環状カーボネートと非環状カーボネートとの混合溶媒及び環状カーボネートとエーテル類との混合溶媒がさらに好ましい。環状カーボネートと非環状カーボネートとの混合溶媒としては、エチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートを含む混合溶媒が好ましい。このような混合溶媒を用いた電解液は、動作温度範囲が広く、高い電流レートにおける充放電を行っても劣化し難く、長時間使用しても劣化し難く、かつ負極の活物質として天然黒鉛、人造黒鉛などの黒鉛材料を用いた場合でも難分解性であるという多くの特長を有する。
また、電解液としては、得られるリチウム二次電池の安全性が高まるため、LiPF6などのフッ素を含むリチウム塩及びフッ素置換基を有する有機溶媒を含む電解液を用いることが好ましい。ペンタフルオロプロピルメチルエーテル、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテルなどのフッ素置換基を有するエーテル類とジメチルカーボネートとを含む混合溶媒は、高い電流レートにおける充放電を行っても容量維持率が高いため、さらに好ましい。
上記の電解液の代わりに固体電解質を用いてもよい。固体電解質としては、例えばポリエチレンオキサイド系の高分子化合物、ポリオルガノシロキサン鎖又はポリオキシアルキレン鎖の少なくとも一種以上を含む高分子化合物などの有機系高分子電解質を用いることができる。また、高分子化合物に非水電解液を保持させた、いわゆるゲルタイプのものを用いることもできる。またLi2S-SiS2、Li2S-GeS2、Li2S-P2S5、Li2S-B2S3、Li2S-SiS2-Li3PO4、Li2S-SiS2-Li2SO4、Li2S-GeS2-P2S5などの硫化物を含む無機系固体電解質が挙げられ、これらの2種以上の混合物を用いてもよい。これら固体電解質を用いることで、リチウム二次電池の安全性をより高めることができることがある。
また、本実施形態のリチウム二次電池において、固体電解質を用いる場合には、固体電解質がセパレータの役割を果たす場合もあり、その場合には、セパレータを必要としないこともある。
本発明の一つの側面は、下記[9]~[17]の発明を包含する。
[9]一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、0.01≦x≦0.08、0.01≦y≦0.33、0.02≦z≦0.4、0≦w≦0.07を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が0.2m2/g以上1.5m2/g以下である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が3μm以上18μm以下である。
[10]平均円形度が0.48以上0.70以下である、[9]に記載のリチウム金属複合酸化物。
[11]前記円形度分布において、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有する、[9]又は[10]に記載のリチウム金属複合酸化物。
[12]前記円形度分布において、円形度分布標準偏差が0.18以上0.30以下である[11]に記載のリチウム金属複合酸化物。
[13]前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークである、[11]又は[12]に記載のリチウム金属複合酸化物。
[14]平均粒子径が1.2μm以上4.0μm以下の単粒子を含む、[9]~[13]のいずれか1つに記載のリチウム金属複合酸化物。
[15][9]~[14]のいずれか1つに記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
[16][15]に記載のリチウム二次電池用正極活物質を有する正極。
[17][16]に記載の正極を有するリチウム二次電池。
[9]一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、0.01≦x≦0.08、0.01≦y≦0.33、0.02≦z≦0.4、0≦w≦0.07を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が0.2m2/g以上1.5m2/g以下である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が3μm以上18μm以下である。
[10]平均円形度が0.48以上0.70以下である、[9]に記載のリチウム金属複合酸化物。
[11]前記円形度分布において、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有する、[9]又は[10]に記載のリチウム金属複合酸化物。
[12]前記円形度分布において、円形度分布標準偏差が0.18以上0.30以下である[11]に記載のリチウム金属複合酸化物。
[13]前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークである、[11]又は[12]に記載のリチウム金属複合酸化物。
[14]平均粒子径が1.2μm以上4.0μm以下の単粒子を含む、[9]~[13]のいずれか1つに記載のリチウム金属複合酸化物。
[15][9]~[14]のいずれか1つに記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
[16][15]に記載のリチウム二次電池用正極活物質を有する正極。
[17][16]に記載の正極を有するリチウム二次電池。
次に、本発明を実施例によりさらに詳細に説明する。
<組成分析>
後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
後述の方法で製造されるリチウム金属複合酸化物粉末の組成分析は、得られたリチウム複合金属化合物の粉末を塩酸に溶解させた後、誘導結合プラズマ発光分析装置(エスアイアイ・ナノテクノロジー株式会社製、SPS3000)を用いて行った。
<BET比表面積測定>
リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製Macsorb(登録商標))を用いて測定した(単位:m2/g)。
リチウム金属複合酸化物粉末1gを窒素雰囲気中、105℃で30分間乾燥させた後、BET比表面積計(マウンテック社製Macsorb(登録商標))を用いて測定した(単位:m2/g)。
<平均粒子径D50の測定>
リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が50%となる点の粒子径の値を50%累積体積粒度D50(μm)として求めた。
リチウム金属複合酸化物粉末0.1gを、0.2質量%ヘキサメタりん酸ナトリウム水溶液50mlに投入し、前記粉末を分散させた分散液を得た。次に、得られた分散液についてマイクロトラック・ベル株式会社製マイクロトラックMT3300EXII(レーザー回折散乱粒度分布測定装置)を用いて、粒度分布を測定し、体積基準の累積粒度分布曲線を得た。そして、得られた累積粒度分布曲線において、全体を100%としたときに、微小粒子側からの累積体積が50%となる点の粒子径の値を50%累積体積粒度D50(μm)として求めた。
<単粒子及び二次粒子の平均粒子径の測定>
リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM-5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。なお、導電性シートにリチウム複合金属酸化物粉末を載せる際には独立した粒子同士が重なって観察されないよう、導電性シートに載せる粉末量を調整した。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子又は二次粒子を抽出し、それぞれの単粒子又は二次粒子について、投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子又は二次粒子の粒子径として測定した。得られた単粒子又は二次粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の平均単粒子径又は平均二次粒子径とした。
リチウム金属複合酸化物粉末を、サンプルステージ上に貼った導電性シート上に載せ、日本電子株式会社製JSM-5510を用いて、加速電圧が20kVの電子線を照射してSEM観察を行った。なお、導電性シートにリチウム複合金属酸化物粉末を載せる際には独立した粒子同士が重なって観察されないよう、導電性シートに載せる粉末量を調整した。SEM観察により得られた画像(SEM写真)から任意に50個の単粒子又は二次粒子を抽出し、それぞれの単粒子又は二次粒子について、投影像を一定方向から引いた平行線ではさんだ平行線間の距離(定方向径)を単粒子又は二次粒子の粒子径として測定した。得られた単粒子又は二次粒子の粒子径の算術平均値を、リチウム金属複合酸化物粉末の平均単粒子径又は平均二次粒子径とした。
<円形度の測定>
前記SEM面像をコンピュータに取り込み、画像解析ソフトImage Jを用い、該SEM画像中における最大輝度及び最小輝度の中間値で二値化処理を行い、該リチウム複合金属酸化物粉末、すなわち単粒子又は二次粒子を黒色とし、該単粒子又は二次粒子以外の部分を白色として変換した二値化処理済み画像を得た。前記二値化処理済み画像について、該単粒子又は二次粒子に該当する黒色部分それぞれについて、前記式(2)に基づいて円形度を測定した。
前記SEM面像をコンピュータに取り込み、画像解析ソフトImage Jを用い、該SEM画像中における最大輝度及び最小輝度の中間値で二値化処理を行い、該リチウム複合金属酸化物粉末、すなわち単粒子又は二次粒子を黒色とし、該単粒子又は二次粒子以外の部分を白色として変換した二値化処理済み画像を得た。前記二値化処理済み画像について、該単粒子又は二次粒子に該当する黒色部分それぞれについて、前記式(2)に基づいて円形度を測定した。
[円形度分布のピーク数の測定方法]
上記の方法により得られたそれぞれの粒子における円形度を横軸、粒子個数を縦軸にした円形度分布において、円形度が0~1.0の間で0.05毎に等間隔となるように20分割のデータ範囲を設定した際に、円形度が低い側から高い側へ向かって、粒子個数が増加から減少に転ずる箇所(ピーク)の数を測定した。
上記の方法により得られたそれぞれの粒子における円形度を横軸、粒子個数を縦軸にした円形度分布において、円形度が0~1.0の間で0.05毎に等間隔となるように20分割のデータ範囲を設定した際に、円形度が低い側から高い側へ向かって、粒子個数が増加から減少に転ずる箇所(ピーク)の数を測定した。
[平均円形度の算出]
平均円形度は、以下のようにして算出した。
リチウム複合金属酸化物粉末における平均円形度 = 観察した全粒子の円形度の和/観察した全粒子個数
平均円形度は、以下のようにして算出した。
リチウム複合金属酸化物粉末における平均円形度 = 観察した全粒子の円形度の和/観察した全粒子個数
[第1のピーク及び第2のピークにおける円形度の算出]
単粒子又は二次粒子における平均円形度を以下のように算出した。
単粒子における平均円形度 = 観察した単粒子の円形度の和/観察した単粒子個数
二次粒子における平均円形度 = 観察した二次粒子の円形度の和/観察した二次粒子個数
該単粒子又は二次粒子における平均円形度を算出し、平均円形度が低い粒子に由来するピークから第1のピーク及び第2のピークと呼ぶ。2つ以上のピークがある場合には、さらに続けて、第3のピーク及び第4のピークと呼ぶ。
単粒子又は二次粒子における平均円形度を以下のように算出した。
単粒子における平均円形度 = 観察した単粒子の円形度の和/観察した単粒子個数
二次粒子における平均円形度 = 観察した二次粒子の円形度の和/観察した二次粒子個数
該単粒子又は二次粒子における平均円形度を算出し、平均円形度が低い粒子に由来するピークから第1のピーク及び第2のピークと呼ぶ。2つ以上のピークがある場合には、さらに続けて、第3のピーク及び第4のピークと呼ぶ。
<円形度分布標準偏差の算出>
前記円形度分布より、円形度分布標準偏差を算出した。具体的には以下のようにして算出した。
前記円形度分布より、円形度分布標準偏差を算出した。具体的には以下のようにして算出した。
下記の数式中、nはデータ総数であり、粒子個数を意味する。平均値x-は、平均円形度を意味する。xiは、各粒子の円形度を意味する。
〔リチウム二次電池の作製〕
・リチウム二次電池用正極の作製
後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
・リチウム二次電池用正極の作製
後述する製造方法で得られるリチウム二次電池用正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。正極合剤の調製時には、N-メチル-2-ピロリドンを有機溶媒として用いた。
得られた正極合剤を、集電体となる厚さ40μmのAl箔に塗布して60℃で3時間乾燥し、線圧200kN/mでプレスを行い、150℃で8時間真空乾燥を行って、リチウム二次電池用正極を得た。このリチウム二次電池用正極の電極面積は1.65cm2とした。また、得られたリチウム二次電池用正極の質量測定を行い、正極合材層の密度(正極密度)を算出した。
・リチウム二次電池(コイン型セル)の作製
以下の操作を、乾燥空気雰囲気のグローブボックス内で行った。
「リチウム二次電池用正極の作製」で作成した正極を、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μL注入した。用いた電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPF6を1.0mol/Lとなるように溶解して調製した。
次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型電池」と称することがある。)を作製した。
以下の操作を、乾燥空気雰囲気のグローブボックス内で行った。
「リチウム二次電池用正極の作製」で作成した正極を、コイン型電池R2032用のコインセル(宝泉株式会社製)の下蓋にアルミ箔面を下に向けて置き、その上に積層フィルムセパレータ(ポリエチレン製多孔質フィルムの上に、耐熱多孔層を積層(厚み16μm))を置いた。ここに電解液を300μL注入した。用いた電解液は、エチレンカーボネートとジメチルカーボネートとエチルメチルカーボネートとの30:35:35(体積比)混合液に、LiPF6を1.0mol/Lとなるように溶解して調製した。
次に、負極として金属リチウムを用いて、前記負極を積層フィルムセパレータの上側に置き、ガスケットを介して上蓋をし、かしめ機でかしめてリチウム二次電池(コイン型電池R2032。以下、「コイン型電池」と称することがある。)を作製した。
・充放電試験
[初期体積容量密度及び50回サイクル体積容量密度維持率測定]
「リチウム二次電池(コイン型セル)の作製」で作製したコイン型電池を用い、以下に示す条件の50回サイクル試験にて、初期体積容量密度及び50回サイクル体積容量密度維持率評価を実施し、50回後の体積容量密度維持率を以下の式にて算出した。なお、50回後の体積容量密度維持率が高いほど、電池としての寿命特性がよいことを示している。
初期体積容量密度(mAh/cc)=1回目の放電容量×正極密度
50回後の体積容量密度(mAh/cc)=50回目の放電容量×正極密度
50回後の体積容量密度維持率(%)=50回後の体積容量密度/初期体積容量密度×100
以下、50回後の体積容量密度維持率を『サイクル維持率』と記載することがある。
[初期体積容量密度及び50回サイクル体積容量密度維持率測定]
「リチウム二次電池(コイン型セル)の作製」で作製したコイン型電池を用い、以下に示す条件の50回サイクル試験にて、初期体積容量密度及び50回サイクル体積容量密度維持率評価を実施し、50回後の体積容量密度維持率を以下の式にて算出した。なお、50回後の体積容量密度維持率が高いほど、電池としての寿命特性がよいことを示している。
初期体積容量密度(mAh/cc)=1回目の放電容量×正極密度
50回後の体積容量密度(mAh/cc)=50回目の放電容量×正極密度
50回後の体積容量密度維持率(%)=50回後の体積容量密度/初期体積容量密度×100
以下、50回後の体積容量密度維持率を『サイクル維持率』と記載することがある。
[サイクル試験条件]
試験温度:25℃
充電時条件:充電時最大電圧4.3V、充電時間6.0時間、充電電流0.2CA
充電後休止時間:10分
放電時条件:放電時最小電圧2.5V、放電時間6.0時間、放電電流0.2CA
放電後休止時間:10分
本試験において、充電、充電休止、放電及び放電休止を順に実施した工程を1回としている。
試験温度:25℃
充電時条件:充電時最大電圧4.3V、充電時間6.0時間、充電電流0.2CA
充電後休止時間:10分
放電時条件:放電時最小電圧2.5V、放電時間6.0時間、放電電流0.2CA
放電後休止時間:10分
本試験において、充電、充電休止、放電及び放電休止を順に実施した工程を1回としている。
≪初期体積容量密度の測定≫
初期体積容量密度は、以下の方法により測定した。
後述の方法により得られた正極活物質を用いてリチウム二次電池(コイン型セル)を作製した。正極は、後述の方法により得られた正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。
初期体積容量密度は、以下の方法により測定した。
後述の方法により得られた正極活物質を用いてリチウム二次電池(コイン型セル)を作製した。正極は、後述の方法により得られた正極活物質と導電材(アセチレンブラック)とバインダー(PVdF)とを、リチウム二次電池用正極活物質:導電材:バインダー=92:5:3(質量比)の組成となるように加えて混練することにより、ペースト状の正極合剤を調製した。
≪実施例1≫
1.正極活物質A1の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を55℃に保持した。
1.正極活物質A1の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を55℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液と硫酸アルミニウム水溶液とを、ニッケル原子とコバルト原子とマンガン原子とアルミニウム原子の原子比が0.90:0.07:0.02:0.01となるように混合して、混合原料溶液1を調製した。
次に、反応槽内に、攪拌下、この混合原料溶液1と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが12.4になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、及び単離して105℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物1を得た。
ニッケルコバルトマンガンアルミニウム複合水酸化物1と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn+Al)=1.10、K2SO4/(LiOH+K2SO4)=0.1(mol/mol)となるように秤量して混合した後、酸素雰囲気下840℃で10時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と液温を5℃に調整した純水とを、全体量に対して上記粉末質量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水し、さらに上記粉末の2倍の質量の液温を5℃に調整した純水でリンス後、単離し、150℃で乾燥することで正極活物質A1(主に単粒子を含む)を得た。
2.正極活物質B1の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
次に、反応槽内に、攪拌下、前記混合原料溶液1と硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.9になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガンアルミニウム複合水酸化物2を得た。
ニッケルコバルトマンガンアルミニウム複合水酸化物2と水酸化リチウム一水和物粉末とを、Li/(Ni+Co+Mn+Al)=1.03(mol/mol)となるように秤量して混合した後、酸素雰囲気下760℃で10時間焼成し、正極活物質B1(主に二次粒子を含む)を得た。
3.正極活物質C1の製造
正極活物質A1と正極活物質B1とを質量比で20:80となるように秤量し、混合して、実施例1の正極活物質である正極活物質C1を得た。
正極活物質A1と正極活物質B1とを質量比で20:80となるように秤量し、混合して、実施例1の正極活物質である正極活物質C1を得た。
4.正極活物質C1の評価
正極活物質C1の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
正極活物質C1の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
≪実施例2≫
1.正極活物質A2の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を55℃に保持した。
1.正極活物質A2の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を55℃に保持した。
硫酸ニッケル水溶液と硫酸コバルト水溶液と硫酸マンガン水溶液とを、ニッケル原子とコバルト原子とマンガン原子の原子比が0.88:0.08:0.04となるように混合して、混合原料溶液2を調製した。
次に、反応槽内に、攪拌下、この混合原料溶液2と、硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.8になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水及び単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物3を得た。
ニッケルコバルトマンガン複合水酸化物3と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.10、K2SO4/(LiOH+K2SO4)=0.1(mol/mol)となるように秤量して混合した後、酸素雰囲気下840℃で10時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と液温を5℃に調整した純水とを、全体量に対して上記粉末質量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水し、さらに上記粉末の2倍の質量の液温を5℃に調整した純水でリンス後、単離し、150℃で乾燥することで正極活物質A2(主に単粒子を含む)を得た。
2.正極活物質B2の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を45℃に保持した。
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を45℃に保持した。
次に、反応槽内に、攪拌下、前記混合原料溶液2と、硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが11.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガン複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物4を得た。
ニッケルコバルトマンガン複合水酸化物4と水酸化リチウム一水和物粉末とを、Li/(Ni+Co+Mn)=1.03(mol/mol)となるように秤量して混合した後、酸素雰囲気下790℃で10時間焼成し、正極活物質B2を得た(二次粒子に相当)。
3.正極活物質C2の製造
正極活物質A2と正極活物質B2とを質量比で20:80となるように秤量し、混合して実施例2の正極活物質である正極活物質C2を得た。
正極活物質A2と正極活物質B2とを質量比で20:80となるように秤量し、混合して実施例2の正極活物質である正極活物質C2を得た。
4.正極活物質C2の評価
正極活物質C2の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
正極活物質C2の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
≪実施例3≫
1.正極活物質A3の製造
前記ニッケルコバルトマンガン複合水酸化物3と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.15、K2SO4/(LiOH+K2SO4)=0.1(mol/mol)となるように秤量して混合した後、酸素雰囲気下840℃で10時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と液温を5℃に調整した純水とを、全体量に対して上記粉末質量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水し、さらに上記粉末の2倍の質量の液温を5℃に調整した純水でリンス後、単離し、150℃で乾燥することで正極活物質A3(主に単粒子を含む)を得た。
1.正極活物質A3の製造
前記ニッケルコバルトマンガン複合水酸化物3と水酸化リチウム一水和物粉末と硫酸カリウム粉末を、Li/(Ni+Co+Mn)=1.15、K2SO4/(LiOH+K2SO4)=0.1(mol/mol)となるように秤量して混合した後、酸素雰囲気下840℃で10時間焼成して、リチウム金属複合酸化物粉末を得た。上記粉末と液温を5℃に調整した純水とを、全体量に対して上記粉末質量の割合が0.3になるように混合し作製したスラリーを20分間撹拌させた後、脱水し、さらに上記粉末の2倍の質量の液温を5℃に調整した純水でリンス後、単離し、150℃で乾燥することで正極活物質A3(主に単粒子を含む)を得た。
3.正極活物質C3の製造
正極活物質A3と正極活物質B2とを質量比で25:75となるように秤量し、混合して実施例3の正極活物質である正極活物質C3を得た。
正極活物質A3と正極活物質B2とを質量比で25:75となるように秤量し、混合して実施例3の正極活物質である正極活物質C3を得た。
4.正極活物質C3の評価
正極活物質C3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
正極活物質C3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
≪比較例1≫
1.正極活物質B3の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
1.正極活物質B3の製造
攪拌器及びオーバーフローパイプを備えた反応槽内に水を入れた後、水酸化ナトリウム水溶液を添加し、液温を50℃に保持した。
次に、反応槽内に、攪拌下、前記混合原料溶液2と、硫酸アンモニウム水溶液を錯化剤として連続的に添加した。反応槽内の溶液のpHが12.5になるよう水酸化ナトリウム水溶液を適時滴下し、ニッケルコバルトマンガンアルミニウム複合水酸化物粒子を得て、洗浄した後、遠心分離機で脱水し、洗浄、脱水、単離して105℃で乾燥することにより、ニッケルコバルトマンガン複合水酸化物5を得た。
ニッケルコバルトマンガン複合水酸化物5と水酸化リチウム一水和物粉末とを、Li/(Ni+Co+Mn)=1.05(mol/mol)となるように秤量して混合した後、酸素雰囲気下760℃で10時間焼成し、正極活物質B3を得た。
2.正極活物質B3の評価
正極活物質B3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
正極活物質B3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
≪比較例2≫
1.正極活物質C4の製造
正極活物質B2と正極活物質B3とを質量比で80:20となるように秤量し、混合して正極活物質C4を得た。
2.正極活物質C4の評価
正極活物質C4の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
1.正極活物質C4の製造
正極活物質B2と正極活物質B3とを質量比で80:20となるように秤量し、混合して正極活物質C4を得た。
2.正極活物質C4の評価
正極活物質C4の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
≪比較例3≫
1.正極活物質B2の評価
正極活物質B2の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表1に示す。
1.正極活物質B2の評価
正極活物質B2の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表1に示す。
≪比較例4≫
1.正極活物質A3の評価
正極活物質A3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
1.正極活物質A3の評価
正極活物質A3の分析結果、体積容量密度及び50回サイクル体積容量密度維持率の測定結果を表2に示す。
表1に、組成、BET比表面積、D50、円形度分布ピーク数、平均円形度をまとめて記載する。
表2に、第1のピーク円形度、第2のピーク円形度、円形度分布標準偏差、第1のピーク由来の粒子、第2のピーク由来の粒子、単粒子平均粒子径、電極密度、初期体積容量密度、50回サイクル体積容量密度維持率をまとめて記載する。
表2に、第1のピーク円形度、第2のピーク円形度、円形度分布標準偏差、第1のピーク由来の粒子、第2のピーク由来の粒子、単粒子平均粒子径、電極密度、初期体積容量密度、50回サイクル体積容量密度維持率をまとめて記載する。
上記結果に示した通り、本発明を適用した実施例1~3の正極活物質は、体積容量密度及び50回サイクル体積容量密度維持率が高いことが確認できた。
本発明によれば、体積容量と体積容量維持率が高いリチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池を提供することができる。
1…セパレータ、2…正極、3…負極、4…電極群、5…電池缶、6…電解液、7…トップインシュレーター、8…封口体、10…リチウム二次電池、21…正極リード、31…負極リード
Claims (9)
- 一次粒子が凝集している二次粒子と、前記二次粒子とは独立して存在する単粒子と、から構成されたリチウム金属複合酸化物であって、下記組成式(1)で表され、下記要件(A)、(B)及び(C)を満たす、リチウム金属複合酸化物。
Li[Lix(Ni(1-y-z-w)CoyMnzMw)1-x]O2 (1)
(ただし、MはFe、Cu、Ti、Mg、Al、W、B、Mo、Nb、Zn、Sn、Zr、Ga及びVからなる群より選択される1種以上の元素であり、-0.1≦x≦0.2、0<y≦0.4、0≦z≦0.4、及び0≦w≦0.1を満たす。)
(A)前記リチウム金属複合酸化物のBET比表面積が2m2/g未満である。
(B)前記リチウム金属複合酸化物は、下記式(2)により求められる円形度の個数基準の円形度分布において2つ以上のピークを有する。
円形度=4πS/L2 …(2)
(Sは前記金属複合酸化物粉末を構成する粒子の投影画像の投影面積であり、Lは前記粒子の周囲長である。)
(C)前記リチウム金属複合酸化物の平均粒子径D50が2μm以上20μm以下である。 - 平均円形度が0.4以上0.8以下である、請求項1に記載のリチウム金属複合酸化物。
- 前記円形度分布において、円形度が0.4以上0.7以下の円形度範囲に第1のピークを有し、円形度が0.75以上0.95以下の円形度範囲に第2のピークを有する、請求項1又は2に記載のリチウム金属複合酸化物。
- 前記円形度分布において、円形度分布標準偏差が0.1以上0.4以下である請求項3に記載のリチウム金属複合酸化物。
- 前記第1のピークが単粒子に由来するピークであり、前記第2のピークが二次粒子に由来するピークである、請求項3又は4に記載のリチウム金属複合酸化物。
- 平均粒子径が1.0μm以上5.0μm以下の単粒子を含む、請求項1~5のいずれか1項に記載のリチウム金属複合酸化物。
- 請求項1~6のいずれか1項に記載のリチウム金属複合酸化物を含有するリチウム二次電池用正極活物質。
- 請求項7に記載のリチウム二次電池用正極活物質を有する正極。
- 請求項8に記載の正極を有するリチウム二次電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980077808.0A CN113165907B (zh) | 2018-11-30 | 2019-10-15 | 锂金属复合氧化物、锂二次电池用正极活性物质、正极以及锂二次电池 |
US17/296,887 US20220029158A1 (en) | 2018-11-30 | 2019-10-15 | Lithium metal composite oxide, positive electrode active material for lithium secondary batteries, positive electrode and lithium secondary battery |
EP19889133.5A EP3889112A4 (en) | 2018-11-30 | 2019-10-15 | LITHIUM METAL COMPOSITE OXIDE, POSITIVE ELECTRODE ACTIVE MATERIAL FOR RECHARGEABLE LITHIUM BATTERIES, POSITIVE ELECTRODE AND RECHARGEABLE LITHIUM BATTERY |
KR1020217015852A KR102655002B1 (ko) | 2018-11-30 | 2019-10-15 | 리튬 금속 복합 산화물, 리튬 이차 전지용 정극 활물질, 정극, 및 리튬 이차 전지 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018225443A JP6600734B1 (ja) | 2018-11-30 | 2018-11-30 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 |
JP2018-225443 | 2018-11-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020110486A1 true WO2020110486A1 (ja) | 2020-06-04 |
Family
ID=68383368
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/040433 WO2020110486A1 (ja) | 2018-11-30 | 2019-10-15 | リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 |
Country Status (6)
Country | Link |
---|---|
US (1) | US20220029158A1 (ja) |
EP (1) | EP3889112A4 (ja) |
JP (1) | JP6600734B1 (ja) |
KR (1) | KR102655002B1 (ja) |
CN (1) | CN113165907B (ja) |
WO (1) | WO2020110486A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138451A1 (ja) | 2020-12-22 | 2022-06-30 | 株式会社 東芝 | 電極、非水電解質電池及び電池パック |
JP7353432B1 (ja) | 2022-07-15 | 2023-09-29 | 住友化学株式会社 | 金属複合化合物及びリチウム金属複合酸化物の製造方法 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20230155123A1 (en) * | 2019-12-19 | 2023-05-18 | Lg Energy Solution, Ltd. | Positive Electrode Optimized for Improving High-Temperature Life Characteristics and Secondary Battery Comprising the Same |
JP6810287B1 (ja) * | 2020-01-17 | 2021-01-06 | 住友化学株式会社 | 全固体リチウムイオン電池用正極活物質、電極及び全固体リチウムイオン電池 |
US20230071451A1 (en) * | 2020-01-31 | 2023-03-09 | Panasonic Holdings Corporation | Positive electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery |
JP7456671B2 (ja) * | 2020-03-18 | 2024-03-27 | エルジー・ケム・リミテッド | リチウム二次電池用正極材、これを含む正極及びリチウム二次電池 |
KR102563295B1 (ko) * | 2020-09-21 | 2023-08-03 | 주식회사 엘지화학 | 고상합성에 의한 양극 활물질 및 그 제조 방법 |
CN115485879A (zh) * | 2021-01-29 | 2022-12-16 | 株式会社Lg新能源 | 正极和包括该正极的锂二次电池 |
EP4135067A1 (en) * | 2021-08-13 | 2023-02-15 | Samsung SDI Co., Ltd. | Positive active material for rechargeable lithium battery, preparing method thereof and rechargeable lithium battery including the same |
CN219393532U (zh) * | 2021-10-22 | 2023-07-21 | 株式会社Lg新能源 | 圆筒形电池、包括该圆筒形电池的电池组及汽车 |
JP7495918B2 (ja) | 2021-12-20 | 2024-06-05 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極およびこれを用いた非水電解質二次電池 |
JP7556905B2 (ja) | 2022-03-10 | 2024-09-26 | プライムプラネットエナジー&ソリューションズ株式会社 | 正極活物質、正極およびリチウムイオン電池 |
KR20240101243A (ko) * | 2022-12-23 | 2024-07-02 | 주식회사 엘지에너지솔루션 | 이차전지 |
WO2024144141A1 (ko) * | 2022-12-26 | 2024-07-04 | 주식회사 엘지에너지솔루션 | 양극 활물질, 이를 포함하는 양극 및 리튬 이차 전지 |
EP4450463A1 (en) | 2023-04-17 | 2024-10-23 | Prime Planet Energy & Solutions, Inc. | Positive electrode active material, positive electrode plate, non-aqueous electrolyte secondary battery, and method of producing positive electrode active material |
EP4450462A1 (en) | 2023-04-17 | 2024-10-23 | Prime Planet Energy & Solutions, Inc. | Method of producing positive electrode active material, positive electrode active material, positive electrode plate, and non-aqueous electrolyte secondary battery |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201028A (ja) | 2000-11-06 | 2002-07-16 | Tanaka Chemical Corp | 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法 |
WO2005020354A1 (ja) * | 2003-08-21 | 2005-03-03 | Seimi Chemical Co., Ltd. | リチウム二次電池用の正極活物質粉末 |
JP2008186753A (ja) | 2007-01-31 | 2008-08-14 | Hitachi Maxell Ltd | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、およびリチウム二次電池 |
JP2012074357A (ja) * | 2010-09-02 | 2012-04-12 | Sumitomo Chemical Co Ltd | 正極活物質 |
WO2016002158A1 (ja) * | 2014-06-30 | 2016-01-07 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池 |
WO2016129361A1 (ja) * | 2015-02-12 | 2016-08-18 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法 |
JP2017188443A (ja) * | 2016-03-31 | 2017-10-12 | 日亜化学工業株式会社 | 非水系電解質二次電池用正極活物質の製造方法 |
JP2017188445A (ja) * | 2016-03-31 | 2017-10-12 | 本田技研工業株式会社 | 非水系電解質二次電池用正極活物質 |
JP2018095523A (ja) * | 2016-12-14 | 2018-06-21 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
JP2018174106A (ja) * | 2017-03-31 | 2018-11-08 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2001036334A1 (en) * | 1999-11-15 | 2001-05-25 | Mitsubishi Chemical Corporation | Lithium-manganese composite oxide, positive electrode material for lithium secondary cell, positive electrode and lithium secondary cell, and method for preparing lithium-manganese composite oxide |
JP2009283354A (ja) * | 2008-05-23 | 2009-12-03 | Panasonic Corp | 非水電解質二次電池用電極およびその製造方法ならびに非水電解質二次電池 |
JP5568886B2 (ja) * | 2009-05-07 | 2014-08-13 | ソニー株式会社 | 活物質、電池および電極の製造方法 |
KR101937896B1 (ko) * | 2016-03-04 | 2019-01-14 | 주식회사 엘지화학 | 이차전지용 양극활물질의 전구체 및 이를 이용하여 제조된 양극활물질 |
JP6855752B2 (ja) * | 2016-10-31 | 2021-04-07 | 住友金属鉱山株式会社 | ニッケルマンガン複合水酸化物とその製造方法、非水系電解質二次電池用正極活物質とその製造方法、および非水系電解質二次電池 |
KR102053843B1 (ko) * | 2016-11-08 | 2019-12-09 | 주식회사 엘지화학 | 음극 및 상기 음극의 제조방법 |
KR101853836B1 (ko) * | 2017-07-18 | 2018-06-08 | 주식회사 엘 앤 에프 | 리튬 이차 전지용 양극 활물질, 이의 제조 방법, 및 이를 포함하는 리튬 이차 전지 |
-
2018
- 2018-11-30 JP JP2018225443A patent/JP6600734B1/ja active Active
-
2019
- 2019-10-15 EP EP19889133.5A patent/EP3889112A4/en active Pending
- 2019-10-15 US US17/296,887 patent/US20220029158A1/en active Pending
- 2019-10-15 WO PCT/JP2019/040433 patent/WO2020110486A1/ja unknown
- 2019-10-15 CN CN201980077808.0A patent/CN113165907B/zh active Active
- 2019-10-15 KR KR1020217015852A patent/KR102655002B1/ko active IP Right Grant
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002201028A (ja) | 2000-11-06 | 2002-07-16 | Tanaka Chemical Corp | 高密度コバルトマンガン共沈水酸化ニッケル及びその製造法 |
WO2005020354A1 (ja) * | 2003-08-21 | 2005-03-03 | Seimi Chemical Co., Ltd. | リチウム二次電池用の正極活物質粉末 |
JP2008186753A (ja) | 2007-01-31 | 2008-08-14 | Hitachi Maxell Ltd | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、およびリチウム二次電池 |
JP2012074357A (ja) * | 2010-09-02 | 2012-04-12 | Sumitomo Chemical Co Ltd | 正極活物質 |
WO2016002158A1 (ja) * | 2014-06-30 | 2016-01-07 | 三洋電機株式会社 | 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池 |
WO2016129361A1 (ja) * | 2015-02-12 | 2016-08-18 | Jx金属株式会社 | リチウムイオン電池用正極活物質、リチウムイオン電池用正極、リチウムイオン電池、及び、リチウムイオン電池用正極活物質の製造方法 |
JP2017188443A (ja) * | 2016-03-31 | 2017-10-12 | 日亜化学工業株式会社 | 非水系電解質二次電池用正極活物質の製造方法 |
JP2017188445A (ja) * | 2016-03-31 | 2017-10-12 | 本田技研工業株式会社 | 非水系電解質二次電池用正極活物質 |
JP2018095523A (ja) * | 2016-12-14 | 2018-06-21 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
WO2018110256A1 (ja) * | 2016-12-14 | 2018-06-21 | 住友化学株式会社 | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
JP2018174106A (ja) * | 2017-03-31 | 2018-11-08 | 住友化学株式会社 | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3889112A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022138451A1 (ja) | 2020-12-22 | 2022-06-30 | 株式会社 東芝 | 電極、非水電解質電池及び電池パック |
JP7353432B1 (ja) | 2022-07-15 | 2023-09-29 | 住友化学株式会社 | 金属複合化合物及びリチウム金属複合酸化物の製造方法 |
WO2024014556A1 (ja) * | 2022-07-15 | 2024-01-18 | 住友化学株式会社 | 金属複合化合物及びリチウム金属複合酸化物の製造方法 |
JP2024011937A (ja) * | 2022-07-15 | 2024-01-25 | 住友化学株式会社 | 金属複合化合物及びリチウム金属複合酸化物の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
US20220029158A1 (en) | 2022-01-27 |
KR20210095149A (ko) | 2021-07-30 |
EP3889112A1 (en) | 2021-10-06 |
EP3889112A4 (en) | 2022-09-14 |
JP6600734B1 (ja) | 2019-10-30 |
JP2020087879A (ja) | 2020-06-04 |
CN113165907A (zh) | 2021-07-23 |
KR102655002B1 (ko) | 2024-04-04 |
CN113165907B (zh) | 2023-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020110486A1 (ja) | リチウム金属複合酸化物、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 | |
JP6630863B1 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質 | |
JP6726102B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6962838B2 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 | |
JP6108141B2 (ja) | リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 | |
JP6836369B2 (ja) | リチウム二次電池用正極活物質前駆体、リチウム二次電池用正極活物質の製造方法 | |
US11990617B2 (en) | Lithium metal composite oxide powder, positive electrode active substance for lithium secondary battery, positive electrode, and lithium secondary battery | |
JP6542421B1 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極、及びリチウム二次電池 | |
US11417879B2 (en) | Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery | |
JP2018095523A (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
WO2020130123A1 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6994990B2 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極及びリチウム二次電池 | |
JP6630865B1 (ja) | リチウム複合金属酸化物粉末及びリチウム二次電池用正極活物質 | |
JP2020011892A (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 | |
JP6803451B1 (ja) | リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 | |
JP6659894B1 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、及びリチウム金属複合酸化物粉末の製造方法 | |
JP7222866B2 (ja) | リチウム金属複合酸化物粉末、リチウム二次電池用正極活物質、正極、及びリチウム二次電池 | |
JP7227894B2 (ja) | リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19889133 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019889133 Country of ref document: EP Effective date: 20210630 |